ETH Price: $1,975.80 (+0.69%)

Transaction Decoder

Block:
23291590 at Sep-04-2025 06:39:11 PM +UTC
Transaction Fee:
0.001305554087197185 ETH $2.58
Gas Used:
648,235 Gas / 2.014013571 Gwei

Account State Difference:

  Address   Before After State Difference Code
0x0600bd14...D3DC0Ad5f 0.000034393379990304 Eth0.0001487135 Eth0.000114320120009696
0x09512073...88E535059 0.000015982695414375 Eth0.009318422695414375 Eth0.00930244
0x198EE0e2...14fdD3697
0 Eth
Nonce: 0
0.00544925 Eth
Nonce: 0
0.00544925From: 0 To: 0
0x1bE24AB4...0fe873E8C 0 Eth0.08255871 Eth0.08255871
0x1c31Da6F...6AD5C80A7 0 Eth0.21926698 Eth0.21926698
0x1c8B9F8d...1C0fB6941
0 Eth
Nonce: 0
0.0001487135 Eth
Nonce: 0
0.0001487135From: 0 To: 0
0x28074F6c...a51D8fD96
0 Eth
Nonce: 0
0.0001487135 Eth
Nonce: 0
0.0001487135From: 0 To: 0
0x35f80eBC...6E49F0F1b 0.002048228266615364 Eth0.007740468266615364 Eth0.00569224
0x373dca46...C06756d2f 0.00009925491581352 Eth0.0001487135 Eth0.00004945858418648
0x37471030...a65041582 0.000065588573972388 Eth0.0001487135 Eth0.000083124926027612
0x3e5AbCBc...8330e555a 0.07549685 Eth0.08433438 Eth0.00883753
0x49357a64...1b99cEE0d 0.0000011483469543 Eth0.0232577983469543 Eth0.02325665
0x4Cf905E8...0BC4c210e
0 Eth
Nonce: 0
0.0046507 Eth
Nonce: 0
0.0046507From: 0 To: 0
0x4D85a834...58FaD2ADc 0.00568911 Eth0.008415 Eth0.00272589
0x4e085E20...69187cF40 0.0003303217582882 Eth0.0051200917582882 Eth0.00478977
0x659E6ED8...47f94899E 0.0000325192658688 Eth0.0001487135 Eth0.0001161942341312
0x6c6A8d48...E94609bE7 0.00058366318451201 Eth0.00156931318451201 Eth0.00098565
0x6c9d743D...73F1158d7 0.039726141436756 Eth0.042734821436756 Eth0.00300868
0x6Da15093...3f8A43cD7 0.001261537437360002 Eth0.023259747437360002 Eth0.02199821
0x6F7BF9c9...1ff81fb4c 0.000005196369591 Eth0.015113586369591 Eth0.01510839
0x71C7656E...5f6d8976F
(Etherscan: Donate)
41.026921446867049975 Eth41.027037656867049975 Eth0.00011621
0x7830c87C...31FA86F43
(Coinbase: Deposit)
93.471634802405310311 Eth
Nonce: 2683171
93.470329248318113126 Eth
Nonce: 2683172
0.001305554087197185
0x7849b438...E07703C63
0 Eth
Nonce: 0
0.0001487135 Eth
Nonce: 0
0.0001487135From: 0 To: 0
0x88Cd58C7...30Dd42b8C 0.000255819485800259 Eth2.483309129485800259 Eth2.48305331
0x8e727355...372dd7c9C 0.00002377932122796 Eth0.0001486745 Eth0.00012489517877204
(beaverbuild)
6.170640544981392829 Eth6.171288779981392829 Eth0.000648235
0x976C2aC0...beBfA2804 0 Eth0.01161522 Eth0.01161522
0x9Fcd0e5f...79472F02e 0 Eth0.02197703 Eth0.02197703
0xA9D1e08C...FB81d3E43
(Coinbase 10)
2,902.779261481610140741 Eth2,899.621639784005857981 Eth3.15762169760428276
0xacADb0E7...30e8ED740 0.27069345 Eth0.38092234 Eth0.11022889
0xB1f8B6E0...c9b2284d9 0.000246650527586019 Eth0.011258850527586019 Eth0.0110122
0xB6c68235...1b2E925d9 0.00006522536087742 Eth0.0001487135 Eth0.00008348813912258
0xbD8d0D17...0B90EC0d6 0 Eth0.00126054 Eth0.00126054
0xcB677CB8...606fc2dab
0 Eth
Nonce: 0
0.0001487135 Eth
Nonce: 0
0.0001487135From: 0 To: 0
0xD353B0F8...1Dc896Fc3 0.0000259104618973 Eth0.0001487135 Eth0.0001228030381027
0xd382B1d7...c24A6BAb5 0 Eth0.0053245 Eth0.0053245
0xd7d67A8A...67517B10F 0.0000267060076184 Eth0.0001487135 Eth0.0001220074923816
0xDD5b691B...f410FEfaB
0 Eth
Nonce: 0
0.0001487135 Eth
Nonce: 0
0.0001487135From: 0 To: 0
0xe0f75BCc...B1E4b4c4e 0 Eth0.05419193 Eth0.05419193
0xe52fEc01...E4bc7c082 0 Eth0.04475429 Eth0.04475429
0xf3BD514A...6F306d849
0 Eth
Nonce: 0
0.00465022 Eth
Nonce: 0
0.00465022From: 0 To: 0
0xf52396fF...B08D900D3 0.00002556365083288 Eth0.0001487135 Eth0.00012314984916712
0xfE35C21F...b02Ea1c76 0.000025415957618268 Eth0.0001486745 Eth0.000123258542381732

Execution Trace

Coinbase 10.1a1da075( )
  • ETH 0.000114320120009696 0x0600bd1431bf67069dd743ecbe3f0f9d3dc0ad5f.CALL( )
  • ETH 0.000123258542381732 0xfe35c21f7c54bceb4d2b384747b6c6fb02ea1c76.CALL( )
  • ETH 0.02325665 0x49357a64d305744c08fc032cc17df1b1b99cee0d.CALL( )
  • ETH 0.000083124926027612 0x3747103075b8d25cf93a5ed42e075e5a65041582.CALL( )
  • ETH 0.00012489517877204 0x8e7273550d86d2091799df83d8c4c05372dd7c9c.CALL( )
  • ETH 0.0001161942341312 0x659e6ed8c6e0fd5f81fbc287a4d237147f94899e.CALL( )
  • ETH 0.0001228030381027 0xd353b0f880e7e34874b370fa7a9e2bf1dc896fc3.CALL( )
  • ETH 0.0001487135 0x28074f6cb28440eb2a49e143d381845a51d8fd96.CALL( )
  • ETH 0.0001487135 0x1c8b9f8df479f405f02d9e6b7fe71911c0fb6941.CALL( )
  • ETH 0.0001487135 0xcb677cb8227c81c3d2646d4f1f0984f606fc2dab.CALL( )
  • ETH 0.0001487135 0x7849b43875ac84ab55d54f3f0dc38a0e07703c63.CALL( )
  • ETH 0.0001487135 0xdd5b691b0003667d67be7dc49334a74f410fefab.CALL( )
  • ETH 0.00012314984916712 0xf52396ffb50c07e78eac575c963752bb08d900d3.CALL( )
  • ETH 0.00008348813912258 0xb6c68235f239992e4ffc0a88b3f613a1b2e925d9.CALL( )
  • ETH 0.0001220074923816 0xd7d67a8ad745e1a5ffd2562df808c3367517b10f.CALL( )
  • ETH 0.00883753 0x3e5abcbccabe59e9802ffdfa29d74b78330e555a.CALL( )
  • ETH 0.00004945858418648 0x373dca465f05e551899a0f910450d4dc06756d2f.CALL( )
  • ETH 0.0053245 0xd382b1d70d984e8689b64a731126694c24a6bab5.CALL( )
  • ETH 0.00272589 0x4d85a834891b277386ea5ec215343cc58fad2adc.CALL( )
  • ETH 0.0110122 0xb1f8b6e0144ce6174fba765cff8c42bc9b2284d9.CALL( )
  • ETH 0.00300868 0x6c9d743d60da1b71ba4d1c9704b540873f1158d7.CALL( )
  • ETH 0.00465022 0xf3bd514aa0f9e265c9f5bec63a51b5c6f306d849.CALL( )
  • ETH 0.00569224 0x35f80ebcbe0291517821441c0fa6ad86e49f0f1b.CALL( )
    • ETH 0.00569224 CoinbaseSmartWallet.DELEGATECALL( )
    • ETH 0.08255871 0x1be24ab4e708be476ee1248461b7e540fe873e8c.CALL( )
    • ETH 0.00098565 0x6c6a8d48065329c6d888dc0d5023767e94609be7.CALL( )
    • ETH 0.01161522 0x976c2ac0ed7f1d440c40ec68b6fa759bebfa2804.CALL( )
    • ETH 0.04475429 0xe52fec01909a278f73003b5d88d91dde4bc7c082.CALL( )
    • ETH 0.21926698 0x1c31da6f192bfc95a44a563e55a963a6ad5c80a7.CALL( )
    • ETH 0.0046507 0x4cf905e8cf04f852a31d883a6dfbf9c0bc4c210e.CALL( )
    • ETH 0.00544925 0x198ee0e21244a1d8100a5887784b55114fdd3697.CALL( )
    • ETH 0.11022889 0xacadb0e779dcf6f998ff9e40261e8aa30e8ed740.CALL( )
    • ETH 0.00126054 0xbd8d0d17de3709ec0a7229b615f68910b90ec0d6.CALL( )
    • ETH 0.02199821 0x6da1509363a721d2446c6e789d2e4083f8a43cd7.CALL( )
    • ETH 0.05419193 0xe0f75bcc7e0519846b754fa5c173125b1e4b4c4e.CALL( )
    • ETH 0.02197703 0x9fcd0e5fb4e70845090ca8b61c9bcea79472f02e.CALL( )
    • ETH 0.00478977 0x4e085e206577079174e3b6c8bb432ce69187cf40.CALL( )
    • ETH 0.00930244 0x0951207373e807cf0151d2e9acbc6f788e535059.CALL( )
    • ETH 0.01510839 0x6f7bf9c954993b6321d4820630a35581ff81fb4c.CALL( )
    • ETH 0.00011621 Etherscan: Donate.CALL( )
    • ETH 2.48305331 0x88cd58c7c7937507ab7378d280a54fa30dd42b8c.CALL( )
      • ETH 2.48305331 CoinbaseSmartWallet.DELEGATECALL( )
        File 1 of 2: CoinbaseSmartWallet
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.23;
        import {IAccount} from "account-abstraction/interfaces/IAccount.sol";
        import {UserOperation, UserOperationLib} from "account-abstraction/interfaces/UserOperation.sol";
        import {Receiver} from "solady/accounts/Receiver.sol";
        import {SignatureCheckerLib} from "solady/utils/SignatureCheckerLib.sol";
        import {UUPSUpgradeable} from "solady/utils/UUPSUpgradeable.sol";
        import {WebAuthn} from "webauthn-sol/WebAuthn.sol";
        import {ERC1271} from "./ERC1271.sol";
        import {MultiOwnable} from "./MultiOwnable.sol";
        /// @title Coinbase Smart Wallet
        ///
        /// @notice ERC-4337-compatible smart account, based on Solady's ERC4337 account implementation
        ///         with inspiration from Alchemy's LightAccount and Daimo's DaimoAccount. Verified by z0r0z.eth from (⌘) NANI.eth
        ///
        /// @author Coinbase (https://github.com/coinbase/smart-wallet)
        /// @author Solady (https://github.com/vectorized/solady/blob/main/src/accounts/ERC4337.sol)
        contract CoinbaseSmartWallet is ERC1271, IAccount, MultiOwnable, UUPSUpgradeable, Receiver {
            /// @notice A wrapper struct used for signature validation so that callers
            ///         can identify the owner that signed.
            struct SignatureWrapper {
                /// @dev The index of the owner that signed, see `MultiOwnable.ownerAtIndex`
                uint256 ownerIndex;
                /// @dev If `MultiOwnable.ownerAtIndex` is an Ethereum address, this should be `abi.encodePacked(r, s, v)`
                ///      If `MultiOwnable.ownerAtIndex` is a public key, this should be `abi.encode(WebAuthnAuth)`.
                bytes signatureData;
            }
            /// @notice Represents a call to make.
            struct Call {
                /// @dev The address to call.
                address target;
                /// @dev The value to send when making the call.
                uint256 value;
                /// @dev The data of the call.
                bytes data;
            }
            /// @notice Reserved nonce key (upper 192 bits of `UserOperation.nonce`) for cross-chain replayable
            ///         transactions.
            ///
            /// @dev MUST BE the `UserOperation.nonce` key when `UserOperation.calldata` is calling
            ///      `executeWithoutChainIdValidation`and MUST NOT BE `UserOperation.nonce` key when `UserOperation.calldata` is
            ///      NOT calling `executeWithoutChainIdValidation`.
            ///
            /// @dev Helps enforce sequential sequencing of replayable transactions.
            uint256 public constant REPLAYABLE_NONCE_KEY = 8453;
            /// @notice Thrown when `initialize` is called but the account already has had at least one owner.
            error Initialized();
            /// @notice Thrown when a call is passed to `executeWithoutChainIdValidation` that is not allowed by
            ///         `canSkipChainIdValidation`
            ///
            /// @param selector The selector of the call.
            error SelectorNotAllowed(bytes4 selector);
            /// @notice Thrown in validateUserOp if the key of `UserOperation.nonce` does not match the calldata.
            ///
            /// @dev Calls to `this.executeWithoutChainIdValidation` MUST use `REPLAYABLE_NONCE_KEY` and
            ///      calls NOT to `this.executeWithoutChainIdValidation` MUST NOT use `REPLAYABLE_NONCE_KEY`.
            ///
            /// @param key The invalid `UserOperation.nonce` key.
            error InvalidNonceKey(uint256 key);
            /// @notice Reverts if the caller is not the EntryPoint.
            modifier onlyEntryPoint() virtual {
                if (msg.sender != entryPoint()) {
                    revert Unauthorized();
                }
                _;
            }
            /// @notice Reverts if the caller is neither the EntryPoint, the owner, nor the account itself.
            modifier onlyEntryPointOrOwner() virtual {
                if (msg.sender != entryPoint()) {
                    _checkOwner();
                }
                _;
            }
            /// @notice Sends to the EntryPoint (i.e. `msg.sender`) the missing funds for this transaction.
            ///
            /// @dev Subclass MAY override this modifier for better funds management (e.g. send to the
            ///      EntryPoint more than the minimum required, so that in future transactions it will not
            ///      be required to send again).
            ///
            /// @param missingAccountFunds The minimum value this modifier should send the EntryPoint which
            ///                            MAY be zero, in case there is enough deposit, or the userOp has a
            ///                            paymaster.
            modifier payPrefund(uint256 missingAccountFunds) virtual {
                _;
                assembly ("memory-safe") {
                    if missingAccountFunds {
                        // Ignore failure (it's EntryPoint's job to verify, not the account's).
                        pop(call(gas(), caller(), missingAccountFunds, codesize(), 0x00, codesize(), 0x00))
                    }
                }
            }
            constructor() {
                // Implementation should not be initializable (does not affect proxies which use their own storage).
                bytes[] memory owners = new bytes[](1);
                owners[0] = abi.encode(address(0));
                _initializeOwners(owners);
            }
            /// @notice Initializes the account with the `owners`.
            ///
            /// @dev Reverts if the account has had at least one owner, i.e. has been initialized.
            ///
            /// @param owners Array of initial owners for this account. Each item should be
            ///               an ABI encoded Ethereum address, i.e. 32 bytes with 12 leading 0 bytes,
            ///               or a 64 byte public key.
            function initialize(bytes[] calldata owners) external payable virtual {
                if (nextOwnerIndex() != 0) {
                    revert Initialized();
                }
                _initializeOwners(owners);
            }
            /// @inheritdoc IAccount
            ///
            /// @notice ERC-4337 `validateUserOp` method. The EntryPoint will
            ///         call `UserOperation.sender.call(UserOperation.callData)` only if this validation call returns
            ///         successfully.
            ///
            /// @dev Signature failure should be reported by returning 1 (see: `this._isValidSignature`). This
            ///      allows making a "simulation call" without a valid signature. Other failures (e.g. invalid signature format)
            ///      should still revert to signal failure.
            /// @dev Reverts if the `UserOperation.nonce` key is invalid for `UserOperation.calldata`.
            /// @dev Reverts if the signature format is incorrect or invalid for owner type.
            ///
            /// @param userOp              The `UserOperation` to validate.
            /// @param userOpHash          The `UserOperation` hash, as computed by `EntryPoint.getUserOpHash(UserOperation)`.
            /// @param missingAccountFunds The missing account funds that must be deposited on the Entrypoint.
            ///
            /// @return validationData The encoded `ValidationData` structure:
            ///                        `(uint256(validAfter) << (160 + 48)) | (uint256(validUntil) << 160) | (success ? 0 : 1)`
            ///                        where `validUntil` is 0 (indefinite) and `validAfter` is 0.
            function validateUserOp(UserOperation calldata userOp, bytes32 userOpHash, uint256 missingAccountFunds)
                external
                virtual
                onlyEntryPoint
                payPrefund(missingAccountFunds)
                returns (uint256 validationData)
            {
                uint256 key = userOp.nonce >> 64;
                if (bytes4(userOp.callData) == this.executeWithoutChainIdValidation.selector) {
                    userOpHash = getUserOpHashWithoutChainId(userOp);
                    if (key != REPLAYABLE_NONCE_KEY) {
                        revert InvalidNonceKey(key);
                    }
                } else {
                    if (key == REPLAYABLE_NONCE_KEY) {
                        revert InvalidNonceKey(key);
                    }
                }
                // Return 0 if the recovered address matches the owner.
                if (_isValidSignature(userOpHash, userOp.signature)) {
                    return 0;
                }
                // Else return 1
                return 1;
            }
            /// @notice Executes `calls` on this account (i.e. self call).
            ///
            /// @dev Can only be called by the Entrypoint.
            /// @dev Reverts if the given call is not authorized to skip the chain ID validtion.
            /// @dev `validateUserOp()` will recompute the `userOpHash` without the chain ID before validating
            ///      it if the `UserOperation.calldata` is calling this function. This allows certain UserOperations
            ///      to be replayed for all accounts sharing the same address across chains. E.g. This may be
            ///      useful for syncing owner changes.
            ///
            /// @param calls An array of calldata to use for separate self calls.
            function executeWithoutChainIdValidation(bytes[] calldata calls) external payable virtual onlyEntryPoint {
                for (uint256 i; i < calls.length; i++) {
                    bytes calldata call = calls[i];
                    bytes4 selector = bytes4(call);
                    if (!canSkipChainIdValidation(selector)) {
                        revert SelectorNotAllowed(selector);
                    }
                    _call(address(this), 0, call);
                }
            }
            /// @notice Executes the given call from this account.
            ///
            /// @dev Can only be called by the Entrypoint or an owner of this account (including itself).
            ///
            /// @param target The address to call.
            /// @param value  The value to send with the call.
            /// @param data   The data of the call.
            function execute(address target, uint256 value, bytes calldata data)
                external
                payable
                virtual
                onlyEntryPointOrOwner
            {
                _call(target, value, data);
            }
            /// @notice Executes batch of `Call`s.
            ///
            /// @dev Can only be called by the Entrypoint or an owner of this account (including itself).
            ///
            /// @param calls The list of `Call`s to execute.
            function executeBatch(Call[] calldata calls) external payable virtual onlyEntryPointOrOwner {
                for (uint256 i; i < calls.length; i++) {
                    _call(calls[i].target, calls[i].value, calls[i].data);
                }
            }
            /// @notice Returns the address of the EntryPoint v0.6.
            ///
            /// @return The address of the EntryPoint v0.6
            function entryPoint() public view virtual returns (address) {
                return 0x5FF137D4b0FDCD49DcA30c7CF57E578a026d2789;
            }
            /// @notice Computes the hash of the `UserOperation` in the same way as EntryPoint v0.6, but
            ///         leaves out the chain ID.
            ///
            /// @dev This allows accounts to sign a hash that can be used on many chains.
            ///
            /// @param userOp The `UserOperation` to compute the hash for.
            ///
            /// @return The `UserOperation` hash, which does not depend on chain ID.
            function getUserOpHashWithoutChainId(UserOperation calldata userOp) public view virtual returns (bytes32) {
                return keccak256(abi.encode(UserOperationLib.hash(userOp), entryPoint()));
            }
            /// @notice Returns the implementation of the ERC1967 proxy.
            ///
            /// @return $ The address of implementation contract.
            function implementation() public view returns (address $) {
                assembly {
                    $ := sload(_ERC1967_IMPLEMENTATION_SLOT)
                }
            }
            /// @notice Returns whether `functionSelector` can be called in `executeWithoutChainIdValidation`.
            ///
            /// @param functionSelector The function selector to check.
            ////
            /// @return `true` is the function selector is allowed to skip the chain ID validation, else `false`.
            function canSkipChainIdValidation(bytes4 functionSelector) public pure returns (bool) {
                if (
                    functionSelector == MultiOwnable.addOwnerPublicKey.selector
                        || functionSelector == MultiOwnable.addOwnerAddress.selector
                        || functionSelector == MultiOwnable.removeOwnerAtIndex.selector
                        || functionSelector == MultiOwnable.removeLastOwner.selector
                        || functionSelector == UUPSUpgradeable.upgradeToAndCall.selector
                ) {
                    return true;
                }
                return false;
            }
            /// @notice Executes the given call from this account.
            ///
            /// @dev Reverts if the call reverted.
            /// @dev Implementation taken from
            /// https://github.com/alchemyplatform/light-account/blob/43f625afdda544d5e5af9c370c9f4be0943e4e90/src/common/BaseLightAccount.sol#L125
            ///
            /// @param target The target call address.
            /// @param value  The call value to user.
            /// @param data   The raw call data.
            function _call(address target, uint256 value, bytes memory data) internal {
                (bool success, bytes memory result) = target.call{value: value}(data);
                if (!success) {
                    assembly ("memory-safe") {
                        revert(add(result, 32), mload(result))
                    }
                }
            }
            /// @inheritdoc ERC1271
            ///
            /// @dev Used by both `ERC1271.isValidSignature` AND `IAccount.validateUserOp` signature validation.
            /// @dev Reverts if owner at `ownerIndex` is not compatible with `signature` format.
            ///
            /// @param signature ABI encoded `SignatureWrapper`.
            function _isValidSignature(bytes32 hash, bytes calldata signature) internal view virtual override returns (bool) {
                SignatureWrapper memory sigWrapper = abi.decode(signature, (SignatureWrapper));
                bytes memory ownerBytes = ownerAtIndex(sigWrapper.ownerIndex);
                if (ownerBytes.length == 32) {
                    if (uint256(bytes32(ownerBytes)) > type(uint160).max) {
                        // technically should be impossible given owners can only be added with
                        // addOwnerAddress and addOwnerPublicKey, but we leave incase of future changes.
                        revert InvalidEthereumAddressOwner(ownerBytes);
                    }
                    address owner;
                    assembly ("memory-safe") {
                        owner := mload(add(ownerBytes, 32))
                    }
                    return SignatureCheckerLib.isValidSignatureNow(owner, hash, sigWrapper.signatureData);
                }
                if (ownerBytes.length == 64) {
                    (uint256 x, uint256 y) = abi.decode(ownerBytes, (uint256, uint256));
                    WebAuthn.WebAuthnAuth memory auth = abi.decode(sigWrapper.signatureData, (WebAuthn.WebAuthnAuth));
                    return WebAuthn.verify({challenge: abi.encode(hash), requireUV: false, webAuthnAuth: auth, x: x, y: y});
                }
                revert InvalidOwnerBytesLength(ownerBytes);
            }
            /// @inheritdoc UUPSUpgradeable
            ///
            /// @dev Authorization logic is only based on the `msg.sender` being an owner of this account,
            ///      or `address(this)`.
            function _authorizeUpgrade(address) internal view virtual override(UUPSUpgradeable) onlyOwner {}
            /// @inheritdoc ERC1271
            function _domainNameAndVersion() internal pure override(ERC1271) returns (string memory, string memory) {
                return ("Coinbase Smart Wallet", "1");
            }
        }
        // SPDX-License-Identifier: GPL-3.0
        pragma solidity ^0.8.12;
        import "./UserOperation.sol";
        interface IAccount {
            /**
             * Validate user's signature and nonce
             * the entryPoint will make the call to the recipient only if this validation call returns successfully.
             * signature failure should be reported by returning SIG_VALIDATION_FAILED (1).
             * This allows making a "simulation call" without a valid signature
             * Other failures (e.g. nonce mismatch, or invalid signature format) should still revert to signal failure.
             *
             * @dev Must validate caller is the entryPoint.
             *      Must validate the signature and nonce
             * @param userOp the operation that is about to be executed.
             * @param userOpHash hash of the user's request data. can be used as the basis for signature.
             * @param missingAccountFunds missing funds on the account's deposit in the entrypoint.
             *      This is the minimum amount to transfer to the sender(entryPoint) to be able to make the call.
             *      The excess is left as a deposit in the entrypoint, for future calls.
             *      can be withdrawn anytime using "entryPoint.withdrawTo()"
             *      In case there is a paymaster in the request (or the current deposit is high enough), this value will be zero.
             * @return validationData packaged ValidationData structure. use `_packValidationData` and `_unpackValidationData` to encode and decode
             *      <20-byte> sigAuthorizer - 0 for valid signature, 1 to mark signature failure,
             *         otherwise, an address of an "authorizer" contract.
             *      <6-byte> validUntil - last timestamp this operation is valid. 0 for "indefinite"
             *      <6-byte> validAfter - first timestamp this operation is valid
             *      If an account doesn't use time-range, it is enough to return SIG_VALIDATION_FAILED value (1) for signature failure.
             *      Note that the validation code cannot use block.timestamp (or block.number) directly.
             */
            function validateUserOp(UserOperation calldata userOp, bytes32 userOpHash, uint256 missingAccountFunds)
            external returns (uint256 validationData);
        }
        // SPDX-License-Identifier: GPL-3.0
        pragma solidity ^0.8.12;
        /* solhint-disable no-inline-assembly */
        import {calldataKeccak} from "../core/Helpers.sol";
        /**
         * User Operation struct
         * @param sender the sender account of this request.
             * @param nonce unique value the sender uses to verify it is not a replay.
             * @param initCode if set, the account contract will be created by this constructor/
             * @param callData the method call to execute on this account.
             * @param callGasLimit the gas limit passed to the callData method call.
             * @param verificationGasLimit gas used for validateUserOp and validatePaymasterUserOp.
             * @param preVerificationGas gas not calculated by the handleOps method, but added to the gas paid. Covers batch overhead.
             * @param maxFeePerGas same as EIP-1559 gas parameter.
             * @param maxPriorityFeePerGas same as EIP-1559 gas parameter.
             * @param paymasterAndData if set, this field holds the paymaster address and paymaster-specific data. the paymaster will pay for the transaction instead of the sender.
             * @param signature sender-verified signature over the entire request, the EntryPoint address and the chain ID.
             */
            struct UserOperation {
                address sender;
                uint256 nonce;
                bytes initCode;
                bytes callData;
                uint256 callGasLimit;
                uint256 verificationGasLimit;
                uint256 preVerificationGas;
                uint256 maxFeePerGas;
                uint256 maxPriorityFeePerGas;
                bytes paymasterAndData;
                bytes signature;
            }
        /**
         * Utility functions helpful when working with UserOperation structs.
         */
        library UserOperationLib {
            function getSender(UserOperation calldata userOp) internal pure returns (address) {
                address data;
                //read sender from userOp, which is first userOp member (saves 800 gas...)
                assembly {data := calldataload(userOp)}
                return address(uint160(data));
            }
            //relayer/block builder might submit the TX with higher priorityFee, but the user should not
            // pay above what he signed for.
            function gasPrice(UserOperation calldata userOp) internal view returns (uint256) {
            unchecked {
                uint256 maxFeePerGas = userOp.maxFeePerGas;
                uint256 maxPriorityFeePerGas = userOp.maxPriorityFeePerGas;
                if (maxFeePerGas == maxPriorityFeePerGas) {
                    //legacy mode (for networks that don't support basefee opcode)
                    return maxFeePerGas;
                }
                return min(maxFeePerGas, maxPriorityFeePerGas + block.basefee);
            }
            }
            function pack(UserOperation calldata userOp) internal pure returns (bytes memory ret) {
                address sender = getSender(userOp);
                uint256 nonce = userOp.nonce;
                bytes32 hashInitCode = calldataKeccak(userOp.initCode);
                bytes32 hashCallData = calldataKeccak(userOp.callData);
                uint256 callGasLimit = userOp.callGasLimit;
                uint256 verificationGasLimit = userOp.verificationGasLimit;
                uint256 preVerificationGas = userOp.preVerificationGas;
                uint256 maxFeePerGas = userOp.maxFeePerGas;
                uint256 maxPriorityFeePerGas = userOp.maxPriorityFeePerGas;
                bytes32 hashPaymasterAndData = calldataKeccak(userOp.paymasterAndData);
                return abi.encode(
                    sender, nonce,
                    hashInitCode, hashCallData,
                    callGasLimit, verificationGasLimit, preVerificationGas,
                    maxFeePerGas, maxPriorityFeePerGas,
                    hashPaymasterAndData
                );
            }
            function hash(UserOperation calldata userOp) internal pure returns (bytes32) {
                return keccak256(pack(userOp));
            }
            function min(uint256 a, uint256 b) internal pure returns (uint256) {
                return a < b ? a : b;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.4;
        /// @notice Receiver mixin for ETH and safe-transferred ERC721 and ERC1155 tokens.
        /// @author Solady (https://github.com/Vectorized/solady/blob/main/src/accounts/Receiver.sol)
        ///
        /// @dev Note:
        /// - Handles all ERC721 and ERC1155 token safety callbacks.
        /// - Collapses function table gas overhead and code size.
        /// - Utilizes fallback so unknown calldata will pass on.
        abstract contract Receiver {
            /// @dev For receiving ETH.
            receive() external payable virtual {}
            /// @dev Fallback function with the `receiverFallback` modifier.
            fallback() external payable virtual receiverFallback {}
            /// @dev Modifier for the fallback function to handle token callbacks.
            modifier receiverFallback() virtual {
                /// @solidity memory-safe-assembly
                assembly {
                    let s := shr(224, calldataload(0))
                    // 0x150b7a02: `onERC721Received(address,address,uint256,bytes)`.
                    // 0xf23a6e61: `onERC1155Received(address,address,uint256,uint256,bytes)`.
                    // 0xbc197c81: `onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)`.
                    if or(eq(s, 0x150b7a02), or(eq(s, 0xf23a6e61), eq(s, 0xbc197c81))) {
                        mstore(0x20, s) // Store `msg.sig`.
                        return(0x3c, 0x20) // Return `msg.sig`.
                    }
                }
                _;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.4;
        /// @notice Signature verification helper that supports both ECDSA signatures from EOAs
        /// and ERC1271 signatures from smart contract wallets like Argent and Gnosis safe.
        /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SignatureCheckerLib.sol)
        /// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/SignatureChecker.sol)
        ///
        /// @dev Note:
        /// - The signature checking functions use the ecrecover precompile (0x1).
        /// - The `bytes memory signature` variants use the identity precompile (0x4)
        ///   to copy memory internally.
        /// - Unlike ECDSA signatures, contract signatures are revocable.
        /// - As of Solady version 0.0.134, all `bytes signature` variants accept both
        ///   regular 65-byte `(r, s, v)` and EIP-2098 `(r, vs)` short form signatures.
        ///   See: https://eips.ethereum.org/EIPS/eip-2098
        ///   This is for calldata efficiency on smart accounts prevalent on L2s.
        ///
        /// WARNING! Do NOT use signatures as unique identifiers:
        /// - Use a nonce in the digest to prevent replay attacks on the same contract.
        /// - Use EIP-712 for the digest to prevent replay attacks across different chains and contracts.
        ///   EIP-712 also enables readable signing of typed data for better user safety.
        /// This implementation does NOT check if a signature is non-malleable.
        library SignatureCheckerLib {
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*               SIGNATURE CHECKING OPERATIONS                */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Returns whether `signature` is valid for `signer` and `hash`.
            /// If `signer` is a smart contract, the signature is validated with ERC1271.
            /// Otherwise, the signature is validated with `ECDSA.recover`.
            function isValidSignatureNow(address signer, bytes32 hash, bytes memory signature)
                internal
                view
                returns (bool isValid)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    // Clean the upper 96 bits of `signer` in case they are dirty.
                    for { signer := shr(96, shl(96, signer)) } signer {} {
                        let m := mload(0x40)
                        mstore(0x00, hash)
                        mstore(0x40, mload(add(signature, 0x20))) // `r`.
                        if eq(mload(signature), 64) {
                            let vs := mload(add(signature, 0x40))
                            mstore(0x20, add(shr(255, vs), 27)) // `v`.
                            mstore(0x60, shr(1, shl(1, vs))) // `s`.
                            let t :=
                                staticcall(
                                    gas(), // Amount of gas left for the transaction.
                                    1, // Address of `ecrecover`.
                                    0x00, // Start of input.
                                    0x80, // Size of input.
                                    0x01, // Start of output.
                                    0x20 // Size of output.
                                )
                            // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                            if iszero(or(iszero(returndatasize()), xor(signer, mload(t)))) {
                                isValid := 1
                                mstore(0x60, 0) // Restore the zero slot.
                                mstore(0x40, m) // Restore the free memory pointer.
                                break
                            }
                        }
                        if eq(mload(signature), 65) {
                            mstore(0x20, byte(0, mload(add(signature, 0x60)))) // `v`.
                            mstore(0x60, mload(add(signature, 0x40))) // `s`.
                            let t :=
                                staticcall(
                                    gas(), // Amount of gas left for the transaction.
                                    1, // Address of `ecrecover`.
                                    0x00, // Start of input.
                                    0x80, // Size of input.
                                    0x01, // Start of output.
                                    0x20 // Size of output.
                                )
                            // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                            if iszero(or(iszero(returndatasize()), xor(signer, mload(t)))) {
                                isValid := 1
                                mstore(0x60, 0) // Restore the zero slot.
                                mstore(0x40, m) // Restore the free memory pointer.
                                break
                            }
                        }
                        mstore(0x60, 0) // Restore the zero slot.
                        mstore(0x40, m) // Restore the free memory pointer.
                        let f := shl(224, 0x1626ba7e)
                        mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                        mstore(add(m, 0x04), hash)
                        let d := add(m, 0x24)
                        mstore(d, 0x40) // The offset of the `signature` in the calldata.
                        // Copy the `signature` over.
                        let n := add(0x20, mload(signature))
                        pop(staticcall(gas(), 4, signature, n, add(m, 0x44), n))
                        // forgefmt: disable-next-item
                        isValid := and(
                            // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                            eq(mload(d), f),
                            // Whether the staticcall does not revert.
                            // This must be placed at the end of the `and` clause,
                            // as the arguments are evaluated from right to left.
                            staticcall(
                                gas(), // Remaining gas.
                                signer, // The `signer` address.
                                m, // Offset of calldata in memory.
                                add(returndatasize(), 0x44), // Length of calldata in memory.
                                d, // Offset of returndata.
                                0x20 // Length of returndata to write.
                            )
                        )
                        break
                    }
                }
            }
            /// @dev Returns whether `signature` is valid for `signer` and `hash`.
            /// If `signer` is a smart contract, the signature is validated with ERC1271.
            /// Otherwise, the signature is validated with `ECDSA.recover`.
            function isValidSignatureNowCalldata(address signer, bytes32 hash, bytes calldata signature)
                internal
                view
                returns (bool isValid)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    // Clean the upper 96 bits of `signer` in case they are dirty.
                    for { signer := shr(96, shl(96, signer)) } signer {} {
                        let m := mload(0x40)
                        mstore(0x00, hash)
                        if eq(signature.length, 64) {
                            let vs := calldataload(add(signature.offset, 0x20))
                            mstore(0x20, add(shr(255, vs), 27)) // `v`.
                            mstore(0x40, calldataload(signature.offset)) // `r`.
                            mstore(0x60, shr(1, shl(1, vs))) // `s`.
                            let t :=
                                staticcall(
                                    gas(), // Amount of gas left for the transaction.
                                    1, // Address of `ecrecover`.
                                    0x00, // Start of input.
                                    0x80, // Size of input.
                                    0x01, // Start of output.
                                    0x20 // Size of output.
                                )
                            // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                            if iszero(or(iszero(returndatasize()), xor(signer, mload(t)))) {
                                isValid := 1
                                mstore(0x60, 0) // Restore the zero slot.
                                mstore(0x40, m) // Restore the free memory pointer.
                                break
                            }
                        }
                        if eq(signature.length, 65) {
                            mstore(0x20, byte(0, calldataload(add(signature.offset, 0x40)))) // `v`.
                            calldatacopy(0x40, signature.offset, 0x40) // `r`, `s`.
                            let t :=
                                staticcall(
                                    gas(), // Amount of gas left for the transaction.
                                    1, // Address of `ecrecover`.
                                    0x00, // Start of input.
                                    0x80, // Size of input.
                                    0x01, // Start of output.
                                    0x20 // Size of output.
                                )
                            // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                            if iszero(or(iszero(returndatasize()), xor(signer, mload(t)))) {
                                isValid := 1
                                mstore(0x60, 0) // Restore the zero slot.
                                mstore(0x40, m) // Restore the free memory pointer.
                                break
                            }
                        }
                        mstore(0x60, 0) // Restore the zero slot.
                        mstore(0x40, m) // Restore the free memory pointer.
                        let f := shl(224, 0x1626ba7e)
                        mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                        mstore(add(m, 0x04), hash)
                        let d := add(m, 0x24)
                        mstore(d, 0x40) // The offset of the `signature` in the calldata.
                        mstore(add(m, 0x44), signature.length)
                        // Copy the `signature` over.
                        calldatacopy(add(m, 0x64), signature.offset, signature.length)
                        // forgefmt: disable-next-item
                        isValid := and(
                            // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                            eq(mload(d), f),
                            // Whether the staticcall does not revert.
                            // This must be placed at the end of the `and` clause,
                            // as the arguments are evaluated from right to left.
                            staticcall(
                                gas(), // Remaining gas.
                                signer, // The `signer` address.
                                m, // Offset of calldata in memory.
                                add(signature.length, 0x64), // Length of calldata in memory.
                                d, // Offset of returndata.
                                0x20 // Length of returndata to write.
                            )
                        )
                        break
                    }
                }
            }
            /// @dev Returns whether the signature (`r`, `vs`) is valid for `signer` and `hash`.
            /// If `signer` is a smart contract, the signature is validated with ERC1271.
            /// Otherwise, the signature is validated with `ECDSA.recover`.
            function isValidSignatureNow(address signer, bytes32 hash, bytes32 r, bytes32 vs)
                internal
                view
                returns (bool isValid)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    // Clean the upper 96 bits of `signer` in case they are dirty.
                    for { signer := shr(96, shl(96, signer)) } signer {} {
                        let m := mload(0x40)
                        mstore(0x00, hash)
                        mstore(0x20, add(shr(255, vs), 27)) // `v`.
                        mstore(0x40, r) // `r`.
                        mstore(0x60, shr(1, shl(1, vs))) // `s`.
                        let t :=
                            staticcall(
                                gas(), // Amount of gas left for the transaction.
                                1, // Address of `ecrecover`.
                                0x00, // Start of input.
                                0x80, // Size of input.
                                0x01, // Start of output.
                                0x20 // Size of output.
                            )
                        // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                        if iszero(or(iszero(returndatasize()), xor(signer, mload(t)))) {
                            isValid := 1
                            mstore(0x60, 0) // Restore the zero slot.
                            mstore(0x40, m) // Restore the free memory pointer.
                            break
                        }
                        let f := shl(224, 0x1626ba7e)
                        mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                        mstore(add(m, 0x04), hash)
                        let d := add(m, 0x24)
                        mstore(d, 0x40) // The offset of the `signature` in the calldata.
                        mstore(add(m, 0x44), 65) // Length of the signature.
                        mstore(add(m, 0x64), r) // `r`.
                        mstore(add(m, 0x84), mload(0x60)) // `s`.
                        mstore8(add(m, 0xa4), mload(0x20)) // `v`.
                        // forgefmt: disable-next-item
                        isValid := and(
                            // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                            eq(mload(d), f),
                            // Whether the staticcall does not revert.
                            // This must be placed at the end of the `and` clause,
                            // as the arguments are evaluated from right to left.
                            staticcall(
                                gas(), // Remaining gas.
                                signer, // The `signer` address.
                                m, // Offset of calldata in memory.
                                0xa5, // Length of calldata in memory.
                                d, // Offset of returndata.
                                0x20 // Length of returndata to write.
                            )
                        )
                        mstore(0x60, 0) // Restore the zero slot.
                        mstore(0x40, m) // Restore the free memory pointer.
                        break
                    }
                }
            }
            /// @dev Returns whether the signature (`v`, `r`, `s`) is valid for `signer` and `hash`.
            /// If `signer` is a smart contract, the signature is validated with ERC1271.
            /// Otherwise, the signature is validated with `ECDSA.recover`.
            function isValidSignatureNow(address signer, bytes32 hash, uint8 v, bytes32 r, bytes32 s)
                internal
                view
                returns (bool isValid)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    // Clean the upper 96 bits of `signer` in case they are dirty.
                    for { signer := shr(96, shl(96, signer)) } signer {} {
                        let m := mload(0x40)
                        mstore(0x00, hash)
                        mstore(0x20, and(v, 0xff)) // `v`.
                        mstore(0x40, r) // `r`.
                        mstore(0x60, s) // `s`.
                        let t :=
                            staticcall(
                                gas(), // Amount of gas left for the transaction.
                                1, // Address of `ecrecover`.
                                0x00, // Start of input.
                                0x80, // Size of input.
                                0x01, // Start of output.
                                0x20 // Size of output.
                            )
                        // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                        if iszero(or(iszero(returndatasize()), xor(signer, mload(t)))) {
                            isValid := 1
                            mstore(0x60, 0) // Restore the zero slot.
                            mstore(0x40, m) // Restore the free memory pointer.
                            break
                        }
                        let f := shl(224, 0x1626ba7e)
                        mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                        mstore(add(m, 0x04), hash)
                        let d := add(m, 0x24)
                        mstore(d, 0x40) // The offset of the `signature` in the calldata.
                        mstore(add(m, 0x44), 65) // Length of the signature.
                        mstore(add(m, 0x64), r) // `r`.
                        mstore(add(m, 0x84), s) // `s`.
                        mstore8(add(m, 0xa4), v) // `v`.
                        // forgefmt: disable-next-item
                        isValid := and(
                            // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                            eq(mload(d), f),
                            // Whether the staticcall does not revert.
                            // This must be placed at the end of the `and` clause,
                            // as the arguments are evaluated from right to left.
                            staticcall(
                                gas(), // Remaining gas.
                                signer, // The `signer` address.
                                m, // Offset of calldata in memory.
                                0xa5, // Length of calldata in memory.
                                d, // Offset of returndata.
                                0x20 // Length of returndata to write.
                            )
                        )
                        mstore(0x60, 0) // Restore the zero slot.
                        mstore(0x40, m) // Restore the free memory pointer.
                        break
                    }
                }
            }
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                     ERC1271 OPERATIONS                     */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Returns whether `signature` is valid for `hash` for an ERC1271 `signer` contract.
            function isValidERC1271SignatureNow(address signer, bytes32 hash, bytes memory signature)
                internal
                view
                returns (bool isValid)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    let m := mload(0x40)
                    let f := shl(224, 0x1626ba7e)
                    mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                    mstore(add(m, 0x04), hash)
                    let d := add(m, 0x24)
                    mstore(d, 0x40) // The offset of the `signature` in the calldata.
                    // Copy the `signature` over.
                    let n := add(0x20, mload(signature))
                    pop(staticcall(gas(), 4, signature, n, add(m, 0x44), n))
                    // forgefmt: disable-next-item
                    isValid := and(
                        // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                        eq(mload(d), f),
                        // Whether the staticcall does not revert.
                        // This must be placed at the end of the `and` clause,
                        // as the arguments are evaluated from right to left.
                        staticcall(
                            gas(), // Remaining gas.
                            signer, // The `signer` address.
                            m, // Offset of calldata in memory.
                            add(returndatasize(), 0x44), // Length of calldata in memory.
                            d, // Offset of returndata.
                            0x20 // Length of returndata to write.
                        )
                    )
                }
            }
            /// @dev Returns whether `signature` is valid for `hash` for an ERC1271 `signer` contract.
            function isValidERC1271SignatureNowCalldata(
                address signer,
                bytes32 hash,
                bytes calldata signature
            ) internal view returns (bool isValid) {
                /// @solidity memory-safe-assembly
                assembly {
                    let m := mload(0x40)
                    let f := shl(224, 0x1626ba7e)
                    mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                    mstore(add(m, 0x04), hash)
                    let d := add(m, 0x24)
                    mstore(d, 0x40) // The offset of the `signature` in the calldata.
                    mstore(add(m, 0x44), signature.length)
                    // Copy the `signature` over.
                    calldatacopy(add(m, 0x64), signature.offset, signature.length)
                    // forgefmt: disable-next-item
                    isValid := and(
                        // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                        eq(mload(d), f),
                        // Whether the staticcall does not revert.
                        // This must be placed at the end of the `and` clause,
                        // as the arguments are evaluated from right to left.
                        staticcall(
                            gas(), // Remaining gas.
                            signer, // The `signer` address.
                            m, // Offset of calldata in memory.
                            add(signature.length, 0x64), // Length of calldata in memory.
                            d, // Offset of returndata.
                            0x20 // Length of returndata to write.
                        )
                    )
                }
            }
            /// @dev Returns whether the signature (`r`, `vs`) is valid for `hash`
            /// for an ERC1271 `signer` contract.
            function isValidERC1271SignatureNow(address signer, bytes32 hash, bytes32 r, bytes32 vs)
                internal
                view
                returns (bool isValid)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    let m := mload(0x40)
                    let f := shl(224, 0x1626ba7e)
                    mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                    mstore(add(m, 0x04), hash)
                    let d := add(m, 0x24)
                    mstore(d, 0x40) // The offset of the `signature` in the calldata.
                    mstore(add(m, 0x44), 65) // Length of the signature.
                    mstore(add(m, 0x64), r) // `r`.
                    mstore(add(m, 0x84), shr(1, shl(1, vs))) // `s`.
                    mstore8(add(m, 0xa4), add(shr(255, vs), 27)) // `v`.
                    // forgefmt: disable-next-item
                    isValid := and(
                        // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                        eq(mload(d), f),
                        // Whether the staticcall does not revert.
                        // This must be placed at the end of the `and` clause,
                        // as the arguments are evaluated from right to left.
                        staticcall(
                            gas(), // Remaining gas.
                            signer, // The `signer` address.
                            m, // Offset of calldata in memory.
                            0xa5, // Length of calldata in memory.
                            d, // Offset of returndata.
                            0x20 // Length of returndata to write.
                        )
                    )
                }
            }
            /// @dev Returns whether the signature (`v`, `r`, `s`) is valid for `hash`
            /// for an ERC1271 `signer` contract.
            function isValidERC1271SignatureNow(address signer, bytes32 hash, uint8 v, bytes32 r, bytes32 s)
                internal
                view
                returns (bool isValid)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    let m := mload(0x40)
                    let f := shl(224, 0x1626ba7e)
                    mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                    mstore(add(m, 0x04), hash)
                    let d := add(m, 0x24)
                    mstore(d, 0x40) // The offset of the `signature` in the calldata.
                    mstore(add(m, 0x44), 65) // Length of the signature.
                    mstore(add(m, 0x64), r) // `r`.
                    mstore(add(m, 0x84), s) // `s`.
                    mstore8(add(m, 0xa4), v) // `v`.
                    // forgefmt: disable-next-item
                    isValid := and(
                        // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                        eq(mload(d), f),
                        // Whether the staticcall does not revert.
                        // This must be placed at the end of the `and` clause,
                        // as the arguments are evaluated from right to left.
                        staticcall(
                            gas(), // Remaining gas.
                            signer, // The `signer` address.
                            m, // Offset of calldata in memory.
                            0xa5, // Length of calldata in memory.
                            d, // Offset of returndata.
                            0x20 // Length of returndata to write.
                        )
                    )
                }
            }
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                     HASHING OPERATIONS                     */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Returns an Ethereum Signed Message, created from a `hash`.
            /// This produces a hash corresponding to the one signed with the
            /// [`eth_sign`](https://eth.wiki/json-rpc/API#eth_sign)
            /// JSON-RPC method as part of EIP-191.
            function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 result) {
                /// @solidity memory-safe-assembly
                assembly {
                    mstore(0x20, hash) // Store into scratch space for keccak256.
                    mstore(0x00, "\\x00\\x00\\x00\\x00\\x19Ethereum Signed Message:\
        32") // 28 bytes.
                    result := keccak256(0x04, 0x3c) // `32 * 2 - (32 - 28) = 60 = 0x3c`.
                }
            }
            /// @dev Returns an Ethereum Signed Message, created from `s`.
            /// This produces a hash corresponding to the one signed with the
            /// [`eth_sign`](https://eth.wiki/json-rpc/API#eth_sign)
            /// JSON-RPC method as part of EIP-191.
            /// Note: Supports lengths of `s` up to 999999 bytes.
            function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32 result) {
                /// @solidity memory-safe-assembly
                assembly {
                    let sLength := mload(s)
                    let o := 0x20
                    mstore(o, "\\x19Ethereum Signed Message:\
        ") // 26 bytes, zero-right-padded.
                    mstore(0x00, 0x00)
                    // Convert the `s.length` to ASCII decimal representation: `base10(s.length)`.
                    for { let temp := sLength } 1 {} {
                        o := sub(o, 1)
                        mstore8(o, add(48, mod(temp, 10)))
                        temp := div(temp, 10)
                        if iszero(temp) { break }
                    }
                    let n := sub(0x3a, o) // Header length: `26 + 32 - o`.
                    // Throw an out-of-offset error (consumes all gas) if the header exceeds 32 bytes.
                    returndatacopy(returndatasize(), returndatasize(), gt(n, 0x20))
                    mstore(s, or(mload(0x00), mload(n))) // Temporarily store the header.
                    result := keccak256(add(s, sub(0x20, n)), add(n, sLength))
                    mstore(s, sLength) // Restore the length.
                }
            }
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                   EMPTY CALLDATA HELPERS                   */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Returns an empty calldata bytes.
            function emptySignature() internal pure returns (bytes calldata signature) {
                /// @solidity memory-safe-assembly
                assembly {
                    signature.length := 0
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.4;
        /// @notice UUPS proxy mixin.
        /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/UUPSUpgradeable.sol)
        /// @author Modified from OpenZeppelin
        /// (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/proxy/utils/UUPSUpgradeable.sol)
        ///
        /// Note:
        /// - This implementation is intended to be used with ERC1967 proxies.
        /// See: `LibClone.deployERC1967` and related functions.
        /// - This implementation is NOT compatible with legacy OpenZeppelin proxies
        /// which do not store the implementation at `_ERC1967_IMPLEMENTATION_SLOT`.
        abstract contract UUPSUpgradeable {
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                       CUSTOM ERRORS                        */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev The upgrade failed.
            error UpgradeFailed();
            /// @dev The call is from an unauthorized call context.
            error UnauthorizedCallContext();
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                         IMMUTABLES                         */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev For checking if the context is a delegate call.
            uint256 private immutable __self = uint256(uint160(address(this)));
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                           EVENTS                           */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Emitted when the proxy's implementation is upgraded.
            event Upgraded(address indexed implementation);
            /// @dev `keccak256(bytes("Upgraded(address)"))`.
            uint256 private constant _UPGRADED_EVENT_SIGNATURE =
                0xbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b;
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                          STORAGE                           */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev The ERC-1967 storage slot for the implementation in the proxy.
            /// `uint256(keccak256("eip1967.proxy.implementation")) - 1`.
            bytes32 internal constant _ERC1967_IMPLEMENTATION_SLOT =
                0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                      UUPS OPERATIONS                       */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Please override this function to check if `msg.sender` is authorized
            /// to upgrade the proxy to `newImplementation`, reverting if not.
            /// ```
            ///     function _authorizeUpgrade(address) internal override onlyOwner {}
            /// ```
            function _authorizeUpgrade(address newImplementation) internal virtual;
            /// @dev Returns the storage slot used by the implementation,
            /// as specified in [ERC1822](https://eips.ethereum.org/EIPS/eip-1822).
            ///
            /// Note: The `notDelegated` modifier prevents accidental upgrades to
            /// an implementation that is a proxy contract.
            function proxiableUUID() public view virtual notDelegated returns (bytes32) {
                // This function must always return `_ERC1967_IMPLEMENTATION_SLOT` to comply with ERC1967.
                return _ERC1967_IMPLEMENTATION_SLOT;
            }
            /// @dev Upgrades the proxy's implementation to `newImplementation`.
            /// Emits a {Upgraded} event.
            ///
            /// Note: Passing in empty `data` skips the delegatecall to `newImplementation`.
            function upgradeToAndCall(address newImplementation, bytes calldata data)
                public
                payable
                virtual
                onlyProxy
            {
                _authorizeUpgrade(newImplementation);
                /// @solidity memory-safe-assembly
                assembly {
                    newImplementation := shr(96, shl(96, newImplementation)) // Clears upper 96 bits.
                    mstore(0x01, 0x52d1902d) // `proxiableUUID()`.
                    let s := _ERC1967_IMPLEMENTATION_SLOT
                    // Check if `newImplementation` implements `proxiableUUID` correctly.
                    if iszero(eq(mload(staticcall(gas(), newImplementation, 0x1d, 0x04, 0x01, 0x20)), s)) {
                        mstore(0x01, 0x55299b49) // `UpgradeFailed()`.
                        revert(0x1d, 0x04)
                    }
                    // Emit the {Upgraded} event.
                    log2(codesize(), 0x00, _UPGRADED_EVENT_SIGNATURE, newImplementation)
                    sstore(s, newImplementation) // Updates the implementation.
                    // Perform a delegatecall to `newImplementation` if `data` is non-empty.
                    if data.length {
                        // Forwards the `data` to `newImplementation` via delegatecall.
                        let m := mload(0x40)
                        calldatacopy(m, data.offset, data.length)
                        if iszero(delegatecall(gas(), newImplementation, m, data.length, codesize(), 0x00))
                        {
                            // Bubble up the revert if the call reverts.
                            returndatacopy(m, 0x00, returndatasize())
                            revert(m, returndatasize())
                        }
                    }
                }
            }
            /// @dev Requires that the execution is performed through a proxy.
            modifier onlyProxy() {
                uint256 s = __self;
                /// @solidity memory-safe-assembly
                assembly {
                    // To enable use cases with an immutable default implementation in the bytecode,
                    // (see: ERC6551Proxy), we don't require that the proxy address must match the
                    // value stored in the implementation slot, which may not be initialized.
                    if eq(s, address()) {
                        mstore(0x00, 0x9f03a026) // `UnauthorizedCallContext()`.
                        revert(0x1c, 0x04)
                    }
                }
                _;
            }
            /// @dev Requires that the execution is NOT performed via delegatecall.
            /// This is the opposite of `onlyProxy`.
            modifier notDelegated() {
                uint256 s = __self;
                /// @solidity memory-safe-assembly
                assembly {
                    if iszero(eq(s, address())) {
                        mstore(0x00, 0x9f03a026) // `UnauthorizedCallContext()`.
                        revert(0x1c, 0x04)
                    }
                }
                _;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import {FCL_ecdsa} from "FreshCryptoLib/FCL_ecdsa.sol";
        import {FCL_Elliptic_ZZ} from "FreshCryptoLib/FCL_elliptic.sol";
        import {Base64} from "openzeppelin-contracts/contracts/utils/Base64.sol";
        import {LibString} from "solady/utils/LibString.sol";
        /// @title WebAuthn
        ///
        /// @notice A library for verifying WebAuthn Authentication Assertions, built off the work
        ///         of Daimo.
        ///
        /// @dev Attempts to use the RIP-7212 precompile for signature verification.
        ///      If precompile verification fails, it falls back to FreshCryptoLib.
        ///
        /// @author Coinbase (https://github.com/base-org/webauthn-sol)
        /// @author Daimo (https://github.com/daimo-eth/p256-verifier/blob/master/src/WebAuthn.sol)
        library WebAuthn {
            using LibString for string;
            struct WebAuthnAuth {
                /// @dev The WebAuthn authenticator data.
                ///      See https://www.w3.org/TR/webauthn-2/#dom-authenticatorassertionresponse-authenticatordata.
                bytes authenticatorData;
                /// @dev The WebAuthn client data JSON.
                ///      See https://www.w3.org/TR/webauthn-2/#dom-authenticatorresponse-clientdatajson.
                string clientDataJSON;
                /// @dev The index at which "challenge":"..." occurs in `clientDataJSON`.
                uint256 challengeIndex;
                /// @dev The index at which "type":"..." occurs in `clientDataJSON`.
                uint256 typeIndex;
                /// @dev The r value of secp256r1 signature
                uint256 r;
                /// @dev The s value of secp256r1 signature
                uint256 s;
            }
            /// @dev Bit 0 of the authenticator data struct, corresponding to the "User Present" bit.
            ///      See https://www.w3.org/TR/webauthn-2/#flags.
            bytes1 private constant _AUTH_DATA_FLAGS_UP = 0x01;
            /// @dev Bit 2 of the authenticator data struct, corresponding to the "User Verified" bit.
            ///      See https://www.w3.org/TR/webauthn-2/#flags.
            bytes1 private constant _AUTH_DATA_FLAGS_UV = 0x04;
            /// @dev Secp256r1 curve order / 2 used as guard to prevent signature malleability issue.
            uint256 private constant _P256_N_DIV_2 = FCL_Elliptic_ZZ.n / 2;
            /// @dev The precompiled contract address to use for signature verification in the “secp256r1” elliptic curve.
            ///      See https://github.com/ethereum/RIPs/blob/master/RIPS/rip-7212.md.
            address private constant _VERIFIER = address(0x100);
            /// @dev The expected type (hash) in the client data JSON when verifying assertion signatures.
            ///      See https://www.w3.org/TR/webauthn-2/#dom-collectedclientdata-type
            bytes32 private constant _EXPECTED_TYPE_HASH = keccak256('"type":"webauthn.get"');
            ///
            /// @notice Verifies a Webauthn Authentication Assertion as described
            /// in https://www.w3.org/TR/webauthn-2/#sctn-verifying-assertion.
            ///
            /// @dev We do not verify all the steps as described in the specification, only ones relevant to our context.
            ///      Please carefully read through this list before usage.
            ///
            ///      Specifically, we do verify the following:
            ///         - Verify that authenticatorData (which comes from the authenticator, such as iCloud Keychain) indicates
            ///           a well-formed assertion with the user present bit set. If `requireUV` is set, checks that the authenticator
            ///           enforced user verification. User verification should be required if, and only if, options.userVerification
            ///           is set to required in the request.
            ///         - Verifies that the client JSON is of type "webauthn.get", i.e. the client was responding to a request to
            ///           assert authentication.
            ///         - Verifies that the client JSON contains the requested challenge.
            ///         - Verifies that (r, s) constitute a valid signature over both the authenicatorData and client JSON, for public
            ///            key (x, y).
            ///
            ///      We make some assumptions about the particular use case of this verifier, so we do NOT verify the following:
            ///         - Does NOT verify that the origin in the `clientDataJSON` matches the Relying Party's origin: tt is considered
            ///           the authenticator's responsibility to ensure that the user is interacting with the correct RP. This is
            ///           enforced by most high quality authenticators properly, particularly the iCloud Keychain and Google Password
            ///           Manager were tested.
            ///         - Does NOT verify That `topOrigin` in `clientDataJSON` is well-formed: We assume it would never be present, i.e.
            ///           the credentials are never used in a cross-origin/iframe context. The website/app set up should disallow
            ///           cross-origin usage of the credentials. This is the default behaviour for created credentials in common settings.
            ///         - Does NOT verify that the `rpIdHash` in `authenticatorData` is the SHA-256 hash of the RP ID expected by the Relying
            ///           Party: this means that we rely on the authenticator to properly enforce credentials to be used only by the correct RP.
            ///           This is generally enforced with features like Apple App Site Association and Google Asset Links. To protect from
            ///           edge cases in which a previously-linked RP ID is removed from the authorised RP IDs, we recommend that messages
            ///           signed by the authenticator include some expiry mechanism.
            ///         - Does NOT verify the credential backup state: this assumes the credential backup state is NOT used as part of Relying
            ///           Party business logic or policy.
            ///         - Does NOT verify the values of the client extension outputs: this assumes that the Relying Party does not use client
            ///           extension outputs.
            ///         - Does NOT verify the signature counter: signature counters are intended to enable risk scoring for the Relying Party.
            ///           This assumes risk scoring is not used as part of Relying Party business logic or policy.
            ///         - Does NOT verify the attestation object: this assumes that response.attestationObject is NOT present in the response,
            ///           i.e. the RP does not intend to verify an attestation.
            ///
            /// @param challenge    The challenge that was provided by the relying party.
            /// @param requireUV    A boolean indicating whether user verification is required.
            /// @param webAuthnAuth The `WebAuthnAuth` struct.
            /// @param x            The x coordinate of the public key.
            /// @param y            The y coordinate of the public key.
            ///
            /// @return `true` if the authentication assertion passed validation, else `false`.
            function verify(bytes memory challenge, bool requireUV, WebAuthnAuth memory webAuthnAuth, uint256 x, uint256 y)
                internal
                view
                returns (bool)
            {
                if (webAuthnAuth.s > _P256_N_DIV_2) {
                    // guard against signature malleability
                    return false;
                }
                // 11. Verify that the value of C.type is the string webauthn.get.
                //     bytes("type":"webauthn.get").length = 21
                string memory _type = webAuthnAuth.clientDataJSON.slice(webAuthnAuth.typeIndex, webAuthnAuth.typeIndex + 21);
                if (keccak256(bytes(_type)) != _EXPECTED_TYPE_HASH) {
                    return false;
                }
                // 12. Verify that the value of C.challenge equals the base64url encoding of options.challenge.
                bytes memory expectedChallenge = bytes(string.concat('"challenge":"', Base64.encodeURL(challenge), '"'));
                string memory actualChallenge =
                    webAuthnAuth.clientDataJSON.slice(webAuthnAuth.challengeIndex, webAuthnAuth.challengeIndex + expectedChallenge.length);
                if (keccak256(bytes(actualChallenge)) != keccak256(expectedChallenge)) {
                    return false;
                }
                // Skip 13., 14., 15.
                // 16. Verify that the UP bit of the flags in authData is set.
                if (webAuthnAuth.authenticatorData[32] & _AUTH_DATA_FLAGS_UP != _AUTH_DATA_FLAGS_UP) {
                    return false;
                }
                // 17. If user verification is required for this assertion, verify that the User Verified bit of the flags in
                //     authData is set.
                if (requireUV && (webAuthnAuth.authenticatorData[32] & _AUTH_DATA_FLAGS_UV) != _AUTH_DATA_FLAGS_UV) {
                    return false;
                }
                // skip 18.
                // 19. Let hash be the result of computing a hash over the cData using SHA-256.
                bytes32 clientDataJSONHash = sha256(bytes(webAuthnAuth.clientDataJSON));
                // 20. Using credentialPublicKey, verify that sig is a valid signature over the binary concatenation of authData
                //     and hash.
                bytes32 messageHash = sha256(abi.encodePacked(webAuthnAuth.authenticatorData, clientDataJSONHash));
                bytes memory args = abi.encode(messageHash, webAuthnAuth.r, webAuthnAuth.s, x, y);
                // try the RIP-7212 precompile address
                (bool success, bytes memory ret) = _VERIFIER.staticcall(args);
                // staticcall will not revert if address has no code
                // check return length
                // note that even if precompile exists, ret.length is 0 when verification returns false
                // so an invalid signature will be checked twice: once by the precompile and once by FCL.
                // Ideally this signature failure is simulated offchain and no one actually pay this gas.
                bool valid = ret.length > 0;
                if (success && valid) return abi.decode(ret, (uint256)) == 1;
                return FCL_ecdsa.ecdsa_verify(messageHash, webAuthnAuth.r, webAuthnAuth.s, x, y);
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.4;
        /// @title ERC-1271
        ///
        /// @notice Abstract ERC-1271 implementation (based on Solady's) with guards to handle the same
        ///         signer being used on multiple accounts.
        ///
        /// @dev To prevent the same signature from being validated on different accounts owned by the samer signer,
        ///      we introduce an anti cross-account-replay layer: the original hash is input into a new EIP-712 compliant
        ///      hash. The domain separator of this outer hash contains the chain id and address of this contract, so that
        ///      it cannot be used on two accounts (see `replaySafeHash()` for the implementation details).
        ///
        /// @author Coinbase (https://github.com/coinbase/smart-wallet)
        /// @author Solady (https://github.com/vectorized/solady/blob/main/src/accounts/ERC1271.sol)
        abstract contract ERC1271 {
            /// @dev Precomputed `typeHash` used to produce EIP-712 compliant hash when applying the anti
            ///      cross-account-replay layer.
            ///
            ///      The original hash must either be:
            ///         - An EIP-191 hash: keccak256("\\x19Ethereum Signed Message:\
        " || len(someMessage) || someMessage)
            ///         - An EIP-712 hash: keccak256("\\x19\\x01" || someDomainSeparator || hashStruct(someStruct))
            bytes32 private constant _MESSAGE_TYPEHASH = keccak256("CoinbaseSmartWalletMessage(bytes32 hash)");
            /// @notice Returns information about the `EIP712Domain` used to create EIP-712 compliant hashes.
            ///
            /// @dev Follows ERC-5267 (see https://eips.ethereum.org/EIPS/eip-5267).
            ///
            /// @return fields The bitmap of used fields.
            /// @return name The value of the `EIP712Domain.name` field.
            /// @return version The value of the `EIP712Domain.version` field.
            /// @return chainId The value of the `EIP712Domain.chainId` field.
            /// @return verifyingContract The value of the `EIP712Domain.verifyingContract` field.
            /// @return salt The value of the `EIP712Domain.salt` field.
            /// @return extensions The list of EIP numbers, that extends EIP-712 with new domain fields.
            function eip712Domain()
                external
                view
                virtual
                returns (
                    bytes1 fields,
                    string memory name,
                    string memory version,
                    uint256 chainId,
                    address verifyingContract,
                    bytes32 salt,
                    uint256[] memory extensions
                )
            {
                fields = hex"0f"; // `0b1111`.
                (name, version) = _domainNameAndVersion();
                chainId = block.chainid;
                verifyingContract = address(this);
                salt = salt; // `bytes32(0)`.
                extensions = extensions; // `new uint256[](0)`.
            }
            /// @notice Validates the `signature` against the given `hash`.
            ///
            /// @dev This implementation follows ERC-1271. See https://eips.ethereum.org/EIPS/eip-1271.
            /// @dev IMPORTANT: Signature verification is performed on the hash produced AFTER applying the anti
            ///      cross-account-replay layer on the given `hash` (i.e., verification is run on the replay-safe
            ///      hash version).
            ///
            /// @param hash      The original hash.
            /// @param signature The signature of the replay-safe hash to validate.
            ///
            /// @return result `0x1626ba7e` if validation succeeded, else `0xffffffff`.
            function isValidSignature(bytes32 hash, bytes calldata signature) public view virtual returns (bytes4 result) {
                if (_isValidSignature({hash: replaySafeHash(hash), signature: signature})) {
                    // bytes4(keccak256("isValidSignature(bytes32,bytes)"))
                    return 0x1626ba7e;
                }
                return 0xffffffff;
            }
            /// @notice Wrapper around `_eip712Hash()` to produce a replay-safe hash fron the given `hash`.
            ///
            /// @dev The returned EIP-712 compliant replay-safe hash is the result of:
            ///      keccak256(
            ///         \\x19\\x01 ||
            ///         this.domainSeparator ||
            ///         hashStruct(CoinbaseSmartWalletMessage({ hash: `hash`}))
            ///      )
            ///
            /// @param hash The original hash.
            ///
            /// @return The corresponding replay-safe hash.
            function replaySafeHash(bytes32 hash) public view virtual returns (bytes32) {
                return _eip712Hash(hash);
            }
            /// @notice Returns the `domainSeparator` used to create EIP-712 compliant hashes.
            ///
            /// @dev Implements domainSeparator = hashStruct(eip712Domain).
            ///      See https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator.
            ///
            /// @return The 32 bytes domain separator result.
            function domainSeparator() public view returns (bytes32) {
                (string memory name, string memory version) = _domainNameAndVersion();
                return keccak256(
                    abi.encode(
                        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
                        keccak256(bytes(name)),
                        keccak256(bytes(version)),
                        block.chainid,
                        address(this)
                    )
                );
            }
            /// @notice Returns the EIP-712 typed hash of the `CoinbaseSmartWalletMessage(bytes32 hash)` data structure.
            ///
            /// @dev Implements encode(domainSeparator : 𝔹²⁵⁶, message : 𝕊) = "\\x19\\x01" || domainSeparator ||
            ///      hashStruct(message).
            /// @dev See https://eips.ethereum.org/EIPS/eip-712#specification.
            ///
            /// @param hash The `CoinbaseSmartWalletMessage.hash` field to hash.
            ////
            /// @return The resulting EIP-712 hash.
            function _eip712Hash(bytes32 hash) internal view virtual returns (bytes32) {
                return keccak256(abi.encodePacked("\\x19\\x01", domainSeparator(), _hashStruct(hash)));
            }
            /// @notice Returns the EIP-712 `hashStruct` result of the `CoinbaseSmartWalletMessage(bytes32 hash)` data
            ///         structure.
            ///
            /// @dev Implements hashStruct(s : 𝕊) = keccak256(typeHash || encodeData(s)).
            /// @dev See https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct.
            ///
            /// @param hash The `CoinbaseSmartWalletMessage.hash` field.
            ///
            /// @return The EIP-712 `hashStruct` result.
            function _hashStruct(bytes32 hash) internal view virtual returns (bytes32) {
                return keccak256(abi.encode(_MESSAGE_TYPEHASH, hash));
            }
            /// @notice Returns the domain name and version to use when creating EIP-712 signatures.
            ///
            /// @dev MUST be defined by the implementation.
            ///
            /// @return name    The user readable name of signing domain.
            /// @return version The current major version of the signing domain.
            function _domainNameAndVersion() internal view virtual returns (string memory name, string memory version);
            /// @notice Validates the `signature` against the given `hash`.
            ///
            /// @dev MUST be defined by the implementation.
            ///
            /// @param hash      The hash whose signature has been performed on.
            /// @param signature The signature associated with `hash`.
            ///
            /// @return `true` is the signature is valid, else `false`.
            function _isValidSignature(bytes32 hash, bytes calldata signature) internal view virtual returns (bool);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.18;
        /// @notice Storage layout used by this contract.
        ///
        /// @custom:storage-location erc7201:coinbase.storage.MultiOwnable
        struct MultiOwnableStorage {
            /// @dev Tracks the index of the next owner to add.
            uint256 nextOwnerIndex;
            /// @dev Tracks number of owners that have been removed.
            uint256 removedOwnersCount;
            /// @dev Maps index to owner bytes, used to idenfitied owners via a uint256 index.
            ///
            ///      Some uses—-such as signature validation for secp256r1 public key owners—-
            ///      requires the caller to assert the public key of the caller. To economize calldata,
            ///      we allow an index to identify an owner, so that the full owner bytes do
            ///      not need to be passed.
            ///
            ///      The `owner` bytes should either be
            ///         - An ABI encoded Ethereum address
            ///         - An ABI encoded public key
            mapping(uint256 index => bytes owner) ownerAtIndex;
            /// @dev Mapping of bytes to booleans indicating whether or not
            ///      bytes_ is an owner of this contract.
            mapping(bytes bytes_ => bool isOwner_) isOwner;
        }
        /// @title Multi Ownable
        ///
        /// @notice Auth contract allowing multiple owners, each identified as bytes.
        ///
        /// @author Coinbase (https://github.com/coinbase/smart-wallet)
        contract MultiOwnable {
            /// @dev Slot for the `MultiOwnableStorage` struct in storage.
            ///      Computed from
            ///      keccak256(abi.encode(uint256(keccak256("coinbase.storage.MultiOwnable")) - 1)) & ~bytes32(uint256(0xff))
            ///      Follows ERC-7201 (see https://eips.ethereum.org/EIPS/eip-7201).
            bytes32 private constant MUTLI_OWNABLE_STORAGE_LOCATION =
                0x97e2c6aad4ce5d562ebfaa00db6b9e0fb66ea5d8162ed5b243f51a2e03086f00;
            /// @notice Thrown when the `msg.sender` is not an owner and is trying to call a privileged function.
            error Unauthorized();
            /// @notice Thrown when trying to add an already registered owner.
            ///
            /// @param owner The owner bytes.
            error AlreadyOwner(bytes owner);
            /// @notice Thrown when trying to remove an owner from an index that is empty.
            ///
            /// @param index The targeted index for removal.
            error NoOwnerAtIndex(uint256 index);
            /// @notice Thrown when `owner` argument does not match owner found at index.
            ///
            /// @param index         The index of the owner to be removed.
            /// @param expectedOwner The owner passed in the remove call.
            /// @param actualOwner   The actual owner at `index`.
            error WrongOwnerAtIndex(uint256 index, bytes expectedOwner, bytes actualOwner);
            /// @notice Thrown when a provided owner is neither 64 bytes long (for public key)
            ///         nor a ABI encoded address.
            ///
            /// @param owner The invalid owner.
            error InvalidOwnerBytesLength(bytes owner);
            /// @notice Thrown if a provided owner is 32 bytes long but does not fit in an `address` type.
            ///
            /// @param owner The invalid owner.
            error InvalidEthereumAddressOwner(bytes owner);
            /// @notice Thrown when removeOwnerAtIndex is called and there is only one current owner.
            error LastOwner();
            /// @notice Thrown when removeLastOwner is called and there is more than one current owner.
            ///
            /// @param ownersRemaining The number of current owners.
            error NotLastOwner(uint256 ownersRemaining);
            /// @notice Emitted when a new owner is registered.
            ///
            /// @param index The owner index of the owner added.
            /// @param owner The owner added.
            event AddOwner(uint256 indexed index, bytes owner);
            /// @notice Emitted when an owner is removed.
            ///
            /// @param index The owner index of the owner removed.
            /// @param owner The owner removed.
            event RemoveOwner(uint256 indexed index, bytes owner);
            /// @notice Access control modifier ensuring the caller is an authorized owner
            modifier onlyOwner() virtual {
                _checkOwner();
                _;
            }
            /// @notice Adds a new Ethereum-address owner.
            ///
            /// @param owner The owner address.
            function addOwnerAddress(address owner) external virtual onlyOwner {
                _addOwnerAtIndex(abi.encode(owner), _getMultiOwnableStorage().nextOwnerIndex++);
            }
            /// @notice Adds a new public-key owner.
            ///
            /// @param x The owner public key x coordinate.
            /// @param y The owner public key y coordinate.
            function addOwnerPublicKey(bytes32 x, bytes32 y) external virtual onlyOwner {
                _addOwnerAtIndex(abi.encode(x, y), _getMultiOwnableStorage().nextOwnerIndex++);
            }
            /// @notice Removes owner at the given `index`.
            ///
            /// @dev Reverts if the owner is not registered at `index`.
            /// @dev Reverts if there is currently only one owner.
            /// @dev Reverts if `owner` does not match bytes found at `index`.
            ///
            /// @param index The index of the owner to be removed.
            /// @param owner The ABI encoded bytes of the owner to be removed.
            function removeOwnerAtIndex(uint256 index, bytes calldata owner) external virtual onlyOwner {
                if (ownerCount() == 1) {
                    revert LastOwner();
                }
                _removeOwnerAtIndex(index, owner);
            }
            /// @notice Removes owner at the given `index`, which should be the only current owner.
            ///
            /// @dev Reverts if the owner is not registered at `index`.
            /// @dev Reverts if there is currently more than one owner.
            /// @dev Reverts if `owner` does not match bytes found at `index`.
            ///
            /// @param index The index of the owner to be removed.
            /// @param owner The ABI encoded bytes of the owner to be removed.
            function removeLastOwner(uint256 index, bytes calldata owner) external virtual onlyOwner {
                uint256 ownersRemaining = ownerCount();
                if (ownersRemaining > 1) {
                    revert NotLastOwner(ownersRemaining);
                }
                _removeOwnerAtIndex(index, owner);
            }
            /// @notice Checks if the given `account` address is registered as owner.
            ///
            /// @param account The account address to check.
            ///
            /// @return `true` if the account is an owner else `false`.
            function isOwnerAddress(address account) public view virtual returns (bool) {
                return _getMultiOwnableStorage().isOwner[abi.encode(account)];
            }
            /// @notice Checks if the given `x`, `y` public key is registered as owner.
            ///
            /// @param x The public key x coordinate.
            /// @param y The public key y coordinate.
            ///
            /// @return `true` if the account is an owner else `false`.
            function isOwnerPublicKey(bytes32 x, bytes32 y) public view virtual returns (bool) {
                return _getMultiOwnableStorage().isOwner[abi.encode(x, y)];
            }
            /// @notice Checks if the given `account` bytes is registered as owner.
            ///
            /// @param account The account, should be ABI encoded address or public key.
            ///
            /// @return `true` if the account is an owner else `false`.
            function isOwnerBytes(bytes memory account) public view virtual returns (bool) {
                return _getMultiOwnableStorage().isOwner[account];
            }
            /// @notice Returns the owner bytes at the given `index`.
            ///
            /// @param index The index to lookup.
            ///
            /// @return The owner bytes (empty if no owner is registered at this `index`).
            function ownerAtIndex(uint256 index) public view virtual returns (bytes memory) {
                return _getMultiOwnableStorage().ownerAtIndex[index];
            }
            /// @notice Returns the next index that will be used to add a new owner.
            ///
            /// @return The next index that will be used to add a new owner.
            function nextOwnerIndex() public view virtual returns (uint256) {
                return _getMultiOwnableStorage().nextOwnerIndex;
            }
            /// @notice Returns the current number of owners
            ///
            /// @return The current owner count
            function ownerCount() public view virtual returns (uint256) {
                MultiOwnableStorage storage $ = _getMultiOwnableStorage();
                return $.nextOwnerIndex - $.removedOwnersCount;
            }
            /// @notice Tracks the number of owners removed
            ///
            /// @dev Used with `this.nextOwnerIndex` to avoid removing all owners
            ///
            /// @return The number of owners that have been removed.
            function removedOwnersCount() public view virtual returns (uint256) {
                return _getMultiOwnableStorage().removedOwnersCount;
            }
            /// @notice Initialize the owners of this contract.
            ///
            /// @dev Intended to be called contract is first deployed and never again.
            /// @dev Reverts if a provided owner is neither 64 bytes long (for public key) nor a valid address.
            ///
            /// @param owners The initial set of owners.
            function _initializeOwners(bytes[] memory owners) internal virtual {
                MultiOwnableStorage storage $ = _getMultiOwnableStorage();
                uint256 nextOwnerIndex_ = $.nextOwnerIndex;
                for (uint256 i; i < owners.length; i++) {
                    if (owners[i].length != 32 && owners[i].length != 64) {
                        revert InvalidOwnerBytesLength(owners[i]);
                    }
                    if (owners[i].length == 32 && uint256(bytes32(owners[i])) > type(uint160).max) {
                        revert InvalidEthereumAddressOwner(owners[i]);
                    }
                    _addOwnerAtIndex(owners[i], nextOwnerIndex_++);
                }
                $.nextOwnerIndex = nextOwnerIndex_;
            }
            /// @notice Adds an owner at the given `index`.
            ///
            /// @dev Reverts if `owner` is already registered as an owner.
            ///
            /// @param owner The owner raw bytes to register.
            /// @param index The index to write to.
            function _addOwnerAtIndex(bytes memory owner, uint256 index) internal virtual {
                if (isOwnerBytes(owner)) revert AlreadyOwner(owner);
                MultiOwnableStorage storage $ = _getMultiOwnableStorage();
                $.isOwner[owner] = true;
                $.ownerAtIndex[index] = owner;
                emit AddOwner(index, owner);
            }
            /// @notice Removes owner at the given `index`.
            ///
            /// @dev Reverts if the owner is not registered at `index`.
            /// @dev Reverts if `owner` does not match bytes found at `index`.
            ///
            /// @param index The index of the owner to be removed.
            /// @param owner The ABI encoded bytes of the owner to be removed.
            function _removeOwnerAtIndex(uint256 index, bytes calldata owner) internal virtual {
                bytes memory owner_ = ownerAtIndex(index);
                if (owner_.length == 0) revert NoOwnerAtIndex(index);
                if (keccak256(owner_) != keccak256(owner)) {
                    revert WrongOwnerAtIndex({index: index, expectedOwner: owner, actualOwner: owner_});
                }
                MultiOwnableStorage storage $ = _getMultiOwnableStorage();
                delete $.isOwner[owner];
                delete $.ownerAtIndex[index];
                $.removedOwnersCount++;
                emit RemoveOwner(index, owner);
            }
            /// @notice Checks if the sender is an owner of this contract or the contract itself.
            ///
            /// @dev Revert if the sender is not an owner fo the contract itself.
            function _checkOwner() internal view virtual {
                if (isOwnerAddress(msg.sender) || (msg.sender == address(this))) {
                    return;
                }
                revert Unauthorized();
            }
            /// @notice Helper function to get a storage reference to the `MultiOwnableStorage` struct.
            ///
            /// @return $ A storage reference to the `MultiOwnableStorage` struct.
            function _getMultiOwnableStorage() internal pure returns (MultiOwnableStorage storage $) {
                assembly ("memory-safe") {
                    $.slot := MUTLI_OWNABLE_STORAGE_LOCATION
                }
            }
        }
        // SPDX-License-Identifier: GPL-3.0
        pragma solidity ^0.8.12;
        /* solhint-disable no-inline-assembly */
        /**
         * returned data from validateUserOp.
         * validateUserOp returns a uint256, with is created by `_packedValidationData` and parsed by `_parseValidationData`
         * @param aggregator - address(0) - the account validated the signature by itself.
         *              address(1) - the account failed to validate the signature.
         *              otherwise - this is an address of a signature aggregator that must be used to validate the signature.
         * @param validAfter - this UserOp is valid only after this timestamp.
         * @param validaUntil - this UserOp is valid only up to this timestamp.
         */
            struct ValidationData {
                address aggregator;
                uint48 validAfter;
                uint48 validUntil;
            }
        //extract sigFailed, validAfter, validUntil.
        // also convert zero validUntil to type(uint48).max
            function _parseValidationData(uint validationData) pure returns (ValidationData memory data) {
                address aggregator = address(uint160(validationData));
                uint48 validUntil = uint48(validationData >> 160);
                if (validUntil == 0) {
                    validUntil = type(uint48).max;
                }
                uint48 validAfter = uint48(validationData >> (48 + 160));
                return ValidationData(aggregator, validAfter, validUntil);
            }
        // intersect account and paymaster ranges.
            function _intersectTimeRange(uint256 validationData, uint256 paymasterValidationData) pure returns (ValidationData memory) {
                ValidationData memory accountValidationData = _parseValidationData(validationData);
                ValidationData memory pmValidationData = _parseValidationData(paymasterValidationData);
                address aggregator = accountValidationData.aggregator;
                if (aggregator == address(0)) {
                    aggregator = pmValidationData.aggregator;
                }
                uint48 validAfter = accountValidationData.validAfter;
                uint48 validUntil = accountValidationData.validUntil;
                uint48 pmValidAfter = pmValidationData.validAfter;
                uint48 pmValidUntil = pmValidationData.validUntil;
                if (validAfter < pmValidAfter) validAfter = pmValidAfter;
                if (validUntil > pmValidUntil) validUntil = pmValidUntil;
                return ValidationData(aggregator, validAfter, validUntil);
            }
        /**
         * helper to pack the return value for validateUserOp
         * @param data - the ValidationData to pack
         */
            function _packValidationData(ValidationData memory data) pure returns (uint256) {
                return uint160(data.aggregator) | (uint256(data.validUntil) << 160) | (uint256(data.validAfter) << (160 + 48));
            }
        /**
         * helper to pack the return value for validateUserOp, when not using an aggregator
         * @param sigFailed - true for signature failure, false for success
         * @param validUntil last timestamp this UserOperation is valid (or zero for infinite)
         * @param validAfter first timestamp this UserOperation is valid
         */
            function _packValidationData(bool sigFailed, uint48 validUntil, uint48 validAfter) pure returns (uint256) {
                return (sigFailed ? 1 : 0) | (uint256(validUntil) << 160) | (uint256(validAfter) << (160 + 48));
            }
        /**
         * keccak function over calldata.
         * @dev copy calldata into memory, do keccak and drop allocated memory. Strangely, this is more efficient than letting solidity do it.
         */
            function calldataKeccak(bytes calldata data) pure returns (bytes32 ret) {
                assembly {
                    let mem := mload(0x40)
                    let len := data.length
                    calldatacopy(mem, data.offset, len)
                    ret := keccak256(mem, len)
                }
            }
        //********************************************************************************************/
        //  ___           _       ___               _         _    _ _
        // | __| _ ___ __| |_    / __|_ _ _  _ _ __| |_ ___  | |  (_) |__
        // | _| '_/ -_|_-< ' \\  | (__| '_| || | '_ \\  _/ _ \\ | |__| | '_ \\
        // |_||_| \\___/__/_||_|  \\___|_|  \\_, | .__/\\__\\___/ |____|_|_.__/
        //                                |__/|_|
        ///* Copyright (C) 2022 - Renaud Dubois - This file is part of FCL (Fresh CryptoLib) project
        ///* License: This software is licensed under MIT License
        ///* This Code may be reused including license and copyright notice.
        ///* See LICENSE file at the root folder of the project.
        ///* FILE: FCL_ecdsa.sol
        ///*
        ///*
        ///* DESCRIPTION: ecdsa verification implementation
        ///*
        //**************************************************************************************/
        //* WARNING: this code SHALL not be used for non prime order curves for security reasons.
        // Code is optimized for a=-3 only curves with prime order, constant like -1, -2 shall be replaced
        // if ever used for other curve than sec256R1
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.8.19 <0.9.0;
        import {FCL_Elliptic_ZZ} from "./FCL_elliptic.sol";
        library FCL_ecdsa {
            // Set parameters for curve sec256r1.public
              //curve order (number of points)
            uint256 constant n = FCL_Elliptic_ZZ.n;
          
            /**
             * @dev ECDSA verification, given , signature, and public key.
             */
            /**
             * @dev ECDSA verification, given , signature, and public key, no calldata version
             */
            function ecdsa_verify(bytes32 message, uint256 r, uint256 s, uint256 Qx, uint256 Qy)  internal view returns (bool){
                if (r == 0 || r >= FCL_Elliptic_ZZ.n || s == 0 || s >= FCL_Elliptic_ZZ.n) {
                    return false;
                }
                
                if (!FCL_Elliptic_ZZ.ecAff_isOnCurve(Qx, Qy)) {
                    return false;
                }
                uint256 sInv = FCL_Elliptic_ZZ.FCL_nModInv(s);
                uint256 scalar_u = mulmod(uint256(message), sInv, FCL_Elliptic_ZZ.n);
                uint256 scalar_v = mulmod(r, sInv, FCL_Elliptic_ZZ.n);
                uint256 x1;
                x1 = FCL_Elliptic_ZZ.ecZZ_mulmuladd_S_asm(Qx, Qy, scalar_u, scalar_v);
                x1= addmod(x1, n-r,n );
            
                return x1 == 0;
            }
            function ec_recover_r1(uint256 h, uint256 v, uint256 r, uint256 s) internal view returns (address)
            {
                 if (r == 0 || r >= FCL_Elliptic_ZZ.n || s == 0 || s >= FCL_Elliptic_ZZ.n) {
                    return address(0);
                }
                uint256 y=FCL_Elliptic_ZZ.ec_Decompress(r, v-27);
                uint256 rinv=FCL_Elliptic_ZZ.FCL_nModInv(r);
                uint256 u1=mulmod(FCL_Elliptic_ZZ.n-addmod(0,h,FCL_Elliptic_ZZ.n), rinv,FCL_Elliptic_ZZ.n);//-hr^-1
                uint256 u2=mulmod(s, rinv,FCL_Elliptic_ZZ.n);//sr^-1
                uint256 Qx;
                uint256 Qy;
                (Qx,Qy)=FCL_Elliptic_ZZ.ecZZ_mulmuladd(r,y, u1, u2);
                return address(uint160(uint256(keccak256(abi.encodePacked(Qx, Qy)))));
            }
            function ecdsa_precomputed_verify(bytes32 message, uint256 r, uint256 s, address Shamir8)
                internal view
                returns (bool)
            {
               
                if (r == 0 || r >= n || s == 0 || s >= n) {
                    return false;
                }
                /* Q is pushed via the contract at address Shamir8 assumed to be correct
                if (!isOnCurve(Q[0], Q[1])) {
                    return false;
                }*/
                uint256 sInv = FCL_Elliptic_ZZ.FCL_nModInv(s);
                uint256 X;
                //Shamir 8 dimensions
                X = FCL_Elliptic_ZZ.ecZZ_mulmuladd_S8_extcode(mulmod(uint256(message), sInv, n), mulmod(r, sInv, n), Shamir8);
                X= addmod(X, n-r,n );
                return X == 0;
            } //end  ecdsa_precomputed_verify()
             function ecdsa_precomputed_verify(bytes32 message, uint256[2] calldata rs, address Shamir8)
                internal view
                returns (bool)
            {
                uint256 r = rs[0];
                uint256 s = rs[1];
                if (r == 0 || r >= n || s == 0 || s >= n) {
                    return false;
                }
                /* Q is pushed via the contract at address Shamir8 assumed to be correct
                if (!isOnCurve(Q[0], Q[1])) {
                    return false;
                }*/
                uint256 sInv = FCL_Elliptic_ZZ.FCL_nModInv(s);
                uint256 X;
                //Shamir 8 dimensions
                X = FCL_Elliptic_ZZ.ecZZ_mulmuladd_S8_extcode(mulmod(uint256(message), sInv, n), mulmod(r, sInv, n), Shamir8);
                X= addmod(X, n-r,n );
                return X == 0;
            } //end  ecdsa_precomputed_verify()
        }
        //********************************************************************************************/
        //  ___           _       ___               _         _    _ _
        // | __| _ ___ __| |_    / __|_ _ _  _ _ __| |_ ___  | |  (_) |__
        // | _| '_/ -_|_-< ' \\  | (__| '_| || | '_ \\  _/ _ \\ | |__| | '_ \\
        // |_||_| \\___/__/_||_|  \\___|_|  \\_, | .__/\\__\\___/ |____|_|_.__/
        //                                |__/|_|
        ///* Copyright (C) 2022 - Renaud Dubois - This file is part of FCL (Fresh CryptoLib) project
        ///* License: This software is licensed under MIT License
        ///* This Code may be reused including license and copyright notice.
        ///* See LICENSE file at the root folder of the project.
        ///* FILE: FCL_elliptic.sol
        ///*
        ///*
        ///* DESCRIPTION: modified XYZZ system coordinates for EVM elliptic point multiplication
        ///*  optimization
        ///*
        //**************************************************************************************/
        //* WARNING: this code SHALL not be used for non prime order curves for security reasons.
        // Code is optimized for a=-3 only curves with prime order, constant like -1, -2 shall be replaced
        // if ever used for other curve than sec256R1
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.8.19 <0.9.0;
        library FCL_Elliptic_ZZ {
            // Set parameters for curve sec256r1.
            // address of the ModExp precompiled contract (Arbitrary-precision exponentiation under modulo)
            address constant MODEXP_PRECOMPILE = 0x0000000000000000000000000000000000000005;
            //curve prime field modulus
            uint256 constant p = 0xFFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF;
            //short weierstrass first coefficient
            uint256 constant a = 0xFFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFC;
            //short weierstrass second coefficient
            uint256 constant b = 0x5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B;
            //generating point affine coordinates
            uint256 constant gx = 0x6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296;
            uint256 constant gy = 0x4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5;
            //curve order (number of points)
            uint256 constant n = 0xFFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551;
            /* -2 mod p constant, used to speed up inversion and doubling (avoid negation)*/
            uint256 constant minus_2 = 0xFFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFD;
            /* -2 mod n constant, used to speed up inversion*/
            uint256 constant minus_2modn = 0xFFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC63254F;
            uint256 constant minus_1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
            //P+1 div 4
            uint256 constant pp1div4=0x3fffffffc0000000400000000000000000000000400000000000000000000000;
            //arbitrary constant to express no quadratic residuosity
            uint256 constant _NOTSQUARE=0xFFFFFFFF00000002000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF;
            uint256 constant _NOTONCURVE=0xFFFFFFFF00000003000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF;
            /**
             * /* inversion mod n via a^(n-2), use of precompiled using little Fermat theorem
             */
            function FCL_nModInv(uint256 u) internal view returns (uint256 result) {
                assembly {
                    let pointer := mload(0x40)
                    // Define length of base, exponent and modulus. 0x20 == 32 bytes
                    mstore(pointer, 0x20)
                    mstore(add(pointer, 0x20), 0x20)
                    mstore(add(pointer, 0x40), 0x20)
                    // Define variables base, exponent and modulus
                    mstore(add(pointer, 0x60), u)
                    mstore(add(pointer, 0x80), minus_2modn)
                    mstore(add(pointer, 0xa0), n)
                    // Call the precompiled contract 0x05 = ModExp
                    if iszero(staticcall(not(0), 0x05, pointer, 0xc0, pointer, 0x20)) { revert(0, 0) }
                    result := mload(pointer)
                }
            }
            /**
             * /* @dev inversion mod nusing little Fermat theorem via a^(n-2), use of precompiled
             */
            function FCL_pModInv(uint256 u) internal view returns (uint256 result) {
                assembly {
                    let pointer := mload(0x40)
                    // Define length of base, exponent and modulus. 0x20 == 32 bytes
                    mstore(pointer, 0x20)
                    mstore(add(pointer, 0x20), 0x20)
                    mstore(add(pointer, 0x40), 0x20)
                    // Define variables base, exponent and modulus
                    mstore(add(pointer, 0x60), u)
                    mstore(add(pointer, 0x80), minus_2)
                    mstore(add(pointer, 0xa0), p)
                    // Call the precompiled contract 0x05 = ModExp
                    if iszero(staticcall(not(0), 0x05, pointer, 0xc0, pointer, 0x20)) { revert(0, 0) }
                    result := mload(pointer)
                }
            }
            //Coron projective shuffling, take as input alpha as blinding factor
           function ecZZ_Coronize(uint256 alpha, uint256 x, uint256 y,  uint256 zz, uint256 zzz) internal pure  returns (uint256 x3, uint256 y3, uint256 zz3, uint256 zzz3)
           {
               
                uint256 alpha2=mulmod(alpha,alpha,p);
               
                x3=mulmod(alpha2, x,p); //alpha^-2.x
                y3=mulmod(mulmod(alpha, alpha2,p), y,p);
                zz3=mulmod(zz,alpha2,p);//alpha^2 zz
                zzz3=mulmod(zzz,mulmod(alpha, alpha2,p),p);//alpha^3 zzz
                
                return (x3, y3, zz3, zzz3);
           }
         function ecZZ_Add(uint256 x1, uint256 y1, uint256 zz1, uint256 zzz1, uint256 x2, uint256 y2, uint256 zz2, uint256 zzz2) internal pure  returns (uint256 x3, uint256 y3, uint256 zz3, uint256 zzz3)
          {
            uint256 u1=mulmod(x1,zz2,p); // U1 = X1*ZZ2
            uint256 u2=mulmod(x2, zz1,p);               //  U2 = X2*ZZ1
            u2=addmod(u2, p-u1, p);//  P = U2-U1
            x1=mulmod(u2, u2, p);//PP
            x2=mulmod(x1, u2, p);//PPP
            
            zz3=mulmod(x1, mulmod(zz1, zz2, p),p);//ZZ3 = ZZ1*ZZ2*PP  
            zzz3=mulmod(zzz1, mulmod(zzz2, x2, p),p);//ZZZ3 = ZZZ1*ZZZ2*PPP
            zz1=mulmod(y1, zzz2,p);  // S1 = Y1*ZZZ2
            zz2=mulmod(y2, zzz1, p);    // S2 = Y2*ZZZ1 
            zz2=addmod(zz2, p-zz1, p);//R = S2-S1
            zzz1=mulmod(u1, x1,p); //Q = U1*PP
            x3= addmod(addmod(mulmod(zz2, zz2, p), p-x2,p), mulmod(minus_2, zzz1,p),p); //X3 = R2-PPP-2*Q
            y3=addmod( mulmod(zz2, addmod(zzz1, p-x3, p),p), p-mulmod(zz1, x2, p),p);//R*(Q-X3)-S1*PPP
            return (x3, y3, zz3, zzz3);
          }
        /// @notice Calculate one modular square root of a given integer. Assume that p=3 mod 4.
        /// @dev Uses the ModExp precompiled contract at address 0x05 for fast computation using little Fermat theorem
        /// @param self The integer of which to find the modular inverse
        /// @return result The modular inverse of the input integer. If the modular inverse doesn't exist, it revert the tx
        function SqrtMod(uint256 self) internal view returns (uint256 result){
         assembly ("memory-safe") {
                // load the free memory pointer value
                let pointer := mload(0x40)
                // Define length of base (Bsize)
                mstore(pointer, 0x20)
                // Define the exponent size (Esize)
                mstore(add(pointer, 0x20), 0x20)
                // Define the modulus size (Msize)
                mstore(add(pointer, 0x40), 0x20)
                // Define variables base (B)
                mstore(add(pointer, 0x60), self)
                // Define the exponent (E)
                mstore(add(pointer, 0x80), pp1div4)
                // We save the point of the last argument, it will be override by the result
                // of the precompile call in order to avoid paying for the memory expansion properly
                let _result := add(pointer, 0xa0)
                // Define the modulus (M)
                mstore(_result, p)
                // Call the precompiled ModExp (0x05) https://www.evm.codes/precompiled#0x05
                if iszero(
                    staticcall(
                        not(0), // amount of gas to send
                        MODEXP_PRECOMPILE, // target
                        pointer, // argsOffset
                        0xc0, // argsSize (6 * 32 bytes)
                        _result, // retOffset (we override M to avoid paying for the memory expansion)
                        0x20 // retSize (32 bytes)
                    )
                ) { revert(0, 0) }
          result := mload(_result)
        //  result :=addmod(result,0,p)
         }
           if(mulmod(result,result,p)!=self){
             result=_NOTSQUARE;
           }
          
           return result;
        }
            /**
             * /* @dev Convert from affine rep to XYZZ rep
             */
            function ecAff_SetZZ(uint256 x0, uint256 y0) internal pure returns (uint256[4] memory P) {
                unchecked {
                    P[2] = 1; //ZZ
                    P[3] = 1; //ZZZ
                    P[0] = x0;
                    P[1] = y0;
                }
            }
            function ec_Decompress(uint256 x, uint256 parity) internal view returns(uint256 y){ 
                uint256 y2=mulmod(x,mulmod(x,x,p),p);//x3
                y2=addmod(b,addmod(y2,mulmod(x,a,p),p),p);//x3+ax+b
                y=SqrtMod(y2);
                if(y==_NOTSQUARE){
                   return _NOTONCURVE;
                }
                if((y&1)!=(parity&1)){
                    y=p-y;
                }
            }
            /**
             * /* @dev Convert from XYZZ rep to affine rep
             */
            /*    https://hyperelliptic.org/EFD/g1p/auto-shortw-xyzz-3.html#addition-add-2008-s*/
            function ecZZ_SetAff(uint256 x, uint256 y, uint256 zz, uint256 zzz) internal view returns (uint256 x1, uint256 y1) {
                uint256 zzzInv = FCL_pModInv(zzz); //1/zzz
                y1 = mulmod(y, zzzInv, p); //Y/zzz
                uint256 _b = mulmod(zz, zzzInv, p); //1/z
                zzzInv = mulmod(_b, _b, p); //1/zz
                x1 = mulmod(x, zzzInv, p); //X/zz
            }
            /**
             * /* @dev Sutherland2008 doubling
             */
            /* The "dbl-2008-s-1" doubling formulas */
            function ecZZ_Dbl(uint256 x, uint256 y, uint256 zz, uint256 zzz)
                internal
                pure
                returns (uint256 P0, uint256 P1, uint256 P2, uint256 P3)
            {
                unchecked {
                    assembly {
                        P0 := mulmod(2, y, p) //U = 2*Y1
                        P2 := mulmod(P0, P0, p) // V=U^2
                        P3 := mulmod(x, P2, p) // S = X1*V
                        P1 := mulmod(P0, P2, p) // W=UV
                        P2 := mulmod(P2, zz, p) //zz3=V*ZZ1
                        zz := mulmod(3, mulmod(addmod(x, sub(p, zz), p), addmod(x, zz, p), p), p) //M=3*(X1-ZZ1)*(X1+ZZ1)
                        P0 := addmod(mulmod(zz, zz, p), mulmod(minus_2, P3, p), p) //X3=M^2-2S
                        x := mulmod(zz, addmod(P3, sub(p, P0), p), p) //M(S-X3)
                        P3 := mulmod(P1, zzz, p) //zzz3=W*zzz1
                        P1 := addmod(x, sub(p, mulmod(P1, y, p)), p) //Y3= M(S-X3)-W*Y1
                    }
                }
                return (P0, P1, P2, P3);
            }
            /**
             * @dev Sutherland2008 add a ZZ point with a normalized point and greedy formulae
             * warning: assume that P1(x1,y1)!=P2(x2,y2), true in multiplication loop with prime order (cofactor 1)
             */
            function ecZZ_AddN(uint256 x1, uint256 y1, uint256 zz1, uint256 zzz1, uint256 x2, uint256 y2)
                internal
                pure
                returns (uint256 P0, uint256 P1, uint256 P2, uint256 P3)
            {
                unchecked {
                    if (y1 == 0) {
                        return (x2, y2, 1, 1);
                    }
                    assembly {
                        y1 := sub(p, y1)
                        y2 := addmod(mulmod(y2, zzz1, p), y1, p)
                        x2 := addmod(mulmod(x2, zz1, p), sub(p, x1), p)
                        P0 := mulmod(x2, x2, p) //PP = P^2
                        P1 := mulmod(P0, x2, p) //PPP = P*PP
                        P2 := mulmod(zz1, P0, p) ////ZZ3 = ZZ1*PP
                        P3 := mulmod(zzz1, P1, p) ////ZZZ3 = ZZZ1*PPP
                        zz1 := mulmod(x1, P0, p) //Q = X1*PP
                        P0 := addmod(addmod(mulmod(y2, y2, p), sub(p, P1), p), mulmod(minus_2, zz1, p), p) //R^2-PPP-2*Q
                        P1 := addmod(mulmod(addmod(zz1, sub(p, P0), p), y2, p), mulmod(y1, P1, p), p) //R*(Q-X3)
                    }
                    //end assembly
                } //end unchecked
                return (P0, P1, P2, P3);
            }
            /**
             * @dev Return the zero curve in XYZZ coordinates.
             */
            function ecZZ_SetZero() internal pure returns (uint256 x, uint256 y, uint256 zz, uint256 zzz) {
                return (0, 0, 0, 0);
            }
            /**
             * @dev Check if point is the neutral of the curve
             */
            // uint256 x0, uint256 y0, uint256 zz0, uint256 zzz0
            function ecZZ_IsZero(uint256, uint256 y0, uint256, uint256) internal pure returns (bool) {
                return y0 == 0;
            }
            /**
             * @dev Return the zero curve in affine coordinates. Compatible with the double formulae (no special case)
             */
            function ecAff_SetZero() internal pure returns (uint256 x, uint256 y) {
                return (0, 0);
            }
            /**
             * @dev Check if the curve is the zero curve in affine rep.
             */
            // uint256 x, uint256 y)
            function ecAff_IsZero(uint256, uint256 y) internal pure returns (bool flag) {
                return (y == 0);
            }
            /**
             * @dev Check if a point in affine coordinates is on the curve (reject Neutral that is indeed on the curve).
             */
            function ecAff_isOnCurve(uint256 x, uint256 y) internal pure returns (bool) {
                if (x >= p || y >= p || ((x == 0) && (y == 0))) {
                    return false;
                }
                unchecked {
                    uint256 LHS = mulmod(y, y, p); // y^2
                    uint256 RHS = addmod(mulmod(mulmod(x, x, p), x, p), mulmod(x, a, p), p); // x^3+ax
                    RHS = addmod(RHS, b, p); // x^3 + a*x + b
                    return LHS == RHS;
                }
            }
            /**
             * @dev Add two elliptic curve points in affine coordinates. Deal with P=Q
             */
            function ecAff_add(uint256 x0, uint256 y0, uint256 x1, uint256 y1) internal view returns (uint256, uint256) {
                uint256 zz0;
                uint256 zzz0;
                if (ecAff_IsZero(x0, y0)) return (x1, y1);
                if (ecAff_IsZero(x1, y1)) return (x0, y0);
                if((x0==x1)&&(y0==y1)) {
                    (x0, y0, zz0, zzz0) = ecZZ_Dbl(x0, y0,1,1);
                }
                else{
                    (x0, y0, zz0, zzz0) = ecZZ_AddN(x0, y0, 1, 1, x1, y1);
                }
                return ecZZ_SetAff(x0, y0, zz0, zzz0);
            }
            /**
             * @dev Computation of uG+vQ using Strauss-Shamir's trick, G basepoint, Q public key
             *       Returns only x for ECDSA use            
             *      */
            function ecZZ_mulmuladd_S_asm(
                uint256 Q0,
                uint256 Q1, //affine rep for input point Q
                uint256 scalar_u,
                uint256 scalar_v
            ) internal view returns (uint256 X) {
                uint256 zz;
                uint256 zzz;
                uint256 Y;
                uint256 index = 255;
                uint256 H0;
                uint256 H1;
                unchecked {
                    if (scalar_u == 0 && scalar_v == 0) return 0;
                    (H0, H1) = ecAff_add(gx, gy, Q0, Q1); 
                    if((H0==0)&&(H1==0))//handling Q=-G
                    {
                        scalar_u=addmod(scalar_u, n-scalar_v, n);
                        scalar_v=0;
                        if (scalar_u == 0 && scalar_v == 0) return 0;
                    }
                    assembly {
                        for { let T4 := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1)) } eq(T4, 0) {
                            index := sub(index, 1)
                            T4 := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1))
                        } {}
                        zz := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1))
                        if eq(zz, 1) {
                            X := gx
                            Y := gy
                        }
                        if eq(zz, 2) {
                            X := Q0
                            Y := Q1
                        }
                        if eq(zz, 3) {
                            X := H0
                            Y := H1
                        }
                        index := sub(index, 1)
                        zz := 1
                        zzz := 1
                        for {} gt(minus_1, index) { index := sub(index, 1) } {
                            // inlined EcZZ_Dbl
                            let T1 := mulmod(2, Y, p) //U = 2*Y1, y free
                            let T2 := mulmod(T1, T1, p) // V=U^2
                            let T3 := mulmod(X, T2, p) // S = X1*V
                            T1 := mulmod(T1, T2, p) // W=UV
                            let T4 := mulmod(3, mulmod(addmod(X, sub(p, zz), p), addmod(X, zz, p), p), p) //M=3*(X1-ZZ1)*(X1+ZZ1)
                            zzz := mulmod(T1, zzz, p) //zzz3=W*zzz1
                            zz := mulmod(T2, zz, p) //zz3=V*ZZ1, V free
                            X := addmod(mulmod(T4, T4, p), mulmod(minus_2, T3, p), p) //X3=M^2-2S
                            T2 := mulmod(T4, addmod(X, sub(p, T3), p), p) //-M(S-X3)=M(X3-S)
                            Y := addmod(mulmod(T1, Y, p), T2, p) //-Y3= W*Y1-M(S-X3), we replace Y by -Y to avoid a sub in ecAdd
                            {
                                //value of dibit
                                T4 := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1))
                                if iszero(T4) {
                                    Y := sub(p, Y) //restore the -Y inversion
                                    continue
                                } // if T4!=0
                                if eq(T4, 1) {
                                    T1 := gx
                                    T2 := gy
                                }
                                if eq(T4, 2) {
                                    T1 := Q0
                                    T2 := Q1
                                }
                                if eq(T4, 3) {
                                    T1 := H0
                                    T2 := H1
                                }
                                if iszero(zz) {
                                    X := T1
                                    Y := T2
                                    zz := 1
                                    zzz := 1
                                    continue
                                }
                                // inlined EcZZ_AddN
                                //T3:=sub(p, Y)
                                //T3:=Y
                                let y2 := addmod(mulmod(T2, zzz, p), Y, p) //R
                                T2 := addmod(mulmod(T1, zz, p), sub(p, X), p) //P
                                //special extremely rare case accumulator where EcAdd is replaced by EcDbl, no need to optimize this
                                //todo : construct edge vector case
                                if iszero(y2) {
                                    if iszero(T2) {
                                        T1 := mulmod(minus_2, Y, p) //U = 2*Y1, y free
                                        T2 := mulmod(T1, T1, p) // V=U^2
                                        T3 := mulmod(X, T2, p) // S = X1*V
                                        T1 := mulmod(T1, T2, p) // W=UV
                                        y2 := mulmod(addmod(X, zz, p), addmod(X, sub(p, zz), p), p) //(X-ZZ)(X+ZZ)
                                        T4 := mulmod(3, y2, p) //M=3*(X-ZZ)(X+ZZ)
                                        zzz := mulmod(T1, zzz, p) //zzz3=W*zzz1
                                        zz := mulmod(T2, zz, p) //zz3=V*ZZ1, V free
                                        X := addmod(mulmod(T4, T4, p), mulmod(minus_2, T3, p), p) //X3=M^2-2S
                                        T2 := mulmod(T4, addmod(T3, sub(p, X), p), p) //M(S-X3)
                                        Y := addmod(T2, mulmod(T1, Y, p), p) //Y3= M(S-X3)-W*Y1
                                        continue
                                    }
                                }
                                T4 := mulmod(T2, T2, p) //PP
                                let TT1 := mulmod(T4, T2, p) //PPP, this one could be spared, but adding this register spare gas
                                zz := mulmod(zz, T4, p)
                                zzz := mulmod(zzz, TT1, p) //zz3=V*ZZ1
                                let TT2 := mulmod(X, T4, p)
                                T4 := addmod(addmod(mulmod(y2, y2, p), sub(p, TT1), p), mulmod(minus_2, TT2, p), p)
                                Y := addmod(mulmod(addmod(TT2, sub(p, T4), p), y2, p), mulmod(Y, TT1, p), p)
                                X := T4
                            }
                        } //end loop
                        let T := mload(0x40)
                        mstore(add(T, 0x60), zz)
                        //(X,Y)=ecZZ_SetAff(X,Y,zz, zzz);
                        //T[0] = inverseModp_Hard(T[0], p); //1/zzz, inline modular inversion using precompile:
                        // Define length of base, exponent and modulus. 0x20 == 32 bytes
                        mstore(T, 0x20)
                        mstore(add(T, 0x20), 0x20)
                        mstore(add(T, 0x40), 0x20)
                        // Define variables base, exponent and modulus
                        //mstore(add(pointer, 0x60), u)
                        mstore(add(T, 0x80), minus_2)
                        mstore(add(T, 0xa0), p)
                        // Call the precompiled contract 0x05 = ModExp
                        if iszero(staticcall(not(0), 0x05, T, 0xc0, T, 0x20)) { revert(0, 0) }
                        //Y:=mulmod(Y,zzz,p)//Y/zzz
                        //zz :=mulmod(zz, mload(T),p) //1/z
                        //zz:= mulmod(zz,zz,p) //1/zz
                        X := mulmod(X, mload(T), p) //X/zz
                    } //end assembly
                } //end unchecked
                return X;
            }
            /**
             * @dev Computation of uG+vQ using Strauss-Shamir's trick, G basepoint, Q public key
             *       Returns affine representation of point (normalized)       
             *      */
            function ecZZ_mulmuladd(
                uint256 Q0,
                uint256 Q1, //affine rep for input point Q
                uint256 scalar_u,
                uint256 scalar_v
            ) internal view returns (uint256 X, uint256 Y) {
                uint256 zz;
                uint256 zzz;
                uint256 index = 255;
                uint256[6] memory T;
                uint256[2] memory H;
         
                unchecked {
                    if (scalar_u == 0 && scalar_v == 0) return (0,0);
                    (H[0], H[1]) = ecAff_add(gx, gy, Q0, Q1); //will not work if Q=P, obvious forbidden private key
                    assembly {
                        for { let T4 := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1)) } eq(T4, 0) {
                            index := sub(index, 1)
                            T4 := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1))
                        } {}
                        zz := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1))
                        if eq(zz, 1) {
                            X := gx
                            Y := gy
                        }
                        if eq(zz, 2) {
                            X := Q0
                            Y := Q1
                        }
                        if eq(zz, 3) {
                            Y := mload(add(H,32))
                            X := mload(H)
                        }
                        index := sub(index, 1)
                        zz := 1
                        zzz := 1
                        for {} gt(minus_1, index) { index := sub(index, 1) } {
                            // inlined EcZZ_Dbl
                            let T1 := mulmod(2, Y, p) //U = 2*Y1, y free
                            let T2 := mulmod(T1, T1, p) // V=U^2
                            let T3 := mulmod(X, T2, p) // S = X1*V
                            T1 := mulmod(T1, T2, p) // W=UV
                            let T4 := mulmod(3, mulmod(addmod(X, sub(p, zz), p), addmod(X, zz, p), p), p) //M=3*(X1-ZZ1)*(X1+ZZ1)
                            zzz := mulmod(T1, zzz, p) //zzz3=W*zzz1
                            zz := mulmod(T2, zz, p) //zz3=V*ZZ1, V free
                            X := addmod(mulmod(T4, T4, p), mulmod(minus_2, T3, p), p) //X3=M^2-2S
                            T2 := mulmod(T4, addmod(X, sub(p, T3), p), p) //-M(S-X3)=M(X3-S)
                            Y := addmod(mulmod(T1, Y, p), T2, p) //-Y3= W*Y1-M(S-X3), we replace Y by -Y to avoid a sub in ecAdd
                            {
                                //value of dibit
                                T4 := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1))
                                if iszero(T4) {
                                    Y := sub(p, Y) //restore the -Y inversion
                                    continue
                                } // if T4!=0
                                if eq(T4, 1) {
                                    T1 := gx
                                    T2 := gy
                                }
                                if eq(T4, 2) {
                                    T1 := Q0
                                    T2 := Q1
                                }
                                if eq(T4, 3) {
                                    T1 := mload(H)
                                    T2 := mload(add(H,32))
                                }
                                if iszero(zz) {
                                    X := T1
                                    Y := T2
                                    zz := 1
                                    zzz := 1
                                    continue
                                }
                                // inlined EcZZ_AddN
                                //T3:=sub(p, Y)
                                //T3:=Y
                                let y2 := addmod(mulmod(T2, zzz, p), Y, p) //R
                                T2 := addmod(mulmod(T1, zz, p), sub(p, X), p) //P
                                //special extremely rare case accumulator where EcAdd is replaced by EcDbl, no need to optimize this
                                //todo : construct edge vector case
                                if iszero(y2) {
                                    if iszero(T2) {
                                        T1 := mulmod(minus_2, Y, p) //U = 2*Y1, y free
                                        T2 := mulmod(T1, T1, p) // V=U^2
                                        T3 := mulmod(X, T2, p) // S = X1*V
                                        T1 := mulmod(T1, T2, p) // W=UV
                                        y2 := mulmod(addmod(X, zz, p), addmod(X, sub(p, zz), p), p) //(X-ZZ)(X+ZZ)
                                        T4 := mulmod(3, y2, p) //M=3*(X-ZZ)(X+ZZ)
                                        zzz := mulmod(T1, zzz, p) //zzz3=W*zzz1
                                        zz := mulmod(T2, zz, p) //zz3=V*ZZ1, V free
                                        X := addmod(mulmod(T4, T4, p), mulmod(minus_2, T3, p), p) //X3=M^2-2S
                                        T2 := mulmod(T4, addmod(T3, sub(p, X), p), p) //M(S-X3)
                                        Y := addmod(T2, mulmod(T1, Y, p), p) //Y3= M(S-X3)-W*Y1
                                        continue
                                    }
                                }
                                T4 := mulmod(T2, T2, p) //PP
                                let TT1 := mulmod(T4, T2, p) //PPP, this one could be spared, but adding this register spare gas
                                zz := mulmod(zz, T4, p)
                                zzz := mulmod(zzz, TT1, p) //zz3=V*ZZ1
                                let TT2 := mulmod(X, T4, p)
                                T4 := addmod(addmod(mulmod(y2, y2, p), sub(p, TT1), p), mulmod(minus_2, TT2, p), p)
                                Y := addmod(mulmod(addmod(TT2, sub(p, T4), p), y2, p), mulmod(Y, TT1, p), p)
                                X := T4
                            }
                        } //end loop
                        mstore(add(T, 0x60), zzz)
                        //(X,Y)=ecZZ_SetAff(X,Y,zz, zzz);
                        //T[0] = inverseModp_Hard(T[0], p); //1/zzz, inline modular inversion using precompile:
                        // Define length of base, exponent and modulus. 0x20 == 32 bytes
                        mstore(T, 0x20)
                        mstore(add(T, 0x20), 0x20)
                        mstore(add(T, 0x40), 0x20)
                        // Define variables base, exponent and modulus
                        //mstore(add(pointer, 0x60), u)
                        mstore(add(T, 0x80), minus_2)
                        mstore(add(T, 0xa0), p)
                        // Call the precompiled contract 0x05 = ModExp
                        if iszero(staticcall(not(0), 0x05, T, 0xc0, T, 0x20)) { revert(0, 0) }
                        Y:=mulmod(Y,mload(T),p)//Y/zzz
                        zz :=mulmod(zz, mload(T),p) //1/z
                        zz:= mulmod(zz,zz,p) //1/zz
                        X := mulmod(X, zz, p) //X/zz
                    } //end assembly
                } //end unchecked
                return (X,Y);
            }
            //8 dimensions Shamir's trick, using precomputations stored in Shamir8,  stored as Bytecode of an external
            //contract at given address dataPointer
            //(thx to Lakhdar https://github.com/Kelvyne for EVM storage explanations and tricks)
            // the external tool to generate tables from public key is in the /sage directory
            function ecZZ_mulmuladd_S8_extcode(uint256 scalar_u, uint256 scalar_v, address dataPointer)
                internal view
                returns (uint256 X /*, uint Y*/ )
            {
                unchecked {
                    uint256 zz; // third and  coordinates of the point
                    uint256[6] memory T;
                    zz = 256; //start index
                    while (T[0] == 0) {
                        zz = zz - 1;
                        //tbd case of msb octobit is null
                        T[0] = 64
                            * (
                                128 * ((scalar_v >> zz) & 1) + 64 * ((scalar_v >> (zz - 64)) & 1)
                                    + 32 * ((scalar_v >> (zz - 128)) & 1) + 16 * ((scalar_v >> (zz - 192)) & 1)
                                    + 8 * ((scalar_u >> zz) & 1) + 4 * ((scalar_u >> (zz - 64)) & 1)
                                    + 2 * ((scalar_u >> (zz - 128)) & 1) + ((scalar_u >> (zz - 192)) & 1)
                            );
                    }
                    assembly {
                        extcodecopy(dataPointer, T, mload(T), 64)
                        let index := sub(zz, 1)
                        X := mload(T)
                        let Y := mload(add(T, 32))
                        let zzz := 1
                        zz := 1
                        //loop over 1/4 of scalars thx to Shamir's trick over 8 points
                        for {} gt(index, 191) { index := add(index, 191) } {
                            //inline Double
                            {
                                let TT1 := mulmod(2, Y, p) //U = 2*Y1, y free
                                let T2 := mulmod(TT1, TT1, p) // V=U^2
                                let T3 := mulmod(X, T2, p) // S = X1*V
                                let T1 := mulmod(TT1, T2, p) // W=UV
                                let T4 := mulmod(3, mulmod(addmod(X, sub(p, zz), p), addmod(X, zz, p), p), p) //M=3*(X1-ZZ1)*(X1+ZZ1)
                                zzz := mulmod(T1, zzz, p) //zzz3=W*zzz1
                                zz := mulmod(T2, zz, p) //zz3=V*ZZ1, V free
                                X := addmod(mulmod(T4, T4, p), mulmod(minus_2, T3, p), p) //X3=M^2-2S
                                //T2:=mulmod(T4,addmod(T3, sub(p, X),p),p)//M(S-X3)
                                let T5 := mulmod(T4, addmod(X, sub(p, T3), p), p) //-M(S-X3)=M(X3-S)
                                //Y:= addmod(T2, sub(p, mulmod(T1, Y ,p)),p  )//Y3= M(S-X3)-W*Y1
                                Y := addmod(mulmod(T1, Y, p), T5, p) //-Y3= W*Y1-M(S-X3), we replace Y by -Y to avoid a sub in ecAdd
                                /* compute element to access in precomputed table */
                            }
                            {
                                let T4 := add(shl(13, and(shr(index, scalar_v), 1)), shl(9, and(shr(index, scalar_u), 1)))
                                let index2 := sub(index, 64)
                                let T3 :=
                                    add(T4, add(shl(12, and(shr(index2, scalar_v), 1)), shl(8, and(shr(index2, scalar_u), 1))))
                                let index3 := sub(index2, 64)
                                let T2 :=
                                    add(T3, add(shl(11, and(shr(index3, scalar_v), 1)), shl(7, and(shr(index3, scalar_u), 1))))
                                index := sub(index3, 64)
                                let T1 :=
                                    add(T2, add(shl(10, and(shr(index, scalar_v), 1)), shl(6, and(shr(index, scalar_u), 1))))
                                //tbd: check validity of formulae with (0,1) to remove conditional jump
                                if iszero(T1) {
                                    Y := sub(p, Y)
                                    continue
                                }
                                extcodecopy(dataPointer, T, T1, 64)
                            }
                            {
                                /* Access to precomputed table using extcodecopy hack */
                                // inlined EcZZ_AddN
                                if iszero(zz) {
                                    X := mload(T)
                                    Y := mload(add(T, 32))
                                    zz := 1
                                    zzz := 1
                                    continue
                                }
                                let y2 := addmod(mulmod(mload(add(T, 32)), zzz, p), Y, p)
                                let T2 := addmod(mulmod(mload(T), zz, p), sub(p, X), p)
                                //special case ecAdd(P,P)=EcDbl
                                if iszero(y2) {
                                    if iszero(T2) {
                                        let T1 := mulmod(minus_2, Y, p) //U = 2*Y1, y free
                                        T2 := mulmod(T1, T1, p) // V=U^2
                                        let T3 := mulmod(X, T2, p) // S = X1*V
                                        T1 := mulmod(T1, T2, p) // W=UV
                                        y2 := mulmod(addmod(X, zz, p), addmod(X, sub(p, zz), p), p) //(X-ZZ)(X+ZZ)
                                        let T4 := mulmod(3, y2, p) //M=3*(X-ZZ)(X+ZZ)
                                        zzz := mulmod(T1, zzz, p) //zzz3=W*zzz1
                                        zz := mulmod(T2, zz, p) //zz3=V*ZZ1, V free
                                        X := addmod(mulmod(T4, T4, p), mulmod(minus_2, T3, p), p) //X3=M^2-2S
                                        T2 := mulmod(T4, addmod(T3, sub(p, X), p), p) //M(S-X3)
                                        Y := addmod(T2, mulmod(T1, Y, p), p) //Y3= M(S-X3)-W*Y1
                                        continue
                                    }
                                }
                                let T4 := mulmod(T2, T2, p)
                                let T1 := mulmod(T4, T2, p) //
                                zz := mulmod(zz, T4, p)
                                //zzz3=V*ZZ1
                                zzz := mulmod(zzz, T1, p) // W=UV/
                                let zz1 := mulmod(X, T4, p)
                                X := addmod(addmod(mulmod(y2, y2, p), sub(p, T1), p), mulmod(minus_2, zz1, p), p)
                                Y := addmod(mulmod(addmod(zz1, sub(p, X), p), y2, p), mulmod(Y, T1, p), p)
                            }
                        } //end loop
                        mstore(add(T, 0x60), zz)
                        //(X,Y)=ecZZ_SetAff(X,Y,zz, zzz);
                        //T[0] = inverseModp_Hard(T[0], p); //1/zzz, inline modular inversion using precompile:
                        // Define length of base, exponent and modulus. 0x20 == 32 bytes
                        mstore(T, 0x20)
                        mstore(add(T, 0x20), 0x20)
                        mstore(add(T, 0x40), 0x20)
                        // Define variables base, exponent and modulus
                        //mstore(add(pointer, 0x60), u)
                        mstore(add(T, 0x80), minus_2)
                        mstore(add(T, 0xa0), p)
                        // Call the precompiled contract 0x05 = ModExp
                        if iszero(staticcall(not(0), 0x05, T, 0xc0, T, 0x20)) { revert(0, 0) }
                        zz := mload(T)
                        X := mulmod(X, zz, p) //X/zz
                    }
                } //end unchecked
            }
           
            // improving the extcodecopy trick : append array at end of contract
            function ecZZ_mulmuladd_S8_hackmem(uint256 scalar_u, uint256 scalar_v, uint256 dataPointer)
                internal view
                returns (uint256 X /*, uint Y*/ )
            {
                uint256 zz; // third and  coordinates of the point
                uint256[6] memory T;
                zz = 256; //start index
                unchecked {
                    while (T[0] == 0) {
                        zz = zz - 1;
                        //tbd case of msb octobit is null
                        T[0] = 64
                            * (
                                128 * ((scalar_v >> zz) & 1) + 64 * ((scalar_v >> (zz - 64)) & 1)
                                    + 32 * ((scalar_v >> (zz - 128)) & 1) + 16 * ((scalar_v >> (zz - 192)) & 1)
                                    + 8 * ((scalar_u >> zz) & 1) + 4 * ((scalar_u >> (zz - 64)) & 1)
                                    + 2 * ((scalar_u >> (zz - 128)) & 1) + ((scalar_u >> (zz - 192)) & 1)
                            );
                    }
                    assembly {
                        codecopy(T, add(mload(T), dataPointer), 64)
                        X := mload(T)
                        let Y := mload(add(T, 32))
                        let zzz := 1
                        zz := 1
                        //loop over 1/4 of scalars thx to Shamir's trick over 8 points
                        for { let index := 254 } gt(index, 191) { index := add(index, 191) } {
                            let T1 := mulmod(2, Y, p) //U = 2*Y1, y free
                            let T2 := mulmod(T1, T1, p) // V=U^2
                            let T3 := mulmod(X, T2, p) // S = X1*V
                            T1 := mulmod(T1, T2, p) // W=UV
                            let T4 := mulmod(3, mulmod(addmod(X, sub(p, zz), p), addmod(X, zz, p), p), p) //M=3*(X1-ZZ1)*(X1+ZZ1)
                            zzz := mulmod(T1, zzz, p) //zzz3=W*zzz1
                            zz := mulmod(T2, zz, p) //zz3=V*ZZ1, V free
                            X := addmod(mulmod(T4, T4, p), mulmod(minus_2, T3, p), p) //X3=M^2-2S
                            //T2:=mulmod(T4,addmod(T3, sub(p, X),p),p)//M(S-X3)
                            T2 := mulmod(T4, addmod(X, sub(p, T3), p), p) //-M(S-X3)=M(X3-S)
                            //Y:= addmod(T2, sub(p, mulmod(T1, Y ,p)),p  )//Y3= M(S-X3)-W*Y1
                            Y := addmod(mulmod(T1, Y, p), T2, p) //-Y3= W*Y1-M(S-X3), we replace Y by -Y to avoid a sub in ecAdd
                            /* compute element to access in precomputed table */
                            T4 := add(shl(13, and(shr(index, scalar_v), 1)), shl(9, and(shr(index, scalar_u), 1)))
                            index := sub(index, 64)
                            T4 := add(T4, add(shl(12, and(shr(index, scalar_v), 1)), shl(8, and(shr(index, scalar_u), 1))))
                            index := sub(index, 64)
                            T4 := add(T4, add(shl(11, and(shr(index, scalar_v), 1)), shl(7, and(shr(index, scalar_u), 1))))
                            index := sub(index, 64)
                            T4 := add(T4, add(shl(10, and(shr(index, scalar_v), 1)), shl(6, and(shr(index, scalar_u), 1))))
                            //index:=add(index,192), restore index, interleaved with loop
                            //tbd: check validity of formulae with (0,1) to remove conditional jump
                            if iszero(T4) {
                                Y := sub(p, Y)
                                continue
                            }
                            {
                                /* Access to precomputed table using extcodecopy hack */
                                codecopy(T, add(T4, dataPointer), 64)
                                // inlined EcZZ_AddN
                                let y2 := addmod(mulmod(mload(add(T, 32)), zzz, p), Y, p)
                                T2 := addmod(mulmod(mload(T), zz, p), sub(p, X), p)
                                T4 := mulmod(T2, T2, p)
                                T1 := mulmod(T4, T2, p)
                                T2 := mulmod(zz, T4, p) // W=UV
                                zzz := mulmod(zzz, T1, p) //zz3=V*ZZ1
                                let zz1 := mulmod(X, T4, p)
                                T4 := addmod(addmod(mulmod(y2, y2, p), sub(p, T1), p), mulmod(minus_2, zz1, p), p)
                                Y := addmod(mulmod(addmod(zz1, sub(p, T4), p), y2, p), mulmod(Y, T1, p), p)
                                zz := T2
                                X := T4
                            }
                        } //end loop
                        mstore(add(T, 0x60), zz)
                        //(X,Y)=ecZZ_SetAff(X,Y,zz, zzz);
                        //T[0] = inverseModp_Hard(T[0], p); //1/zzz, inline modular inversion using precompile:
                        // Define length of base, exponent and modulus. 0x20 == 32 bytes
                        mstore(T, 0x20)
                        mstore(add(T, 0x20), 0x20)
                        mstore(add(T, 0x40), 0x20)
                        // Define variables base, exponent and modulus
                        //mstore(add(pointer, 0x60), u)
                        mstore(add(T, 0x80), minus_2)
                        mstore(add(T, 0xa0), p)
                        // Call the precompiled contract 0x05 = ModExp
                        if iszero(staticcall(not(0), 0x05, T, 0xc0, T, 0x20)) { revert(0, 0) }
                        zz := mload(T)
                        X := mulmod(X, zz, p) //X/zz
                    }
                } //end unchecked
            }
            /**
             * @dev ECDSA verification using a precomputed table of multiples of P and Q stored in contract at address Shamir8
             *     generation of contract bytecode for precomputations is done using sagemath code
             *     (see sage directory, WebAuthn_precompute.sage)
             */
            /**
             * @dev ECDSA verification using a precomputed table of multiples of P and Q appended at end of contract at address endcontract
             *     generation of contract bytecode for precomputations is done using sagemath code
             *     (see sage directory, WebAuthn_precompute.sage)
             */
            function ecdsa_precomputed_hackmem(bytes32 message, uint256[2] calldata rs, uint256 endcontract)
                internal view
                returns (bool)
            {
                uint256 r = rs[0];
                uint256 s = rs[1];
                if (r == 0 || r >= n || s == 0 || s >= n) {
                    return false;
                }
                /* Q is pushed via bytecode assumed to be correct
                if (!isOnCurve(Q[0], Q[1])) {
                    return false;
                }*/
                uint256 sInv = FCL_nModInv(s);
                uint256 X;
                //Shamir 8 dimensions
                X = ecZZ_mulmuladd_S8_hackmem(mulmod(uint256(message), sInv, n), mulmod(r, sInv, n), endcontract);
                assembly {
                    X := addmod(X, sub(n, r), n)
                }
                return X == 0;
            } //end  ecdsa_precomputed_verify()
        } //EOF
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.2) (utils/Base64.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Provides a set of functions to operate with Base64 strings.
         */
        library Base64 {
            /**
             * @dev Base64 Encoding/Decoding Table
             * See sections 4 and 5 of https://datatracker.ietf.org/doc/html/rfc4648
             */
            string internal constant _TABLE = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
            string internal constant _TABLE_URL = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_";
            /**
             * @dev Converts a `bytes` to its Bytes64 `string` representation.
             */
            function encode(bytes memory data) internal pure returns (string memory) {
                return _encode(data, _TABLE, true);
            }
            /**
             * @dev Converts a `bytes` to its Bytes64Url `string` representation.
             */
            function encodeURL(bytes memory data) internal pure returns (string memory) {
                return _encode(data, _TABLE_URL, false);
            }
            /**
             * @dev Internal table-agnostic conversion
             */
            function _encode(bytes memory data, string memory table, bool withPadding) private pure returns (string memory) {
                /**
                 * Inspired by Brecht Devos (Brechtpd) implementation - MIT licence
                 * https://github.com/Brechtpd/base64/blob/e78d9fd951e7b0977ddca77d92dc85183770daf4/base64.sol
                 */
                if (data.length == 0) return "";
                // If padding is enabled, the final length should be `bytes` data length divided by 3 rounded up and then
                // multiplied by 4 so that it leaves room for padding the last chunk
                // - `data.length + 2`  -> Round up
                // - `/ 3`              -> Number of 3-bytes chunks
                // - `4 *`              -> 4 characters for each chunk
                // If padding is disabled, the final length should be `bytes` data length multiplied by 4/3 rounded up as
                // opposed to when padding is required to fill the last chunk.
                // - `4 *`              -> 4 characters for each chunk
                // - `data.length + 2`  -> Round up
                // - `/ 3`              -> Number of 3-bytes chunks
                uint256 resultLength = withPadding ? 4 * ((data.length + 2) / 3) : (4 * data.length + 2) / 3;
                string memory result = new string(resultLength);
                /// @solidity memory-safe-assembly
                assembly {
                    // Prepare the lookup table (skip the first "length" byte)
                    let tablePtr := add(table, 1)
                    // Prepare result pointer, jump over length
                    let resultPtr := add(result, 0x20)
                    let dataPtr := data
                    let endPtr := add(data, mload(data))
                    // In some cases, the last iteration will read bytes after the end of the data. We cache the value, and
                    // set it to zero to make sure no dirty bytes are read in that section.
                    let afterPtr := add(endPtr, 0x20)
                    let afterCache := mload(afterPtr)
                    mstore(afterPtr, 0x00)
                    // Run over the input, 3 bytes at a time
                    for {
                    } lt(dataPtr, endPtr) {
                    } {
                        // Advance 3 bytes
                        dataPtr := add(dataPtr, 3)
                        let input := mload(dataPtr)
                        // To write each character, shift the 3 byte (24 bits) chunk
                        // 4 times in blocks of 6 bits for each character (18, 12, 6, 0)
                        // and apply logical AND with 0x3F to bitmask the least significant 6 bits.
                        // Use this as an index into the lookup table, mload an entire word
                        // so the desired character is in the least significant byte, and
                        // mstore8 this least significant byte into the result and continue.
                        mstore8(resultPtr, mload(add(tablePtr, and(shr(18, input), 0x3F))))
                        resultPtr := add(resultPtr, 1) // Advance
                        mstore8(resultPtr, mload(add(tablePtr, and(shr(12, input), 0x3F))))
                        resultPtr := add(resultPtr, 1) // Advance
                        mstore8(resultPtr, mload(add(tablePtr, and(shr(6, input), 0x3F))))
                        resultPtr := add(resultPtr, 1) // Advance
                        mstore8(resultPtr, mload(add(tablePtr, and(input, 0x3F))))
                        resultPtr := add(resultPtr, 1) // Advance
                    }
                    // Reset the value that was cached
                    mstore(afterPtr, afterCache)
                    if withPadding {
                        // When data `bytes` is not exactly 3 bytes long
                        // it is padded with `=` characters at the end
                        switch mod(mload(data), 3)
                        case 1 {
                            mstore8(sub(resultPtr, 1), 0x3d)
                            mstore8(sub(resultPtr, 2), 0x3d)
                        }
                        case 2 {
                            mstore8(sub(resultPtr, 1), 0x3d)
                        }
                    }
                }
                return result;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.4;
        /// @notice Library for converting numbers into strings and other string operations.
        /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibString.sol)
        /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibString.sol)
        ///
        /// @dev Note:
        /// For performance and bytecode compactness, most of the string operations are restricted to
        /// byte strings (7-bit ASCII), except where otherwise specified.
        /// Usage of byte string operations on charsets with runes spanning two or more bytes
        /// can lead to undefined behavior.
        library LibString {
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                        CUSTOM ERRORS                       */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev The length of the output is too small to contain all the hex digits.
            error HexLengthInsufficient();
            /// @dev The length of the string is more than 32 bytes.
            error TooBigForSmallString();
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                         CONSTANTS                          */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev The constant returned when the `search` is not found in the string.
            uint256 internal constant NOT_FOUND = type(uint256).max;
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                     DECIMAL OPERATIONS                     */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Returns the base 10 decimal representation of `value`.
            function toString(uint256 value) internal pure returns (string memory str) {
                /// @solidity memory-safe-assembly
                assembly {
                    // The maximum value of a uint256 contains 78 digits (1 byte per digit), but
                    // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
                    // We will need 1 word for the trailing zeros padding, 1 word for the length,
                    // and 3 words for a maximum of 78 digits.
                    str := add(mload(0x40), 0x80)
                    // Update the free memory pointer to allocate.
                    mstore(0x40, add(str, 0x20))
                    // Zeroize the slot after the string.
                    mstore(str, 0)
                    // Cache the end of the memory to calculate the length later.
                    let end := str
                    let w := not(0) // Tsk.
                    // We write the string from rightmost digit to leftmost digit.
                    // The following is essentially a do-while loop that also handles the zero case.
                    for { let temp := value } 1 {} {
                        str := add(str, w) // `sub(str, 1)`.
                        // Write the character to the pointer.
                        // The ASCII index of the '0' character is 48.
                        mstore8(str, add(48, mod(temp, 10)))
                        // Keep dividing `temp` until zero.
                        temp := div(temp, 10)
                        if iszero(temp) { break }
                    }
                    let length := sub(end, str)
                    // Move the pointer 32 bytes leftwards to make room for the length.
                    str := sub(str, 0x20)
                    // Store the length.
                    mstore(str, length)
                }
            }
            /// @dev Returns the base 10 decimal representation of `value`.
            function toString(int256 value) internal pure returns (string memory str) {
                if (value >= 0) {
                    return toString(uint256(value));
                }
                unchecked {
                    str = toString(~uint256(value) + 1);
                }
                /// @solidity memory-safe-assembly
                assembly {
                    // We still have some spare memory space on the left,
                    // as we have allocated 3 words (96 bytes) for up to 78 digits.
                    let length := mload(str) // Load the string length.
                    mstore(str, 0x2d) // Store the '-' character.
                    str := sub(str, 1) // Move back the string pointer by a byte.
                    mstore(str, add(length, 1)) // Update the string length.
                }
            }
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                   HEXADECIMAL OPERATIONS                   */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Returns the hexadecimal representation of `value`,
            /// left-padded to an input length of `length` bytes.
            /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte,
            /// giving a total length of `length * 2 + 2` bytes.
            /// Reverts if `length` is too small for the output to contain all the digits.
            function toHexString(uint256 value, uint256 length) internal pure returns (string memory str) {
                str = toHexStringNoPrefix(value, length);
                /// @solidity memory-safe-assembly
                assembly {
                    let strLength := add(mload(str), 2) // Compute the length.
                    mstore(str, 0x3078) // Write the "0x" prefix.
                    str := sub(str, 2) // Move the pointer.
                    mstore(str, strLength) // Write the length.
                }
            }
            /// @dev Returns the hexadecimal representation of `value`,
            /// left-padded to an input length of `length` bytes.
            /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte,
            /// giving a total length of `length * 2` bytes.
            /// Reverts if `length` is too small for the output to contain all the digits.
            function toHexStringNoPrefix(uint256 value, uint256 length)
                internal
                pure
                returns (string memory str)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    // We need 0x20 bytes for the trailing zeros padding, `length * 2` bytes
                    // for the digits, 0x02 bytes for the prefix, and 0x20 bytes for the length.
                    // We add 0x20 to the total and round down to a multiple of 0x20.
                    // (0x20 + 0x20 + 0x02 + 0x20) = 0x62.
                    str := add(mload(0x40), and(add(shl(1, length), 0x42), not(0x1f)))
                    // Allocate the memory.
                    mstore(0x40, add(str, 0x20))
                    // Zeroize the slot after the string.
                    mstore(str, 0)
                    // Cache the end to calculate the length later.
                    let end := str
                    // Store "0123456789abcdef" in scratch space.
                    mstore(0x0f, 0x30313233343536373839616263646566)
                    let start := sub(str, add(length, length))
                    let w := not(1) // Tsk.
                    let temp := value
                    // We write the string from rightmost digit to leftmost digit.
                    // The following is essentially a do-while loop that also handles the zero case.
                    for {} 1 {} {
                        str := add(str, w) // `sub(str, 2)`.
                        mstore8(add(str, 1), mload(and(temp, 15)))
                        mstore8(str, mload(and(shr(4, temp), 15)))
                        temp := shr(8, temp)
                        if iszero(xor(str, start)) { break }
                    }
                    if temp {
                        mstore(0x00, 0x2194895a) // `HexLengthInsufficient()`.
                        revert(0x1c, 0x04)
                    }
                    // Compute the string's length.
                    let strLength := sub(end, str)
                    // Move the pointer and write the length.
                    str := sub(str, 0x20)
                    mstore(str, strLength)
                }
            }
            /// @dev Returns the hexadecimal representation of `value`.
            /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
            /// As address are 20 bytes long, the output will left-padded to have
            /// a length of `20 * 2 + 2` bytes.
            function toHexString(uint256 value) internal pure returns (string memory str) {
                str = toHexStringNoPrefix(value);
                /// @solidity memory-safe-assembly
                assembly {
                    let strLength := add(mload(str), 2) // Compute the length.
                    mstore(str, 0x3078) // Write the "0x" prefix.
                    str := sub(str, 2) // Move the pointer.
                    mstore(str, strLength) // Write the length.
                }
            }
            /// @dev Returns the hexadecimal representation of `value`.
            /// The output is prefixed with "0x".
            /// The output excludes leading "0" from the `toHexString` output.
            /// `0x00: "0x0", 0x01: "0x1", 0x12: "0x12", 0x123: "0x123"`.
            function toMinimalHexString(uint256 value) internal pure returns (string memory str) {
                str = toHexStringNoPrefix(value);
                /// @solidity memory-safe-assembly
                assembly {
                    let o := eq(byte(0, mload(add(str, 0x20))), 0x30) // Whether leading zero is present.
                    let strLength := add(mload(str), 2) // Compute the length.
                    mstore(add(str, o), 0x3078) // Write the "0x" prefix, accounting for leading zero.
                    str := sub(add(str, o), 2) // Move the pointer, accounting for leading zero.
                    mstore(str, sub(strLength, o)) // Write the length, accounting for leading zero.
                }
            }
            /// @dev Returns the hexadecimal representation of `value`.
            /// The output excludes leading "0" from the `toHexStringNoPrefix` output.
            /// `0x00: "0", 0x01: "1", 0x12: "12", 0x123: "123"`.
            function toMinimalHexStringNoPrefix(uint256 value) internal pure returns (string memory str) {
                str = toHexStringNoPrefix(value);
                /// @solidity memory-safe-assembly
                assembly {
                    let o := eq(byte(0, mload(add(str, 0x20))), 0x30) // Whether leading zero is present.
                    let strLength := mload(str) // Get the length.
                    str := add(str, o) // Move the pointer, accounting for leading zero.
                    mstore(str, sub(strLength, o)) // Write the length, accounting for leading zero.
                }
            }
            /// @dev Returns the hexadecimal representation of `value`.
            /// The output is encoded using 2 hexadecimal digits per byte.
            /// As address are 20 bytes long, the output will left-padded to have
            /// a length of `20 * 2` bytes.
            function toHexStringNoPrefix(uint256 value) internal pure returns (string memory str) {
                /// @solidity memory-safe-assembly
                assembly {
                    // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
                    // 0x02 bytes for the prefix, and 0x40 bytes for the digits.
                    // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x40) is 0xa0.
                    str := add(mload(0x40), 0x80)
                    // Allocate the memory.
                    mstore(0x40, add(str, 0x20))
                    // Zeroize the slot after the string.
                    mstore(str, 0)
                    // Cache the end to calculate the length later.
                    let end := str
                    // Store "0123456789abcdef" in scratch space.
                    mstore(0x0f, 0x30313233343536373839616263646566)
                    let w := not(1) // Tsk.
                    // We write the string from rightmost digit to leftmost digit.
                    // The following is essentially a do-while loop that also handles the zero case.
                    for { let temp := value } 1 {} {
                        str := add(str, w) // `sub(str, 2)`.
                        mstore8(add(str, 1), mload(and(temp, 15)))
                        mstore8(str, mload(and(shr(4, temp), 15)))
                        temp := shr(8, temp)
                        if iszero(temp) { break }
                    }
                    // Compute the string's length.
                    let strLength := sub(end, str)
                    // Move the pointer and write the length.
                    str := sub(str, 0x20)
                    mstore(str, strLength)
                }
            }
            /// @dev Returns the hexadecimal representation of `value`.
            /// The output is prefixed with "0x", encoded using 2 hexadecimal digits per byte,
            /// and the alphabets are capitalized conditionally according to
            /// https://eips.ethereum.org/EIPS/eip-55
            function toHexStringChecksummed(address value) internal pure returns (string memory str) {
                str = toHexString(value);
                /// @solidity memory-safe-assembly
                assembly {
                    let mask := shl(6, div(not(0), 255)) // `0b010000000100000000 ...`
                    let o := add(str, 0x22)
                    let hashed := and(keccak256(o, 40), mul(34, mask)) // `0b10001000 ... `
                    let t := shl(240, 136) // `0b10001000 << 240`
                    for { let i := 0 } 1 {} {
                        mstore(add(i, i), mul(t, byte(i, hashed)))
                        i := add(i, 1)
                        if eq(i, 20) { break }
                    }
                    mstore(o, xor(mload(o), shr(1, and(mload(0x00), and(mload(o), mask)))))
                    o := add(o, 0x20)
                    mstore(o, xor(mload(o), shr(1, and(mload(0x20), and(mload(o), mask)))))
                }
            }
            /// @dev Returns the hexadecimal representation of `value`.
            /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
            function toHexString(address value) internal pure returns (string memory str) {
                str = toHexStringNoPrefix(value);
                /// @solidity memory-safe-assembly
                assembly {
                    let strLength := add(mload(str), 2) // Compute the length.
                    mstore(str, 0x3078) // Write the "0x" prefix.
                    str := sub(str, 2) // Move the pointer.
                    mstore(str, strLength) // Write the length.
                }
            }
            /// @dev Returns the hexadecimal representation of `value`.
            /// The output is encoded using 2 hexadecimal digits per byte.
            function toHexStringNoPrefix(address value) internal pure returns (string memory str) {
                /// @solidity memory-safe-assembly
                assembly {
                    str := mload(0x40)
                    // Allocate the memory.
                    // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
                    // 0x02 bytes for the prefix, and 0x28 bytes for the digits.
                    // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x28) is 0x80.
                    mstore(0x40, add(str, 0x80))
                    // Store "0123456789abcdef" in scratch space.
                    mstore(0x0f, 0x30313233343536373839616263646566)
                    str := add(str, 2)
                    mstore(str, 40)
                    let o := add(str, 0x20)
                    mstore(add(o, 40), 0)
                    value := shl(96, value)
                    // We write the string from rightmost digit to leftmost digit.
                    // The following is essentially a do-while loop that also handles the zero case.
                    for { let i := 0 } 1 {} {
                        let p := add(o, add(i, i))
                        let temp := byte(i, value)
                        mstore8(add(p, 1), mload(and(temp, 15)))
                        mstore8(p, mload(shr(4, temp)))
                        i := add(i, 1)
                        if eq(i, 20) { break }
                    }
                }
            }
            /// @dev Returns the hex encoded string from the raw bytes.
            /// The output is encoded using 2 hexadecimal digits per byte.
            function toHexString(bytes memory raw) internal pure returns (string memory str) {
                str = toHexStringNoPrefix(raw);
                /// @solidity memory-safe-assembly
                assembly {
                    let strLength := add(mload(str), 2) // Compute the length.
                    mstore(str, 0x3078) // Write the "0x" prefix.
                    str := sub(str, 2) // Move the pointer.
                    mstore(str, strLength) // Write the length.
                }
            }
            /// @dev Returns the hex encoded string from the raw bytes.
            /// The output is encoded using 2 hexadecimal digits per byte.
            function toHexStringNoPrefix(bytes memory raw) internal pure returns (string memory str) {
                /// @solidity memory-safe-assembly
                assembly {
                    let length := mload(raw)
                    str := add(mload(0x40), 2) // Skip 2 bytes for the optional prefix.
                    mstore(str, add(length, length)) // Store the length of the output.
                    // Store "0123456789abcdef" in scratch space.
                    mstore(0x0f, 0x30313233343536373839616263646566)
                    let o := add(str, 0x20)
                    let end := add(raw, length)
                    for {} iszero(eq(raw, end)) {} {
                        raw := add(raw, 1)
                        mstore8(add(o, 1), mload(and(mload(raw), 15)))
                        mstore8(o, mload(and(shr(4, mload(raw)), 15)))
                        o := add(o, 2)
                    }
                    mstore(o, 0) // Zeroize the slot after the string.
                    mstore(0x40, add(o, 0x20)) // Allocate the memory.
                }
            }
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                   RUNE STRING OPERATIONS                   */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Returns the number of UTF characters in the string.
            function runeCount(string memory s) internal pure returns (uint256 result) {
                /// @solidity memory-safe-assembly
                assembly {
                    if mload(s) {
                        mstore(0x00, div(not(0), 255))
                        mstore(0x20, 0x0202020202020202020202020202020202020202020202020303030304040506)
                        let o := add(s, 0x20)
                        let end := add(o, mload(s))
                        for { result := 1 } 1 { result := add(result, 1) } {
                            o := add(o, byte(0, mload(shr(250, mload(o)))))
                            if iszero(lt(o, end)) { break }
                        }
                    }
                }
            }
            /// @dev Returns if this string is a 7-bit ASCII string.
            /// (i.e. all characters codes are in [0..127])
            function is7BitASCII(string memory s) internal pure returns (bool result) {
                /// @solidity memory-safe-assembly
                assembly {
                    let mask := shl(7, div(not(0), 255))
                    result := 1
                    let n := mload(s)
                    if n {
                        let o := add(s, 0x20)
                        let end := add(o, n)
                        let last := mload(end)
                        mstore(end, 0)
                        for {} 1 {} {
                            if and(mask, mload(o)) {
                                result := 0
                                break
                            }
                            o := add(o, 0x20)
                            if iszero(lt(o, end)) { break }
                        }
                        mstore(end, last)
                    }
                }
            }
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                   BYTE STRING OPERATIONS                   */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            // For performance and bytecode compactness, byte string operations are restricted
            // to 7-bit ASCII strings. All offsets are byte offsets, not UTF character offsets.
            // Usage of byte string operations on charsets with runes spanning two or more bytes
            // can lead to undefined behavior.
            /// @dev Returns `subject` all occurrences of `search` replaced with `replacement`.
            function replace(string memory subject, string memory search, string memory replacement)
                internal
                pure
                returns (string memory result)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    let subjectLength := mload(subject)
                    let searchLength := mload(search)
                    let replacementLength := mload(replacement)
                    subject := add(subject, 0x20)
                    search := add(search, 0x20)
                    replacement := add(replacement, 0x20)
                    result := add(mload(0x40), 0x20)
                    let subjectEnd := add(subject, subjectLength)
                    if iszero(gt(searchLength, subjectLength)) {
                        let subjectSearchEnd := add(sub(subjectEnd, searchLength), 1)
                        let h := 0
                        if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) }
                        let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
                        let s := mload(search)
                        for {} 1 {} {
                            let t := mload(subject)
                            // Whether the first `searchLength % 32` bytes of
                            // `subject` and `search` matches.
                            if iszero(shr(m, xor(t, s))) {
                                if h {
                                    if iszero(eq(keccak256(subject, searchLength), h)) {
                                        mstore(result, t)
                                        result := add(result, 1)
                                        subject := add(subject, 1)
                                        if iszero(lt(subject, subjectSearchEnd)) { break }
                                        continue
                                    }
                                }
                                // Copy the `replacement` one word at a time.
                                for { let o := 0 } 1 {} {
                                    mstore(add(result, o), mload(add(replacement, o)))
                                    o := add(o, 0x20)
                                    if iszero(lt(o, replacementLength)) { break }
                                }
                                result := add(result, replacementLength)
                                subject := add(subject, searchLength)
                                if searchLength {
                                    if iszero(lt(subject, subjectSearchEnd)) { break }
                                    continue
                                }
                            }
                            mstore(result, t)
                            result := add(result, 1)
                            subject := add(subject, 1)
                            if iszero(lt(subject, subjectSearchEnd)) { break }
                        }
                    }
                    let resultRemainder := result
                    result := add(mload(0x40), 0x20)
                    let k := add(sub(resultRemainder, result), sub(subjectEnd, subject))
                    // Copy the rest of the string one word at a time.
                    for {} lt(subject, subjectEnd) {} {
                        mstore(resultRemainder, mload(subject))
                        resultRemainder := add(resultRemainder, 0x20)
                        subject := add(subject, 0x20)
                    }
                    result := sub(result, 0x20)
                    let last := add(add(result, 0x20), k) // Zeroize the slot after the string.
                    mstore(last, 0)
                    mstore(0x40, add(last, 0x20)) // Allocate the memory.
                    mstore(result, k) // Store the length.
                }
            }
            /// @dev Returns the byte index of the first location of `search` in `subject`,
            /// searching from left to right, starting from `from`.
            /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
            function indexOf(string memory subject, string memory search, uint256 from)
                internal
                pure
                returns (uint256 result)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    for { let subjectLength := mload(subject) } 1 {} {
                        if iszero(mload(search)) {
                            if iszero(gt(from, subjectLength)) {
                                result := from
                                break
                            }
                            result := subjectLength
                            break
                        }
                        let searchLength := mload(search)
                        let subjectStart := add(subject, 0x20)
                        result := not(0) // Initialize to `NOT_FOUND`.
                        subject := add(subjectStart, from)
                        let end := add(sub(add(subjectStart, subjectLength), searchLength), 1)
                        let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
                        let s := mload(add(search, 0x20))
                        if iszero(and(lt(subject, end), lt(from, subjectLength))) { break }
                        if iszero(lt(searchLength, 0x20)) {
                            for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} {
                                if iszero(shr(m, xor(mload(subject), s))) {
                                    if eq(keccak256(subject, searchLength), h) {
                                        result := sub(subject, subjectStart)
                                        break
                                    }
                                }
                                subject := add(subject, 1)
                                if iszero(lt(subject, end)) { break }
                            }
                            break
                        }
                        for {} 1 {} {
                            if iszero(shr(m, xor(mload(subject), s))) {
                                result := sub(subject, subjectStart)
                                break
                            }
                            subject := add(subject, 1)
                            if iszero(lt(subject, end)) { break }
                        }
                        break
                    }
                }
            }
            /// @dev Returns the byte index of the first location of `search` in `subject`,
            /// searching from left to right.
            /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
            function indexOf(string memory subject, string memory search)
                internal
                pure
                returns (uint256 result)
            {
                result = indexOf(subject, search, 0);
            }
            /// @dev Returns the byte index of the first location of `search` in `subject`,
            /// searching from right to left, starting from `from`.
            /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
            function lastIndexOf(string memory subject, string memory search, uint256 from)
                internal
                pure
                returns (uint256 result)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    for {} 1 {} {
                        result := not(0) // Initialize to `NOT_FOUND`.
                        let searchLength := mload(search)
                        if gt(searchLength, mload(subject)) { break }
                        let w := result
                        let fromMax := sub(mload(subject), searchLength)
                        if iszero(gt(fromMax, from)) { from := fromMax }
                        let end := add(add(subject, 0x20), w)
                        subject := add(add(subject, 0x20), from)
                        if iszero(gt(subject, end)) { break }
                        // As this function is not too often used,
                        // we shall simply use keccak256 for smaller bytecode size.
                        for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} {
                            if eq(keccak256(subject, searchLength), h) {
                                result := sub(subject, add(end, 1))
                                break
                            }
                            subject := add(subject, w) // `sub(subject, 1)`.
                            if iszero(gt(subject, end)) { break }
                        }
                        break
                    }
                }
            }
            /// @dev Returns the byte index of the first location of `search` in `subject`,
            /// searching from right to left.
            /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
            function lastIndexOf(string memory subject, string memory search)
                internal
                pure
                returns (uint256 result)
            {
                result = lastIndexOf(subject, search, uint256(int256(-1)));
            }
            /// @dev Returns true if `search` is found in `subject`, false otherwise.
            function contains(string memory subject, string memory search) internal pure returns (bool) {
                return indexOf(subject, search) != NOT_FOUND;
            }
            /// @dev Returns whether `subject` starts with `search`.
            function startsWith(string memory subject, string memory search)
                internal
                pure
                returns (bool result)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    let searchLength := mload(search)
                    // Just using keccak256 directly is actually cheaper.
                    // forgefmt: disable-next-item
                    result := and(
                        iszero(gt(searchLength, mload(subject))),
                        eq(
                            keccak256(add(subject, 0x20), searchLength),
                            keccak256(add(search, 0x20), searchLength)
                        )
                    )
                }
            }
            /// @dev Returns whether `subject` ends with `search`.
            function endsWith(string memory subject, string memory search)
                internal
                pure
                returns (bool result)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    let searchLength := mload(search)
                    let subjectLength := mload(subject)
                    // Whether `search` is not longer than `subject`.
                    let withinRange := iszero(gt(searchLength, subjectLength))
                    // Just using keccak256 directly is actually cheaper.
                    // forgefmt: disable-next-item
                    result := and(
                        withinRange,
                        eq(
                            keccak256(
                                // `subject + 0x20 + max(subjectLength - searchLength, 0)`.
                                add(add(subject, 0x20), mul(withinRange, sub(subjectLength, searchLength))),
                                searchLength
                            ),
                            keccak256(add(search, 0x20), searchLength)
                        )
                    )
                }
            }
            /// @dev Returns `subject` repeated `times`.
            function repeat(string memory subject, uint256 times)
                internal
                pure
                returns (string memory result)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    let subjectLength := mload(subject)
                    if iszero(or(iszero(times), iszero(subjectLength))) {
                        subject := add(subject, 0x20)
                        result := mload(0x40)
                        let output := add(result, 0x20)
                        for {} 1 {} {
                            // Copy the `subject` one word at a time.
                            for { let o := 0 } 1 {} {
                                mstore(add(output, o), mload(add(subject, o)))
                                o := add(o, 0x20)
                                if iszero(lt(o, subjectLength)) { break }
                            }
                            output := add(output, subjectLength)
                            times := sub(times, 1)
                            if iszero(times) { break }
                        }
                        mstore(output, 0) // Zeroize the slot after the string.
                        let resultLength := sub(output, add(result, 0x20))
                        mstore(result, resultLength) // Store the length.
                        // Allocate the memory.
                        mstore(0x40, add(result, add(resultLength, 0x20)))
                    }
                }
            }
            /// @dev Returns a copy of `subject` sliced from `start` to `end` (exclusive).
            /// `start` and `end` are byte offsets.
            function slice(string memory subject, uint256 start, uint256 end)
                internal
                pure
                returns (string memory result)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    let subjectLength := mload(subject)
                    if iszero(gt(subjectLength, end)) { end := subjectLength }
                    if iszero(gt(subjectLength, start)) { start := subjectLength }
                    if lt(start, end) {
                        result := mload(0x40)
                        let resultLength := sub(end, start)
                        mstore(result, resultLength)
                        subject := add(subject, start)
                        let w := not(0x1f)
                        // Copy the `subject` one word at a time, backwards.
                        for { let o := and(add(resultLength, 0x1f), w) } 1 {} {
                            mstore(add(result, o), mload(add(subject, o)))
                            o := add(o, w) // `sub(o, 0x20)`.
                            if iszero(o) { break }
                        }
                        // Zeroize the slot after the string.
                        mstore(add(add(result, 0x20), resultLength), 0)
                        // Allocate memory for the length and the bytes,
                        // rounded up to a multiple of 32.
                        mstore(0x40, add(result, and(add(resultLength, 0x3f), w)))
                    }
                }
            }
            /// @dev Returns a copy of `subject` sliced from `start` to the end of the string.
            /// `start` is a byte offset.
            function slice(string memory subject, uint256 start)
                internal
                pure
                returns (string memory result)
            {
                result = slice(subject, start, uint256(int256(-1)));
            }
            /// @dev Returns all the indices of `search` in `subject`.
            /// The indices are byte offsets.
            function indicesOf(string memory subject, string memory search)
                internal
                pure
                returns (uint256[] memory result)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    let subjectLength := mload(subject)
                    let searchLength := mload(search)
                    if iszero(gt(searchLength, subjectLength)) {
                        subject := add(subject, 0x20)
                        search := add(search, 0x20)
                        result := add(mload(0x40), 0x20)
                        let subjectStart := subject
                        let subjectSearchEnd := add(sub(add(subject, subjectLength), searchLength), 1)
                        let h := 0
                        if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) }
                        let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
                        let s := mload(search)
                        for {} 1 {} {
                            let t := mload(subject)
                            // Whether the first `searchLength % 32` bytes of
                            // `subject` and `search` matches.
                            if iszero(shr(m, xor(t, s))) {
                                if h {
                                    if iszero(eq(keccak256(subject, searchLength), h)) {
                                        subject := add(subject, 1)
                                        if iszero(lt(subject, subjectSearchEnd)) { break }
                                        continue
                                    }
                                }
                                // Append to `result`.
                                mstore(result, sub(subject, subjectStart))
                                result := add(result, 0x20)
                                // Advance `subject` by `searchLength`.
                                subject := add(subject, searchLength)
                                if searchLength {
                                    if iszero(lt(subject, subjectSearchEnd)) { break }
                                    continue
                                }
                            }
                            subject := add(subject, 1)
                            if iszero(lt(subject, subjectSearchEnd)) { break }
                        }
                        let resultEnd := result
                        // Assign `result` to the free memory pointer.
                        result := mload(0x40)
                        // Store the length of `result`.
                        mstore(result, shr(5, sub(resultEnd, add(result, 0x20))))
                        // Allocate memory for result.
                        // We allocate one more word, so this array can be recycled for {split}.
                        mstore(0x40, add(resultEnd, 0x20))
                    }
                }
            }
            /// @dev Returns a arrays of strings based on the `delimiter` inside of the `subject` string.
            function split(string memory subject, string memory delimiter)
                internal
                pure
                returns (string[] memory result)
            {
                uint256[] memory indices = indicesOf(subject, delimiter);
                /// @solidity memory-safe-assembly
                assembly {
                    let w := not(0x1f)
                    let indexPtr := add(indices, 0x20)
                    let indicesEnd := add(indexPtr, shl(5, add(mload(indices), 1)))
                    mstore(add(indicesEnd, w), mload(subject))
                    mstore(indices, add(mload(indices), 1))
                    let prevIndex := 0
                    for {} 1 {} {
                        let index := mload(indexPtr)
                        mstore(indexPtr, 0x60)
                        if iszero(eq(index, prevIndex)) {
                            let element := mload(0x40)
                            let elementLength := sub(index, prevIndex)
                            mstore(element, elementLength)
                            // Copy the `subject` one word at a time, backwards.
                            for { let o := and(add(elementLength, 0x1f), w) } 1 {} {
                                mstore(add(element, o), mload(add(add(subject, prevIndex), o)))
                                o := add(o, w) // `sub(o, 0x20)`.
                                if iszero(o) { break }
                            }
                            // Zeroize the slot after the string.
                            mstore(add(add(element, 0x20), elementLength), 0)
                            // Allocate memory for the length and the bytes,
                            // rounded up to a multiple of 32.
                            mstore(0x40, add(element, and(add(elementLength, 0x3f), w)))
                            // Store the `element` into the array.
                            mstore(indexPtr, element)
                        }
                        prevIndex := add(index, mload(delimiter))
                        indexPtr := add(indexPtr, 0x20)
                        if iszero(lt(indexPtr, indicesEnd)) { break }
                    }
                    result := indices
                    if iszero(mload(delimiter)) {
                        result := add(indices, 0x20)
                        mstore(result, sub(mload(indices), 2))
                    }
                }
            }
            /// @dev Returns a concatenated string of `a` and `b`.
            /// Cheaper than `string.concat()` and does not de-align the free memory pointer.
            function concat(string memory a, string memory b)
                internal
                pure
                returns (string memory result)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    let w := not(0x1f)
                    result := mload(0x40)
                    let aLength := mload(a)
                    // Copy `a` one word at a time, backwards.
                    for { let o := and(add(aLength, 0x20), w) } 1 {} {
                        mstore(add(result, o), mload(add(a, o)))
                        o := add(o, w) // `sub(o, 0x20)`.
                        if iszero(o) { break }
                    }
                    let bLength := mload(b)
                    let output := add(result, aLength)
                    // Copy `b` one word at a time, backwards.
                    for { let o := and(add(bLength, 0x20), w) } 1 {} {
                        mstore(add(output, o), mload(add(b, o)))
                        o := add(o, w) // `sub(o, 0x20)`.
                        if iszero(o) { break }
                    }
                    let totalLength := add(aLength, bLength)
                    let last := add(add(result, 0x20), totalLength)
                    // Zeroize the slot after the string.
                    mstore(last, 0)
                    // Stores the length.
                    mstore(result, totalLength)
                    // Allocate memory for the length and the bytes,
                    // rounded up to a multiple of 32.
                    mstore(0x40, and(add(last, 0x1f), w))
                }
            }
            /// @dev Returns a copy of the string in either lowercase or UPPERCASE.
            /// WARNING! This function is only compatible with 7-bit ASCII strings.
            function toCase(string memory subject, bool toUpper)
                internal
                pure
                returns (string memory result)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    let length := mload(subject)
                    if length {
                        result := add(mload(0x40), 0x20)
                        subject := add(subject, 1)
                        let flags := shl(add(70, shl(5, toUpper)), 0x3ffffff)
                        let w := not(0)
                        for { let o := length } 1 {} {
                            o := add(o, w)
                            let b := and(0xff, mload(add(subject, o)))
                            mstore8(add(result, o), xor(b, and(shr(b, flags), 0x20)))
                            if iszero(o) { break }
                        }
                        result := mload(0x40)
                        mstore(result, length) // Store the length.
                        let last := add(add(result, 0x20), length)
                        mstore(last, 0) // Zeroize the slot after the string.
                        mstore(0x40, add(last, 0x20)) // Allocate the memory.
                    }
                }
            }
            /// @dev Returns a string from a small bytes32 string.
            /// `s` must be null-terminated, or behavior will be undefined.
            function fromSmallString(bytes32 s) internal pure returns (string memory result) {
                /// @solidity memory-safe-assembly
                assembly {
                    result := mload(0x40)
                    let n := 0
                    for {} byte(n, s) { n := add(n, 1) } {} // Scan for '\\0'.
                    mstore(result, n)
                    let o := add(result, 0x20)
                    mstore(o, s)
                    mstore(add(o, n), 0)
                    mstore(0x40, add(result, 0x40))
                }
            }
            /// @dev Returns the small string, with all bytes after the first null byte zeroized.
            function normalizeSmallString(bytes32 s) internal pure returns (bytes32 result) {
                /// @solidity memory-safe-assembly
                assembly {
                    for {} byte(result, s) { result := add(result, 1) } {} // Scan for '\\0'.
                    mstore(0x00, s)
                    mstore(result, 0x00)
                    result := mload(0x00)
                }
            }
            /// @dev Returns the string as a normalized null-terminated small string.
            function toSmallString(string memory s) internal pure returns (bytes32 result) {
                /// @solidity memory-safe-assembly
                assembly {
                    result := mload(s)
                    if iszero(lt(result, 33)) {
                        mstore(0x00, 0xec92f9a3) // `TooBigForSmallString()`.
                        revert(0x1c, 0x04)
                    }
                    result := shl(shl(3, sub(32, result)), mload(add(s, result)))
                }
            }
            /// @dev Returns a lowercased copy of the string.
            /// WARNING! This function is only compatible with 7-bit ASCII strings.
            function lower(string memory subject) internal pure returns (string memory result) {
                result = toCase(subject, false);
            }
            /// @dev Returns an UPPERCASED copy of the string.
            /// WARNING! This function is only compatible with 7-bit ASCII strings.
            function upper(string memory subject) internal pure returns (string memory result) {
                result = toCase(subject, true);
            }
            /// @dev Escapes the string to be used within HTML tags.
            function escapeHTML(string memory s) internal pure returns (string memory result) {
                /// @solidity memory-safe-assembly
                assembly {
                    let end := add(s, mload(s))
                    result := add(mload(0x40), 0x20)
                    // Store the bytes of the packed offsets and strides into the scratch space.
                    // `packed = (stride << 5) | offset`. Max offset is 20. Max stride is 6.
                    mstore(0x1f, 0x900094)
                    mstore(0x08, 0xc0000000a6ab)
                    // Store "&quot;&amp;&#39;&lt;&gt;" into the scratch space.
                    mstore(0x00, shl(64, 0x2671756f743b26616d703b262333393b266c743b2667743b))
                    for {} iszero(eq(s, end)) {} {
                        s := add(s, 1)
                        let c := and(mload(s), 0xff)
                        // Not in `["\\"","'","&","<",">"]`.
                        if iszero(and(shl(c, 1), 0x500000c400000000)) {
                            mstore8(result, c)
                            result := add(result, 1)
                            continue
                        }
                        let t := shr(248, mload(c))
                        mstore(result, mload(and(t, 0x1f)))
                        result := add(result, shr(5, t))
                    }
                    let last := result
                    mstore(last, 0) // Zeroize the slot after the string.
                    result := mload(0x40)
                    mstore(result, sub(last, add(result, 0x20))) // Store the length.
                    mstore(0x40, add(last, 0x20)) // Allocate the memory.
                }
            }
            /// @dev Escapes the string to be used within double-quotes in a JSON.
            /// If `addDoubleQuotes` is true, the result will be enclosed in double-quotes.
            function escapeJSON(string memory s, bool addDoubleQuotes)
                internal
                pure
                returns (string memory result)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    let end := add(s, mload(s))
                    result := add(mload(0x40), 0x20)
                    if addDoubleQuotes {
                        mstore8(result, 34)
                        result := add(1, result)
                    }
                    // Store "\\\\u0000" in scratch space.
                    // Store "0123456789abcdef" in scratch space.
                    // Also, store `{0x08:"b", 0x09:"t", 0x0a:"n", 0x0c:"f", 0x0d:"r"}`.
                    // into the scratch space.
                    mstore(0x15, 0x5c75303030303031323334353637383961626364656662746e006672)
                    // Bitmask for detecting `["\\"","\\\\"]`.
                    let e := or(shl(0x22, 1), shl(0x5c, 1))
                    for {} iszero(eq(s, end)) {} {
                        s := add(s, 1)
                        let c := and(mload(s), 0xff)
                        if iszero(lt(c, 0x20)) {
                            if iszero(and(shl(c, 1), e)) {
                                // Not in `["\\"","\\\\"]`.
                                mstore8(result, c)
                                result := add(result, 1)
                                continue
                            }
                            mstore8(result, 0x5c) // "\\\\".
                            mstore8(add(result, 1), c)
                            result := add(result, 2)
                            continue
                        }
                        if iszero(and(shl(c, 1), 0x3700)) {
                            // Not in `["\\b","\\t","\
        ","\\f","\\d"]`.
                            mstore8(0x1d, mload(shr(4, c))) // Hex value.
                            mstore8(0x1e, mload(and(c, 15))) // Hex value.
                            mstore(result, mload(0x19)) // "\\\\u00XX".
                            result := add(result, 6)
                            continue
                        }
                        mstore8(result, 0x5c) // "\\\\".
                        mstore8(add(result, 1), mload(add(c, 8)))
                        result := add(result, 2)
                    }
                    if addDoubleQuotes {
                        mstore8(result, 34)
                        result := add(1, result)
                    }
                    let last := result
                    mstore(last, 0) // Zeroize the slot after the string.
                    result := mload(0x40)
                    mstore(result, sub(last, add(result, 0x20))) // Store the length.
                    mstore(0x40, add(last, 0x20)) // Allocate the memory.
                }
            }
            /// @dev Escapes the string to be used within double-quotes in a JSON.
            function escapeJSON(string memory s) internal pure returns (string memory result) {
                result = escapeJSON(s, false);
            }
            /// @dev Returns whether `a` equals `b`.
            function eq(string memory a, string memory b) internal pure returns (bool result) {
                /// @solidity memory-safe-assembly
                assembly {
                    result := eq(keccak256(add(a, 0x20), mload(a)), keccak256(add(b, 0x20), mload(b)))
                }
            }
            /// @dev Returns whether `a` equals `b`, where `b` is a null-terminated small string.
            function eqs(string memory a, bytes32 b) internal pure returns (bool result) {
                /// @solidity memory-safe-assembly
                assembly {
                    // These should be evaluated on compile time, as far as possible.
                    let m := not(shl(7, div(not(iszero(b)), 255))) // `0x7f7f ...`.
                    let x := not(or(m, or(b, add(m, and(b, m)))))
                    let r := shl(7, iszero(iszero(shr(128, x))))
                    r := or(r, shl(6, iszero(iszero(shr(64, shr(r, x))))))
                    r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                    r := or(r, shl(4, lt(0xffff, shr(r, x))))
                    r := or(r, shl(3, lt(0xff, shr(r, x))))
                    // forgefmt: disable-next-item
                    result := gt(eq(mload(a), add(iszero(x), xor(31, shr(3, r)))),
                        xor(shr(add(8, r), b), shr(add(8, r), mload(add(a, 0x20)))))
                }
            }
            /// @dev Packs a single string with its length into a single word.
            /// Returns `bytes32(0)` if the length is zero or greater than 31.
            function packOne(string memory a) internal pure returns (bytes32 result) {
                /// @solidity memory-safe-assembly
                assembly {
                    // We don't need to zero right pad the string,
                    // since this is our own custom non-standard packing scheme.
                    result :=
                        mul(
                            // Load the length and the bytes.
                            mload(add(a, 0x1f)),
                            // `length != 0 && length < 32`. Abuses underflow.
                            // Assumes that the length is valid and within the block gas limit.
                            lt(sub(mload(a), 1), 0x1f)
                        )
                }
            }
            /// @dev Unpacks a string packed using {packOne}.
            /// Returns the empty string if `packed` is `bytes32(0)`.
            /// If `packed` is not an output of {packOne}, the output behavior is undefined.
            function unpackOne(bytes32 packed) internal pure returns (string memory result) {
                /// @solidity memory-safe-assembly
                assembly {
                    // Grab the free memory pointer.
                    result := mload(0x40)
                    // Allocate 2 words (1 for the length, 1 for the bytes).
                    mstore(0x40, add(result, 0x40))
                    // Zeroize the length slot.
                    mstore(result, 0)
                    // Store the length and bytes.
                    mstore(add(result, 0x1f), packed)
                    // Right pad with zeroes.
                    mstore(add(add(result, 0x20), mload(result)), 0)
                }
            }
            /// @dev Packs two strings with their lengths into a single word.
            /// Returns `bytes32(0)` if combined length is zero or greater than 30.
            function packTwo(string memory a, string memory b) internal pure returns (bytes32 result) {
                /// @solidity memory-safe-assembly
                assembly {
                    let aLength := mload(a)
                    // We don't need to zero right pad the strings,
                    // since this is our own custom non-standard packing scheme.
                    result :=
                        mul(
                            // Load the length and the bytes of `a` and `b`.
                            or(
                                shl(shl(3, sub(0x1f, aLength)), mload(add(a, aLength))),
                                mload(sub(add(b, 0x1e), aLength))
                            ),
                            // `totalLength != 0 && totalLength < 31`. Abuses underflow.
                            // Assumes that the lengths are valid and within the block gas limit.
                            lt(sub(add(aLength, mload(b)), 1), 0x1e)
                        )
                }
            }
            /// @dev Unpacks strings packed using {packTwo}.
            /// Returns the empty strings if `packed` is `bytes32(0)`.
            /// If `packed` is not an output of {packTwo}, the output behavior is undefined.
            function unpackTwo(bytes32 packed)
                internal
                pure
                returns (string memory resultA, string memory resultB)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    // Grab the free memory pointer.
                    resultA := mload(0x40)
                    resultB := add(resultA, 0x40)
                    // Allocate 2 words for each string (1 for the length, 1 for the byte). Total 4 words.
                    mstore(0x40, add(resultB, 0x40))
                    // Zeroize the length slots.
                    mstore(resultA, 0)
                    mstore(resultB, 0)
                    // Store the lengths and bytes.
                    mstore(add(resultA, 0x1f), packed)
                    mstore(add(resultB, 0x1f), mload(add(add(resultA, 0x20), mload(resultA))))
                    // Right pad with zeroes.
                    mstore(add(add(resultA, 0x20), mload(resultA)), 0)
                    mstore(add(add(resultB, 0x20), mload(resultB)), 0)
                }
            }
            /// @dev Directly returns `a` without copying.
            function directReturn(string memory a) internal pure {
                assembly {
                    // Assumes that the string does not start from the scratch space.
                    let retStart := sub(a, 0x20)
                    let retSize := add(mload(a), 0x40)
                    // Right pad with zeroes. Just in case the string is produced
                    // by a method that doesn't zero right pad.
                    mstore(add(retStart, retSize), 0)
                    // Store the return offset.
                    mstore(retStart, 0x20)
                    // End the transaction, returning the string.
                    return(retStart, retSize)
                }
            }
        }
        

        File 2 of 2: CoinbaseSmartWallet
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.23;
        import {IAccount} from "account-abstraction/interfaces/IAccount.sol";
        import {UserOperation, UserOperationLib} from "account-abstraction/interfaces/UserOperation.sol";
        import {Receiver} from "solady/accounts/Receiver.sol";
        import {SignatureCheckerLib} from "solady/utils/SignatureCheckerLib.sol";
        import {UUPSUpgradeable} from "solady/utils/UUPSUpgradeable.sol";
        import {WebAuthn} from "webauthn-sol/WebAuthn.sol";
        import {ERC1271} from "./ERC1271.sol";
        import {MultiOwnable} from "./MultiOwnable.sol";
        /// @title Coinbase Smart Wallet
        ///
        /// @notice ERC-4337-compatible smart account, based on Solady's ERC4337 account implementation
        ///         with inspiration from Alchemy's LightAccount and Daimo's DaimoAccount.
        ///
        /// @author Coinbase (https://github.com/coinbase/smart-wallet)
        /// @author Solady (https://github.com/vectorized/solady/blob/main/src/accounts/ERC4337.sol)
        contract CoinbaseSmartWallet is ERC1271, IAccount, MultiOwnable, UUPSUpgradeable, Receiver {
            /// @notice A wrapper struct used for signature validation so that callers
            ///         can identify the owner that signed.
            struct SignatureWrapper {
                /// @dev The index of the owner that signed, see `MultiOwnable.ownerAtIndex`
                uint256 ownerIndex;
                /// @dev If `MultiOwnable.ownerAtIndex` is an Ethereum address, this should be `abi.encodePacked(r, s, v)`
                ///      If `MultiOwnable.ownerAtIndex` is a public key, this should be `abi.encode(WebAuthnAuth)`.
                bytes signatureData;
            }
            /// @notice Represents a call to make.
            struct Call {
                /// @dev The address to call.
                address target;
                /// @dev The value to send when making the call.
                uint256 value;
                /// @dev The data of the call.
                bytes data;
            }
            /// @notice Reserved nonce key (upper 192 bits of `UserOperation.nonce`) for cross-chain replayable
            ///         transactions.
            ///
            /// @dev MUST BE the `UserOperation.nonce` key when `UserOperation.calldata` is calling
            ///      `executeWithoutChainIdValidation`and MUST NOT BE `UserOperation.nonce` key when `UserOperation.calldata` is
            ///      NOT calling `executeWithoutChainIdValidation`.
            ///
            /// @dev Helps enforce sequential sequencing of replayable transactions.
            uint256 public constant REPLAYABLE_NONCE_KEY = 8453;
            /// @notice Thrown when `initialize` is called but the account already has had at least one owner.
            error Initialized();
            /// @notice Thrown when a call is passed to `executeWithoutChainIdValidation` that is not allowed by
            ///         `canSkipChainIdValidation`
            ///
            /// @param selector The selector of the call.
            error SelectorNotAllowed(bytes4 selector);
            /// @notice Thrown in validateUserOp if the key of `UserOperation.nonce` does not match the calldata.
            ///
            /// @dev Calls to `this.executeWithoutChainIdValidation` MUST use `REPLAYABLE_NONCE_KEY` and
            ///      calls NOT to `this.executeWithoutChainIdValidation` MUST NOT use `REPLAYABLE_NONCE_KEY`.
            ///
            /// @param key The invalid `UserOperation.nonce` key.
            error InvalidNonceKey(uint256 key);
            /// @notice Thrown when an upgrade is attempted to an implementation that does not exist.
            ///
            /// @param implementation The address of the implementation that has no code.
            error InvalidImplementation(address implementation);
            /// @notice Reverts if the caller is not the EntryPoint.
            modifier onlyEntryPoint() virtual {
                if (msg.sender != entryPoint()) {
                    revert Unauthorized();
                }
                _;
            }
            /// @notice Reverts if the caller is neither the EntryPoint, the owner, nor the account itself.
            modifier onlyEntryPointOrOwner() virtual {
                if (msg.sender != entryPoint()) {
                    _checkOwner();
                }
                _;
            }
            /// @notice Sends to the EntryPoint (i.e. `msg.sender`) the missing funds for this transaction.
            ///
            /// @dev Subclass MAY override this modifier for better funds management (e.g. send to the
            ///      EntryPoint more than the minimum required, so that in future transactions it will not
            ///      be required to send again).
            ///
            /// @param missingAccountFunds The minimum value this modifier should send the EntryPoint which
            ///                            MAY be zero, in case there is enough deposit, or the userOp has a
            ///                            paymaster.
            modifier payPrefund(uint256 missingAccountFunds) virtual {
                _;
                assembly ("memory-safe") {
                    if missingAccountFunds {
                        // Ignore failure (it's EntryPoint's job to verify, not the account's).
                        pop(call(gas(), caller(), missingAccountFunds, codesize(), 0x00, codesize(), 0x00))
                    }
                }
            }
            constructor() {
                // Implementation should not be initializable (does not affect proxies which use their own storage).
                bytes[] memory owners = new bytes[](1);
                owners[0] = abi.encode(address(0));
                _initializeOwners(owners);
            }
            /// @notice Initializes the account with the `owners`.
            ///
            /// @dev Reverts if the account has had at least one owner, i.e. has been initialized.
            ///
            /// @param owners Array of initial owners for this account. Each item should be
            ///               an ABI encoded Ethereum address, i.e. 32 bytes with 12 leading 0 bytes,
            ///               or a 64 byte public key.
            function initialize(bytes[] calldata owners) external payable virtual {
                if (nextOwnerIndex() != 0) {
                    revert Initialized();
                }
                _initializeOwners(owners);
            }
            /// @inheritdoc IAccount
            ///
            /// @notice ERC-4337 `validateUserOp` method. The EntryPoint will
            ///         call `UserOperation.sender.call(UserOperation.callData)` only if this validation call returns
            ///         successfully.
            ///
            /// @dev Signature failure should be reported by returning 1 (see: `this._isValidSignature`). This
            ///      allows making a "simulation call" without a valid signature. Other failures (e.g. invalid signature format)
            ///      should still revert to signal failure.
            /// @dev Reverts if the `UserOperation.nonce` key is invalid for `UserOperation.calldata`.
            /// @dev Reverts if the signature format is incorrect or invalid for owner type.
            ///
            /// @param userOp              The `UserOperation` to validate.
            /// @param userOpHash          The `UserOperation` hash, as computed by `EntryPoint.getUserOpHash(UserOperation)`.
            /// @param missingAccountFunds The missing account funds that must be deposited on the Entrypoint.
            ///
            /// @return validationData The encoded `ValidationData` structure:
            ///                        `(uint256(validAfter) << (160 + 48)) | (uint256(validUntil) << 160) | (success ? 0 : 1)`
            ///                        where `validUntil` is 0 (indefinite) and `validAfter` is 0.
            function validateUserOp(UserOperation calldata userOp, bytes32 userOpHash, uint256 missingAccountFunds)
                external
                virtual
                onlyEntryPoint
                payPrefund(missingAccountFunds)
                returns (uint256 validationData)
            {
                uint256 key = userOp.nonce >> 64;
                if (bytes4(userOp.callData) == this.executeWithoutChainIdValidation.selector) {
                    userOpHash = getUserOpHashWithoutChainId(userOp);
                    if (key != REPLAYABLE_NONCE_KEY) {
                        revert InvalidNonceKey(key);
                    }
                    // Check for upgrade calls in the batch and validate implementation has code
                    bytes[] memory calls = abi.decode(userOp.callData[4:], (bytes[]));
                    for (uint256 i; i < calls.length; i++) {
                        bytes memory callData = calls[i];
                        bytes4 selector = bytes4(callData);
                        if (selector == UUPSUpgradeable.upgradeToAndCall.selector) {
                            address newImplementation;
                            assembly {
                                // Skip reading the first 32 bytes (length prefix) + 4 bytes (function selector)
                                newImplementation := mload(add(callData, 36))
                            }
                            if (newImplementation.code.length == 0) revert InvalidImplementation(newImplementation);
                        }
                    }
                } else {
                    if (key == REPLAYABLE_NONCE_KEY) {
                        revert InvalidNonceKey(key);
                    }
                }
                // Return 0 if the recovered address matches the owner.
                if (_isValidSignature(userOpHash, userOp.signature)) {
                    return 0;
                }
                // Else return 1
                return 1;
            }
            /// @notice Executes `calls` on this account (i.e. self call).
            ///
            /// @dev Can only be called by the Entrypoint.
            /// @dev Reverts if the given call is not authorized to skip the chain ID validtion.
            /// @dev `validateUserOp()` will recompute the `userOpHash` without the chain ID before validating
            ///      it if the `UserOperation.calldata` is calling this function. This allows certain UserOperations
            ///      to be replayed for all accounts sharing the same address across chains. E.g. This may be
            ///      useful for syncing owner changes.
            ///
            /// @param calls An array of calldata to use for separate self calls.
            function executeWithoutChainIdValidation(bytes[] calldata calls) external payable virtual onlyEntryPoint {
                for (uint256 i; i < calls.length; i++) {
                    bytes calldata call = calls[i];
                    bytes4 selector = bytes4(call);
                    if (!canSkipChainIdValidation(selector)) {
                        revert SelectorNotAllowed(selector);
                    }
                    _call(address(this), 0, call);
                }
            }
            /// @notice Executes the given call from this account.
            ///
            /// @dev Can only be called by the Entrypoint or an owner of this account (including itself).
            ///
            /// @param target The address to call.
            /// @param value  The value to send with the call.
            /// @param data   The data of the call.
            function execute(address target, uint256 value, bytes calldata data)
                external
                payable
                virtual
                onlyEntryPointOrOwner
            {
                _call(target, value, data);
            }
            /// @notice Executes batch of `Call`s.
            ///
            /// @dev Can only be called by the Entrypoint or an owner of this account (including itself).
            ///
            /// @param calls The list of `Call`s to execute.
            function executeBatch(Call[] calldata calls) external payable virtual onlyEntryPointOrOwner {
                for (uint256 i; i < calls.length; i++) {
                    _call(calls[i].target, calls[i].value, calls[i].data);
                }
            }
            /// @notice Returns the address of the EntryPoint v0.6.
            ///
            /// @return The address of the EntryPoint v0.6
            function entryPoint() public view virtual returns (address) {
                return 0x5FF137D4b0FDCD49DcA30c7CF57E578a026d2789;
            }
            /// @notice Computes the hash of the `UserOperation` in the same way as EntryPoint v0.6, but
            ///         leaves out the chain ID.
            ///
            /// @dev This allows accounts to sign a hash that can be used on many chains.
            ///
            /// @param userOp The `UserOperation` to compute the hash for.
            ///
            /// @return The `UserOperation` hash, which does not depend on chain ID.
            function getUserOpHashWithoutChainId(UserOperation calldata userOp) public view virtual returns (bytes32) {
                return keccak256(abi.encode(UserOperationLib.hash(userOp), entryPoint()));
            }
            /// @notice Returns the implementation of the ERC1967 proxy.
            ///
            /// @return $ The address of implementation contract.
            function implementation() public view returns (address $) {
                assembly {
                    $ := sload(_ERC1967_IMPLEMENTATION_SLOT)
                }
            }
            /// @notice Returns whether `functionSelector` can be called in `executeWithoutChainIdValidation`.
            ///
            /// @param functionSelector The function selector to check.
            ////
            /// @return `true` is the function selector is allowed to skip the chain ID validation, else `false`.
            function canSkipChainIdValidation(bytes4 functionSelector) public pure returns (bool) {
                if (
                    functionSelector == MultiOwnable.addOwnerPublicKey.selector
                        || functionSelector == MultiOwnable.addOwnerAddress.selector
                        || functionSelector == MultiOwnable.removeOwnerAtIndex.selector
                        || functionSelector == MultiOwnable.removeLastOwner.selector
                        || functionSelector == UUPSUpgradeable.upgradeToAndCall.selector
                ) {
                    return true;
                }
                return false;
            }
            /// @notice Executes the given call from this account.
            ///
            /// @dev Reverts if the call reverted.
            /// @dev Implementation taken from
            /// https://github.com/alchemyplatform/light-account/blob/43f625afdda544d5e5af9c370c9f4be0943e4e90/src/common/BaseLightAccount.sol#L125
            ///
            /// @param target The target call address.
            /// @param value  The call value to user.
            /// @param data   The raw call data.
            function _call(address target, uint256 value, bytes memory data) internal {
                (bool success, bytes memory result) = target.call{value: value}(data);
                if (!success) {
                    assembly ("memory-safe") {
                        revert(add(result, 32), mload(result))
                    }
                }
            }
            /// @inheritdoc ERC1271
            ///
            /// @dev Used by both `ERC1271.isValidSignature` AND `IAccount.validateUserOp` signature validation.
            /// @dev Reverts if owner at `ownerIndex` is not compatible with `signature` format.
            ///
            /// @param signature ABI encoded `SignatureWrapper`.
            function _isValidSignature(bytes32 hash, bytes calldata signature) internal view virtual override returns (bool) {
                SignatureWrapper memory sigWrapper = abi.decode(signature, (SignatureWrapper));
                bytes memory ownerBytes = ownerAtIndex(sigWrapper.ownerIndex);
                if (ownerBytes.length == 32) {
                    if (uint256(bytes32(ownerBytes)) > type(uint160).max) {
                        // technically should be impossible given owners can only be added with
                        // addOwnerAddress and addOwnerPublicKey, but we leave incase of future changes.
                        revert InvalidEthereumAddressOwner(ownerBytes);
                    }
                    address owner;
                    assembly ("memory-safe") {
                        owner := mload(add(ownerBytes, 32))
                    }
                    return SignatureCheckerLib.isValidSignatureNow(owner, hash, sigWrapper.signatureData);
                }
                if (ownerBytes.length == 64) {
                    (uint256 x, uint256 y) = abi.decode(ownerBytes, (uint256, uint256));
                    WebAuthn.WebAuthnAuth memory auth = abi.decode(sigWrapper.signatureData, (WebAuthn.WebAuthnAuth));
                    return WebAuthn.verify({challenge: abi.encode(hash), requireUV: false, webAuthnAuth: auth, x: x, y: y});
                }
                revert InvalidOwnerBytesLength(ownerBytes);
            }
            /// @inheritdoc UUPSUpgradeable
            ///
            /// @dev Authorization logic is only based on the `msg.sender` being an owner of this account,
            ///      or `address(this)`.
            function _authorizeUpgrade(address) internal view virtual override(UUPSUpgradeable) onlyOwner {}
            /// @inheritdoc ERC1271
            function _domainNameAndVersion() internal pure override(ERC1271) returns (string memory, string memory) {
                return ("Coinbase Smart Wallet", "1");
            }
        }
        // SPDX-License-Identifier: GPL-3.0
        pragma solidity ^0.8.12;
        import "./UserOperation.sol";
        interface IAccount {
            /**
             * Validate user's signature and nonce
             * the entryPoint will make the call to the recipient only if this validation call returns successfully.
             * signature failure should be reported by returning SIG_VALIDATION_FAILED (1).
             * This allows making a "simulation call" without a valid signature
             * Other failures (e.g. nonce mismatch, or invalid signature format) should still revert to signal failure.
             *
             * @dev Must validate caller is the entryPoint.
             *      Must validate the signature and nonce
             * @param userOp the operation that is about to be executed.
             * @param userOpHash hash of the user's request data. can be used as the basis for signature.
             * @param missingAccountFunds missing funds on the account's deposit in the entrypoint.
             *      This is the minimum amount to transfer to the sender(entryPoint) to be able to make the call.
             *      The excess is left as a deposit in the entrypoint, for future calls.
             *      can be withdrawn anytime using "entryPoint.withdrawTo()"
             *      In case there is a paymaster in the request (or the current deposit is high enough), this value will be zero.
             * @return validationData packaged ValidationData structure. use `_packValidationData` and `_unpackValidationData` to encode and decode
             *      <20-byte> sigAuthorizer - 0 for valid signature, 1 to mark signature failure,
             *         otherwise, an address of an "authorizer" contract.
             *      <6-byte> validUntil - last timestamp this operation is valid. 0 for "indefinite"
             *      <6-byte> validAfter - first timestamp this operation is valid
             *      If an account doesn't use time-range, it is enough to return SIG_VALIDATION_FAILED value (1) for signature failure.
             *      Note that the validation code cannot use block.timestamp (or block.number) directly.
             */
            function validateUserOp(UserOperation calldata userOp, bytes32 userOpHash, uint256 missingAccountFunds)
            external returns (uint256 validationData);
        }
        // SPDX-License-Identifier: GPL-3.0
        pragma solidity ^0.8.12;
        /* solhint-disable no-inline-assembly */
        import {calldataKeccak} from "../core/Helpers.sol";
        /**
         * User Operation struct
         * @param sender the sender account of this request.
             * @param nonce unique value the sender uses to verify it is not a replay.
             * @param initCode if set, the account contract will be created by this constructor/
             * @param callData the method call to execute on this account.
             * @param callGasLimit the gas limit passed to the callData method call.
             * @param verificationGasLimit gas used for validateUserOp and validatePaymasterUserOp.
             * @param preVerificationGas gas not calculated by the handleOps method, but added to the gas paid. Covers batch overhead.
             * @param maxFeePerGas same as EIP-1559 gas parameter.
             * @param maxPriorityFeePerGas same as EIP-1559 gas parameter.
             * @param paymasterAndData if set, this field holds the paymaster address and paymaster-specific data. the paymaster will pay for the transaction instead of the sender.
             * @param signature sender-verified signature over the entire request, the EntryPoint address and the chain ID.
             */
            struct UserOperation {
                address sender;
                uint256 nonce;
                bytes initCode;
                bytes callData;
                uint256 callGasLimit;
                uint256 verificationGasLimit;
                uint256 preVerificationGas;
                uint256 maxFeePerGas;
                uint256 maxPriorityFeePerGas;
                bytes paymasterAndData;
                bytes signature;
            }
        /**
         * Utility functions helpful when working with UserOperation structs.
         */
        library UserOperationLib {
            function getSender(UserOperation calldata userOp) internal pure returns (address) {
                address data;
                //read sender from userOp, which is first userOp member (saves 800 gas...)
                assembly {data := calldataload(userOp)}
                return address(uint160(data));
            }
            //relayer/block builder might submit the TX with higher priorityFee, but the user should not
            // pay above what he signed for.
            function gasPrice(UserOperation calldata userOp) internal view returns (uint256) {
            unchecked {
                uint256 maxFeePerGas = userOp.maxFeePerGas;
                uint256 maxPriorityFeePerGas = userOp.maxPriorityFeePerGas;
                if (maxFeePerGas == maxPriorityFeePerGas) {
                    //legacy mode (for networks that don't support basefee opcode)
                    return maxFeePerGas;
                }
                return min(maxFeePerGas, maxPriorityFeePerGas + block.basefee);
            }
            }
            function pack(UserOperation calldata userOp) internal pure returns (bytes memory ret) {
                address sender = getSender(userOp);
                uint256 nonce = userOp.nonce;
                bytes32 hashInitCode = calldataKeccak(userOp.initCode);
                bytes32 hashCallData = calldataKeccak(userOp.callData);
                uint256 callGasLimit = userOp.callGasLimit;
                uint256 verificationGasLimit = userOp.verificationGasLimit;
                uint256 preVerificationGas = userOp.preVerificationGas;
                uint256 maxFeePerGas = userOp.maxFeePerGas;
                uint256 maxPriorityFeePerGas = userOp.maxPriorityFeePerGas;
                bytes32 hashPaymasterAndData = calldataKeccak(userOp.paymasterAndData);
                return abi.encode(
                    sender, nonce,
                    hashInitCode, hashCallData,
                    callGasLimit, verificationGasLimit, preVerificationGas,
                    maxFeePerGas, maxPriorityFeePerGas,
                    hashPaymasterAndData
                );
            }
            function hash(UserOperation calldata userOp) internal pure returns (bytes32) {
                return keccak256(pack(userOp));
            }
            function min(uint256 a, uint256 b) internal pure returns (uint256) {
                return a < b ? a : b;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.4;
        /// @notice Receiver mixin for ETH and safe-transferred ERC721 and ERC1155 tokens.
        /// @author Solady (https://github.com/Vectorized/solady/blob/main/src/accounts/Receiver.sol)
        ///
        /// @dev Note:
        /// - Handles all ERC721 and ERC1155 token safety callbacks.
        /// - Collapses function table gas overhead and code size.
        /// - Utilizes fallback so unknown calldata will pass on.
        abstract contract Receiver {
            /// @dev For receiving ETH.
            receive() external payable virtual {}
            /// @dev Fallback function with the `receiverFallback` modifier.
            fallback() external payable virtual receiverFallback {}
            /// @dev Modifier for the fallback function to handle token callbacks.
            modifier receiverFallback() virtual {
                /// @solidity memory-safe-assembly
                assembly {
                    let s := shr(224, calldataload(0))
                    // 0x150b7a02: `onERC721Received(address,address,uint256,bytes)`.
                    // 0xf23a6e61: `onERC1155Received(address,address,uint256,uint256,bytes)`.
                    // 0xbc197c81: `onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)`.
                    if or(eq(s, 0x150b7a02), or(eq(s, 0xf23a6e61), eq(s, 0xbc197c81))) {
                        mstore(0x20, s) // Store `msg.sig`.
                        return(0x3c, 0x20) // Return `msg.sig`.
                    }
                }
                _;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.4;
        /// @notice Signature verification helper that supports both ECDSA signatures from EOAs
        /// and ERC1271 signatures from smart contract wallets like Argent and Gnosis safe.
        /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SignatureCheckerLib.sol)
        /// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/SignatureChecker.sol)
        ///
        /// @dev Note:
        /// - The signature checking functions use the ecrecover precompile (0x1).
        /// - The `bytes memory signature` variants use the identity precompile (0x4)
        ///   to copy memory internally.
        /// - Unlike ECDSA signatures, contract signatures are revocable.
        /// - As of Solady version 0.0.134, all `bytes signature` variants accept both
        ///   regular 65-byte `(r, s, v)` and EIP-2098 `(r, vs)` short form signatures.
        ///   See: https://eips.ethereum.org/EIPS/eip-2098
        ///   This is for calldata efficiency on smart accounts prevalent on L2s.
        ///
        /// WARNING! Do NOT use signatures as unique identifiers:
        /// - Use a nonce in the digest to prevent replay attacks on the same contract.
        /// - Use EIP-712 for the digest to prevent replay attacks across different chains and contracts.
        ///   EIP-712 also enables readable signing of typed data for better user safety.
        /// This implementation does NOT check if a signature is non-malleable.
        library SignatureCheckerLib {
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*               SIGNATURE CHECKING OPERATIONS                */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Returns whether `signature` is valid for `signer` and `hash`.
            /// If `signer` is a smart contract, the signature is validated with ERC1271.
            /// Otherwise, the signature is validated with `ECDSA.recover`.
            function isValidSignatureNow(address signer, bytes32 hash, bytes memory signature)
                internal
                view
                returns (bool isValid)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    // Clean the upper 96 bits of `signer` in case they are dirty.
                    for { signer := shr(96, shl(96, signer)) } signer {} {
                        let m := mload(0x40)
                        mstore(0x00, hash)
                        mstore(0x40, mload(add(signature, 0x20))) // `r`.
                        if eq(mload(signature), 64) {
                            let vs := mload(add(signature, 0x40))
                            mstore(0x20, add(shr(255, vs), 27)) // `v`.
                            mstore(0x60, shr(1, shl(1, vs))) // `s`.
                            let t :=
                                staticcall(
                                    gas(), // Amount of gas left for the transaction.
                                    1, // Address of `ecrecover`.
                                    0x00, // Start of input.
                                    0x80, // Size of input.
                                    0x01, // Start of output.
                                    0x20 // Size of output.
                                )
                            // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                            if iszero(or(iszero(returndatasize()), xor(signer, mload(t)))) {
                                isValid := 1
                                mstore(0x60, 0) // Restore the zero slot.
                                mstore(0x40, m) // Restore the free memory pointer.
                                break
                            }
                        }
                        if eq(mload(signature), 65) {
                            mstore(0x20, byte(0, mload(add(signature, 0x60)))) // `v`.
                            mstore(0x60, mload(add(signature, 0x40))) // `s`.
                            let t :=
                                staticcall(
                                    gas(), // Amount of gas left for the transaction.
                                    1, // Address of `ecrecover`.
                                    0x00, // Start of input.
                                    0x80, // Size of input.
                                    0x01, // Start of output.
                                    0x20 // Size of output.
                                )
                            // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                            if iszero(or(iszero(returndatasize()), xor(signer, mload(t)))) {
                                isValid := 1
                                mstore(0x60, 0) // Restore the zero slot.
                                mstore(0x40, m) // Restore the free memory pointer.
                                break
                            }
                        }
                        mstore(0x60, 0) // Restore the zero slot.
                        mstore(0x40, m) // Restore the free memory pointer.
                        let f := shl(224, 0x1626ba7e)
                        mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                        mstore(add(m, 0x04), hash)
                        let d := add(m, 0x24)
                        mstore(d, 0x40) // The offset of the `signature` in the calldata.
                        // Copy the `signature` over.
                        let n := add(0x20, mload(signature))
                        pop(staticcall(gas(), 4, signature, n, add(m, 0x44), n))
                        // forgefmt: disable-next-item
                        isValid := and(
                            // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                            eq(mload(d), f),
                            // Whether the staticcall does not revert.
                            // This must be placed at the end of the `and` clause,
                            // as the arguments are evaluated from right to left.
                            staticcall(
                                gas(), // Remaining gas.
                                signer, // The `signer` address.
                                m, // Offset of calldata in memory.
                                add(returndatasize(), 0x44), // Length of calldata in memory.
                                d, // Offset of returndata.
                                0x20 // Length of returndata to write.
                            )
                        )
                        break
                    }
                }
            }
            /// @dev Returns whether `signature` is valid for `signer` and `hash`.
            /// If `signer` is a smart contract, the signature is validated with ERC1271.
            /// Otherwise, the signature is validated with `ECDSA.recover`.
            function isValidSignatureNowCalldata(address signer, bytes32 hash, bytes calldata signature)
                internal
                view
                returns (bool isValid)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    // Clean the upper 96 bits of `signer` in case they are dirty.
                    for { signer := shr(96, shl(96, signer)) } signer {} {
                        let m := mload(0x40)
                        mstore(0x00, hash)
                        if eq(signature.length, 64) {
                            let vs := calldataload(add(signature.offset, 0x20))
                            mstore(0x20, add(shr(255, vs), 27)) // `v`.
                            mstore(0x40, calldataload(signature.offset)) // `r`.
                            mstore(0x60, shr(1, shl(1, vs))) // `s`.
                            let t :=
                                staticcall(
                                    gas(), // Amount of gas left for the transaction.
                                    1, // Address of `ecrecover`.
                                    0x00, // Start of input.
                                    0x80, // Size of input.
                                    0x01, // Start of output.
                                    0x20 // Size of output.
                                )
                            // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                            if iszero(or(iszero(returndatasize()), xor(signer, mload(t)))) {
                                isValid := 1
                                mstore(0x60, 0) // Restore the zero slot.
                                mstore(0x40, m) // Restore the free memory pointer.
                                break
                            }
                        }
                        if eq(signature.length, 65) {
                            mstore(0x20, byte(0, calldataload(add(signature.offset, 0x40)))) // `v`.
                            calldatacopy(0x40, signature.offset, 0x40) // `r`, `s`.
                            let t :=
                                staticcall(
                                    gas(), // Amount of gas left for the transaction.
                                    1, // Address of `ecrecover`.
                                    0x00, // Start of input.
                                    0x80, // Size of input.
                                    0x01, // Start of output.
                                    0x20 // Size of output.
                                )
                            // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                            if iszero(or(iszero(returndatasize()), xor(signer, mload(t)))) {
                                isValid := 1
                                mstore(0x60, 0) // Restore the zero slot.
                                mstore(0x40, m) // Restore the free memory pointer.
                                break
                            }
                        }
                        mstore(0x60, 0) // Restore the zero slot.
                        mstore(0x40, m) // Restore the free memory pointer.
                        let f := shl(224, 0x1626ba7e)
                        mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                        mstore(add(m, 0x04), hash)
                        let d := add(m, 0x24)
                        mstore(d, 0x40) // The offset of the `signature` in the calldata.
                        mstore(add(m, 0x44), signature.length)
                        // Copy the `signature` over.
                        calldatacopy(add(m, 0x64), signature.offset, signature.length)
                        // forgefmt: disable-next-item
                        isValid := and(
                            // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                            eq(mload(d), f),
                            // Whether the staticcall does not revert.
                            // This must be placed at the end of the `and` clause,
                            // as the arguments are evaluated from right to left.
                            staticcall(
                                gas(), // Remaining gas.
                                signer, // The `signer` address.
                                m, // Offset of calldata in memory.
                                add(signature.length, 0x64), // Length of calldata in memory.
                                d, // Offset of returndata.
                                0x20 // Length of returndata to write.
                            )
                        )
                        break
                    }
                }
            }
            /// @dev Returns whether the signature (`r`, `vs`) is valid for `signer` and `hash`.
            /// If `signer` is a smart contract, the signature is validated with ERC1271.
            /// Otherwise, the signature is validated with `ECDSA.recover`.
            function isValidSignatureNow(address signer, bytes32 hash, bytes32 r, bytes32 vs)
                internal
                view
                returns (bool isValid)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    // Clean the upper 96 bits of `signer` in case they are dirty.
                    for { signer := shr(96, shl(96, signer)) } signer {} {
                        let m := mload(0x40)
                        mstore(0x00, hash)
                        mstore(0x20, add(shr(255, vs), 27)) // `v`.
                        mstore(0x40, r) // `r`.
                        mstore(0x60, shr(1, shl(1, vs))) // `s`.
                        let t :=
                            staticcall(
                                gas(), // Amount of gas left for the transaction.
                                1, // Address of `ecrecover`.
                                0x00, // Start of input.
                                0x80, // Size of input.
                                0x01, // Start of output.
                                0x20 // Size of output.
                            )
                        // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                        if iszero(or(iszero(returndatasize()), xor(signer, mload(t)))) {
                            isValid := 1
                            mstore(0x60, 0) // Restore the zero slot.
                            mstore(0x40, m) // Restore the free memory pointer.
                            break
                        }
                        let f := shl(224, 0x1626ba7e)
                        mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                        mstore(add(m, 0x04), hash)
                        let d := add(m, 0x24)
                        mstore(d, 0x40) // The offset of the `signature` in the calldata.
                        mstore(add(m, 0x44), 65) // Length of the signature.
                        mstore(add(m, 0x64), r) // `r`.
                        mstore(add(m, 0x84), mload(0x60)) // `s`.
                        mstore8(add(m, 0xa4), mload(0x20)) // `v`.
                        // forgefmt: disable-next-item
                        isValid := and(
                            // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                            eq(mload(d), f),
                            // Whether the staticcall does not revert.
                            // This must be placed at the end of the `and` clause,
                            // as the arguments are evaluated from right to left.
                            staticcall(
                                gas(), // Remaining gas.
                                signer, // The `signer` address.
                                m, // Offset of calldata in memory.
                                0xa5, // Length of calldata in memory.
                                d, // Offset of returndata.
                                0x20 // Length of returndata to write.
                            )
                        )
                        mstore(0x60, 0) // Restore the zero slot.
                        mstore(0x40, m) // Restore the free memory pointer.
                        break
                    }
                }
            }
            /// @dev Returns whether the signature (`v`, `r`, `s`) is valid for `signer` and `hash`.
            /// If `signer` is a smart contract, the signature is validated with ERC1271.
            /// Otherwise, the signature is validated with `ECDSA.recover`.
            function isValidSignatureNow(address signer, bytes32 hash, uint8 v, bytes32 r, bytes32 s)
                internal
                view
                returns (bool isValid)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    // Clean the upper 96 bits of `signer` in case they are dirty.
                    for { signer := shr(96, shl(96, signer)) } signer {} {
                        let m := mload(0x40)
                        mstore(0x00, hash)
                        mstore(0x20, and(v, 0xff)) // `v`.
                        mstore(0x40, r) // `r`.
                        mstore(0x60, s) // `s`.
                        let t :=
                            staticcall(
                                gas(), // Amount of gas left for the transaction.
                                1, // Address of `ecrecover`.
                                0x00, // Start of input.
                                0x80, // Size of input.
                                0x01, // Start of output.
                                0x20 // Size of output.
                            )
                        // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                        if iszero(or(iszero(returndatasize()), xor(signer, mload(t)))) {
                            isValid := 1
                            mstore(0x60, 0) // Restore the zero slot.
                            mstore(0x40, m) // Restore the free memory pointer.
                            break
                        }
                        let f := shl(224, 0x1626ba7e)
                        mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                        mstore(add(m, 0x04), hash)
                        let d := add(m, 0x24)
                        mstore(d, 0x40) // The offset of the `signature` in the calldata.
                        mstore(add(m, 0x44), 65) // Length of the signature.
                        mstore(add(m, 0x64), r) // `r`.
                        mstore(add(m, 0x84), s) // `s`.
                        mstore8(add(m, 0xa4), v) // `v`.
                        // forgefmt: disable-next-item
                        isValid := and(
                            // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                            eq(mload(d), f),
                            // Whether the staticcall does not revert.
                            // This must be placed at the end of the `and` clause,
                            // as the arguments are evaluated from right to left.
                            staticcall(
                                gas(), // Remaining gas.
                                signer, // The `signer` address.
                                m, // Offset of calldata in memory.
                                0xa5, // Length of calldata in memory.
                                d, // Offset of returndata.
                                0x20 // Length of returndata to write.
                            )
                        )
                        mstore(0x60, 0) // Restore the zero slot.
                        mstore(0x40, m) // Restore the free memory pointer.
                        break
                    }
                }
            }
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                     ERC1271 OPERATIONS                     */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Returns whether `signature` is valid for `hash` for an ERC1271 `signer` contract.
            function isValidERC1271SignatureNow(address signer, bytes32 hash, bytes memory signature)
                internal
                view
                returns (bool isValid)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    let m := mload(0x40)
                    let f := shl(224, 0x1626ba7e)
                    mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                    mstore(add(m, 0x04), hash)
                    let d := add(m, 0x24)
                    mstore(d, 0x40) // The offset of the `signature` in the calldata.
                    // Copy the `signature` over.
                    let n := add(0x20, mload(signature))
                    pop(staticcall(gas(), 4, signature, n, add(m, 0x44), n))
                    // forgefmt: disable-next-item
                    isValid := and(
                        // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                        eq(mload(d), f),
                        // Whether the staticcall does not revert.
                        // This must be placed at the end of the `and` clause,
                        // as the arguments are evaluated from right to left.
                        staticcall(
                            gas(), // Remaining gas.
                            signer, // The `signer` address.
                            m, // Offset of calldata in memory.
                            add(returndatasize(), 0x44), // Length of calldata in memory.
                            d, // Offset of returndata.
                            0x20 // Length of returndata to write.
                        )
                    )
                }
            }
            /// @dev Returns whether `signature` is valid for `hash` for an ERC1271 `signer` contract.
            function isValidERC1271SignatureNowCalldata(
                address signer,
                bytes32 hash,
                bytes calldata signature
            ) internal view returns (bool isValid) {
                /// @solidity memory-safe-assembly
                assembly {
                    let m := mload(0x40)
                    let f := shl(224, 0x1626ba7e)
                    mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                    mstore(add(m, 0x04), hash)
                    let d := add(m, 0x24)
                    mstore(d, 0x40) // The offset of the `signature` in the calldata.
                    mstore(add(m, 0x44), signature.length)
                    // Copy the `signature` over.
                    calldatacopy(add(m, 0x64), signature.offset, signature.length)
                    // forgefmt: disable-next-item
                    isValid := and(
                        // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                        eq(mload(d), f),
                        // Whether the staticcall does not revert.
                        // This must be placed at the end of the `and` clause,
                        // as the arguments are evaluated from right to left.
                        staticcall(
                            gas(), // Remaining gas.
                            signer, // The `signer` address.
                            m, // Offset of calldata in memory.
                            add(signature.length, 0x64), // Length of calldata in memory.
                            d, // Offset of returndata.
                            0x20 // Length of returndata to write.
                        )
                    )
                }
            }
            /// @dev Returns whether the signature (`r`, `vs`) is valid for `hash`
            /// for an ERC1271 `signer` contract.
            function isValidERC1271SignatureNow(address signer, bytes32 hash, bytes32 r, bytes32 vs)
                internal
                view
                returns (bool isValid)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    let m := mload(0x40)
                    let f := shl(224, 0x1626ba7e)
                    mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                    mstore(add(m, 0x04), hash)
                    let d := add(m, 0x24)
                    mstore(d, 0x40) // The offset of the `signature` in the calldata.
                    mstore(add(m, 0x44), 65) // Length of the signature.
                    mstore(add(m, 0x64), r) // `r`.
                    mstore(add(m, 0x84), shr(1, shl(1, vs))) // `s`.
                    mstore8(add(m, 0xa4), add(shr(255, vs), 27)) // `v`.
                    // forgefmt: disable-next-item
                    isValid := and(
                        // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                        eq(mload(d), f),
                        // Whether the staticcall does not revert.
                        // This must be placed at the end of the `and` clause,
                        // as the arguments are evaluated from right to left.
                        staticcall(
                            gas(), // Remaining gas.
                            signer, // The `signer` address.
                            m, // Offset of calldata in memory.
                            0xa5, // Length of calldata in memory.
                            d, // Offset of returndata.
                            0x20 // Length of returndata to write.
                        )
                    )
                }
            }
            /// @dev Returns whether the signature (`v`, `r`, `s`) is valid for `hash`
            /// for an ERC1271 `signer` contract.
            function isValidERC1271SignatureNow(address signer, bytes32 hash, uint8 v, bytes32 r, bytes32 s)
                internal
                view
                returns (bool isValid)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    let m := mload(0x40)
                    let f := shl(224, 0x1626ba7e)
                    mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                    mstore(add(m, 0x04), hash)
                    let d := add(m, 0x24)
                    mstore(d, 0x40) // The offset of the `signature` in the calldata.
                    mstore(add(m, 0x44), 65) // Length of the signature.
                    mstore(add(m, 0x64), r) // `r`.
                    mstore(add(m, 0x84), s) // `s`.
                    mstore8(add(m, 0xa4), v) // `v`.
                    // forgefmt: disable-next-item
                    isValid := and(
                        // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                        eq(mload(d), f),
                        // Whether the staticcall does not revert.
                        // This must be placed at the end of the `and` clause,
                        // as the arguments are evaluated from right to left.
                        staticcall(
                            gas(), // Remaining gas.
                            signer, // The `signer` address.
                            m, // Offset of calldata in memory.
                            0xa5, // Length of calldata in memory.
                            d, // Offset of returndata.
                            0x20 // Length of returndata to write.
                        )
                    )
                }
            }
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                     HASHING OPERATIONS                     */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Returns an Ethereum Signed Message, created from a `hash`.
            /// This produces a hash corresponding to the one signed with the
            /// [`eth_sign`](https://eth.wiki/json-rpc/API#eth_sign)
            /// JSON-RPC method as part of EIP-191.
            function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 result) {
                /// @solidity memory-safe-assembly
                assembly {
                    mstore(0x20, hash) // Store into scratch space for keccak256.
                    mstore(0x00, "\\x00\\x00\\x00\\x00\\x19Ethereum Signed Message:\
        32") // 28 bytes.
                    result := keccak256(0x04, 0x3c) // `32 * 2 - (32 - 28) = 60 = 0x3c`.
                }
            }
            /// @dev Returns an Ethereum Signed Message, created from `s`.
            /// This produces a hash corresponding to the one signed with the
            /// [`eth_sign`](https://eth.wiki/json-rpc/API#eth_sign)
            /// JSON-RPC method as part of EIP-191.
            /// Note: Supports lengths of `s` up to 999999 bytes.
            function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32 result) {
                /// @solidity memory-safe-assembly
                assembly {
                    let sLength := mload(s)
                    let o := 0x20
                    mstore(o, "\\x19Ethereum Signed Message:\
        ") // 26 bytes, zero-right-padded.
                    mstore(0x00, 0x00)
                    // Convert the `s.length` to ASCII decimal representation: `base10(s.length)`.
                    for { let temp := sLength } 1 {} {
                        o := sub(o, 1)
                        mstore8(o, add(48, mod(temp, 10)))
                        temp := div(temp, 10)
                        if iszero(temp) { break }
                    }
                    let n := sub(0x3a, o) // Header length: `26 + 32 - o`.
                    // Throw an out-of-offset error (consumes all gas) if the header exceeds 32 bytes.
                    returndatacopy(returndatasize(), returndatasize(), gt(n, 0x20))
                    mstore(s, or(mload(0x00), mload(n))) // Temporarily store the header.
                    result := keccak256(add(s, sub(0x20, n)), add(n, sLength))
                    mstore(s, sLength) // Restore the length.
                }
            }
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                   EMPTY CALLDATA HELPERS                   */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Returns an empty calldata bytes.
            function emptySignature() internal pure returns (bytes calldata signature) {
                /// @solidity memory-safe-assembly
                assembly {
                    signature.length := 0
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.4;
        /// @notice UUPS proxy mixin.
        /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/UUPSUpgradeable.sol)
        /// @author Modified from OpenZeppelin
        /// (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/proxy/utils/UUPSUpgradeable.sol)
        ///
        /// Note:
        /// - This implementation is intended to be used with ERC1967 proxies.
        /// See: `LibClone.deployERC1967` and related functions.
        /// - This implementation is NOT compatible with legacy OpenZeppelin proxies
        /// which do not store the implementation at `_ERC1967_IMPLEMENTATION_SLOT`.
        abstract contract UUPSUpgradeable {
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                       CUSTOM ERRORS                        */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev The upgrade failed.
            error UpgradeFailed();
            /// @dev The call is from an unauthorized call context.
            error UnauthorizedCallContext();
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                         IMMUTABLES                         */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev For checking if the context is a delegate call.
            uint256 private immutable __self = uint256(uint160(address(this)));
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                           EVENTS                           */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Emitted when the proxy's implementation is upgraded.
            event Upgraded(address indexed implementation);
            /// @dev `keccak256(bytes("Upgraded(address)"))`.
            uint256 private constant _UPGRADED_EVENT_SIGNATURE =
                0xbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b;
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                          STORAGE                           */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev The ERC-1967 storage slot for the implementation in the proxy.
            /// `uint256(keccak256("eip1967.proxy.implementation")) - 1`.
            bytes32 internal constant _ERC1967_IMPLEMENTATION_SLOT =
                0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                      UUPS OPERATIONS                       */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Please override this function to check if `msg.sender` is authorized
            /// to upgrade the proxy to `newImplementation`, reverting if not.
            /// ```
            ///     function _authorizeUpgrade(address) internal override onlyOwner {}
            /// ```
            function _authorizeUpgrade(address newImplementation) internal virtual;
            /// @dev Returns the storage slot used by the implementation,
            /// as specified in [ERC1822](https://eips.ethereum.org/EIPS/eip-1822).
            ///
            /// Note: The `notDelegated` modifier prevents accidental upgrades to
            /// an implementation that is a proxy contract.
            function proxiableUUID() public view virtual notDelegated returns (bytes32) {
                // This function must always return `_ERC1967_IMPLEMENTATION_SLOT` to comply with ERC1967.
                return _ERC1967_IMPLEMENTATION_SLOT;
            }
            /// @dev Upgrades the proxy's implementation to `newImplementation`.
            /// Emits a {Upgraded} event.
            ///
            /// Note: Passing in empty `data` skips the delegatecall to `newImplementation`.
            function upgradeToAndCall(address newImplementation, bytes calldata data)
                public
                payable
                virtual
                onlyProxy
            {
                _authorizeUpgrade(newImplementation);
                /// @solidity memory-safe-assembly
                assembly {
                    newImplementation := shr(96, shl(96, newImplementation)) // Clears upper 96 bits.
                    mstore(0x01, 0x52d1902d) // `proxiableUUID()`.
                    let s := _ERC1967_IMPLEMENTATION_SLOT
                    // Check if `newImplementation` implements `proxiableUUID` correctly.
                    if iszero(eq(mload(staticcall(gas(), newImplementation, 0x1d, 0x04, 0x01, 0x20)), s)) {
                        mstore(0x01, 0x55299b49) // `UpgradeFailed()`.
                        revert(0x1d, 0x04)
                    }
                    // Emit the {Upgraded} event.
                    log2(codesize(), 0x00, _UPGRADED_EVENT_SIGNATURE, newImplementation)
                    sstore(s, newImplementation) // Updates the implementation.
                    // Perform a delegatecall to `newImplementation` if `data` is non-empty.
                    if data.length {
                        // Forwards the `data` to `newImplementation` via delegatecall.
                        let m := mload(0x40)
                        calldatacopy(m, data.offset, data.length)
                        if iszero(delegatecall(gas(), newImplementation, m, data.length, codesize(), 0x00))
                        {
                            // Bubble up the revert if the call reverts.
                            returndatacopy(m, 0x00, returndatasize())
                            revert(m, returndatasize())
                        }
                    }
                }
            }
            /// @dev Requires that the execution is performed through a proxy.
            modifier onlyProxy() {
                uint256 s = __self;
                /// @solidity memory-safe-assembly
                assembly {
                    // To enable use cases with an immutable default implementation in the bytecode,
                    // (see: ERC6551Proxy), we don't require that the proxy address must match the
                    // value stored in the implementation slot, which may not be initialized.
                    if eq(s, address()) {
                        mstore(0x00, 0x9f03a026) // `UnauthorizedCallContext()`.
                        revert(0x1c, 0x04)
                    }
                }
                _;
            }
            /// @dev Requires that the execution is NOT performed via delegatecall.
            /// This is the opposite of `onlyProxy`.
            modifier notDelegated() {
                uint256 s = __self;
                /// @solidity memory-safe-assembly
                assembly {
                    if iszero(eq(s, address())) {
                        mstore(0x00, 0x9f03a026) // `UnauthorizedCallContext()`.
                        revert(0x1c, 0x04)
                    }
                }
                _;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import {FCL_ecdsa} from "FreshCryptoLib/FCL_ecdsa.sol";
        import {FCL_Elliptic_ZZ} from "FreshCryptoLib/FCL_elliptic.sol";
        import {Base64} from "openzeppelin-contracts/contracts/utils/Base64.sol";
        import {LibString} from "solady/utils/LibString.sol";
        /// @title WebAuthn
        ///
        /// @notice A library for verifying WebAuthn Authentication Assertions, built off the work
        ///         of Daimo.
        ///
        /// @dev Attempts to use the RIP-7212 precompile for signature verification.
        ///      If precompile verification fails, it falls back to FreshCryptoLib.
        ///
        /// @author Coinbase (https://github.com/base-org/webauthn-sol)
        /// @author Daimo (https://github.com/daimo-eth/p256-verifier/blob/master/src/WebAuthn.sol)
        library WebAuthn {
            using LibString for string;
            struct WebAuthnAuth {
                /// @dev The WebAuthn authenticator data.
                ///      See https://www.w3.org/TR/webauthn-2/#dom-authenticatorassertionresponse-authenticatordata.
                bytes authenticatorData;
                /// @dev The WebAuthn client data JSON.
                ///      See https://www.w3.org/TR/webauthn-2/#dom-authenticatorresponse-clientdatajson.
                string clientDataJSON;
                /// @dev The index at which "challenge":"..." occurs in `clientDataJSON`.
                uint256 challengeIndex;
                /// @dev The index at which "type":"..." occurs in `clientDataJSON`.
                uint256 typeIndex;
                /// @dev The r value of secp256r1 signature
                uint256 r;
                /// @dev The s value of secp256r1 signature
                uint256 s;
            }
            /// @dev Bit 0 of the authenticator data struct, corresponding to the "User Present" bit.
            ///      See https://www.w3.org/TR/webauthn-2/#flags.
            bytes1 private constant _AUTH_DATA_FLAGS_UP = 0x01;
            /// @dev Bit 2 of the authenticator data struct, corresponding to the "User Verified" bit.
            ///      See https://www.w3.org/TR/webauthn-2/#flags.
            bytes1 private constant _AUTH_DATA_FLAGS_UV = 0x04;
            /// @dev Secp256r1 curve order / 2 used as guard to prevent signature malleability issue.
            uint256 private constant _P256_N_DIV_2 = FCL_Elliptic_ZZ.n / 2;
            /// @dev The precompiled contract address to use for signature verification in the “secp256r1” elliptic curve.
            ///      See https://github.com/ethereum/RIPs/blob/master/RIPS/rip-7212.md.
            address private constant _VERIFIER = address(0x100);
            /// @dev The expected type (hash) in the client data JSON when verifying assertion signatures.
            ///      See https://www.w3.org/TR/webauthn-2/#dom-collectedclientdata-type
            bytes32 private constant _EXPECTED_TYPE_HASH = keccak256('"type":"webauthn.get"');
            ///
            /// @notice Verifies a Webauthn Authentication Assertion as described
            /// in https://www.w3.org/TR/webauthn-2/#sctn-verifying-assertion.
            ///
            /// @dev We do not verify all the steps as described in the specification, only ones relevant to our context.
            ///      Please carefully read through this list before usage.
            ///
            ///      Specifically, we do verify the following:
            ///         - Verify that authenticatorData (which comes from the authenticator, such as iCloud Keychain) indicates
            ///           a well-formed assertion with the user present bit set. If `requireUV` is set, checks that the authenticator
            ///           enforced user verification. User verification should be required if, and only if, options.userVerification
            ///           is set to required in the request.
            ///         - Verifies that the client JSON is of type "webauthn.get", i.e. the client was responding to a request to
            ///           assert authentication.
            ///         - Verifies that the client JSON contains the requested challenge.
            ///         - Verifies that (r, s) constitute a valid signature over both the authenicatorData and client JSON, for public
            ///            key (x, y).
            ///
            ///      We make some assumptions about the particular use case of this verifier, so we do NOT verify the following:
            ///         - Does NOT verify that the origin in the `clientDataJSON` matches the Relying Party's origin: tt is considered
            ///           the authenticator's responsibility to ensure that the user is interacting with the correct RP. This is
            ///           enforced by most high quality authenticators properly, particularly the iCloud Keychain and Google Password
            ///           Manager were tested.
            ///         - Does NOT verify That `topOrigin` in `clientDataJSON` is well-formed: We assume it would never be present, i.e.
            ///           the credentials are never used in a cross-origin/iframe context. The website/app set up should disallow
            ///           cross-origin usage of the credentials. This is the default behaviour for created credentials in common settings.
            ///         - Does NOT verify that the `rpIdHash` in `authenticatorData` is the SHA-256 hash of the RP ID expected by the Relying
            ///           Party: this means that we rely on the authenticator to properly enforce credentials to be used only by the correct RP.
            ///           This is generally enforced with features like Apple App Site Association and Google Asset Links. To protect from
            ///           edge cases in which a previously-linked RP ID is removed from the authorised RP IDs, we recommend that messages
            ///           signed by the authenticator include some expiry mechanism.
            ///         - Does NOT verify the credential backup state: this assumes the credential backup state is NOT used as part of Relying
            ///           Party business logic or policy.
            ///         - Does NOT verify the values of the client extension outputs: this assumes that the Relying Party does not use client
            ///           extension outputs.
            ///         - Does NOT verify the signature counter: signature counters are intended to enable risk scoring for the Relying Party.
            ///           This assumes risk scoring is not used as part of Relying Party business logic or policy.
            ///         - Does NOT verify the attestation object: this assumes that response.attestationObject is NOT present in the response,
            ///           i.e. the RP does not intend to verify an attestation.
            ///
            /// @param challenge    The challenge that was provided by the relying party.
            /// @param requireUV    A boolean indicating whether user verification is required.
            /// @param webAuthnAuth The `WebAuthnAuth` struct.
            /// @param x            The x coordinate of the public key.
            /// @param y            The y coordinate of the public key.
            ///
            /// @return `true` if the authentication assertion passed validation, else `false`.
            function verify(bytes memory challenge, bool requireUV, WebAuthnAuth memory webAuthnAuth, uint256 x, uint256 y)
                internal
                view
                returns (bool)
            {
                if (webAuthnAuth.s > _P256_N_DIV_2) {
                    // guard against signature malleability
                    return false;
                }
                // 11. Verify that the value of C.type is the string webauthn.get.
                //     bytes("type":"webauthn.get").length = 21
                string memory _type = webAuthnAuth.clientDataJSON.slice(webAuthnAuth.typeIndex, webAuthnAuth.typeIndex + 21);
                if (keccak256(bytes(_type)) != _EXPECTED_TYPE_HASH) {
                    return false;
                }
                // 12. Verify that the value of C.challenge equals the base64url encoding of options.challenge.
                bytes memory expectedChallenge = bytes(string.concat('"challenge":"', Base64.encodeURL(challenge), '"'));
                string memory actualChallenge =
                    webAuthnAuth.clientDataJSON.slice(webAuthnAuth.challengeIndex, webAuthnAuth.challengeIndex + expectedChallenge.length);
                if (keccak256(bytes(actualChallenge)) != keccak256(expectedChallenge)) {
                    return false;
                }
                // Skip 13., 14., 15.
                // 16. Verify that the UP bit of the flags in authData is set.
                if (webAuthnAuth.authenticatorData[32] & _AUTH_DATA_FLAGS_UP != _AUTH_DATA_FLAGS_UP) {
                    return false;
                }
                // 17. If user verification is required for this assertion, verify that the User Verified bit of the flags in
                //     authData is set.
                if (requireUV && (webAuthnAuth.authenticatorData[32] & _AUTH_DATA_FLAGS_UV) != _AUTH_DATA_FLAGS_UV) {
                    return false;
                }
                // skip 18.
                // 19. Let hash be the result of computing a hash over the cData using SHA-256.
                bytes32 clientDataJSONHash = sha256(bytes(webAuthnAuth.clientDataJSON));
                // 20. Using credentialPublicKey, verify that sig is a valid signature over the binary concatenation of authData
                //     and hash.
                bytes32 messageHash = sha256(abi.encodePacked(webAuthnAuth.authenticatorData, clientDataJSONHash));
                bytes memory args = abi.encode(messageHash, webAuthnAuth.r, webAuthnAuth.s, x, y);
                // try the RIP-7212 precompile address
                (bool success, bytes memory ret) = _VERIFIER.staticcall(args);
                // staticcall will not revert if address has no code
                // check return length
                // note that even if precompile exists, ret.length is 0 when verification returns false
                // so an invalid signature will be checked twice: once by the precompile and once by FCL.
                // Ideally this signature failure is simulated offchain and no one actually pay this gas.
                bool valid = ret.length > 0;
                if (success && valid) return abi.decode(ret, (uint256)) == 1;
                return FCL_ecdsa.ecdsa_verify(messageHash, webAuthnAuth.r, webAuthnAuth.s, x, y);
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.4;
        /// @title ERC-1271
        ///
        /// @notice Abstract ERC-1271 implementation (based on Solady's) with guards to handle the same
        ///         signer being used on multiple accounts.
        ///
        /// @dev To prevent the same signature from being validated on different accounts owned by the samer signer,
        ///      we introduce an anti cross-account-replay layer: the original hash is input into a new EIP-712 compliant
        ///      hash. The domain separator of this outer hash contains the chain id and address of this contract, so that
        ///      it cannot be used on two accounts (see `replaySafeHash()` for the implementation details).
        ///
        /// @author Coinbase (https://github.com/coinbase/smart-wallet)
        /// @author Solady (https://github.com/vectorized/solady/blob/main/src/accounts/ERC1271.sol)
        abstract contract ERC1271 {
            /// @dev Precomputed `typeHash` used to produce EIP-712 compliant hash when applying the anti
            ///      cross-account-replay layer.
            ///
            ///      The original hash must either be:
            ///         - An EIP-191 hash: keccak256("\\x19Ethereum Signed Message:\
        " || len(someMessage) || someMessage)
            ///         - An EIP-712 hash: keccak256("\\x19\\x01" || someDomainSeparator || hashStruct(someStruct))
            bytes32 private constant _MESSAGE_TYPEHASH = keccak256("CoinbaseSmartWalletMessage(bytes32 hash)");
            /// @notice Returns information about the `EIP712Domain` used to create EIP-712 compliant hashes.
            ///
            /// @dev Follows ERC-5267 (see https://eips.ethereum.org/EIPS/eip-5267).
            ///
            /// @return fields The bitmap of used fields.
            /// @return name The value of the `EIP712Domain.name` field.
            /// @return version The value of the `EIP712Domain.version` field.
            /// @return chainId The value of the `EIP712Domain.chainId` field.
            /// @return verifyingContract The value of the `EIP712Domain.verifyingContract` field.
            /// @return salt The value of the `EIP712Domain.salt` field.
            /// @return extensions The list of EIP numbers, that extends EIP-712 with new domain fields.
            function eip712Domain()
                external
                view
                virtual
                returns (
                    bytes1 fields,
                    string memory name,
                    string memory version,
                    uint256 chainId,
                    address verifyingContract,
                    bytes32 salt,
                    uint256[] memory extensions
                )
            {
                fields = hex"0f"; // `0b1111`.
                (name, version) = _domainNameAndVersion();
                chainId = block.chainid;
                verifyingContract = address(this);
                salt = salt; // `bytes32(0)`.
                extensions = extensions; // `new uint256[](0)`.
            }
            /// @notice Validates the `signature` against the given `hash`.
            ///
            /// @dev This implementation follows ERC-1271. See https://eips.ethereum.org/EIPS/eip-1271.
            /// @dev IMPORTANT: Signature verification is performed on the hash produced AFTER applying the anti
            ///      cross-account-replay layer on the given `hash` (i.e., verification is run on the replay-safe
            ///      hash version).
            ///
            /// @param hash      The original hash.
            /// @param signature The signature of the replay-safe hash to validate.
            ///
            /// @return result `0x1626ba7e` if validation succeeded, else `0xffffffff`.
            function isValidSignature(bytes32 hash, bytes calldata signature) public view virtual returns (bytes4 result) {
                if (_isValidSignature({hash: replaySafeHash(hash), signature: signature})) {
                    // bytes4(keccak256("isValidSignature(bytes32,bytes)"))
                    return 0x1626ba7e;
                }
                return 0xffffffff;
            }
            /// @notice Wrapper around `_eip712Hash()` to produce a replay-safe hash fron the given `hash`.
            ///
            /// @dev The returned EIP-712 compliant replay-safe hash is the result of:
            ///      keccak256(
            ///         \\x19\\x01 ||
            ///         this.domainSeparator ||
            ///         hashStruct(CoinbaseSmartWalletMessage({ hash: `hash`}))
            ///      )
            ///
            /// @param hash The original hash.
            ///
            /// @return The corresponding replay-safe hash.
            function replaySafeHash(bytes32 hash) public view virtual returns (bytes32) {
                return _eip712Hash(hash);
            }
            /// @notice Returns the `domainSeparator` used to create EIP-712 compliant hashes.
            ///
            /// @dev Implements domainSeparator = hashStruct(eip712Domain).
            ///      See https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator.
            ///
            /// @return The 32 bytes domain separator result.
            function domainSeparator() public view returns (bytes32) {
                (string memory name, string memory version) = _domainNameAndVersion();
                return keccak256(
                    abi.encode(
                        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
                        keccak256(bytes(name)),
                        keccak256(bytes(version)),
                        block.chainid,
                        address(this)
                    )
                );
            }
            /// @notice Returns the EIP-712 typed hash of the `CoinbaseSmartWalletMessage(bytes32 hash)` data structure.
            ///
            /// @dev Implements encode(domainSeparator : 𝔹²⁵⁶, message : 𝕊) = "\\x19\\x01" || domainSeparator ||
            ///      hashStruct(message).
            /// @dev See https://eips.ethereum.org/EIPS/eip-712#specification.
            ///
            /// @param hash The `CoinbaseSmartWalletMessage.hash` field to hash.
            ////
            /// @return The resulting EIP-712 hash.
            function _eip712Hash(bytes32 hash) internal view virtual returns (bytes32) {
                return keccak256(abi.encodePacked("\\x19\\x01", domainSeparator(), _hashStruct(hash)));
            }
            /// @notice Returns the EIP-712 `hashStruct` result of the `CoinbaseSmartWalletMessage(bytes32 hash)` data
            ///         structure.
            ///
            /// @dev Implements hashStruct(s : 𝕊) = keccak256(typeHash || encodeData(s)).
            /// @dev See https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct.
            ///
            /// @param hash The `CoinbaseSmartWalletMessage.hash` field.
            ///
            /// @return The EIP-712 `hashStruct` result.
            function _hashStruct(bytes32 hash) internal view virtual returns (bytes32) {
                return keccak256(abi.encode(_MESSAGE_TYPEHASH, hash));
            }
            /// @notice Returns the domain name and version to use when creating EIP-712 signatures.
            ///
            /// @dev MUST be defined by the implementation.
            ///
            /// @return name    The user readable name of signing domain.
            /// @return version The current major version of the signing domain.
            function _domainNameAndVersion() internal view virtual returns (string memory name, string memory version);
            /// @notice Validates the `signature` against the given `hash`.
            ///
            /// @dev MUST be defined by the implementation.
            ///
            /// @param hash      The hash whose signature has been performed on.
            /// @param signature The signature associated with `hash`.
            ///
            /// @return `true` is the signature is valid, else `false`.
            function _isValidSignature(bytes32 hash, bytes calldata signature) internal view virtual returns (bool);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.18;
        /// @notice Storage layout used by this contract.
        ///
        /// @custom:storage-location erc7201:coinbase.storage.MultiOwnable
        struct MultiOwnableStorage {
            /// @dev Tracks the index of the next owner to add.
            uint256 nextOwnerIndex;
            /// @dev Tracks number of owners that have been removed.
            uint256 removedOwnersCount;
            /// @dev Maps index to owner bytes, used to idenfitied owners via a uint256 index.
            ///
            ///      Some uses—-such as signature validation for secp256r1 public key owners—-
            ///      requires the caller to assert the public key of the caller. To economize calldata,
            ///      we allow an index to identify an owner, so that the full owner bytes do
            ///      not need to be passed.
            ///
            ///      The `owner` bytes should either be
            ///         - An ABI encoded Ethereum address
            ///         - An ABI encoded public key
            mapping(uint256 index => bytes owner) ownerAtIndex;
            /// @dev Mapping of bytes to booleans indicating whether or not
            ///      bytes_ is an owner of this contract.
            mapping(bytes bytes_ => bool isOwner_) isOwner;
        }
        /// @title Multi Ownable
        ///
        /// @notice Auth contract allowing multiple owners, each identified as bytes.
        ///
        /// @author Coinbase (https://github.com/coinbase/smart-wallet)
        contract MultiOwnable {
            /// @dev Slot for the `MultiOwnableStorage` struct in storage.
            ///      Computed from
            ///      keccak256(abi.encode(uint256(keccak256("coinbase.storage.MultiOwnable")) - 1)) & ~bytes32(uint256(0xff))
            ///      Follows ERC-7201 (see https://eips.ethereum.org/EIPS/eip-7201).
            bytes32 private constant MUTLI_OWNABLE_STORAGE_LOCATION =
                0x97e2c6aad4ce5d562ebfaa00db6b9e0fb66ea5d8162ed5b243f51a2e03086f00;
            /// @notice Thrown when the `msg.sender` is not an owner and is trying to call a privileged function.
            error Unauthorized();
            /// @notice Thrown when trying to add an already registered owner.
            ///
            /// @param owner The owner bytes.
            error AlreadyOwner(bytes owner);
            /// @notice Thrown when trying to remove an owner from an index that is empty.
            ///
            /// @param index The targeted index for removal.
            error NoOwnerAtIndex(uint256 index);
            /// @notice Thrown when `owner` argument does not match owner found at index.
            ///
            /// @param index         The index of the owner to be removed.
            /// @param expectedOwner The owner passed in the remove call.
            /// @param actualOwner   The actual owner at `index`.
            error WrongOwnerAtIndex(uint256 index, bytes expectedOwner, bytes actualOwner);
            /// @notice Thrown when a provided owner is neither 64 bytes long (for public key)
            ///         nor a ABI encoded address.
            ///
            /// @param owner The invalid owner.
            error InvalidOwnerBytesLength(bytes owner);
            /// @notice Thrown if a provided owner is 32 bytes long but does not fit in an `address` type.
            ///
            /// @param owner The invalid owner.
            error InvalidEthereumAddressOwner(bytes owner);
            /// @notice Thrown when removeOwnerAtIndex is called and there is only one current owner.
            error LastOwner();
            /// @notice Thrown when removeLastOwner is called and there is more than one current owner.
            ///
            /// @param ownersRemaining The number of current owners.
            error NotLastOwner(uint256 ownersRemaining);
            /// @notice Emitted when a new owner is registered.
            ///
            /// @param index The owner index of the owner added.
            /// @param owner The owner added.
            event AddOwner(uint256 indexed index, bytes owner);
            /// @notice Emitted when an owner is removed.
            ///
            /// @param index The owner index of the owner removed.
            /// @param owner The owner removed.
            event RemoveOwner(uint256 indexed index, bytes owner);
            /// @notice Access control modifier ensuring the caller is an authorized owner
            modifier onlyOwner() virtual {
                _checkOwner();
                _;
            }
            /// @notice Adds a new Ethereum-address owner.
            ///
            /// @param owner The owner address.
            function addOwnerAddress(address owner) external virtual onlyOwner {
                _addOwnerAtIndex(abi.encode(owner), _getMultiOwnableStorage().nextOwnerIndex++);
            }
            /// @notice Adds a new public-key owner.
            ///
            /// @param x The owner public key x coordinate.
            /// @param y The owner public key y coordinate.
            function addOwnerPublicKey(bytes32 x, bytes32 y) external virtual onlyOwner {
                _addOwnerAtIndex(abi.encode(x, y), _getMultiOwnableStorage().nextOwnerIndex++);
            }
            /// @notice Removes owner at the given `index`.
            ///
            /// @dev Reverts if the owner is not registered at `index`.
            /// @dev Reverts if there is currently only one owner.
            /// @dev Reverts if `owner` does not match bytes found at `index`.
            ///
            /// @param index The index of the owner to be removed.
            /// @param owner The ABI encoded bytes of the owner to be removed.
            function removeOwnerAtIndex(uint256 index, bytes calldata owner) external virtual onlyOwner {
                if (ownerCount() == 1) {
                    revert LastOwner();
                }
                _removeOwnerAtIndex(index, owner);
            }
            /// @notice Removes owner at the given `index`, which should be the only current owner.
            ///
            /// @dev Reverts if the owner is not registered at `index`.
            /// @dev Reverts if there is currently more than one owner.
            /// @dev Reverts if `owner` does not match bytes found at `index`.
            ///
            /// @param index The index of the owner to be removed.
            /// @param owner The ABI encoded bytes of the owner to be removed.
            function removeLastOwner(uint256 index, bytes calldata owner) external virtual onlyOwner {
                uint256 ownersRemaining = ownerCount();
                if (ownersRemaining > 1) {
                    revert NotLastOwner(ownersRemaining);
                }
                _removeOwnerAtIndex(index, owner);
            }
            /// @notice Checks if the given `account` address is registered as owner.
            ///
            /// @param account The account address to check.
            ///
            /// @return `true` if the account is an owner else `false`.
            function isOwnerAddress(address account) public view virtual returns (bool) {
                return _getMultiOwnableStorage().isOwner[abi.encode(account)];
            }
            /// @notice Checks if the given `x`, `y` public key is registered as owner.
            ///
            /// @param x The public key x coordinate.
            /// @param y The public key y coordinate.
            ///
            /// @return `true` if the account is an owner else `false`.
            function isOwnerPublicKey(bytes32 x, bytes32 y) public view virtual returns (bool) {
                return _getMultiOwnableStorage().isOwner[abi.encode(x, y)];
            }
            /// @notice Checks if the given `account` bytes is registered as owner.
            ///
            /// @param account The account, should be ABI encoded address or public key.
            ///
            /// @return `true` if the account is an owner else `false`.
            function isOwnerBytes(bytes memory account) public view virtual returns (bool) {
                return _getMultiOwnableStorage().isOwner[account];
            }
            /// @notice Returns the owner bytes at the given `index`.
            ///
            /// @param index The index to lookup.
            ///
            /// @return The owner bytes (empty if no owner is registered at this `index`).
            function ownerAtIndex(uint256 index) public view virtual returns (bytes memory) {
                return _getMultiOwnableStorage().ownerAtIndex[index];
            }
            /// @notice Returns the next index that will be used to add a new owner.
            ///
            /// @return The next index that will be used to add a new owner.
            function nextOwnerIndex() public view virtual returns (uint256) {
                return _getMultiOwnableStorage().nextOwnerIndex;
            }
            /// @notice Returns the current number of owners
            ///
            /// @return The current owner count
            function ownerCount() public view virtual returns (uint256) {
                MultiOwnableStorage storage $ = _getMultiOwnableStorage();
                return $.nextOwnerIndex - $.removedOwnersCount;
            }
            /// @notice Tracks the number of owners removed
            ///
            /// @dev Used with `this.nextOwnerIndex` to avoid removing all owners
            ///
            /// @return The number of owners that have been removed.
            function removedOwnersCount() public view virtual returns (uint256) {
                return _getMultiOwnableStorage().removedOwnersCount;
            }
            /// @notice Initialize the owners of this contract.
            ///
            /// @dev Intended to be called contract is first deployed and never again.
            /// @dev Reverts if a provided owner is neither 64 bytes long (for public key) nor a valid address.
            ///
            /// @param owners The initial set of owners.
            function _initializeOwners(bytes[] memory owners) internal virtual {
                MultiOwnableStorage storage $ = _getMultiOwnableStorage();
                uint256 nextOwnerIndex_ = $.nextOwnerIndex;
                for (uint256 i; i < owners.length; i++) {
                    if (owners[i].length != 32 && owners[i].length != 64) {
                        revert InvalidOwnerBytesLength(owners[i]);
                    }
                    if (owners[i].length == 32 && uint256(bytes32(owners[i])) > type(uint160).max) {
                        revert InvalidEthereumAddressOwner(owners[i]);
                    }
                    _addOwnerAtIndex(owners[i], nextOwnerIndex_++);
                }
                $.nextOwnerIndex = nextOwnerIndex_;
            }
            /// @notice Adds an owner at the given `index`.
            ///
            /// @dev Reverts if `owner` is already registered as an owner.
            ///
            /// @param owner The owner raw bytes to register.
            /// @param index The index to write to.
            function _addOwnerAtIndex(bytes memory owner, uint256 index) internal virtual {
                if (isOwnerBytes(owner)) revert AlreadyOwner(owner);
                MultiOwnableStorage storage $ = _getMultiOwnableStorage();
                $.isOwner[owner] = true;
                $.ownerAtIndex[index] = owner;
                emit AddOwner(index, owner);
            }
            /// @notice Removes owner at the given `index`.
            ///
            /// @dev Reverts if the owner is not registered at `index`.
            /// @dev Reverts if `owner` does not match bytes found at `index`.
            ///
            /// @param index The index of the owner to be removed.
            /// @param owner The ABI encoded bytes of the owner to be removed.
            function _removeOwnerAtIndex(uint256 index, bytes calldata owner) internal virtual {
                bytes memory owner_ = ownerAtIndex(index);
                if (owner_.length == 0) revert NoOwnerAtIndex(index);
                if (keccak256(owner_) != keccak256(owner)) {
                    revert WrongOwnerAtIndex({index: index, expectedOwner: owner, actualOwner: owner_});
                }
                MultiOwnableStorage storage $ = _getMultiOwnableStorage();
                delete $.isOwner[owner];
                delete $.ownerAtIndex[index];
                $.removedOwnersCount++;
                emit RemoveOwner(index, owner);
            }
            /// @notice Checks if the sender is an owner of this contract or the contract itself.
            ///
            /// @dev Revert if the sender is not an owner fo the contract itself.
            function _checkOwner() internal view virtual {
                if (isOwnerAddress(msg.sender) || (msg.sender == address(this))) {
                    return;
                }
                revert Unauthorized();
            }
            /// @notice Helper function to get a storage reference to the `MultiOwnableStorage` struct.
            ///
            /// @return $ A storage reference to the `MultiOwnableStorage` struct.
            function _getMultiOwnableStorage() internal pure returns (MultiOwnableStorage storage $) {
                assembly ("memory-safe") {
                    $.slot := MUTLI_OWNABLE_STORAGE_LOCATION
                }
            }
        }
        // SPDX-License-Identifier: GPL-3.0
        pragma solidity ^0.8.12;
        /* solhint-disable no-inline-assembly */
        /**
         * returned data from validateUserOp.
         * validateUserOp returns a uint256, with is created by `_packedValidationData` and parsed by `_parseValidationData`
         * @param aggregator - address(0) - the account validated the signature by itself.
         *              address(1) - the account failed to validate the signature.
         *              otherwise - this is an address of a signature aggregator that must be used to validate the signature.
         * @param validAfter - this UserOp is valid only after this timestamp.
         * @param validaUntil - this UserOp is valid only up to this timestamp.
         */
            struct ValidationData {
                address aggregator;
                uint48 validAfter;
                uint48 validUntil;
            }
        //extract sigFailed, validAfter, validUntil.
        // also convert zero validUntil to type(uint48).max
            function _parseValidationData(uint validationData) pure returns (ValidationData memory data) {
                address aggregator = address(uint160(validationData));
                uint48 validUntil = uint48(validationData >> 160);
                if (validUntil == 0) {
                    validUntil = type(uint48).max;
                }
                uint48 validAfter = uint48(validationData >> (48 + 160));
                return ValidationData(aggregator, validAfter, validUntil);
            }
        // intersect account and paymaster ranges.
            function _intersectTimeRange(uint256 validationData, uint256 paymasterValidationData) pure returns (ValidationData memory) {
                ValidationData memory accountValidationData = _parseValidationData(validationData);
                ValidationData memory pmValidationData = _parseValidationData(paymasterValidationData);
                address aggregator = accountValidationData.aggregator;
                if (aggregator == address(0)) {
                    aggregator = pmValidationData.aggregator;
                }
                uint48 validAfter = accountValidationData.validAfter;
                uint48 validUntil = accountValidationData.validUntil;
                uint48 pmValidAfter = pmValidationData.validAfter;
                uint48 pmValidUntil = pmValidationData.validUntil;
                if (validAfter < pmValidAfter) validAfter = pmValidAfter;
                if (validUntil > pmValidUntil) validUntil = pmValidUntil;
                return ValidationData(aggregator, validAfter, validUntil);
            }
        /**
         * helper to pack the return value for validateUserOp
         * @param data - the ValidationData to pack
         */
            function _packValidationData(ValidationData memory data) pure returns (uint256) {
                return uint160(data.aggregator) | (uint256(data.validUntil) << 160) | (uint256(data.validAfter) << (160 + 48));
            }
        /**
         * helper to pack the return value for validateUserOp, when not using an aggregator
         * @param sigFailed - true for signature failure, false for success
         * @param validUntil last timestamp this UserOperation is valid (or zero for infinite)
         * @param validAfter first timestamp this UserOperation is valid
         */
            function _packValidationData(bool sigFailed, uint48 validUntil, uint48 validAfter) pure returns (uint256) {
                return (sigFailed ? 1 : 0) | (uint256(validUntil) << 160) | (uint256(validAfter) << (160 + 48));
            }
        /**
         * keccak function over calldata.
         * @dev copy calldata into memory, do keccak and drop allocated memory. Strangely, this is more efficient than letting solidity do it.
         */
            function calldataKeccak(bytes calldata data) pure returns (bytes32 ret) {
                assembly {
                    let mem := mload(0x40)
                    let len := data.length
                    calldatacopy(mem, data.offset, len)
                    ret := keccak256(mem, len)
                }
            }
        //********************************************************************************************/
        //  ___           _       ___               _         _    _ _
        // | __| _ ___ __| |_    / __|_ _ _  _ _ __| |_ ___  | |  (_) |__
        // | _| '_/ -_|_-< ' \\  | (__| '_| || | '_ \\  _/ _ \\ | |__| | '_ \\
        // |_||_| \\___/__/_||_|  \\___|_|  \\_, | .__/\\__\\___/ |____|_|_.__/
        //                                |__/|_|
        ///* Copyright (C) 2022 - Renaud Dubois - This file is part of FCL (Fresh CryptoLib) project
        ///* License: This software is licensed under MIT License
        ///* This Code may be reused including license and copyright notice.
        ///* See LICENSE file at the root folder of the project.
        ///* FILE: FCL_ecdsa.sol
        ///*
        ///*
        ///* DESCRIPTION: ecdsa verification implementation
        ///*
        //**************************************************************************************/
        //* WARNING: this code SHALL not be used for non prime order curves for security reasons.
        // Code is optimized for a=-3 only curves with prime order, constant like -1, -2 shall be replaced
        // if ever used for other curve than sec256R1
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.8.19 <0.9.0;
        import {FCL_Elliptic_ZZ} from "./FCL_elliptic.sol";
        library FCL_ecdsa {
            // Set parameters for curve sec256r1.public
              //curve order (number of points)
            uint256 constant n = FCL_Elliptic_ZZ.n;
          
            /**
             * @dev ECDSA verification, given , signature, and public key.
             */
            /**
             * @dev ECDSA verification, given , signature, and public key, no calldata version
             */
            function ecdsa_verify(bytes32 message, uint256 r, uint256 s, uint256 Qx, uint256 Qy)  internal view returns (bool){
                if (r == 0 || r >= FCL_Elliptic_ZZ.n || s == 0 || s >= FCL_Elliptic_ZZ.n) {
                    return false;
                }
                
                if (!FCL_Elliptic_ZZ.ecAff_isOnCurve(Qx, Qy)) {
                    return false;
                }
                uint256 sInv = FCL_Elliptic_ZZ.FCL_nModInv(s);
                uint256 scalar_u = mulmod(uint256(message), sInv, FCL_Elliptic_ZZ.n);
                uint256 scalar_v = mulmod(r, sInv, FCL_Elliptic_ZZ.n);
                uint256 x1;
                x1 = FCL_Elliptic_ZZ.ecZZ_mulmuladd_S_asm(Qx, Qy, scalar_u, scalar_v);
                x1= addmod(x1, n-r,n );
            
                return x1 == 0;
            }
            function ec_recover_r1(uint256 h, uint256 v, uint256 r, uint256 s) internal view returns (address)
            {
                 if (r == 0 || r >= FCL_Elliptic_ZZ.n || s == 0 || s >= FCL_Elliptic_ZZ.n) {
                    return address(0);
                }
                uint256 y=FCL_Elliptic_ZZ.ec_Decompress(r, v-27);
                uint256 rinv=FCL_Elliptic_ZZ.FCL_nModInv(r);
                uint256 u1=mulmod(FCL_Elliptic_ZZ.n-addmod(0,h,FCL_Elliptic_ZZ.n), rinv,FCL_Elliptic_ZZ.n);//-hr^-1
                uint256 u2=mulmod(s, rinv,FCL_Elliptic_ZZ.n);//sr^-1
                uint256 Qx;
                uint256 Qy;
                (Qx,Qy)=FCL_Elliptic_ZZ.ecZZ_mulmuladd(r,y, u1, u2);
                return address(uint160(uint256(keccak256(abi.encodePacked(Qx, Qy)))));
            }
            function ecdsa_precomputed_verify(bytes32 message, uint256 r, uint256 s, address Shamir8)
                internal view
                returns (bool)
            {
               
                if (r == 0 || r >= n || s == 0 || s >= n) {
                    return false;
                }
                /* Q is pushed via the contract at address Shamir8 assumed to be correct
                if (!isOnCurve(Q[0], Q[1])) {
                    return false;
                }*/
                uint256 sInv = FCL_Elliptic_ZZ.FCL_nModInv(s);
                uint256 X;
                //Shamir 8 dimensions
                X = FCL_Elliptic_ZZ.ecZZ_mulmuladd_S8_extcode(mulmod(uint256(message), sInv, n), mulmod(r, sInv, n), Shamir8);
                X= addmod(X, n-r,n );
                return X == 0;
            } //end  ecdsa_precomputed_verify()
             function ecdsa_precomputed_verify(bytes32 message, uint256[2] calldata rs, address Shamir8)
                internal view
                returns (bool)
            {
                uint256 r = rs[0];
                uint256 s = rs[1];
                if (r == 0 || r >= n || s == 0 || s >= n) {
                    return false;
                }
                /* Q is pushed via the contract at address Shamir8 assumed to be correct
                if (!isOnCurve(Q[0], Q[1])) {
                    return false;
                }*/
                uint256 sInv = FCL_Elliptic_ZZ.FCL_nModInv(s);
                uint256 X;
                //Shamir 8 dimensions
                X = FCL_Elliptic_ZZ.ecZZ_mulmuladd_S8_extcode(mulmod(uint256(message), sInv, n), mulmod(r, sInv, n), Shamir8);
                X= addmod(X, n-r,n );
                return X == 0;
            } //end  ecdsa_precomputed_verify()
        }
        //********************************************************************************************/
        //  ___           _       ___               _         _    _ _
        // | __| _ ___ __| |_    / __|_ _ _  _ _ __| |_ ___  | |  (_) |__
        // | _| '_/ -_|_-< ' \\  | (__| '_| || | '_ \\  _/ _ \\ | |__| | '_ \\
        // |_||_| \\___/__/_||_|  \\___|_|  \\_, | .__/\\__\\___/ |____|_|_.__/
        //                                |__/|_|
        ///* Copyright (C) 2022 - Renaud Dubois - This file is part of FCL (Fresh CryptoLib) project
        ///* License: This software is licensed under MIT License
        ///* This Code may be reused including license and copyright notice.
        ///* See LICENSE file at the root folder of the project.
        ///* FILE: FCL_elliptic.sol
        ///*
        ///*
        ///* DESCRIPTION: modified XYZZ system coordinates for EVM elliptic point multiplication
        ///*  optimization
        ///*
        //**************************************************************************************/
        //* WARNING: this code SHALL not be used for non prime order curves for security reasons.
        // Code is optimized for a=-3 only curves with prime order, constant like -1, -2 shall be replaced
        // if ever used for other curve than sec256R1
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.8.19 <0.9.0;
        library FCL_Elliptic_ZZ {
            // Set parameters for curve sec256r1.
            // address of the ModExp precompiled contract (Arbitrary-precision exponentiation under modulo)
            address constant MODEXP_PRECOMPILE = 0x0000000000000000000000000000000000000005;
            //curve prime field modulus
            uint256 constant p = 0xFFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF;
            //short weierstrass first coefficient
            uint256 constant a = 0xFFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFC;
            //short weierstrass second coefficient
            uint256 constant b = 0x5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B;
            //generating point affine coordinates
            uint256 constant gx = 0x6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296;
            uint256 constant gy = 0x4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5;
            //curve order (number of points)
            uint256 constant n = 0xFFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551;
            /* -2 mod p constant, used to speed up inversion and doubling (avoid negation)*/
            uint256 constant minus_2 = 0xFFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFD;
            /* -2 mod n constant, used to speed up inversion*/
            uint256 constant minus_2modn = 0xFFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC63254F;
            uint256 constant minus_1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
            //P+1 div 4
            uint256 constant pp1div4=0x3fffffffc0000000400000000000000000000000400000000000000000000000;
            //arbitrary constant to express no quadratic residuosity
            uint256 constant _NOTSQUARE=0xFFFFFFFF00000002000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF;
            uint256 constant _NOTONCURVE=0xFFFFFFFF00000003000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF;
            /**
             * /* inversion mod n via a^(n-2), use of precompiled using little Fermat theorem
             */
            function FCL_nModInv(uint256 u) internal view returns (uint256 result) {
                assembly {
                    let pointer := mload(0x40)
                    // Define length of base, exponent and modulus. 0x20 == 32 bytes
                    mstore(pointer, 0x20)
                    mstore(add(pointer, 0x20), 0x20)
                    mstore(add(pointer, 0x40), 0x20)
                    // Define variables base, exponent and modulus
                    mstore(add(pointer, 0x60), u)
                    mstore(add(pointer, 0x80), minus_2modn)
                    mstore(add(pointer, 0xa0), n)
                    // Call the precompiled contract 0x05 = ModExp
                    if iszero(staticcall(not(0), 0x05, pointer, 0xc0, pointer, 0x20)) { revert(0, 0) }
                    result := mload(pointer)
                }
            }
            /**
             * /* @dev inversion mod nusing little Fermat theorem via a^(n-2), use of precompiled
             */
            function FCL_pModInv(uint256 u) internal view returns (uint256 result) {
                assembly {
                    let pointer := mload(0x40)
                    // Define length of base, exponent and modulus. 0x20 == 32 bytes
                    mstore(pointer, 0x20)
                    mstore(add(pointer, 0x20), 0x20)
                    mstore(add(pointer, 0x40), 0x20)
                    // Define variables base, exponent and modulus
                    mstore(add(pointer, 0x60), u)
                    mstore(add(pointer, 0x80), minus_2)
                    mstore(add(pointer, 0xa0), p)
                    // Call the precompiled contract 0x05 = ModExp
                    if iszero(staticcall(not(0), 0x05, pointer, 0xc0, pointer, 0x20)) { revert(0, 0) }
                    result := mload(pointer)
                }
            }
            //Coron projective shuffling, take as input alpha as blinding factor
           function ecZZ_Coronize(uint256 alpha, uint256 x, uint256 y,  uint256 zz, uint256 zzz) internal pure  returns (uint256 x3, uint256 y3, uint256 zz3, uint256 zzz3)
           {
               
                uint256 alpha2=mulmod(alpha,alpha,p);
               
                x3=mulmod(alpha2, x,p); //alpha^-2.x
                y3=mulmod(mulmod(alpha, alpha2,p), y,p);
                zz3=mulmod(zz,alpha2,p);//alpha^2 zz
                zzz3=mulmod(zzz,mulmod(alpha, alpha2,p),p);//alpha^3 zzz
                
                return (x3, y3, zz3, zzz3);
           }
         function ecZZ_Add(uint256 x1, uint256 y1, uint256 zz1, uint256 zzz1, uint256 x2, uint256 y2, uint256 zz2, uint256 zzz2) internal pure  returns (uint256 x3, uint256 y3, uint256 zz3, uint256 zzz3)
          {
            uint256 u1=mulmod(x1,zz2,p); // U1 = X1*ZZ2
            uint256 u2=mulmod(x2, zz1,p);               //  U2 = X2*ZZ1
            u2=addmod(u2, p-u1, p);//  P = U2-U1
            x1=mulmod(u2, u2, p);//PP
            x2=mulmod(x1, u2, p);//PPP
            
            zz3=mulmod(x1, mulmod(zz1, zz2, p),p);//ZZ3 = ZZ1*ZZ2*PP  
            zzz3=mulmod(zzz1, mulmod(zzz2, x2, p),p);//ZZZ3 = ZZZ1*ZZZ2*PPP
            zz1=mulmod(y1, zzz2,p);  // S1 = Y1*ZZZ2
            zz2=mulmod(y2, zzz1, p);    // S2 = Y2*ZZZ1 
            zz2=addmod(zz2, p-zz1, p);//R = S2-S1
            zzz1=mulmod(u1, x1,p); //Q = U1*PP
            x3= addmod(addmod(mulmod(zz2, zz2, p), p-x2,p), mulmod(minus_2, zzz1,p),p); //X3 = R2-PPP-2*Q
            y3=addmod( mulmod(zz2, addmod(zzz1, p-x3, p),p), p-mulmod(zz1, x2, p),p);//R*(Q-X3)-S1*PPP
            return (x3, y3, zz3, zzz3);
          }
        /// @notice Calculate one modular square root of a given integer. Assume that p=3 mod 4.
        /// @dev Uses the ModExp precompiled contract at address 0x05 for fast computation using little Fermat theorem
        /// @param self The integer of which to find the modular inverse
        /// @return result The modular inverse of the input integer. If the modular inverse doesn't exist, it revert the tx
        function SqrtMod(uint256 self) internal view returns (uint256 result){
         assembly ("memory-safe") {
                // load the free memory pointer value
                let pointer := mload(0x40)
                // Define length of base (Bsize)
                mstore(pointer, 0x20)
                // Define the exponent size (Esize)
                mstore(add(pointer, 0x20), 0x20)
                // Define the modulus size (Msize)
                mstore(add(pointer, 0x40), 0x20)
                // Define variables base (B)
                mstore(add(pointer, 0x60), self)
                // Define the exponent (E)
                mstore(add(pointer, 0x80), pp1div4)
                // We save the point of the last argument, it will be override by the result
                // of the precompile call in order to avoid paying for the memory expansion properly
                let _result := add(pointer, 0xa0)
                // Define the modulus (M)
                mstore(_result, p)
                // Call the precompiled ModExp (0x05) https://www.evm.codes/precompiled#0x05
                if iszero(
                    staticcall(
                        not(0), // amount of gas to send
                        MODEXP_PRECOMPILE, // target
                        pointer, // argsOffset
                        0xc0, // argsSize (6 * 32 bytes)
                        _result, // retOffset (we override M to avoid paying for the memory expansion)
                        0x20 // retSize (32 bytes)
                    )
                ) { revert(0, 0) }
          result := mload(_result)
        //  result :=addmod(result,0,p)
         }
           if(mulmod(result,result,p)!=self){
             result=_NOTSQUARE;
           }
          
           return result;
        }
            /**
             * /* @dev Convert from affine rep to XYZZ rep
             */
            function ecAff_SetZZ(uint256 x0, uint256 y0) internal pure returns (uint256[4] memory P) {
                unchecked {
                    P[2] = 1; //ZZ
                    P[3] = 1; //ZZZ
                    P[0] = x0;
                    P[1] = y0;
                }
            }
            function ec_Decompress(uint256 x, uint256 parity) internal view returns(uint256 y){ 
                uint256 y2=mulmod(x,mulmod(x,x,p),p);//x3
                y2=addmod(b,addmod(y2,mulmod(x,a,p),p),p);//x3+ax+b
                y=SqrtMod(y2);
                if(y==_NOTSQUARE){
                   return _NOTONCURVE;
                }
                if((y&1)!=(parity&1)){
                    y=p-y;
                }
            }
            /**
             * /* @dev Convert from XYZZ rep to affine rep
             */
            /*    https://hyperelliptic.org/EFD/g1p/auto-shortw-xyzz-3.html#addition-add-2008-s*/
            function ecZZ_SetAff(uint256 x, uint256 y, uint256 zz, uint256 zzz) internal view returns (uint256 x1, uint256 y1) {
                uint256 zzzInv = FCL_pModInv(zzz); //1/zzz
                y1 = mulmod(y, zzzInv, p); //Y/zzz
                uint256 _b = mulmod(zz, zzzInv, p); //1/z
                zzzInv = mulmod(_b, _b, p); //1/zz
                x1 = mulmod(x, zzzInv, p); //X/zz
            }
            /**
             * /* @dev Sutherland2008 doubling
             */
            /* The "dbl-2008-s-1" doubling formulas */
            function ecZZ_Dbl(uint256 x, uint256 y, uint256 zz, uint256 zzz)
                internal
                pure
                returns (uint256 P0, uint256 P1, uint256 P2, uint256 P3)
            {
                unchecked {
                    assembly {
                        P0 := mulmod(2, y, p) //U = 2*Y1
                        P2 := mulmod(P0, P0, p) // V=U^2
                        P3 := mulmod(x, P2, p) // S = X1*V
                        P1 := mulmod(P0, P2, p) // W=UV
                        P2 := mulmod(P2, zz, p) //zz3=V*ZZ1
                        zz := mulmod(3, mulmod(addmod(x, sub(p, zz), p), addmod(x, zz, p), p), p) //M=3*(X1-ZZ1)*(X1+ZZ1)
                        P0 := addmod(mulmod(zz, zz, p), mulmod(minus_2, P3, p), p) //X3=M^2-2S
                        x := mulmod(zz, addmod(P3, sub(p, P0), p), p) //M(S-X3)
                        P3 := mulmod(P1, zzz, p) //zzz3=W*zzz1
                        P1 := addmod(x, sub(p, mulmod(P1, y, p)), p) //Y3= M(S-X3)-W*Y1
                    }
                }
                return (P0, P1, P2, P3);
            }
            /**
             * @dev Sutherland2008 add a ZZ point with a normalized point and greedy formulae
             * warning: assume that P1(x1,y1)!=P2(x2,y2), true in multiplication loop with prime order (cofactor 1)
             */
            function ecZZ_AddN(uint256 x1, uint256 y1, uint256 zz1, uint256 zzz1, uint256 x2, uint256 y2)
                internal
                pure
                returns (uint256 P0, uint256 P1, uint256 P2, uint256 P3)
            {
                unchecked {
                    if (y1 == 0) {
                        return (x2, y2, 1, 1);
                    }
                    assembly {
                        y1 := sub(p, y1)
                        y2 := addmod(mulmod(y2, zzz1, p), y1, p)
                        x2 := addmod(mulmod(x2, zz1, p), sub(p, x1), p)
                        P0 := mulmod(x2, x2, p) //PP = P^2
                        P1 := mulmod(P0, x2, p) //PPP = P*PP
                        P2 := mulmod(zz1, P0, p) ////ZZ3 = ZZ1*PP
                        P3 := mulmod(zzz1, P1, p) ////ZZZ3 = ZZZ1*PPP
                        zz1 := mulmod(x1, P0, p) //Q = X1*PP
                        P0 := addmod(addmod(mulmod(y2, y2, p), sub(p, P1), p), mulmod(minus_2, zz1, p), p) //R^2-PPP-2*Q
                        P1 := addmod(mulmod(addmod(zz1, sub(p, P0), p), y2, p), mulmod(y1, P1, p), p) //R*(Q-X3)
                    }
                    //end assembly
                } //end unchecked
                return (P0, P1, P2, P3);
            }
            /**
             * @dev Return the zero curve in XYZZ coordinates.
             */
            function ecZZ_SetZero() internal pure returns (uint256 x, uint256 y, uint256 zz, uint256 zzz) {
                return (0, 0, 0, 0);
            }
            /**
             * @dev Check if point is the neutral of the curve
             */
            // uint256 x0, uint256 y0, uint256 zz0, uint256 zzz0
            function ecZZ_IsZero(uint256, uint256 y0, uint256, uint256) internal pure returns (bool) {
                return y0 == 0;
            }
            /**
             * @dev Return the zero curve in affine coordinates. Compatible with the double formulae (no special case)
             */
            function ecAff_SetZero() internal pure returns (uint256 x, uint256 y) {
                return (0, 0);
            }
            /**
             * @dev Check if the curve is the zero curve in affine rep.
             */
            // uint256 x, uint256 y)
            function ecAff_IsZero(uint256, uint256 y) internal pure returns (bool flag) {
                return (y == 0);
            }
            /**
             * @dev Check if a point in affine coordinates is on the curve (reject Neutral that is indeed on the curve).
             */
            function ecAff_isOnCurve(uint256 x, uint256 y) internal pure returns (bool) {
                if (x >= p || y >= p || ((x == 0) && (y == 0))) {
                    return false;
                }
                unchecked {
                    uint256 LHS = mulmod(y, y, p); // y^2
                    uint256 RHS = addmod(mulmod(mulmod(x, x, p), x, p), mulmod(x, a, p), p); // x^3+ax
                    RHS = addmod(RHS, b, p); // x^3 + a*x + b
                    return LHS == RHS;
                }
            }
            /**
             * @dev Add two elliptic curve points in affine coordinates. Deal with P=Q
             */
            function ecAff_add(uint256 x0, uint256 y0, uint256 x1, uint256 y1) internal view returns (uint256, uint256) {
                uint256 zz0;
                uint256 zzz0;
                if (ecAff_IsZero(x0, y0)) return (x1, y1);
                if (ecAff_IsZero(x1, y1)) return (x0, y0);
                if((x0==x1)&&(y0==y1)) {
                    (x0, y0, zz0, zzz0) = ecZZ_Dbl(x0, y0,1,1);
                }
                else{
                    (x0, y0, zz0, zzz0) = ecZZ_AddN(x0, y0, 1, 1, x1, y1);
                }
                return ecZZ_SetAff(x0, y0, zz0, zzz0);
            }
            /**
             * @dev Computation of uG+vQ using Strauss-Shamir's trick, G basepoint, Q public key
             *       Returns only x for ECDSA use            
             *      */
            function ecZZ_mulmuladd_S_asm(
                uint256 Q0,
                uint256 Q1, //affine rep for input point Q
                uint256 scalar_u,
                uint256 scalar_v
            ) internal view returns (uint256 X) {
                uint256 zz;
                uint256 zzz;
                uint256 Y;
                uint256 index = 255;
                uint256 H0;
                uint256 H1;
                unchecked {
                    if (scalar_u == 0 && scalar_v == 0) return 0;
                    (H0, H1) = ecAff_add(gx, gy, Q0, Q1); 
                    if((H0==0)&&(H1==0))//handling Q=-G
                    {
                        scalar_u=addmod(scalar_u, n-scalar_v, n);
                        scalar_v=0;
                        if (scalar_u == 0 && scalar_v == 0) return 0;
                    }
                    assembly {
                        for { let T4 := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1)) } eq(T4, 0) {
                            index := sub(index, 1)
                            T4 := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1))
                        } {}
                        zz := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1))
                        if eq(zz, 1) {
                            X := gx
                            Y := gy
                        }
                        if eq(zz, 2) {
                            X := Q0
                            Y := Q1
                        }
                        if eq(zz, 3) {
                            X := H0
                            Y := H1
                        }
                        index := sub(index, 1)
                        zz := 1
                        zzz := 1
                        for {} gt(minus_1, index) { index := sub(index, 1) } {
                            // inlined EcZZ_Dbl
                            let T1 := mulmod(2, Y, p) //U = 2*Y1, y free
                            let T2 := mulmod(T1, T1, p) // V=U^2
                            let T3 := mulmod(X, T2, p) // S = X1*V
                            T1 := mulmod(T1, T2, p) // W=UV
                            let T4 := mulmod(3, mulmod(addmod(X, sub(p, zz), p), addmod(X, zz, p), p), p) //M=3*(X1-ZZ1)*(X1+ZZ1)
                            zzz := mulmod(T1, zzz, p) //zzz3=W*zzz1
                            zz := mulmod(T2, zz, p) //zz3=V*ZZ1, V free
                            X := addmod(mulmod(T4, T4, p), mulmod(minus_2, T3, p), p) //X3=M^2-2S
                            T2 := mulmod(T4, addmod(X, sub(p, T3), p), p) //-M(S-X3)=M(X3-S)
                            Y := addmod(mulmod(T1, Y, p), T2, p) //-Y3= W*Y1-M(S-X3), we replace Y by -Y to avoid a sub in ecAdd
                            {
                                //value of dibit
                                T4 := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1))
                                if iszero(T4) {
                                    Y := sub(p, Y) //restore the -Y inversion
                                    continue
                                } // if T4!=0
                                if eq(T4, 1) {
                                    T1 := gx
                                    T2 := gy
                                }
                                if eq(T4, 2) {
                                    T1 := Q0
                                    T2 := Q1
                                }
                                if eq(T4, 3) {
                                    T1 := H0
                                    T2 := H1
                                }
                                if iszero(zz) {
                                    X := T1
                                    Y := T2
                                    zz := 1
                                    zzz := 1
                                    continue
                                }
                                // inlined EcZZ_AddN
                                //T3:=sub(p, Y)
                                //T3:=Y
                                let y2 := addmod(mulmod(T2, zzz, p), Y, p) //R
                                T2 := addmod(mulmod(T1, zz, p), sub(p, X), p) //P
                                //special extremely rare case accumulator where EcAdd is replaced by EcDbl, no need to optimize this
                                //todo : construct edge vector case
                                if iszero(y2) {
                                    if iszero(T2) {
                                        T1 := mulmod(minus_2, Y, p) //U = 2*Y1, y free
                                        T2 := mulmod(T1, T1, p) // V=U^2
                                        T3 := mulmod(X, T2, p) // S = X1*V
                                        T1 := mulmod(T1, T2, p) // W=UV
                                        y2 := mulmod(addmod(X, zz, p), addmod(X, sub(p, zz), p), p) //(X-ZZ)(X+ZZ)
                                        T4 := mulmod(3, y2, p) //M=3*(X-ZZ)(X+ZZ)
                                        zzz := mulmod(T1, zzz, p) //zzz3=W*zzz1
                                        zz := mulmod(T2, zz, p) //zz3=V*ZZ1, V free
                                        X := addmod(mulmod(T4, T4, p), mulmod(minus_2, T3, p), p) //X3=M^2-2S
                                        T2 := mulmod(T4, addmod(T3, sub(p, X), p), p) //M(S-X3)
                                        Y := addmod(T2, mulmod(T1, Y, p), p) //Y3= M(S-X3)-W*Y1
                                        continue
                                    }
                                }
                                T4 := mulmod(T2, T2, p) //PP
                                let TT1 := mulmod(T4, T2, p) //PPP, this one could be spared, but adding this register spare gas
                                zz := mulmod(zz, T4, p)
                                zzz := mulmod(zzz, TT1, p) //zz3=V*ZZ1
                                let TT2 := mulmod(X, T4, p)
                                T4 := addmod(addmod(mulmod(y2, y2, p), sub(p, TT1), p), mulmod(minus_2, TT2, p), p)
                                Y := addmod(mulmod(addmod(TT2, sub(p, T4), p), y2, p), mulmod(Y, TT1, p), p)
                                X := T4
                            }
                        } //end loop
                        let T := mload(0x40)
                        mstore(add(T, 0x60), zz)
                        //(X,Y)=ecZZ_SetAff(X,Y,zz, zzz);
                        //T[0] = inverseModp_Hard(T[0], p); //1/zzz, inline modular inversion using precompile:
                        // Define length of base, exponent and modulus. 0x20 == 32 bytes
                        mstore(T, 0x20)
                        mstore(add(T, 0x20), 0x20)
                        mstore(add(T, 0x40), 0x20)
                        // Define variables base, exponent and modulus
                        //mstore(add(pointer, 0x60), u)
                        mstore(add(T, 0x80), minus_2)
                        mstore(add(T, 0xa0), p)
                        // Call the precompiled contract 0x05 = ModExp
                        if iszero(staticcall(not(0), 0x05, T, 0xc0, T, 0x20)) { revert(0, 0) }
                        //Y:=mulmod(Y,zzz,p)//Y/zzz
                        //zz :=mulmod(zz, mload(T),p) //1/z
                        //zz:= mulmod(zz,zz,p) //1/zz
                        X := mulmod(X, mload(T), p) //X/zz
                    } //end assembly
                } //end unchecked
                return X;
            }
            /**
             * @dev Computation of uG+vQ using Strauss-Shamir's trick, G basepoint, Q public key
             *       Returns affine representation of point (normalized)       
             *      */
            function ecZZ_mulmuladd(
                uint256 Q0,
                uint256 Q1, //affine rep for input point Q
                uint256 scalar_u,
                uint256 scalar_v
            ) internal view returns (uint256 X, uint256 Y) {
                uint256 zz;
                uint256 zzz;
                uint256 index = 255;
                uint256[6] memory T;
                uint256[2] memory H;
         
                unchecked {
                    if (scalar_u == 0 && scalar_v == 0) return (0,0);
                    (H[0], H[1]) = ecAff_add(gx, gy, Q0, Q1); //will not work if Q=P, obvious forbidden private key
                    assembly {
                        for { let T4 := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1)) } eq(T4, 0) {
                            index := sub(index, 1)
                            T4 := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1))
                        } {}
                        zz := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1))
                        if eq(zz, 1) {
                            X := gx
                            Y := gy
                        }
                        if eq(zz, 2) {
                            X := Q0
                            Y := Q1
                        }
                        if eq(zz, 3) {
                            Y := mload(add(H,32))
                            X := mload(H)
                        }
                        index := sub(index, 1)
                        zz := 1
                        zzz := 1
                        for {} gt(minus_1, index) { index := sub(index, 1) } {
                            // inlined EcZZ_Dbl
                            let T1 := mulmod(2, Y, p) //U = 2*Y1, y free
                            let T2 := mulmod(T1, T1, p) // V=U^2
                            let T3 := mulmod(X, T2, p) // S = X1*V
                            T1 := mulmod(T1, T2, p) // W=UV
                            let T4 := mulmod(3, mulmod(addmod(X, sub(p, zz), p), addmod(X, zz, p), p), p) //M=3*(X1-ZZ1)*(X1+ZZ1)
                            zzz := mulmod(T1, zzz, p) //zzz3=W*zzz1
                            zz := mulmod(T2, zz, p) //zz3=V*ZZ1, V free
                            X := addmod(mulmod(T4, T4, p), mulmod(minus_2, T3, p), p) //X3=M^2-2S
                            T2 := mulmod(T4, addmod(X, sub(p, T3), p), p) //-M(S-X3)=M(X3-S)
                            Y := addmod(mulmod(T1, Y, p), T2, p) //-Y3= W*Y1-M(S-X3), we replace Y by -Y to avoid a sub in ecAdd
                            {
                                //value of dibit
                                T4 := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1))
                                if iszero(T4) {
                                    Y := sub(p, Y) //restore the -Y inversion
                                    continue
                                } // if T4!=0
                                if eq(T4, 1) {
                                    T1 := gx
                                    T2 := gy
                                }
                                if eq(T4, 2) {
                                    T1 := Q0
                                    T2 := Q1
                                }
                                if eq(T4, 3) {
                                    T1 := mload(H)
                                    T2 := mload(add(H,32))
                                }
                                if iszero(zz) {
                                    X := T1
                                    Y := T2
                                    zz := 1
                                    zzz := 1
                                    continue
                                }
                                // inlined EcZZ_AddN
                                //T3:=sub(p, Y)
                                //T3:=Y
                                let y2 := addmod(mulmod(T2, zzz, p), Y, p) //R
                                T2 := addmod(mulmod(T1, zz, p), sub(p, X), p) //P
                                //special extremely rare case accumulator where EcAdd is replaced by EcDbl, no need to optimize this
                                //todo : construct edge vector case
                                if iszero(y2) {
                                    if iszero(T2) {
                                        T1 := mulmod(minus_2, Y, p) //U = 2*Y1, y free
                                        T2 := mulmod(T1, T1, p) // V=U^2
                                        T3 := mulmod(X, T2, p) // S = X1*V
                                        T1 := mulmod(T1, T2, p) // W=UV
                                        y2 := mulmod(addmod(X, zz, p), addmod(X, sub(p, zz), p), p) //(X-ZZ)(X+ZZ)
                                        T4 := mulmod(3, y2, p) //M=3*(X-ZZ)(X+ZZ)
                                        zzz := mulmod(T1, zzz, p) //zzz3=W*zzz1
                                        zz := mulmod(T2, zz, p) //zz3=V*ZZ1, V free
                                        X := addmod(mulmod(T4, T4, p), mulmod(minus_2, T3, p), p) //X3=M^2-2S
                                        T2 := mulmod(T4, addmod(T3, sub(p, X), p), p) //M(S-X3)
                                        Y := addmod(T2, mulmod(T1, Y, p), p) //Y3= M(S-X3)-W*Y1
                                        continue
                                    }
                                }
                                T4 := mulmod(T2, T2, p) //PP
                                let TT1 := mulmod(T4, T2, p) //PPP, this one could be spared, but adding this register spare gas
                                zz := mulmod(zz, T4, p)
                                zzz := mulmod(zzz, TT1, p) //zz3=V*ZZ1
                                let TT2 := mulmod(X, T4, p)
                                T4 := addmod(addmod(mulmod(y2, y2, p), sub(p, TT1), p), mulmod(minus_2, TT2, p), p)
                                Y := addmod(mulmod(addmod(TT2, sub(p, T4), p), y2, p), mulmod(Y, TT1, p), p)
                                X := T4
                            }
                        } //end loop
                        mstore(add(T, 0x60), zzz)
                        //(X,Y)=ecZZ_SetAff(X,Y,zz, zzz);
                        //T[0] = inverseModp_Hard(T[0], p); //1/zzz, inline modular inversion using precompile:
                        // Define length of base, exponent and modulus. 0x20 == 32 bytes
                        mstore(T, 0x20)
                        mstore(add(T, 0x20), 0x20)
                        mstore(add(T, 0x40), 0x20)
                        // Define variables base, exponent and modulus
                        //mstore(add(pointer, 0x60), u)
                        mstore(add(T, 0x80), minus_2)
                        mstore(add(T, 0xa0), p)
                        // Call the precompiled contract 0x05 = ModExp
                        if iszero(staticcall(not(0), 0x05, T, 0xc0, T, 0x20)) { revert(0, 0) }
                        Y:=mulmod(Y,mload(T),p)//Y/zzz
                        zz :=mulmod(zz, mload(T),p) //1/z
                        zz:= mulmod(zz,zz,p) //1/zz
                        X := mulmod(X, zz, p) //X/zz
                    } //end assembly
                } //end unchecked
                return (X,Y);
            }
            //8 dimensions Shamir's trick, using precomputations stored in Shamir8,  stored as Bytecode of an external
            //contract at given address dataPointer
            //(thx to Lakhdar https://github.com/Kelvyne for EVM storage explanations and tricks)
            // the external tool to generate tables from public key is in the /sage directory
            function ecZZ_mulmuladd_S8_extcode(uint256 scalar_u, uint256 scalar_v, address dataPointer)
                internal view
                returns (uint256 X /*, uint Y*/ )
            {
                unchecked {
                    uint256 zz; // third and  coordinates of the point
                    uint256[6] memory T;
                    zz = 256; //start index
                    while (T[0] == 0) {
                        zz = zz - 1;
                        //tbd case of msb octobit is null
                        T[0] = 64
                            * (
                                128 * ((scalar_v >> zz) & 1) + 64 * ((scalar_v >> (zz - 64)) & 1)
                                    + 32 * ((scalar_v >> (zz - 128)) & 1) + 16 * ((scalar_v >> (zz - 192)) & 1)
                                    + 8 * ((scalar_u >> zz) & 1) + 4 * ((scalar_u >> (zz - 64)) & 1)
                                    + 2 * ((scalar_u >> (zz - 128)) & 1) + ((scalar_u >> (zz - 192)) & 1)
                            );
                    }
                    assembly {
                        extcodecopy(dataPointer, T, mload(T), 64)
                        let index := sub(zz, 1)
                        X := mload(T)
                        let Y := mload(add(T, 32))
                        let zzz := 1
                        zz := 1
                        //loop over 1/4 of scalars thx to Shamir's trick over 8 points
                        for {} gt(index, 191) { index := add(index, 191) } {
                            //inline Double
                            {
                                let TT1 := mulmod(2, Y, p) //U = 2*Y1, y free
                                let T2 := mulmod(TT1, TT1, p) // V=U^2
                                let T3 := mulmod(X, T2, p) // S = X1*V
                                let T1 := mulmod(TT1, T2, p) // W=UV
                                let T4 := mulmod(3, mulmod(addmod(X, sub(p, zz), p), addmod(X, zz, p), p), p) //M=3*(X1-ZZ1)*(X1+ZZ1)
                                zzz := mulmod(T1, zzz, p) //zzz3=W*zzz1
                                zz := mulmod(T2, zz, p) //zz3=V*ZZ1, V free
                                X := addmod(mulmod(T4, T4, p), mulmod(minus_2, T3, p), p) //X3=M^2-2S
                                //T2:=mulmod(T4,addmod(T3, sub(p, X),p),p)//M(S-X3)
                                let T5 := mulmod(T4, addmod(X, sub(p, T3), p), p) //-M(S-X3)=M(X3-S)
                                //Y:= addmod(T2, sub(p, mulmod(T1, Y ,p)),p  )//Y3= M(S-X3)-W*Y1
                                Y := addmod(mulmod(T1, Y, p), T5, p) //-Y3= W*Y1-M(S-X3), we replace Y by -Y to avoid a sub in ecAdd
                                /* compute element to access in precomputed table */
                            }
                            {
                                let T4 := add(shl(13, and(shr(index, scalar_v), 1)), shl(9, and(shr(index, scalar_u), 1)))
                                let index2 := sub(index, 64)
                                let T3 :=
                                    add(T4, add(shl(12, and(shr(index2, scalar_v), 1)), shl(8, and(shr(index2, scalar_u), 1))))
                                let index3 := sub(index2, 64)
                                let T2 :=
                                    add(T3, add(shl(11, and(shr(index3, scalar_v), 1)), shl(7, and(shr(index3, scalar_u), 1))))
                                index := sub(index3, 64)
                                let T1 :=
                                    add(T2, add(shl(10, and(shr(index, scalar_v), 1)), shl(6, and(shr(index, scalar_u), 1))))
                                //tbd: check validity of formulae with (0,1) to remove conditional jump
                                if iszero(T1) {
                                    Y := sub(p, Y)
                                    continue
                                }
                                extcodecopy(dataPointer, T, T1, 64)
                            }
                            {
                                /* Access to precomputed table using extcodecopy hack */
                                // inlined EcZZ_AddN
                                if iszero(zz) {
                                    X := mload(T)
                                    Y := mload(add(T, 32))
                                    zz := 1
                                    zzz := 1
                                    continue
                                }
                                let y2 := addmod(mulmod(mload(add(T, 32)), zzz, p), Y, p)
                                let T2 := addmod(mulmod(mload(T), zz, p), sub(p, X), p)
                                //special case ecAdd(P,P)=EcDbl
                                if iszero(y2) {
                                    if iszero(T2) {
                                        let T1 := mulmod(minus_2, Y, p) //U = 2*Y1, y free
                                        T2 := mulmod(T1, T1, p) // V=U^2
                                        let T3 := mulmod(X, T2, p) // S = X1*V
                                        T1 := mulmod(T1, T2, p) // W=UV
                                        y2 := mulmod(addmod(X, zz, p), addmod(X, sub(p, zz), p), p) //(X-ZZ)(X+ZZ)
                                        let T4 := mulmod(3, y2, p) //M=3*(X-ZZ)(X+ZZ)
                                        zzz := mulmod(T1, zzz, p) //zzz3=W*zzz1
                                        zz := mulmod(T2, zz, p) //zz3=V*ZZ1, V free
                                        X := addmod(mulmod(T4, T4, p), mulmod(minus_2, T3, p), p) //X3=M^2-2S
                                        T2 := mulmod(T4, addmod(T3, sub(p, X), p), p) //M(S-X3)
                                        Y := addmod(T2, mulmod(T1, Y, p), p) //Y3= M(S-X3)-W*Y1
                                        continue
                                    }
                                }
                                let T4 := mulmod(T2, T2, p)
                                let T1 := mulmod(T4, T2, p) //
                                zz := mulmod(zz, T4, p)
                                //zzz3=V*ZZ1
                                zzz := mulmod(zzz, T1, p) // W=UV/
                                let zz1 := mulmod(X, T4, p)
                                X := addmod(addmod(mulmod(y2, y2, p), sub(p, T1), p), mulmod(minus_2, zz1, p), p)
                                Y := addmod(mulmod(addmod(zz1, sub(p, X), p), y2, p), mulmod(Y, T1, p), p)
                            }
                        } //end loop
                        mstore(add(T, 0x60), zz)
                        //(X,Y)=ecZZ_SetAff(X,Y,zz, zzz);
                        //T[0] = inverseModp_Hard(T[0], p); //1/zzz, inline modular inversion using precompile:
                        // Define length of base, exponent and modulus. 0x20 == 32 bytes
                        mstore(T, 0x20)
                        mstore(add(T, 0x20), 0x20)
                        mstore(add(T, 0x40), 0x20)
                        // Define variables base, exponent and modulus
                        //mstore(add(pointer, 0x60), u)
                        mstore(add(T, 0x80), minus_2)
                        mstore(add(T, 0xa0), p)
                        // Call the precompiled contract 0x05 = ModExp
                        if iszero(staticcall(not(0), 0x05, T, 0xc0, T, 0x20)) { revert(0, 0) }
                        zz := mload(T)
                        X := mulmod(X, zz, p) //X/zz
                    }
                } //end unchecked
            }
           
            // improving the extcodecopy trick : append array at end of contract
            function ecZZ_mulmuladd_S8_hackmem(uint256 scalar_u, uint256 scalar_v, uint256 dataPointer)
                internal view
                returns (uint256 X /*, uint Y*/ )
            {
                uint256 zz; // third and  coordinates of the point
                uint256[6] memory T;
                zz = 256; //start index
                unchecked {
                    while (T[0] == 0) {
                        zz = zz - 1;
                        //tbd case of msb octobit is null
                        T[0] = 64
                            * (
                                128 * ((scalar_v >> zz) & 1) + 64 * ((scalar_v >> (zz - 64)) & 1)
                                    + 32 * ((scalar_v >> (zz - 128)) & 1) + 16 * ((scalar_v >> (zz - 192)) & 1)
                                    + 8 * ((scalar_u >> zz) & 1) + 4 * ((scalar_u >> (zz - 64)) & 1)
                                    + 2 * ((scalar_u >> (zz - 128)) & 1) + ((scalar_u >> (zz - 192)) & 1)
                            );
                    }
                    assembly {
                        codecopy(T, add(mload(T), dataPointer), 64)
                        X := mload(T)
                        let Y := mload(add(T, 32))
                        let zzz := 1
                        zz := 1
                        //loop over 1/4 of scalars thx to Shamir's trick over 8 points
                        for { let index := 254 } gt(index, 191) { index := add(index, 191) } {
                            let T1 := mulmod(2, Y, p) //U = 2*Y1, y free
                            let T2 := mulmod(T1, T1, p) // V=U^2
                            let T3 := mulmod(X, T2, p) // S = X1*V
                            T1 := mulmod(T1, T2, p) // W=UV
                            let T4 := mulmod(3, mulmod(addmod(X, sub(p, zz), p), addmod(X, zz, p), p), p) //M=3*(X1-ZZ1)*(X1+ZZ1)
                            zzz := mulmod(T1, zzz, p) //zzz3=W*zzz1
                            zz := mulmod(T2, zz, p) //zz3=V*ZZ1, V free
                            X := addmod(mulmod(T4, T4, p), mulmod(minus_2, T3, p), p) //X3=M^2-2S
                            //T2:=mulmod(T4,addmod(T3, sub(p, X),p),p)//M(S-X3)
                            T2 := mulmod(T4, addmod(X, sub(p, T3), p), p) //-M(S-X3)=M(X3-S)
                            //Y:= addmod(T2, sub(p, mulmod(T1, Y ,p)),p  )//Y3= M(S-X3)-W*Y1
                            Y := addmod(mulmod(T1, Y, p), T2, p) //-Y3= W*Y1-M(S-X3), we replace Y by -Y to avoid a sub in ecAdd
                            /* compute element to access in precomputed table */
                            T4 := add(shl(13, and(shr(index, scalar_v), 1)), shl(9, and(shr(index, scalar_u), 1)))
                            index := sub(index, 64)
                            T4 := add(T4, add(shl(12, and(shr(index, scalar_v), 1)), shl(8, and(shr(index, scalar_u), 1))))
                            index := sub(index, 64)
                            T4 := add(T4, add(shl(11, and(shr(index, scalar_v), 1)), shl(7, and(shr(index, scalar_u), 1))))
                            index := sub(index, 64)
                            T4 := add(T4, add(shl(10, and(shr(index, scalar_v), 1)), shl(6, and(shr(index, scalar_u), 1))))
                            //index:=add(index,192), restore index, interleaved with loop
                            //tbd: check validity of formulae with (0,1) to remove conditional jump
                            if iszero(T4) {
                                Y := sub(p, Y)
                                continue
                            }
                            {
                                /* Access to precomputed table using extcodecopy hack */
                                codecopy(T, add(T4, dataPointer), 64)
                                // inlined EcZZ_AddN
                                let y2 := addmod(mulmod(mload(add(T, 32)), zzz, p), Y, p)
                                T2 := addmod(mulmod(mload(T), zz, p), sub(p, X), p)
                                T4 := mulmod(T2, T2, p)
                                T1 := mulmod(T4, T2, p)
                                T2 := mulmod(zz, T4, p) // W=UV
                                zzz := mulmod(zzz, T1, p) //zz3=V*ZZ1
                                let zz1 := mulmod(X, T4, p)
                                T4 := addmod(addmod(mulmod(y2, y2, p), sub(p, T1), p), mulmod(minus_2, zz1, p), p)
                                Y := addmod(mulmod(addmod(zz1, sub(p, T4), p), y2, p), mulmod(Y, T1, p), p)
                                zz := T2
                                X := T4
                            }
                        } //end loop
                        mstore(add(T, 0x60), zz)
                        //(X,Y)=ecZZ_SetAff(X,Y,zz, zzz);
                        //T[0] = inverseModp_Hard(T[0], p); //1/zzz, inline modular inversion using precompile:
                        // Define length of base, exponent and modulus. 0x20 == 32 bytes
                        mstore(T, 0x20)
                        mstore(add(T, 0x20), 0x20)
                        mstore(add(T, 0x40), 0x20)
                        // Define variables base, exponent and modulus
                        //mstore(add(pointer, 0x60), u)
                        mstore(add(T, 0x80), minus_2)
                        mstore(add(T, 0xa0), p)
                        // Call the precompiled contract 0x05 = ModExp
                        if iszero(staticcall(not(0), 0x05, T, 0xc0, T, 0x20)) { revert(0, 0) }
                        zz := mload(T)
                        X := mulmod(X, zz, p) //X/zz
                    }
                } //end unchecked
            }
            /**
             * @dev ECDSA verification using a precomputed table of multiples of P and Q stored in contract at address Shamir8
             *     generation of contract bytecode for precomputations is done using sagemath code
             *     (see sage directory, WebAuthn_precompute.sage)
             */
            /**
             * @dev ECDSA verification using a precomputed table of multiples of P and Q appended at end of contract at address endcontract
             *     generation of contract bytecode for precomputations is done using sagemath code
             *     (see sage directory, WebAuthn_precompute.sage)
             */
            function ecdsa_precomputed_hackmem(bytes32 message, uint256[2] calldata rs, uint256 endcontract)
                internal view
                returns (bool)
            {
                uint256 r = rs[0];
                uint256 s = rs[1];
                if (r == 0 || r >= n || s == 0 || s >= n) {
                    return false;
                }
                /* Q is pushed via bytecode assumed to be correct
                if (!isOnCurve(Q[0], Q[1])) {
                    return false;
                }*/
                uint256 sInv = FCL_nModInv(s);
                uint256 X;
                //Shamir 8 dimensions
                X = ecZZ_mulmuladd_S8_hackmem(mulmod(uint256(message), sInv, n), mulmod(r, sInv, n), endcontract);
                assembly {
                    X := addmod(X, sub(n, r), n)
                }
                return X == 0;
            } //end  ecdsa_precomputed_verify()
        } //EOF
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.2) (utils/Base64.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Provides a set of functions to operate with Base64 strings.
         */
        library Base64 {
            /**
             * @dev Base64 Encoding/Decoding Table
             * See sections 4 and 5 of https://datatracker.ietf.org/doc/html/rfc4648
             */
            string internal constant _TABLE = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
            string internal constant _TABLE_URL = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_";
            /**
             * @dev Converts a `bytes` to its Bytes64 `string` representation.
             */
            function encode(bytes memory data) internal pure returns (string memory) {
                return _encode(data, _TABLE, true);
            }
            /**
             * @dev Converts a `bytes` to its Bytes64Url `string` representation.
             */
            function encodeURL(bytes memory data) internal pure returns (string memory) {
                return _encode(data, _TABLE_URL, false);
            }
            /**
             * @dev Internal table-agnostic conversion
             */
            function _encode(bytes memory data, string memory table, bool withPadding) private pure returns (string memory) {
                /**
                 * Inspired by Brecht Devos (Brechtpd) implementation - MIT licence
                 * https://github.com/Brechtpd/base64/blob/e78d9fd951e7b0977ddca77d92dc85183770daf4/base64.sol
                 */
                if (data.length == 0) return "";
                // If padding is enabled, the final length should be `bytes` data length divided by 3 rounded up and then
                // multiplied by 4 so that it leaves room for padding the last chunk
                // - `data.length + 2`  -> Round up
                // - `/ 3`              -> Number of 3-bytes chunks
                // - `4 *`              -> 4 characters for each chunk
                // If padding is disabled, the final length should be `bytes` data length multiplied by 4/3 rounded up as
                // opposed to when padding is required to fill the last chunk.
                // - `4 *`              -> 4 characters for each chunk
                // - `data.length + 2`  -> Round up
                // - `/ 3`              -> Number of 3-bytes chunks
                uint256 resultLength = withPadding ? 4 * ((data.length + 2) / 3) : (4 * data.length + 2) / 3;
                string memory result = new string(resultLength);
                /// @solidity memory-safe-assembly
                assembly {
                    // Prepare the lookup table (skip the first "length" byte)
                    let tablePtr := add(table, 1)
                    // Prepare result pointer, jump over length
                    let resultPtr := add(result, 0x20)
                    let dataPtr := data
                    let endPtr := add(data, mload(data))
                    // In some cases, the last iteration will read bytes after the end of the data. We cache the value, and
                    // set it to zero to make sure no dirty bytes are read in that section.
                    let afterPtr := add(endPtr, 0x20)
                    let afterCache := mload(afterPtr)
                    mstore(afterPtr, 0x00)
                    // Run over the input, 3 bytes at a time
                    for {
                    } lt(dataPtr, endPtr) {
                    } {
                        // Advance 3 bytes
                        dataPtr := add(dataPtr, 3)
                        let input := mload(dataPtr)
                        // To write each character, shift the 3 byte (24 bits) chunk
                        // 4 times in blocks of 6 bits for each character (18, 12, 6, 0)
                        // and apply logical AND with 0x3F to bitmask the least significant 6 bits.
                        // Use this as an index into the lookup table, mload an entire word
                        // so the desired character is in the least significant byte, and
                        // mstore8 this least significant byte into the result and continue.
                        mstore8(resultPtr, mload(add(tablePtr, and(shr(18, input), 0x3F))))
                        resultPtr := add(resultPtr, 1) // Advance
                        mstore8(resultPtr, mload(add(tablePtr, and(shr(12, input), 0x3F))))
                        resultPtr := add(resultPtr, 1) // Advance
                        mstore8(resultPtr, mload(add(tablePtr, and(shr(6, input), 0x3F))))
                        resultPtr := add(resultPtr, 1) // Advance
                        mstore8(resultPtr, mload(add(tablePtr, and(input, 0x3F))))
                        resultPtr := add(resultPtr, 1) // Advance
                    }
                    // Reset the value that was cached
                    mstore(afterPtr, afterCache)
                    if withPadding {
                        // When data `bytes` is not exactly 3 bytes long
                        // it is padded with `=` characters at the end
                        switch mod(mload(data), 3)
                        case 1 {
                            mstore8(sub(resultPtr, 1), 0x3d)
                            mstore8(sub(resultPtr, 2), 0x3d)
                        }
                        case 2 {
                            mstore8(sub(resultPtr, 1), 0x3d)
                        }
                    }
                }
                return result;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.4;
        /// @notice Library for converting numbers into strings and other string operations.
        /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibString.sol)
        /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibString.sol)
        ///
        /// @dev Note:
        /// For performance and bytecode compactness, most of the string operations are restricted to
        /// byte strings (7-bit ASCII), except where otherwise specified.
        /// Usage of byte string operations on charsets with runes spanning two or more bytes
        /// can lead to undefined behavior.
        library LibString {
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                        CUSTOM ERRORS                       */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev The length of the output is too small to contain all the hex digits.
            error HexLengthInsufficient();
            /// @dev The length of the string is more than 32 bytes.
            error TooBigForSmallString();
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                         CONSTANTS                          */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev The constant returned when the `search` is not found in the string.
            uint256 internal constant NOT_FOUND = type(uint256).max;
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                     DECIMAL OPERATIONS                     */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Returns the base 10 decimal representation of `value`.
            function toString(uint256 value) internal pure returns (string memory str) {
                /// @solidity memory-safe-assembly
                assembly {
                    // The maximum value of a uint256 contains 78 digits (1 byte per digit), but
                    // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
                    // We will need 1 word for the trailing zeros padding, 1 word for the length,
                    // and 3 words for a maximum of 78 digits.
                    str := add(mload(0x40), 0x80)
                    // Update the free memory pointer to allocate.
                    mstore(0x40, add(str, 0x20))
                    // Zeroize the slot after the string.
                    mstore(str, 0)
                    // Cache the end of the memory to calculate the length later.
                    let end := str
                    let w := not(0) // Tsk.
                    // We write the string from rightmost digit to leftmost digit.
                    // The following is essentially a do-while loop that also handles the zero case.
                    for { let temp := value } 1 {} {
                        str := add(str, w) // `sub(str, 1)`.
                        // Write the character to the pointer.
                        // The ASCII index of the '0' character is 48.
                        mstore8(str, add(48, mod(temp, 10)))
                        // Keep dividing `temp` until zero.
                        temp := div(temp, 10)
                        if iszero(temp) { break }
                    }
                    let length := sub(end, str)
                    // Move the pointer 32 bytes leftwards to make room for the length.
                    str := sub(str, 0x20)
                    // Store the length.
                    mstore(str, length)
                }
            }
            /// @dev Returns the base 10 decimal representation of `value`.
            function toString(int256 value) internal pure returns (string memory str) {
                if (value >= 0) {
                    return toString(uint256(value));
                }
                unchecked {
                    str = toString(~uint256(value) + 1);
                }
                /// @solidity memory-safe-assembly
                assembly {
                    // We still have some spare memory space on the left,
                    // as we have allocated 3 words (96 bytes) for up to 78 digits.
                    let length := mload(str) // Load the string length.
                    mstore(str, 0x2d) // Store the '-' character.
                    str := sub(str, 1) // Move back the string pointer by a byte.
                    mstore(str, add(length, 1)) // Update the string length.
                }
            }
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                   HEXADECIMAL OPERATIONS                   */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Returns the hexadecimal representation of `value`,
            /// left-padded to an input length of `length` bytes.
            /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte,
            /// giving a total length of `length * 2 + 2` bytes.
            /// Reverts if `length` is too small for the output to contain all the digits.
            function toHexString(uint256 value, uint256 length) internal pure returns (string memory str) {
                str = toHexStringNoPrefix(value, length);
                /// @solidity memory-safe-assembly
                assembly {
                    let strLength := add(mload(str), 2) // Compute the length.
                    mstore(str, 0x3078) // Write the "0x" prefix.
                    str := sub(str, 2) // Move the pointer.
                    mstore(str, strLength) // Write the length.
                }
            }
            /// @dev Returns the hexadecimal representation of `value`,
            /// left-padded to an input length of `length` bytes.
            /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte,
            /// giving a total length of `length * 2` bytes.
            /// Reverts if `length` is too small for the output to contain all the digits.
            function toHexStringNoPrefix(uint256 value, uint256 length)
                internal
                pure
                returns (string memory str)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    // We need 0x20 bytes for the trailing zeros padding, `length * 2` bytes
                    // for the digits, 0x02 bytes for the prefix, and 0x20 bytes for the length.
                    // We add 0x20 to the total and round down to a multiple of 0x20.
                    // (0x20 + 0x20 + 0x02 + 0x20) = 0x62.
                    str := add(mload(0x40), and(add(shl(1, length), 0x42), not(0x1f)))
                    // Allocate the memory.
                    mstore(0x40, add(str, 0x20))
                    // Zeroize the slot after the string.
                    mstore(str, 0)
                    // Cache the end to calculate the length later.
                    let end := str
                    // Store "0123456789abcdef" in scratch space.
                    mstore(0x0f, 0x30313233343536373839616263646566)
                    let start := sub(str, add(length, length))
                    let w := not(1) // Tsk.
                    let temp := value
                    // We write the string from rightmost digit to leftmost digit.
                    // The following is essentially a do-while loop that also handles the zero case.
                    for {} 1 {} {
                        str := add(str, w) // `sub(str, 2)`.
                        mstore8(add(str, 1), mload(and(temp, 15)))
                        mstore8(str, mload(and(shr(4, temp), 15)))
                        temp := shr(8, temp)
                        if iszero(xor(str, start)) { break }
                    }
                    if temp {
                        mstore(0x00, 0x2194895a) // `HexLengthInsufficient()`.
                        revert(0x1c, 0x04)
                    }
                    // Compute the string's length.
                    let strLength := sub(end, str)
                    // Move the pointer and write the length.
                    str := sub(str, 0x20)
                    mstore(str, strLength)
                }
            }
            /// @dev Returns the hexadecimal representation of `value`.
            /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
            /// As address are 20 bytes long, the output will left-padded to have
            /// a length of `20 * 2 + 2` bytes.
            function toHexString(uint256 value) internal pure returns (string memory str) {
                str = toHexStringNoPrefix(value);
                /// @solidity memory-safe-assembly
                assembly {
                    let strLength := add(mload(str), 2) // Compute the length.
                    mstore(str, 0x3078) // Write the "0x" prefix.
                    str := sub(str, 2) // Move the pointer.
                    mstore(str, strLength) // Write the length.
                }
            }
            /// @dev Returns the hexadecimal representation of `value`.
            /// The output is prefixed with "0x".
            /// The output excludes leading "0" from the `toHexString` output.
            /// `0x00: "0x0", 0x01: "0x1", 0x12: "0x12", 0x123: "0x123"`.
            function toMinimalHexString(uint256 value) internal pure returns (string memory str) {
                str = toHexStringNoPrefix(value);
                /// @solidity memory-safe-assembly
                assembly {
                    let o := eq(byte(0, mload(add(str, 0x20))), 0x30) // Whether leading zero is present.
                    let strLength := add(mload(str), 2) // Compute the length.
                    mstore(add(str, o), 0x3078) // Write the "0x" prefix, accounting for leading zero.
                    str := sub(add(str, o), 2) // Move the pointer, accounting for leading zero.
                    mstore(str, sub(strLength, o)) // Write the length, accounting for leading zero.
                }
            }
            /// @dev Returns the hexadecimal representation of `value`.
            /// The output excludes leading "0" from the `toHexStringNoPrefix` output.
            /// `0x00: "0", 0x01: "1", 0x12: "12", 0x123: "123"`.
            function toMinimalHexStringNoPrefix(uint256 value) internal pure returns (string memory str) {
                str = toHexStringNoPrefix(value);
                /// @solidity memory-safe-assembly
                assembly {
                    let o := eq(byte(0, mload(add(str, 0x20))), 0x30) // Whether leading zero is present.
                    let strLength := mload(str) // Get the length.
                    str := add(str, o) // Move the pointer, accounting for leading zero.
                    mstore(str, sub(strLength, o)) // Write the length, accounting for leading zero.
                }
            }
            /// @dev Returns the hexadecimal representation of `value`.
            /// The output is encoded using 2 hexadecimal digits per byte.
            /// As address are 20 bytes long, the output will left-padded to have
            /// a length of `20 * 2` bytes.
            function toHexStringNoPrefix(uint256 value) internal pure returns (string memory str) {
                /// @solidity memory-safe-assembly
                assembly {
                    // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
                    // 0x02 bytes for the prefix, and 0x40 bytes for the digits.
                    // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x40) is 0xa0.
                    str := add(mload(0x40), 0x80)
                    // Allocate the memory.
                    mstore(0x40, add(str, 0x20))
                    // Zeroize the slot after the string.
                    mstore(str, 0)
                    // Cache the end to calculate the length later.
                    let end := str
                    // Store "0123456789abcdef" in scratch space.
                    mstore(0x0f, 0x30313233343536373839616263646566)
                    let w := not(1) // Tsk.
                    // We write the string from rightmost digit to leftmost digit.
                    // The following is essentially a do-while loop that also handles the zero case.
                    for { let temp := value } 1 {} {
                        str := add(str, w) // `sub(str, 2)`.
                        mstore8(add(str, 1), mload(and(temp, 15)))
                        mstore8(str, mload(and(shr(4, temp), 15)))
                        temp := shr(8, temp)
                        if iszero(temp) { break }
                    }
                    // Compute the string's length.
                    let strLength := sub(end, str)
                    // Move the pointer and write the length.
                    str := sub(str, 0x20)
                    mstore(str, strLength)
                }
            }
            /// @dev Returns the hexadecimal representation of `value`.
            /// The output is prefixed with "0x", encoded using 2 hexadecimal digits per byte,
            /// and the alphabets are capitalized conditionally according to
            /// https://eips.ethereum.org/EIPS/eip-55
            function toHexStringChecksummed(address value) internal pure returns (string memory str) {
                str = toHexString(value);
                /// @solidity memory-safe-assembly
                assembly {
                    let mask := shl(6, div(not(0), 255)) // `0b010000000100000000 ...`
                    let o := add(str, 0x22)
                    let hashed := and(keccak256(o, 40), mul(34, mask)) // `0b10001000 ... `
                    let t := shl(240, 136) // `0b10001000 << 240`
                    for { let i := 0 } 1 {} {
                        mstore(add(i, i), mul(t, byte(i, hashed)))
                        i := add(i, 1)
                        if eq(i, 20) { break }
                    }
                    mstore(o, xor(mload(o), shr(1, and(mload(0x00), and(mload(o), mask)))))
                    o := add(o, 0x20)
                    mstore(o, xor(mload(o), shr(1, and(mload(0x20), and(mload(o), mask)))))
                }
            }
            /// @dev Returns the hexadecimal representation of `value`.
            /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
            function toHexString(address value) internal pure returns (string memory str) {
                str = toHexStringNoPrefix(value);
                /// @solidity memory-safe-assembly
                assembly {
                    let strLength := add(mload(str), 2) // Compute the length.
                    mstore(str, 0x3078) // Write the "0x" prefix.
                    str := sub(str, 2) // Move the pointer.
                    mstore(str, strLength) // Write the length.
                }
            }
            /// @dev Returns the hexadecimal representation of `value`.
            /// The output is encoded using 2 hexadecimal digits per byte.
            function toHexStringNoPrefix(address value) internal pure returns (string memory str) {
                /// @solidity memory-safe-assembly
                assembly {
                    str := mload(0x40)
                    // Allocate the memory.
                    // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
                    // 0x02 bytes for the prefix, and 0x28 bytes for the digits.
                    // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x28) is 0x80.
                    mstore(0x40, add(str, 0x80))
                    // Store "0123456789abcdef" in scratch space.
                    mstore(0x0f, 0x30313233343536373839616263646566)
                    str := add(str, 2)
                    mstore(str, 40)
                    let o := add(str, 0x20)
                    mstore(add(o, 40), 0)
                    value := shl(96, value)
                    // We write the string from rightmost digit to leftmost digit.
                    // The following is essentially a do-while loop that also handles the zero case.
                    for { let i := 0 } 1 {} {
                        let p := add(o, add(i, i))
                        let temp := byte(i, value)
                        mstore8(add(p, 1), mload(and(temp, 15)))
                        mstore8(p, mload(shr(4, temp)))
                        i := add(i, 1)
                        if eq(i, 20) { break }
                    }
                }
            }
            /// @dev Returns the hex encoded string from the raw bytes.
            /// The output is encoded using 2 hexadecimal digits per byte.
            function toHexString(bytes memory raw) internal pure returns (string memory str) {
                str = toHexStringNoPrefix(raw);
                /// @solidity memory-safe-assembly
                assembly {
                    let strLength := add(mload(str), 2) // Compute the length.
                    mstore(str, 0x3078) // Write the "0x" prefix.
                    str := sub(str, 2) // Move the pointer.
                    mstore(str, strLength) // Write the length.
                }
            }
            /// @dev Returns the hex encoded string from the raw bytes.
            /// The output is encoded using 2 hexadecimal digits per byte.
            function toHexStringNoPrefix(bytes memory raw) internal pure returns (string memory str) {
                /// @solidity memory-safe-assembly
                assembly {
                    let length := mload(raw)
                    str := add(mload(0x40), 2) // Skip 2 bytes for the optional prefix.
                    mstore(str, add(length, length)) // Store the length of the output.
                    // Store "0123456789abcdef" in scratch space.
                    mstore(0x0f, 0x30313233343536373839616263646566)
                    let o := add(str, 0x20)
                    let end := add(raw, length)
                    for {} iszero(eq(raw, end)) {} {
                        raw := add(raw, 1)
                        mstore8(add(o, 1), mload(and(mload(raw), 15)))
                        mstore8(o, mload(and(shr(4, mload(raw)), 15)))
                        o := add(o, 2)
                    }
                    mstore(o, 0) // Zeroize the slot after the string.
                    mstore(0x40, add(o, 0x20)) // Allocate the memory.
                }
            }
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                   RUNE STRING OPERATIONS                   */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Returns the number of UTF characters in the string.
            function runeCount(string memory s) internal pure returns (uint256 result) {
                /// @solidity memory-safe-assembly
                assembly {
                    if mload(s) {
                        mstore(0x00, div(not(0), 255))
                        mstore(0x20, 0x0202020202020202020202020202020202020202020202020303030304040506)
                        let o := add(s, 0x20)
                        let end := add(o, mload(s))
                        for { result := 1 } 1 { result := add(result, 1) } {
                            o := add(o, byte(0, mload(shr(250, mload(o)))))
                            if iszero(lt(o, end)) { break }
                        }
                    }
                }
            }
            /// @dev Returns if this string is a 7-bit ASCII string.
            /// (i.e. all characters codes are in [0..127])
            function is7BitASCII(string memory s) internal pure returns (bool result) {
                /// @solidity memory-safe-assembly
                assembly {
                    let mask := shl(7, div(not(0), 255))
                    result := 1
                    let n := mload(s)
                    if n {
                        let o := add(s, 0x20)
                        let end := add(o, n)
                        let last := mload(end)
                        mstore(end, 0)
                        for {} 1 {} {
                            if and(mask, mload(o)) {
                                result := 0
                                break
                            }
                            o := add(o, 0x20)
                            if iszero(lt(o, end)) { break }
                        }
                        mstore(end, last)
                    }
                }
            }
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                   BYTE STRING OPERATIONS                   */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            // For performance and bytecode compactness, byte string operations are restricted
            // to 7-bit ASCII strings. All offsets are byte offsets, not UTF character offsets.
            // Usage of byte string operations on charsets with runes spanning two or more bytes
            // can lead to undefined behavior.
            /// @dev Returns `subject` all occurrences of `search` replaced with `replacement`.
            function replace(string memory subject, string memory search, string memory replacement)
                internal
                pure
                returns (string memory result)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    let subjectLength := mload(subject)
                    let searchLength := mload(search)
                    let replacementLength := mload(replacement)
                    subject := add(subject, 0x20)
                    search := add(search, 0x20)
                    replacement := add(replacement, 0x20)
                    result := add(mload(0x40), 0x20)
                    let subjectEnd := add(subject, subjectLength)
                    if iszero(gt(searchLength, subjectLength)) {
                        let subjectSearchEnd := add(sub(subjectEnd, searchLength), 1)
                        let h := 0
                        if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) }
                        let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
                        let s := mload(search)
                        for {} 1 {} {
                            let t := mload(subject)
                            // Whether the first `searchLength % 32` bytes of
                            // `subject` and `search` matches.
                            if iszero(shr(m, xor(t, s))) {
                                if h {
                                    if iszero(eq(keccak256(subject, searchLength), h)) {
                                        mstore(result, t)
                                        result := add(result, 1)
                                        subject := add(subject, 1)
                                        if iszero(lt(subject, subjectSearchEnd)) { break }
                                        continue
                                    }
                                }
                                // Copy the `replacement` one word at a time.
                                for { let o := 0 } 1 {} {
                                    mstore(add(result, o), mload(add(replacement, o)))
                                    o := add(o, 0x20)
                                    if iszero(lt(o, replacementLength)) { break }
                                }
                                result := add(result, replacementLength)
                                subject := add(subject, searchLength)
                                if searchLength {
                                    if iszero(lt(subject, subjectSearchEnd)) { break }
                                    continue
                                }
                            }
                            mstore(result, t)
                            result := add(result, 1)
                            subject := add(subject, 1)
                            if iszero(lt(subject, subjectSearchEnd)) { break }
                        }
                    }
                    let resultRemainder := result
                    result := add(mload(0x40), 0x20)
                    let k := add(sub(resultRemainder, result), sub(subjectEnd, subject))
                    // Copy the rest of the string one word at a time.
                    for {} lt(subject, subjectEnd) {} {
                        mstore(resultRemainder, mload(subject))
                        resultRemainder := add(resultRemainder, 0x20)
                        subject := add(subject, 0x20)
                    }
                    result := sub(result, 0x20)
                    let last := add(add(result, 0x20), k) // Zeroize the slot after the string.
                    mstore(last, 0)
                    mstore(0x40, add(last, 0x20)) // Allocate the memory.
                    mstore(result, k) // Store the length.
                }
            }
            /// @dev Returns the byte index of the first location of `search` in `subject`,
            /// searching from left to right, starting from `from`.
            /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
            function indexOf(string memory subject, string memory search, uint256 from)
                internal
                pure
                returns (uint256 result)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    for { let subjectLength := mload(subject) } 1 {} {
                        if iszero(mload(search)) {
                            if iszero(gt(from, subjectLength)) {
                                result := from
                                break
                            }
                            result := subjectLength
                            break
                        }
                        let searchLength := mload(search)
                        let subjectStart := add(subject, 0x20)
                        result := not(0) // Initialize to `NOT_FOUND`.
                        subject := add(subjectStart, from)
                        let end := add(sub(add(subjectStart, subjectLength), searchLength), 1)
                        let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
                        let s := mload(add(search, 0x20))
                        if iszero(and(lt(subject, end), lt(from, subjectLength))) { break }
                        if iszero(lt(searchLength, 0x20)) {
                            for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} {
                                if iszero(shr(m, xor(mload(subject), s))) {
                                    if eq(keccak256(subject, searchLength), h) {
                                        result := sub(subject, subjectStart)
                                        break
                                    }
                                }
                                subject := add(subject, 1)
                                if iszero(lt(subject, end)) { break }
                            }
                            break
                        }
                        for {} 1 {} {
                            if iszero(shr(m, xor(mload(subject), s))) {
                                result := sub(subject, subjectStart)
                                break
                            }
                            subject := add(subject, 1)
                            if iszero(lt(subject, end)) { break }
                        }
                        break
                    }
                }
            }
            /// @dev Returns the byte index of the first location of `search` in `subject`,
            /// searching from left to right.
            /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
            function indexOf(string memory subject, string memory search)
                internal
                pure
                returns (uint256 result)
            {
                result = indexOf(subject, search, 0);
            }
            /// @dev Returns the byte index of the first location of `search` in `subject`,
            /// searching from right to left, starting from `from`.
            /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
            function lastIndexOf(string memory subject, string memory search, uint256 from)
                internal
                pure
                returns (uint256 result)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    for {} 1 {} {
                        result := not(0) // Initialize to `NOT_FOUND`.
                        let searchLength := mload(search)
                        if gt(searchLength, mload(subject)) { break }
                        let w := result
                        let fromMax := sub(mload(subject), searchLength)
                        if iszero(gt(fromMax, from)) { from := fromMax }
                        let end := add(add(subject, 0x20), w)
                        subject := add(add(subject, 0x20), from)
                        if iszero(gt(subject, end)) { break }
                        // As this function is not too often used,
                        // we shall simply use keccak256 for smaller bytecode size.
                        for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} {
                            if eq(keccak256(subject, searchLength), h) {
                                result := sub(subject, add(end, 1))
                                break
                            }
                            subject := add(subject, w) // `sub(subject, 1)`.
                            if iszero(gt(subject, end)) { break }
                        }
                        break
                    }
                }
            }
            /// @dev Returns the byte index of the first location of `search` in `subject`,
            /// searching from right to left.
            /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
            function lastIndexOf(string memory subject, string memory search)
                internal
                pure
                returns (uint256 result)
            {
                result = lastIndexOf(subject, search, uint256(int256(-1)));
            }
            /// @dev Returns true if `search` is found in `subject`, false otherwise.
            function contains(string memory subject, string memory search) internal pure returns (bool) {
                return indexOf(subject, search) != NOT_FOUND;
            }
            /// @dev Returns whether `subject` starts with `search`.
            function startsWith(string memory subject, string memory search)
                internal
                pure
                returns (bool result)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    let searchLength := mload(search)
                    // Just using keccak256 directly is actually cheaper.
                    // forgefmt: disable-next-item
                    result := and(
                        iszero(gt(searchLength, mload(subject))),
                        eq(
                            keccak256(add(subject, 0x20), searchLength),
                            keccak256(add(search, 0x20), searchLength)
                        )
                    )
                }
            }
            /// @dev Returns whether `subject` ends with `search`.
            function endsWith(string memory subject, string memory search)
                internal
                pure
                returns (bool result)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    let searchLength := mload(search)
                    let subjectLength := mload(subject)
                    // Whether `search` is not longer than `subject`.
                    let withinRange := iszero(gt(searchLength, subjectLength))
                    // Just using keccak256 directly is actually cheaper.
                    // forgefmt: disable-next-item
                    result := and(
                        withinRange,
                        eq(
                            keccak256(
                                // `subject + 0x20 + max(subjectLength - searchLength, 0)`.
                                add(add(subject, 0x20), mul(withinRange, sub(subjectLength, searchLength))),
                                searchLength
                            ),
                            keccak256(add(search, 0x20), searchLength)
                        )
                    )
                }
            }
            /// @dev Returns `subject` repeated `times`.
            function repeat(string memory subject, uint256 times)
                internal
                pure
                returns (string memory result)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    let subjectLength := mload(subject)
                    if iszero(or(iszero(times), iszero(subjectLength))) {
                        subject := add(subject, 0x20)
                        result := mload(0x40)
                        let output := add(result, 0x20)
                        for {} 1 {} {
                            // Copy the `subject` one word at a time.
                            for { let o := 0 } 1 {} {
                                mstore(add(output, o), mload(add(subject, o)))
                                o := add(o, 0x20)
                                if iszero(lt(o, subjectLength)) { break }
                            }
                            output := add(output, subjectLength)
                            times := sub(times, 1)
                            if iszero(times) { break }
                        }
                        mstore(output, 0) // Zeroize the slot after the string.
                        let resultLength := sub(output, add(result, 0x20))
                        mstore(result, resultLength) // Store the length.
                        // Allocate the memory.
                        mstore(0x40, add(result, add(resultLength, 0x20)))
                    }
                }
            }
            /// @dev Returns a copy of `subject` sliced from `start` to `end` (exclusive).
            /// `start` and `end` are byte offsets.
            function slice(string memory subject, uint256 start, uint256 end)
                internal
                pure
                returns (string memory result)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    let subjectLength := mload(subject)
                    if iszero(gt(subjectLength, end)) { end := subjectLength }
                    if iszero(gt(subjectLength, start)) { start := subjectLength }
                    if lt(start, end) {
                        result := mload(0x40)
                        let resultLength := sub(end, start)
                        mstore(result, resultLength)
                        subject := add(subject, start)
                        let w := not(0x1f)
                        // Copy the `subject` one word at a time, backwards.
                        for { let o := and(add(resultLength, 0x1f), w) } 1 {} {
                            mstore(add(result, o), mload(add(subject, o)))
                            o := add(o, w) // `sub(o, 0x20)`.
                            if iszero(o) { break }
                        }
                        // Zeroize the slot after the string.
                        mstore(add(add(result, 0x20), resultLength), 0)
                        // Allocate memory for the length and the bytes,
                        // rounded up to a multiple of 32.
                        mstore(0x40, add(result, and(add(resultLength, 0x3f), w)))
                    }
                }
            }
            /// @dev Returns a copy of `subject` sliced from `start` to the end of the string.
            /// `start` is a byte offset.
            function slice(string memory subject, uint256 start)
                internal
                pure
                returns (string memory result)
            {
                result = slice(subject, start, uint256(int256(-1)));
            }
            /// @dev Returns all the indices of `search` in `subject`.
            /// The indices are byte offsets.
            function indicesOf(string memory subject, string memory search)
                internal
                pure
                returns (uint256[] memory result)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    let subjectLength := mload(subject)
                    let searchLength := mload(search)
                    if iszero(gt(searchLength, subjectLength)) {
                        subject := add(subject, 0x20)
                        search := add(search, 0x20)
                        result := add(mload(0x40), 0x20)
                        let subjectStart := subject
                        let subjectSearchEnd := add(sub(add(subject, subjectLength), searchLength), 1)
                        let h := 0
                        if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) }
                        let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
                        let s := mload(search)
                        for {} 1 {} {
                            let t := mload(subject)
                            // Whether the first `searchLength % 32` bytes of
                            // `subject` and `search` matches.
                            if iszero(shr(m, xor(t, s))) {
                                if h {
                                    if iszero(eq(keccak256(subject, searchLength), h)) {
                                        subject := add(subject, 1)
                                        if iszero(lt(subject, subjectSearchEnd)) { break }
                                        continue
                                    }
                                }
                                // Append to `result`.
                                mstore(result, sub(subject, subjectStart))
                                result := add(result, 0x20)
                                // Advance `subject` by `searchLength`.
                                subject := add(subject, searchLength)
                                if searchLength {
                                    if iszero(lt(subject, subjectSearchEnd)) { break }
                                    continue
                                }
                            }
                            subject := add(subject, 1)
                            if iszero(lt(subject, subjectSearchEnd)) { break }
                        }
                        let resultEnd := result
                        // Assign `result` to the free memory pointer.
                        result := mload(0x40)
                        // Store the length of `result`.
                        mstore(result, shr(5, sub(resultEnd, add(result, 0x20))))
                        // Allocate memory for result.
                        // We allocate one more word, so this array can be recycled for {split}.
                        mstore(0x40, add(resultEnd, 0x20))
                    }
                }
            }
            /// @dev Returns a arrays of strings based on the `delimiter` inside of the `subject` string.
            function split(string memory subject, string memory delimiter)
                internal
                pure
                returns (string[] memory result)
            {
                uint256[] memory indices = indicesOf(subject, delimiter);
                /// @solidity memory-safe-assembly
                assembly {
                    let w := not(0x1f)
                    let indexPtr := add(indices, 0x20)
                    let indicesEnd := add(indexPtr, shl(5, add(mload(indices), 1)))
                    mstore(add(indicesEnd, w), mload(subject))
                    mstore(indices, add(mload(indices), 1))
                    let prevIndex := 0
                    for {} 1 {} {
                        let index := mload(indexPtr)
                        mstore(indexPtr, 0x60)
                        if iszero(eq(index, prevIndex)) {
                            let element := mload(0x40)
                            let elementLength := sub(index, prevIndex)
                            mstore(element, elementLength)
                            // Copy the `subject` one word at a time, backwards.
                            for { let o := and(add(elementLength, 0x1f), w) } 1 {} {
                                mstore(add(element, o), mload(add(add(subject, prevIndex), o)))
                                o := add(o, w) // `sub(o, 0x20)`.
                                if iszero(o) { break }
                            }
                            // Zeroize the slot after the string.
                            mstore(add(add(element, 0x20), elementLength), 0)
                            // Allocate memory for the length and the bytes,
                            // rounded up to a multiple of 32.
                            mstore(0x40, add(element, and(add(elementLength, 0x3f), w)))
                            // Store the `element` into the array.
                            mstore(indexPtr, element)
                        }
                        prevIndex := add(index, mload(delimiter))
                        indexPtr := add(indexPtr, 0x20)
                        if iszero(lt(indexPtr, indicesEnd)) { break }
                    }
                    result := indices
                    if iszero(mload(delimiter)) {
                        result := add(indices, 0x20)
                        mstore(result, sub(mload(indices), 2))
                    }
                }
            }
            /// @dev Returns a concatenated string of `a` and `b`.
            /// Cheaper than `string.concat()` and does not de-align the free memory pointer.
            function concat(string memory a, string memory b)
                internal
                pure
                returns (string memory result)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    let w := not(0x1f)
                    result := mload(0x40)
                    let aLength := mload(a)
                    // Copy `a` one word at a time, backwards.
                    for { let o := and(add(aLength, 0x20), w) } 1 {} {
                        mstore(add(result, o), mload(add(a, o)))
                        o := add(o, w) // `sub(o, 0x20)`.
                        if iszero(o) { break }
                    }
                    let bLength := mload(b)
                    let output := add(result, aLength)
                    // Copy `b` one word at a time, backwards.
                    for { let o := and(add(bLength, 0x20), w) } 1 {} {
                        mstore(add(output, o), mload(add(b, o)))
                        o := add(o, w) // `sub(o, 0x20)`.
                        if iszero(o) { break }
                    }
                    let totalLength := add(aLength, bLength)
                    let last := add(add(result, 0x20), totalLength)
                    // Zeroize the slot after the string.
                    mstore(last, 0)
                    // Stores the length.
                    mstore(result, totalLength)
                    // Allocate memory for the length and the bytes,
                    // rounded up to a multiple of 32.
                    mstore(0x40, and(add(last, 0x1f), w))
                }
            }
            /// @dev Returns a copy of the string in either lowercase or UPPERCASE.
            /// WARNING! This function is only compatible with 7-bit ASCII strings.
            function toCase(string memory subject, bool toUpper)
                internal
                pure
                returns (string memory result)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    let length := mload(subject)
                    if length {
                        result := add(mload(0x40), 0x20)
                        subject := add(subject, 1)
                        let flags := shl(add(70, shl(5, toUpper)), 0x3ffffff)
                        let w := not(0)
                        for { let o := length } 1 {} {
                            o := add(o, w)
                            let b := and(0xff, mload(add(subject, o)))
                            mstore8(add(result, o), xor(b, and(shr(b, flags), 0x20)))
                            if iszero(o) { break }
                        }
                        result := mload(0x40)
                        mstore(result, length) // Store the length.
                        let last := add(add(result, 0x20), length)
                        mstore(last, 0) // Zeroize the slot after the string.
                        mstore(0x40, add(last, 0x20)) // Allocate the memory.
                    }
                }
            }
            /// @dev Returns a string from a small bytes32 string.
            /// `s` must be null-terminated, or behavior will be undefined.
            function fromSmallString(bytes32 s) internal pure returns (string memory result) {
                /// @solidity memory-safe-assembly
                assembly {
                    result := mload(0x40)
                    let n := 0
                    for {} byte(n, s) { n := add(n, 1) } {} // Scan for '\\0'.
                    mstore(result, n)
                    let o := add(result, 0x20)
                    mstore(o, s)
                    mstore(add(o, n), 0)
                    mstore(0x40, add(result, 0x40))
                }
            }
            /// @dev Returns the small string, with all bytes after the first null byte zeroized.
            function normalizeSmallString(bytes32 s) internal pure returns (bytes32 result) {
                /// @solidity memory-safe-assembly
                assembly {
                    for {} byte(result, s) { result := add(result, 1) } {} // Scan for '\\0'.
                    mstore(0x00, s)
                    mstore(result, 0x00)
                    result := mload(0x00)
                }
            }
            /// @dev Returns the string as a normalized null-terminated small string.
            function toSmallString(string memory s) internal pure returns (bytes32 result) {
                /// @solidity memory-safe-assembly
                assembly {
                    result := mload(s)
                    if iszero(lt(result, 33)) {
                        mstore(0x00, 0xec92f9a3) // `TooBigForSmallString()`.
                        revert(0x1c, 0x04)
                    }
                    result := shl(shl(3, sub(32, result)), mload(add(s, result)))
                }
            }
            /// @dev Returns a lowercased copy of the string.
            /// WARNING! This function is only compatible with 7-bit ASCII strings.
            function lower(string memory subject) internal pure returns (string memory result) {
                result = toCase(subject, false);
            }
            /// @dev Returns an UPPERCASED copy of the string.
            /// WARNING! This function is only compatible with 7-bit ASCII strings.
            function upper(string memory subject) internal pure returns (string memory result) {
                result = toCase(subject, true);
            }
            /// @dev Escapes the string to be used within HTML tags.
            function escapeHTML(string memory s) internal pure returns (string memory result) {
                /// @solidity memory-safe-assembly
                assembly {
                    let end := add(s, mload(s))
                    result := add(mload(0x40), 0x20)
                    // Store the bytes of the packed offsets and strides into the scratch space.
                    // `packed = (stride << 5) | offset`. Max offset is 20. Max stride is 6.
                    mstore(0x1f, 0x900094)
                    mstore(0x08, 0xc0000000a6ab)
                    // Store "&quot;&amp;&#39;&lt;&gt;" into the scratch space.
                    mstore(0x00, shl(64, 0x2671756f743b26616d703b262333393b266c743b2667743b))
                    for {} iszero(eq(s, end)) {} {
                        s := add(s, 1)
                        let c := and(mload(s), 0xff)
                        // Not in `["\\"","'","&","<",">"]`.
                        if iszero(and(shl(c, 1), 0x500000c400000000)) {
                            mstore8(result, c)
                            result := add(result, 1)
                            continue
                        }
                        let t := shr(248, mload(c))
                        mstore(result, mload(and(t, 0x1f)))
                        result := add(result, shr(5, t))
                    }
                    let last := result
                    mstore(last, 0) // Zeroize the slot after the string.
                    result := mload(0x40)
                    mstore(result, sub(last, add(result, 0x20))) // Store the length.
                    mstore(0x40, add(last, 0x20)) // Allocate the memory.
                }
            }
            /// @dev Escapes the string to be used within double-quotes in a JSON.
            /// If `addDoubleQuotes` is true, the result will be enclosed in double-quotes.
            function escapeJSON(string memory s, bool addDoubleQuotes)
                internal
                pure
                returns (string memory result)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    let end := add(s, mload(s))
                    result := add(mload(0x40), 0x20)
                    if addDoubleQuotes {
                        mstore8(result, 34)
                        result := add(1, result)
                    }
                    // Store "\\\\u0000" in scratch space.
                    // Store "0123456789abcdef" in scratch space.
                    // Also, store `{0x08:"b", 0x09:"t", 0x0a:"n", 0x0c:"f", 0x0d:"r"}`.
                    // into the scratch space.
                    mstore(0x15, 0x5c75303030303031323334353637383961626364656662746e006672)
                    // Bitmask for detecting `["\\"","\\\\"]`.
                    let e := or(shl(0x22, 1), shl(0x5c, 1))
                    for {} iszero(eq(s, end)) {} {
                        s := add(s, 1)
                        let c := and(mload(s), 0xff)
                        if iszero(lt(c, 0x20)) {
                            if iszero(and(shl(c, 1), e)) {
                                // Not in `["\\"","\\\\"]`.
                                mstore8(result, c)
                                result := add(result, 1)
                                continue
                            }
                            mstore8(result, 0x5c) // "\\\\".
                            mstore8(add(result, 1), c)
                            result := add(result, 2)
                            continue
                        }
                        if iszero(and(shl(c, 1), 0x3700)) {
                            // Not in `["\\b","\\t","\
        ","\\f","\\d"]`.
                            mstore8(0x1d, mload(shr(4, c))) // Hex value.
                            mstore8(0x1e, mload(and(c, 15))) // Hex value.
                            mstore(result, mload(0x19)) // "\\\\u00XX".
                            result := add(result, 6)
                            continue
                        }
                        mstore8(result, 0x5c) // "\\\\".
                        mstore8(add(result, 1), mload(add(c, 8)))
                        result := add(result, 2)
                    }
                    if addDoubleQuotes {
                        mstore8(result, 34)
                        result := add(1, result)
                    }
                    let last := result
                    mstore(last, 0) // Zeroize the slot after the string.
                    result := mload(0x40)
                    mstore(result, sub(last, add(result, 0x20))) // Store the length.
                    mstore(0x40, add(last, 0x20)) // Allocate the memory.
                }
            }
            /// @dev Escapes the string to be used within double-quotes in a JSON.
            function escapeJSON(string memory s) internal pure returns (string memory result) {
                result = escapeJSON(s, false);
            }
            /// @dev Returns whether `a` equals `b`.
            function eq(string memory a, string memory b) internal pure returns (bool result) {
                /// @solidity memory-safe-assembly
                assembly {
                    result := eq(keccak256(add(a, 0x20), mload(a)), keccak256(add(b, 0x20), mload(b)))
                }
            }
            /// @dev Returns whether `a` equals `b`, where `b` is a null-terminated small string.
            function eqs(string memory a, bytes32 b) internal pure returns (bool result) {
                /// @solidity memory-safe-assembly
                assembly {
                    // These should be evaluated on compile time, as far as possible.
                    let m := not(shl(7, div(not(iszero(b)), 255))) // `0x7f7f ...`.
                    let x := not(or(m, or(b, add(m, and(b, m)))))
                    let r := shl(7, iszero(iszero(shr(128, x))))
                    r := or(r, shl(6, iszero(iszero(shr(64, shr(r, x))))))
                    r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                    r := or(r, shl(4, lt(0xffff, shr(r, x))))
                    r := or(r, shl(3, lt(0xff, shr(r, x))))
                    // forgefmt: disable-next-item
                    result := gt(eq(mload(a), add(iszero(x), xor(31, shr(3, r)))),
                        xor(shr(add(8, r), b), shr(add(8, r), mload(add(a, 0x20)))))
                }
            }
            /// @dev Packs a single string with its length into a single word.
            /// Returns `bytes32(0)` if the length is zero or greater than 31.
            function packOne(string memory a) internal pure returns (bytes32 result) {
                /// @solidity memory-safe-assembly
                assembly {
                    // We don't need to zero right pad the string,
                    // since this is our own custom non-standard packing scheme.
                    result :=
                        mul(
                            // Load the length and the bytes.
                            mload(add(a, 0x1f)),
                            // `length != 0 && length < 32`. Abuses underflow.
                            // Assumes that the length is valid and within the block gas limit.
                            lt(sub(mload(a), 1), 0x1f)
                        )
                }
            }
            /// @dev Unpacks a string packed using {packOne}.
            /// Returns the empty string if `packed` is `bytes32(0)`.
            /// If `packed` is not an output of {packOne}, the output behavior is undefined.
            function unpackOne(bytes32 packed) internal pure returns (string memory result) {
                /// @solidity memory-safe-assembly
                assembly {
                    // Grab the free memory pointer.
                    result := mload(0x40)
                    // Allocate 2 words (1 for the length, 1 for the bytes).
                    mstore(0x40, add(result, 0x40))
                    // Zeroize the length slot.
                    mstore(result, 0)
                    // Store the length and bytes.
                    mstore(add(result, 0x1f), packed)
                    // Right pad with zeroes.
                    mstore(add(add(result, 0x20), mload(result)), 0)
                }
            }
            /// @dev Packs two strings with their lengths into a single word.
            /// Returns `bytes32(0)` if combined length is zero or greater than 30.
            function packTwo(string memory a, string memory b) internal pure returns (bytes32 result) {
                /// @solidity memory-safe-assembly
                assembly {
                    let aLength := mload(a)
                    // We don't need to zero right pad the strings,
                    // since this is our own custom non-standard packing scheme.
                    result :=
                        mul(
                            // Load the length and the bytes of `a` and `b`.
                            or(
                                shl(shl(3, sub(0x1f, aLength)), mload(add(a, aLength))),
                                mload(sub(add(b, 0x1e), aLength))
                            ),
                            // `totalLength != 0 && totalLength < 31`. Abuses underflow.
                            // Assumes that the lengths are valid and within the block gas limit.
                            lt(sub(add(aLength, mload(b)), 1), 0x1e)
                        )
                }
            }
            /// @dev Unpacks strings packed using {packTwo}.
            /// Returns the empty strings if `packed` is `bytes32(0)`.
            /// If `packed` is not an output of {packTwo}, the output behavior is undefined.
            function unpackTwo(bytes32 packed)
                internal
                pure
                returns (string memory resultA, string memory resultB)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    // Grab the free memory pointer.
                    resultA := mload(0x40)
                    resultB := add(resultA, 0x40)
                    // Allocate 2 words for each string (1 for the length, 1 for the byte). Total 4 words.
                    mstore(0x40, add(resultB, 0x40))
                    // Zeroize the length slots.
                    mstore(resultA, 0)
                    mstore(resultB, 0)
                    // Store the lengths and bytes.
                    mstore(add(resultA, 0x1f), packed)
                    mstore(add(resultB, 0x1f), mload(add(add(resultA, 0x20), mload(resultA))))
                    // Right pad with zeroes.
                    mstore(add(add(resultA, 0x20), mload(resultA)), 0)
                    mstore(add(add(resultB, 0x20), mload(resultB)), 0)
                }
            }
            /// @dev Directly returns `a` without copying.
            function directReturn(string memory a) internal pure {
                assembly {
                    // Assumes that the string does not start from the scratch space.
                    let retStart := sub(a, 0x20)
                    let retSize := add(mload(a), 0x40)
                    // Right pad with zeroes. Just in case the string is produced
                    // by a method that doesn't zero right pad.
                    mstore(add(retStart, retSize), 0)
                    // Store the return offset.
                    mstore(retStart, 0x20)
                    // End the transaction, returning the string.
                    return(retStart, retSize)
                }
            }
        }