ETH Price: $1,972.84 (+0.15%)

Transaction Decoder

Block:
14992674 at Jun-19-2022 08:20:25 PM +UTC
Transaction Fee:
0.001759053392602191 ETH $3.47
Gas Used:
47,397 Gas / 37.113180003 Gwei

Emitted Events:

Account State Difference:

  Address   Before After State Difference Code
(2Miners: PPLNS)
7,645.468791467811725835 Eth7,645.468838864811725835 Eth0.000047397
0x36de9901...a2320De71
(NUMBERS: Deployer)
0.199575714291002695 Eth
Nonce: 4975
0.197816660898400504 Eth
Nonce: 4976
0.001759053392602191

Execution Trace

Random.CALL( )
  • WETH9.transfer( dst=0x888846E76D5B036f80BCac0CdeA7018bb435aBbC, wad=0 ) => ( True )
    File 1 of 2: Random
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.7;
    /**
    *
            :'#######:::'#######:::'#######:::'#######:::'#######:::'#######::
            '##.... ##:'##.... ##:'##.... ##:'##.... ##:'##.... ##:'##.... ##:
            ##:::: ##: ##:::: ##: ##:::: ##: ##:::: ##: ##:::: ##: ##:::: ##:
            : #######::: #######::: #######::: #######::: #######::: #######::
            '##.... ##:'##.... ##:'##.... ##:'##.... ##:'##.... ##:'##.... ##:
            ##:::: ##: ##:::: ##: ##:::: ##: ##:::: ##: ##:::: ##: ##:::: ##:
            . #######::. #######::. #######::. #######::. #######::. #######::
            :.......::::.......::::.......::::.......::::.......::::.......:::  
                                  A game of chance
    */
    import "@chainlink/contracts/src/v0.8/interfaces/LinkTokenInterface.sol";
    import "@chainlink/contracts/src/v0.8/interfaces/VRFCoordinatorV2Interface.sol";
    import "@chainlink/contracts/src/v0.8/VRFConsumerBaseV2.sol";
    import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
    import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
    contract Random is VRFConsumerBaseV2 {
      using SafeERC20 for ERC20;
      VRFCoordinatorV2Interface public COORDINATOR;
      LinkTokenInterface public LINKTOKEN;
      // Your subscription ID.
      uint64 s_subscriptionId;
      // WETH address
      ERC20 public weth;
      // Duration that game lasts
      uint public gameDuration;
      // Time when game starts - after bootstrap
      uint public startTime;
      // Cost per dice roll
      uint public ticketSize = 88 * 10 ** 15; // 0.088
      // Percentage precision
      uint public percentagePrecision = 10 ** 2;
      // Fees earmarked for VRF requests
      uint public linkFeePercent = 20 * percentagePrecision;
      // Fees for the house
      uint public houseFeePercent = 5 * percentagePrecision; // 5%
      // Fee % (10**2 precision)
      uint public feePercentage = linkFeePercent + houseFeePercent; // 25%
      // Revenue split % (10**2 precision) - all depositors with a roll above 600k get a revenue split 
      uint public revenueSplitPercentage = 20 * percentagePrecision; // 20%
      // Threshold roll above which rollers get revenue split
      uint public revenueSplitRollThreshold = 60 * 10 ** 4; // 600k
      // Total revenue collected from all dice rolls
      uint public revenue;
      // Total revenue split shares for rolls above revenue split threshold
      uint public totalRevenueSplitShares;
      // Maps users to amount earned via revenue splits shares
      mapping(address => uint) public revenueSplitSharesPerUser;
      // Tracks revenue split collected per user
      mapping (address => uint) public revenueSplitCollectedPerUser;
      // Total fees collected from all dice rolls
      uint public feesCollected;
      // Winnings distributed at bootstrap
      uint public bootstrapWinnings;
      // Toggled to true to begin the game
      bool public isBootstrapped;
      // Roll with number closest to winning number
      DiceRoll public currentWinner;
      // Winning roll
      DiceRoll public winner;
      // Number to win
      uint public winningNumber = 888888;
      // Maps request IDs to addresses that rolled dice
      mapping (uint => address) public rollRequests;
      // Tracks number of rolls - used as auto-incrementing roll ID
      uint public rollCount;
      // Store dice rolls by roll ID here
      mapping (uint => DiceRoll) public diceRolls;
      address public vrfCoordinator;
      address public link = 0x514910771AF9Ca656af840dff83E8264EcF986CA;
      // 200 gwei
      bytes32 public keyHash = 0x8af398995b04c28e9951adb9721ef74c74f93e6a478f39e7e0777be13527e7ef;
      
      uint32 public callbackGasLimit = 1000000;
      // The default is 3, but you can set this higher.
      uint16 public requestConfirmations = 3;
      // Toggled to true if single rolls are enabled
      bool public isSingleRollEnabled = false;
      // Contract owner
      address owner;
      struct DiceRoll {
        // Random number on roll
        uint roll;
        // Address of roller
        address roller;
      }
      event LogNewRollRequest(uint requestId, address indexed roller);
      event LogOnRollResult(uint requestId, uint rollId, uint roll, address indexed roller);
      event LogNewCurrentWinner(uint requestId, uint rollId, uint roll, address indexed roller);
      event LogDiscardedRollResult(uint requestId, uint rollId, address indexed roller);
      event LogGameOver(address indexed winner, uint winnings); 
      event LogOnCollectRevenueSplit(address indexed user, uint split);
      event LogAddToRevenue(uint amount);
      event LogToggleEnableSingleRoll(bool enabled);
      constructor(
        uint64 subscriptionId,
        address _weth,
        address _vrfCoordinator,
        uint _gameDuration
      ) VRFConsumerBaseV2(_vrfCoordinator) {
        COORDINATOR = VRFCoordinatorV2Interface(_vrfCoordinator);
        LINKTOKEN = LinkTokenInterface(link);
        owner = msg.sender;
        s_subscriptionId = subscriptionId;
        vrfCoordinator = _vrfCoordinator;
        weth = ERC20(_weth);
        gameDuration = _gameDuration;
      }
      // Set a new coordinator address
      function setCoordinator(address _coordinator) 
      public
      onlyOwner 
      returns (bool) {
        require(!isBootstrapped, "Contract is already bootstrapped");
        vrfCoordinator = _coordinator;
        COORDINATOR = VRFCoordinatorV2Interface(vrfCoordinator);
        return true;
      }
      // Called initially to bootstrap the game
      function bootstrap(
        uint _bootstrapWinnings
      )
      public
      onlyOwner
      returns (bool) {
        require(!isBootstrapped, "Game already bootstrapped");
        bootstrapWinnings = _bootstrapWinnings;
        revenue += _bootstrapWinnings;
        isBootstrapped = true;
        startTime = block.timestamp;
        weth.safeTransferFrom(msg.sender, address(this), _bootstrapWinnings);
        return true;
      }
      // Allows owner to collect fees
      function collectFees() 
      public
      returns (bool) {
        uint fees = getFees();
        feesCollected += fees;
        weth.safeTransfer(owner, fees);
        return true;
      }
      // Process random words from chainlink VRF2
      function fulfillRandomWords(
        uint256 requestId, /* requestId */
        uint256[] memory randomWords
      ) internal override {
        for (uint i = 0; i < randomWords.length; i++) {
          diceRolls[++rollCount].roll = getFormattedNumber(randomWords[i]);
          diceRolls[rollCount].roller = rollRequests[requestId];
          // If the game was over between rolls - don't perform any of the below logic
          if (!isGameOver()) {
            if (diceRolls[rollCount].roll == winningNumber) {
              // User wins
              winner = diceRolls[rollCount];
              // Transfer revenue to winner
              collectFees();
              uint revenueSplit = getRevenueSplit();
              uint winnings = revenue - feesCollected - revenueSplit;
              weth.safeTransfer(winner.roller, winnings);
              emit LogGameOver(winner.roller, winnings);
            } else if (diceRolls[rollCount].roll >= revenueSplitRollThreshold) {
              totalRevenueSplitShares += 1;
              revenueSplitSharesPerUser[diceRolls[rollCount].roller] += 1;
            }
            if (diceRolls[rollCount].roll != winningNumber) {
              int diff = getDiff(diceRolls[rollCount].roll, winningNumber);
              int currentWinnerDiff = getDiff(currentWinner.roll, winningNumber);
              if (diff <= currentWinnerDiff)  {
                currentWinner = diceRolls[rollCount];
                emit LogNewCurrentWinner(requestId, rollCount, diceRolls[rollCount].roll, diceRolls[rollCount].roller);
              }
            }
          } else
            emit LogDiscardedRollResult(requestId, rollCount, diceRolls[rollCount].roller);
          emit LogOnRollResult(requestId, rollCount, diceRolls[rollCount].roll, diceRolls[rollCount].roller);
        }
      }
      // Returns difference between 2 dice rolls
      function getDiff(uint a, uint b) private pure returns (int) {
        unchecked {
          int x = int(a-b);
          return x >= 0 ? x : -x;
        }
      }
      // Ends a game that is past it's duration without a winner
      function endGame()
      public
      returns (bool) {
        require(
          hasGameDurationElapsed() && winner.roller == address(0), 
          "Game duration hasn't elapsed without a winner"
        );
        winner = currentWinner;
        // Transfer revenue to winner
        collectFees();
        uint revenueSplit = getRevenueSplit();
        uint winnings = revenue - feesCollected - revenueSplit;
        weth.safeTransfer(winner.roller, winnings);
        emit LogGameOver(winner.roller, winnings);
        return true;
      }
      // Allows users to collect their share of revenue split after a game is over  
      function collectRevenueSplit() external {
        require(isGameOver(), "Game isn't over");
        require(revenueSplitSharesPerUser[msg.sender] > 0, "User does not have any revenue split shares");
        require(revenueSplitCollectedPerUser[msg.sender] == 0, "User has already collected revenue split");
        uint revenueSplit = getRevenueSplit();
        uint userRevenueSplit = revenueSplit * revenueSplitSharesPerUser[msg.sender] / totalRevenueSplitShares; 
        revenueSplitCollectedPerUser[msg.sender] = userRevenueSplit;
        weth.safeTransfer(msg.sender, userRevenueSplit);
        emit LogOnCollectRevenueSplit(msg.sender, userRevenueSplit);
      }
      // Roll dice once
      function rollDice() external {
        require(isSingleRollEnabled, "Single rolls are not currently enabled");
        require(isBootstrapped, "Game is not bootstrapped");
        require(!isGameOver(), "Game is over");
        revenue += ticketSize;
        weth.safeTransferFrom(msg.sender, address(this), ticketSize);
        
        // Will revert if subscription is not set and funded.
        uint requestId = COORDINATOR.requestRandomWords(
          keyHash,
          s_subscriptionId,
          requestConfirmations,
          callbackGasLimit,
          1
        );
        rollRequests[requestId] = msg.sender;
        emit LogNewRollRequest(requestId, msg.sender);
      }
      // Approve WETH once and roll multiple times
      function rollMultipleDice(uint32 times) external {
        require(isBootstrapped, "Game is not bootstrapped");
        require(!isGameOver(), "Game is over");
        require(times > 1 && times <= 5, "Should be >=1 and <=5 rolls in 1 txn");
        uint total = ticketSize * times;
        revenue += total;
        weth.safeTransferFrom(msg.sender, address(this), total);
        
        // Will revert if subscription is not set and funded.
        uint requestId = COORDINATOR.requestRandomWords(
          keyHash,
          s_subscriptionId,
          requestConfirmations,
          callbackGasLimit,
          times
        );
        rollRequests[requestId] = msg.sender;
        emit LogNewRollRequest(requestId, msg.sender);
      }
      // Returns current available fees
      function getFees()
      public
      view
      returns (uint) {
        return ((revenue * feePercentage) / (100 * percentagePrecision)) - feesCollected;
      }
      // Returns revenue split for rollers above 600k
      function getRevenueSplit()
      public
      view
      returns (uint) {
        return ((revenue * revenueSplitPercentage) / (100 * percentagePrecision));
      }
      // Format number to 0 - 10 ** 6 range
      function getFormattedNumber(
        uint number
      )
      public
      pure
      returns (uint) {
        return number % 1000000 + 1;
      }
      // Returns whether the game is still running
      function isGameOver()
      public
      view
      returns (bool) {
        return winner.roller != address(0) || hasGameDurationElapsed();
      }
      // Returns whether the game duration has ended
      function hasGameDurationElapsed()
      public
      view
      returns (bool) {
        return block.timestamp > startTime + gameDuration;
      }
      function updateCallbackGasLimit(uint32 limit)
      public
      onlyOwner returns (bool) {
        require(limit >= 500000, "Limit must be >=500000");
        callbackGasLimit = limit;
        return true;
      }
      // Allows owner to add revenue to the pot
      function addToRevenue(uint amount)
      public
      onlyOwner returns (bool) {
        revenue += amount;
        weth.safeTransferFrom(msg.sender, address(this), amount);
        emit LogAddToRevenue(amount);
        return true;
      }
      // Toggle enable single roll
      function toggleEnableSingleRoll(bool enabled)
      public
      onlyOwner
      returns (bool) {
        isSingleRollEnabled = enabled;
        emit LogToggleEnableSingleRoll(enabled);
        return true;
      }
      modifier onlyOwner() {
        require(msg.sender == owner);
        _;
      }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    interface LinkTokenInterface {
      function allowance(address owner, address spender) external view returns (uint256 remaining);
      function approve(address spender, uint256 value) external returns (bool success);
      function balanceOf(address owner) external view returns (uint256 balance);
      function decimals() external view returns (uint8 decimalPlaces);
      function decreaseApproval(address spender, uint256 addedValue) external returns (bool success);
      function increaseApproval(address spender, uint256 subtractedValue) external;
      function name() external view returns (string memory tokenName);
      function symbol() external view returns (string memory tokenSymbol);
      function totalSupply() external view returns (uint256 totalTokensIssued);
      function transfer(address to, uint256 value) external returns (bool success);
      function transferAndCall(
        address to,
        uint256 value,
        bytes calldata data
      ) external returns (bool success);
      function transferFrom(
        address from,
        address to,
        uint256 value
      ) external returns (bool success);
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    interface VRFCoordinatorV2Interface {
      /**
       * @notice Get configuration relevant for making requests
       * @return minimumRequestConfirmations global min for request confirmations
       * @return maxGasLimit global max for request gas limit
       * @return s_provingKeyHashes list of registered key hashes
       */
      function getRequestConfig()
        external
        view
        returns (
          uint16,
          uint32,
          bytes32[] memory
        );
      /**
       * @notice Request a set of random words.
       * @param keyHash - Corresponds to a particular oracle job which uses
       * that key for generating the VRF proof. Different keyHash's have different gas price
       * ceilings, so you can select a specific one to bound your maximum per request cost.
       * @param subId  - The ID of the VRF subscription. Must be funded
       * with the minimum subscription balance required for the selected keyHash.
       * @param minimumRequestConfirmations - How many blocks you'd like the
       * oracle to wait before responding to the request. See SECURITY CONSIDERATIONS
       * for why you may want to request more. The acceptable range is
       * [minimumRequestBlockConfirmations, 200].
       * @param callbackGasLimit - How much gas you'd like to receive in your
       * fulfillRandomWords callback. Note that gasleft() inside fulfillRandomWords
       * may be slightly less than this amount because of gas used calling the function
       * (argument decoding etc.), so you may need to request slightly more than you expect
       * to have inside fulfillRandomWords. The acceptable range is
       * [0, maxGasLimit]
       * @param numWords - The number of uint256 random values you'd like to receive
       * in your fulfillRandomWords callback. Note these numbers are expanded in a
       * secure way by the VRFCoordinator from a single random value supplied by the oracle.
       * @return requestId - A unique identifier of the request. Can be used to match
       * a request to a response in fulfillRandomWords.
       */
      function requestRandomWords(
        bytes32 keyHash,
        uint64 subId,
        uint16 minimumRequestConfirmations,
        uint32 callbackGasLimit,
        uint32 numWords
      ) external returns (uint256 requestId);
      /**
       * @notice Create a VRF subscription.
       * @return subId - A unique subscription id.
       * @dev You can manage the consumer set dynamically with addConsumer/removeConsumer.
       * @dev Note to fund the subscription, use transferAndCall. For example
       * @dev  LINKTOKEN.transferAndCall(
       * @dev    address(COORDINATOR),
       * @dev    amount,
       * @dev    abi.encode(subId));
       */
      function createSubscription() external returns (uint64 subId);
      /**
       * @notice Get a VRF subscription.
       * @param subId - ID of the subscription
       * @return balance - LINK balance of the subscription in juels.
       * @return reqCount - number of requests for this subscription, determines fee tier.
       * @return owner - owner of the subscription.
       * @return consumers - list of consumer address which are able to use this subscription.
       */
      function getSubscription(uint64 subId)
        external
        view
        returns (
          uint96 balance,
          uint64 reqCount,
          address owner,
          address[] memory consumers
        );
      /**
       * @notice Request subscription owner transfer.
       * @param subId - ID of the subscription
       * @param newOwner - proposed new owner of the subscription
       */
      function requestSubscriptionOwnerTransfer(uint64 subId, address newOwner) external;
      /**
       * @notice Request subscription owner transfer.
       * @param subId - ID of the subscription
       * @dev will revert if original owner of subId has
       * not requested that msg.sender become the new owner.
       */
      function acceptSubscriptionOwnerTransfer(uint64 subId) external;
      /**
       * @notice Add a consumer to a VRF subscription.
       * @param subId - ID of the subscription
       * @param consumer - New consumer which can use the subscription
       */
      function addConsumer(uint64 subId, address consumer) external;
      /**
       * @notice Remove a consumer from a VRF subscription.
       * @param subId - ID of the subscription
       * @param consumer - Consumer to remove from the subscription
       */
      function removeConsumer(uint64 subId, address consumer) external;
      /**
       * @notice Cancel a subscription
       * @param subId - ID of the subscription
       * @param to - Where to send the remaining LINK to
       */
      function cancelSubscription(uint64 subId, address to) external;
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    /** ****************************************************************************
     * @notice Interface for contracts using VRF randomness
     * *****************************************************************************
     * @dev PURPOSE
     *
     * @dev Reggie the Random Oracle (not his real job) wants to provide randomness
     * @dev to Vera the verifier in such a way that Vera can be sure he's not
     * @dev making his output up to suit himself. Reggie provides Vera a public key
     * @dev to which he knows the secret key. Each time Vera provides a seed to
     * @dev Reggie, he gives back a value which is computed completely
     * @dev deterministically from the seed and the secret key.
     *
     * @dev Reggie provides a proof by which Vera can verify that the output was
     * @dev correctly computed once Reggie tells it to her, but without that proof,
     * @dev the output is indistinguishable to her from a uniform random sample
     * @dev from the output space.
     *
     * @dev The purpose of this contract is to make it easy for unrelated contracts
     * @dev to talk to Vera the verifier about the work Reggie is doing, to provide
     * @dev simple access to a verifiable source of randomness. It ensures 2 things:
     * @dev 1. The fulfillment came from the VRFCoordinator
     * @dev 2. The consumer contract implements fulfillRandomWords.
     * *****************************************************************************
     * @dev USAGE
     *
     * @dev Calling contracts must inherit from VRFConsumerBase, and can
     * @dev initialize VRFConsumerBase's attributes in their constructor as
     * @dev shown:
     *
     * @dev   contract VRFConsumer {
     * @dev     constructor(<other arguments>, address _vrfCoordinator, address _link)
     * @dev       VRFConsumerBase(_vrfCoordinator) public {
     * @dev         <initialization with other arguments goes here>
     * @dev       }
     * @dev   }
     *
     * @dev The oracle will have given you an ID for the VRF keypair they have
     * @dev committed to (let's call it keyHash). Create subscription, fund it
     * @dev and your consumer contract as a consumer of it (see VRFCoordinatorInterface
     * @dev subscription management functions).
     * @dev Call requestRandomWords(keyHash, subId, minimumRequestConfirmations,
     * @dev callbackGasLimit, numWords),
     * @dev see (VRFCoordinatorInterface for a description of the arguments).
     *
     * @dev Once the VRFCoordinator has received and validated the oracle's response
     * @dev to your request, it will call your contract's fulfillRandomWords method.
     *
     * @dev The randomness argument to fulfillRandomWords is a set of random words
     * @dev generated from your requestId and the blockHash of the request.
     *
     * @dev If your contract could have concurrent requests open, you can use the
     * @dev requestId returned from requestRandomWords to track which response is associated
     * @dev with which randomness request.
     * @dev See "SECURITY CONSIDERATIONS" for principles to keep in mind,
     * @dev if your contract could have multiple requests in flight simultaneously.
     *
     * @dev Colliding `requestId`s are cryptographically impossible as long as seeds
     * @dev differ.
     *
     * *****************************************************************************
     * @dev SECURITY CONSIDERATIONS
     *
     * @dev A method with the ability to call your fulfillRandomness method directly
     * @dev could spoof a VRF response with any random value, so it's critical that
     * @dev it cannot be directly called by anything other than this base contract
     * @dev (specifically, by the VRFConsumerBase.rawFulfillRandomness method).
     *
     * @dev For your users to trust that your contract's random behavior is free
     * @dev from malicious interference, it's best if you can write it so that all
     * @dev behaviors implied by a VRF response are executed *during* your
     * @dev fulfillRandomness method. If your contract must store the response (or
     * @dev anything derived from it) and use it later, you must ensure that any
     * @dev user-significant behavior which depends on that stored value cannot be
     * @dev manipulated by a subsequent VRF request.
     *
     * @dev Similarly, both miners and the VRF oracle itself have some influence
     * @dev over the order in which VRF responses appear on the blockchain, so if
     * @dev your contract could have multiple VRF requests in flight simultaneously,
     * @dev you must ensure that the order in which the VRF responses arrive cannot
     * @dev be used to manipulate your contract's user-significant behavior.
     *
     * @dev Since the block hash of the block which contains the requestRandomness
     * @dev call is mixed into the input to the VRF *last*, a sufficiently powerful
     * @dev miner could, in principle, fork the blockchain to evict the block
     * @dev containing the request, forcing the request to be included in a
     * @dev different block with a different hash, and therefore a different input
     * @dev to the VRF. However, such an attack would incur a substantial economic
     * @dev cost. This cost scales with the number of blocks the VRF oracle waits
     * @dev until it calls responds to a request. It is for this reason that
     * @dev that you can signal to an oracle you'd like them to wait longer before
     * @dev responding to the request (however this is not enforced in the contract
     * @dev and so remains effective only in the case of unmodified oracle software).
     */
    abstract contract VRFConsumerBaseV2 {
      error OnlyCoordinatorCanFulfill(address have, address want);
      address private immutable vrfCoordinator;
      /**
       * @param _vrfCoordinator address of VRFCoordinator contract
       */
      constructor(address _vrfCoordinator) {
        vrfCoordinator = _vrfCoordinator;
      }
      /**
       * @notice fulfillRandomness handles the VRF response. Your contract must
       * @notice implement it. See "SECURITY CONSIDERATIONS" above for important
       * @notice principles to keep in mind when implementing your fulfillRandomness
       * @notice method.
       *
       * @dev VRFConsumerBaseV2 expects its subcontracts to have a method with this
       * @dev signature, and will call it once it has verified the proof
       * @dev associated with the randomness. (It is triggered via a call to
       * @dev rawFulfillRandomness, below.)
       *
       * @param requestId The Id initially returned by requestRandomness
       * @param randomWords the VRF output expanded to the requested number of words
       */
      function fulfillRandomWords(uint256 requestId, uint256[] memory randomWords) internal virtual;
      // rawFulfillRandomness is called by VRFCoordinator when it receives a valid VRF
      // proof. rawFulfillRandomness then calls fulfillRandomness, after validating
      // the origin of the call
      function rawFulfillRandomWords(uint256 requestId, uint256[] memory randomWords) external {
        if (msg.sender != vrfCoordinator) {
          revert OnlyCoordinatorCanFulfill(msg.sender, vrfCoordinator);
        }
        fulfillRandomWords(requestId, randomWords);
      }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (token/ERC20/utils/SafeERC20.sol)
    pragma solidity ^0.8.0;
    import "../IERC20.sol";
    import "../../../utils/Address.sol";
    /**
     * @title SafeERC20
     * @dev Wrappers around ERC20 operations that throw on failure (when the token
     * contract returns false). Tokens that return no value (and instead revert or
     * throw on failure) are also supported, non-reverting calls are assumed to be
     * successful.
     * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
     * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
     */
    library SafeERC20 {
        using Address for address;
        function safeTransfer(
            IERC20 token,
            address to,
            uint256 value
        ) internal {
            _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
        }
        function safeTransferFrom(
            IERC20 token,
            address from,
            address to,
            uint256 value
        ) internal {
            _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
        }
        /**
         * @dev Deprecated. This function has issues similar to the ones found in
         * {IERC20-approve}, and its usage is discouraged.
         *
         * Whenever possible, use {safeIncreaseAllowance} and
         * {safeDecreaseAllowance} instead.
         */
        function safeApprove(
            IERC20 token,
            address spender,
            uint256 value
        ) internal {
            // safeApprove should only be called when setting an initial allowance,
            // or when resetting it to zero. To increase and decrease it, use
            // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
            require(
                (value == 0) || (token.allowance(address(this), spender) == 0),
                "SafeERC20: approve from non-zero to non-zero allowance"
            );
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
        }
        function safeIncreaseAllowance(
            IERC20 token,
            address spender,
            uint256 value
        ) internal {
            uint256 newAllowance = token.allowance(address(this), spender) + value;
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
        function safeDecreaseAllowance(
            IERC20 token,
            address spender,
            uint256 value
        ) internal {
            unchecked {
                uint256 oldAllowance = token.allowance(address(this), spender);
                require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                uint256 newAllowance = oldAllowance - value;
                _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
            }
        }
        /**
         * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
         * on the return value: the return value is optional (but if data is returned, it must not be false).
         * @param token The token targeted by the call.
         * @param data The call data (encoded using abi.encode or one of its variants).
         */
        function _callOptionalReturn(IERC20 token, bytes memory data) private {
            // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
            // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
            // the target address contains contract code and also asserts for success in the low-level call.
            bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
            if (returndata.length > 0) {
                // Return data is optional
                require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/ERC20.sol)
    pragma solidity ^0.8.0;
    import "./IERC20.sol";
    import "./extensions/IERC20Metadata.sol";
    import "../../utils/Context.sol";
    /**
     * @dev Implementation of the {IERC20} interface.
     *
     * This implementation is agnostic to the way tokens are created. This means
     * that a supply mechanism has to be added in a derived contract using {_mint}.
     * For a generic mechanism see {ERC20PresetMinterPauser}.
     *
     * TIP: For a detailed writeup see our guide
     * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
     * to implement supply mechanisms].
     *
     * We have followed general OpenZeppelin Contracts guidelines: functions revert
     * instead returning `false` on failure. This behavior is nonetheless
     * conventional and does not conflict with the expectations of ERC20
     * applications.
     *
     * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
     * This allows applications to reconstruct the allowance for all accounts just
     * by listening to said events. Other implementations of the EIP may not emit
     * these events, as it isn't required by the specification.
     *
     * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
     * functions have been added to mitigate the well-known issues around setting
     * allowances. See {IERC20-approve}.
     */
    contract ERC20 is Context, IERC20, IERC20Metadata {
        mapping(address => uint256) private _balances;
        mapping(address => mapping(address => uint256)) private _allowances;
        uint256 private _totalSupply;
        string private _name;
        string private _symbol;
        /**
         * @dev Sets the values for {name} and {symbol}.
         *
         * The default value of {decimals} is 18. To select a different value for
         * {decimals} you should overload it.
         *
         * All two of these values are immutable: they can only be set once during
         * construction.
         */
        constructor(string memory name_, string memory symbol_) {
            _name = name_;
            _symbol = symbol_;
        }
        /**
         * @dev Returns the name of the token.
         */
        function name() public view virtual override returns (string memory) {
            return _name;
        }
        /**
         * @dev Returns the symbol of the token, usually a shorter version of the
         * name.
         */
        function symbol() public view virtual override returns (string memory) {
            return _symbol;
        }
        /**
         * @dev Returns the number of decimals used to get its user representation.
         * For example, if `decimals` equals `2`, a balance of `505` tokens should
         * be displayed to a user as `5.05` (`505 / 10 ** 2`).
         *
         * Tokens usually opt for a value of 18, imitating the relationship between
         * Ether and Wei. This is the value {ERC20} uses, unless this function is
         * overridden;
         *
         * NOTE: This information is only used for _display_ purposes: it in
         * no way affects any of the arithmetic of the contract, including
         * {IERC20-balanceOf} and {IERC20-transfer}.
         */
        function decimals() public view virtual override returns (uint8) {
            return 18;
        }
        /**
         * @dev See {IERC20-totalSupply}.
         */
        function totalSupply() public view virtual override returns (uint256) {
            return _totalSupply;
        }
        /**
         * @dev See {IERC20-balanceOf}.
         */
        function balanceOf(address account) public view virtual override returns (uint256) {
            return _balances[account];
        }
        /**
         * @dev See {IERC20-transfer}.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - the caller must have a balance of at least `amount`.
         */
        function transfer(address to, uint256 amount) public virtual override returns (bool) {
            address owner = _msgSender();
            _transfer(owner, to, amount);
            return true;
        }
        /**
         * @dev See {IERC20-allowance}.
         */
        function allowance(address owner, address spender) public view virtual override returns (uint256) {
            return _allowances[owner][spender];
        }
        /**
         * @dev See {IERC20-approve}.
         *
         * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
         * `transferFrom`. This is semantically equivalent to an infinite approval.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function approve(address spender, uint256 amount) public virtual override returns (bool) {
            address owner = _msgSender();
            _approve(owner, spender, amount);
            return true;
        }
        /**
         * @dev See {IERC20-transferFrom}.
         *
         * Emits an {Approval} event indicating the updated allowance. This is not
         * required by the EIP. See the note at the beginning of {ERC20}.
         *
         * NOTE: Does not update the allowance if the current allowance
         * is the maximum `uint256`.
         *
         * Requirements:
         *
         * - `from` and `to` cannot be the zero address.
         * - `from` must have a balance of at least `amount`.
         * - the caller must have allowance for ``from``'s tokens of at least
         * `amount`.
         */
        function transferFrom(
            address from,
            address to,
            uint256 amount
        ) public virtual override returns (bool) {
            address spender = _msgSender();
            _spendAllowance(from, spender, amount);
            _transfer(from, to, amount);
            return true;
        }
        /**
         * @dev Atomically increases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
            address owner = _msgSender();
            _approve(owner, spender, _allowances[owner][spender] + addedValue);
            return true;
        }
        /**
         * @dev Atomically decreases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `spender` must have allowance for the caller of at least
         * `subtractedValue`.
         */
        function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
            address owner = _msgSender();
            uint256 currentAllowance = _allowances[owner][spender];
            require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
            unchecked {
                _approve(owner, spender, currentAllowance - subtractedValue);
            }
            return true;
        }
        /**
         * @dev Moves `amount` of tokens from `sender` to `recipient`.
         *
         * This internal function is equivalent to {transfer}, and can be used to
         * e.g. implement automatic token fees, slashing mechanisms, etc.
         *
         * Emits a {Transfer} event.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `from` must have a balance of at least `amount`.
         */
        function _transfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {
            require(from != address(0), "ERC20: transfer from the zero address");
            require(to != address(0), "ERC20: transfer to the zero address");
            _beforeTokenTransfer(from, to, amount);
            uint256 fromBalance = _balances[from];
            require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
            unchecked {
                _balances[from] = fromBalance - amount;
            }
            _balances[to] += amount;
            emit Transfer(from, to, amount);
            _afterTokenTransfer(from, to, amount);
        }
        /** @dev Creates `amount` tokens and assigns them to `account`, increasing
         * the total supply.
         *
         * Emits a {Transfer} event with `from` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         */
        function _mint(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: mint to the zero address");
            _beforeTokenTransfer(address(0), account, amount);
            _totalSupply += amount;
            _balances[account] += amount;
            emit Transfer(address(0), account, amount);
            _afterTokenTransfer(address(0), account, amount);
        }
        /**
         * @dev Destroys `amount` tokens from `account`, reducing the
         * total supply.
         *
         * Emits a {Transfer} event with `to` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         * - `account` must have at least `amount` tokens.
         */
        function _burn(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: burn from the zero address");
            _beforeTokenTransfer(account, address(0), amount);
            uint256 accountBalance = _balances[account];
            require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
            unchecked {
                _balances[account] = accountBalance - amount;
            }
            _totalSupply -= amount;
            emit Transfer(account, address(0), amount);
            _afterTokenTransfer(account, address(0), amount);
        }
        /**
         * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
         *
         * This internal function is equivalent to `approve`, and can be used to
         * e.g. set automatic allowances for certain subsystems, etc.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `owner` cannot be the zero address.
         * - `spender` cannot be the zero address.
         */
        function _approve(
            address owner,
            address spender,
            uint256 amount
        ) internal virtual {
            require(owner != address(0), "ERC20: approve from the zero address");
            require(spender != address(0), "ERC20: approve to the zero address");
            _allowances[owner][spender] = amount;
            emit Approval(owner, spender, amount);
        }
        /**
         * @dev Spend `amount` form the allowance of `owner` toward `spender`.
         *
         * Does not update the allowance amount in case of infinite allowance.
         * Revert if not enough allowance is available.
         *
         * Might emit an {Approval} event.
         */
        function _spendAllowance(
            address owner,
            address spender,
            uint256 amount
        ) internal virtual {
            uint256 currentAllowance = allowance(owner, spender);
            if (currentAllowance != type(uint256).max) {
                require(currentAllowance >= amount, "ERC20: insufficient allowance");
                unchecked {
                    _approve(owner, spender, currentAllowance - amount);
                }
            }
        }
        /**
         * @dev Hook that is called before any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * will be transferred to `to`.
         * - when `from` is zero, `amount` tokens will be minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _beforeTokenTransfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {}
        /**
         * @dev Hook that is called after any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * has been transferred to `to`.
         * - when `from` is zero, `amount` tokens have been minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _afterTokenTransfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {}
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/IERC20.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
        /**
         * @dev Moves `amount` tokens from the caller's account to `to`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address to, uint256 amount) external returns (bool);
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
        /**
         * @dev Moves `amount` tokens from `from` to `to` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(
            address from,
            address to,
            uint256 amount
        ) external returns (bool);
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.5.0) (utils/Address.sol)
    pragma solidity ^0.8.1;
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         * ====
         *
         * [IMPORTANT]
         * ====
         * You shouldn't rely on `isContract` to protect against flash loan attacks!
         *
         * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
         * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
         * constructor.
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // This method relies on extcodesize/address.code.length, which returns 0
            // for contracts in construction, since the code is only stored at the end
            // of the constructor execution.
            return account.code.length > 0;
        }
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, "Address: insufficient balance");
            (bool success, ) = recipient.call{value: amount}("");
            require(success, "Address: unable to send value, recipient may have reverted");
        }
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain `call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason, it is bubbled up by this
         * function (like regular Solidity function calls).
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCall(target, data, "Address: low-level call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
         * `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
        }
        /**
         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
         * with `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value,
            string memory errorMessage
        ) internal returns (bytes memory) {
            require(address(this).balance >= value, "Address: insufficient balance for call");
            require(isContract(target), "Address: call to non-contract");
            (bool success, bytes memory returndata) = target.call{value: value}(data);
            return verifyCallResult(success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            return functionStaticCall(target, data, "Address: low-level static call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            require(isContract(target), "Address: static call to non-contract");
            (bool success, bytes memory returndata) = target.staticcall(data);
            return verifyCallResult(success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionDelegateCall(target, data, "Address: low-level delegate call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            require(isContract(target), "Address: delegate call to non-contract");
            (bool success, bytes memory returndata) = target.delegatecall(data);
            return verifyCallResult(success, returndata, errorMessage);
        }
        /**
         * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
         * revert reason using the provided one.
         *
         * _Available since v4.3._
         */
        function verifyCallResult(
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal pure returns (bytes memory) {
            if (success) {
                return returndata;
            } else {
                // Look for revert reason and bubble it up if present
                if (returndata.length > 0) {
                    // The easiest way to bubble the revert reason is using memory via assembly
                    assembly {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert(errorMessage);
                }
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
    pragma solidity ^0.8.0;
    import "../IERC20.sol";
    /**
     * @dev Interface for the optional metadata functions from the ERC20 standard.
     *
     * _Available since v4.1._
     */
    interface IERC20Metadata is IERC20 {
        /**
         * @dev Returns the name of the token.
         */
        function name() external view returns (string memory);
        /**
         * @dev Returns the symbol of the token.
         */
        function symbol() external view returns (string memory);
        /**
         * @dev Returns the decimals places of the token.
         */
        function decimals() external view returns (uint8);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    }
    

    File 2 of 2: WETH9
    // Copyright (C) 2015, 2016, 2017 Dapphub
    
    // This program is free software: you can redistribute it and/or modify
    // it under the terms of the GNU General Public License as published by
    // the Free Software Foundation, either version 3 of the License, or
    // (at your option) any later version.
    
    // This program is distributed in the hope that it will be useful,
    // but WITHOUT ANY WARRANTY; without even the implied warranty of
    // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    // GNU General Public License for more details.
    
    // You should have received a copy of the GNU General Public License
    // along with this program.  If not, see <http://www.gnu.org/licenses/>.
    
    pragma solidity ^0.4.18;
    
    contract WETH9 {
        string public name     = "Wrapped Ether";
        string public symbol   = "WETH";
        uint8  public decimals = 18;
    
        event  Approval(address indexed src, address indexed guy, uint wad);
        event  Transfer(address indexed src, address indexed dst, uint wad);
        event  Deposit(address indexed dst, uint wad);
        event  Withdrawal(address indexed src, uint wad);
    
        mapping (address => uint)                       public  balanceOf;
        mapping (address => mapping (address => uint))  public  allowance;
    
        function() public payable {
            deposit();
        }
        function deposit() public payable {
            balanceOf[msg.sender] += msg.value;
            Deposit(msg.sender, msg.value);
        }
        function withdraw(uint wad) public {
            require(balanceOf[msg.sender] >= wad);
            balanceOf[msg.sender] -= wad;
            msg.sender.transfer(wad);
            Withdrawal(msg.sender, wad);
        }
    
        function totalSupply() public view returns (uint) {
            return this.balance;
        }
    
        function approve(address guy, uint wad) public returns (bool) {
            allowance[msg.sender][guy] = wad;
            Approval(msg.sender, guy, wad);
            return true;
        }
    
        function transfer(address dst, uint wad) public returns (bool) {
            return transferFrom(msg.sender, dst, wad);
        }
    
        function transferFrom(address src, address dst, uint wad)
            public
            returns (bool)
        {
            require(balanceOf[src] >= wad);
    
            if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) {
                require(allowance[src][msg.sender] >= wad);
                allowance[src][msg.sender] -= wad;
            }
    
            balanceOf[src] -= wad;
            balanceOf[dst] += wad;
    
            Transfer(src, dst, wad);
    
            return true;
        }
    }
    
    
    /*
                        GNU GENERAL PUBLIC LICENSE
                           Version 3, 29 June 2007
    
     Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
     Everyone is permitted to copy and distribute verbatim copies
     of this license document, but changing it is not allowed.
    
                                Preamble
    
      The GNU General Public License is a free, copyleft license for
    software and other kinds of works.
    
      The licenses for most software and other practical works are designed
    to take away your freedom to share and change the works.  By contrast,
    the GNU General Public License is intended to guarantee your freedom to
    share and change all versions of a program--to make sure it remains free
    software for all its users.  We, the Free Software Foundation, use the
    GNU General Public License for most of our software; it applies also to
    any other work released this way by its authors.  You can apply it to
    your programs, too.
    
      When we speak of free software, we are referring to freedom, not
    price.  Our General Public Licenses are designed to make sure that you
    have the freedom to distribute copies of free software (and charge for
    them if you wish), that you receive source code or can get it if you
    want it, that you can change the software or use pieces of it in new
    free programs, and that you know you can do these things.
    
      To protect your rights, we need to prevent others from denying you
    these rights or asking you to surrender the rights.  Therefore, you have
    certain responsibilities if you distribute copies of the software, or if
    you modify it: responsibilities to respect the freedom of others.
    
      For example, if you distribute copies of such a program, whether
    gratis or for a fee, you must pass on to the recipients the same
    freedoms that you received.  You must make sure that they, too, receive
    or can get the source code.  And you must show them these terms so they
    know their rights.
    
      Developers that use the GNU GPL protect your rights with two steps:
    (1) assert copyright on the software, and (2) offer you this License
    giving you legal permission to copy, distribute and/or modify it.
    
      For the developers' and authors' protection, the GPL clearly explains
    that there is no warranty for this free software.  For both users' and
    authors' sake, the GPL requires that modified versions be marked as
    changed, so that their problems will not be attributed erroneously to
    authors of previous versions.
    
      Some devices are designed to deny users access to install or run
    modified versions of the software inside them, although the manufacturer
    can do so.  This is fundamentally incompatible with the aim of
    protecting users' freedom to change the software.  The systematic
    pattern of such abuse occurs in the area of products for individuals to
    use, which is precisely where it is most unacceptable.  Therefore, we
    have designed this version of the GPL to prohibit the practice for those
    products.  If such problems arise substantially in other domains, we
    stand ready to extend this provision to those domains in future versions
    of the GPL, as needed to protect the freedom of users.
    
      Finally, every program is threatened constantly by software patents.
    States should not allow patents to restrict development and use of
    software on general-purpose computers, but in those that do, we wish to
    avoid the special danger that patents applied to a free program could
    make it effectively proprietary.  To prevent this, the GPL assures that
    patents cannot be used to render the program non-free.
    
      The precise terms and conditions for copying, distribution and
    modification follow.
    
                           TERMS AND CONDITIONS
    
      0. Definitions.
    
      "This License" refers to version 3 of the GNU General Public License.
    
      "Copyright" also means copyright-like laws that apply to other kinds of
    works, such as semiconductor masks.
    
      "The Program" refers to any copyrightable work licensed under this
    License.  Each licensee is addressed as "you".  "Licensees" and
    "recipients" may be individuals or organizations.
    
      To "modify" a work means to copy from or adapt all or part of the work
    in a fashion requiring copyright permission, other than the making of an
    exact copy.  The resulting work is called a "modified version" of the
    earlier work or a work "based on" the earlier work.
    
      A "covered work" means either the unmodified Program or a work based
    on the Program.
    
      To "propagate" a work means to do anything with it that, without
    permission, would make you directly or secondarily liable for
    infringement under applicable copyright law, except executing it on a
    computer or modifying a private copy.  Propagation includes copying,
    distribution (with or without modification), making available to the
    public, and in some countries other activities as well.
    
      To "convey" a work means any kind of propagation that enables other
    parties to make or receive copies.  Mere interaction with a user through
    a computer network, with no transfer of a copy, is not conveying.
    
      An interactive user interface displays "Appropriate Legal Notices"
    to the extent that it includes a convenient and prominently visible
    feature that (1) displays an appropriate copyright notice, and (2)
    tells the user that there is no warranty for the work (except to the
    extent that warranties are provided), that licensees may convey the
    work under this License, and how to view a copy of this License.  If
    the interface presents a list of user commands or options, such as a
    menu, a prominent item in the list meets this criterion.
    
      1. Source Code.
    
      The "source code" for a work means the preferred form of the work
    for making modifications to it.  "Object code" means any non-source
    form of a work.
    
      A "Standard Interface" means an interface that either is an official
    standard defined by a recognized standards body, or, in the case of
    interfaces specified for a particular programming language, one that
    is widely used among developers working in that language.
    
      The "System Libraries" of an executable work include anything, other
    than the work as a whole, that (a) is included in the normal form of
    packaging a Major Component, but which is not part of that Major
    Component, and (b) serves only to enable use of the work with that
    Major Component, or to implement a Standard Interface for which an
    implementation is available to the public in source code form.  A
    "Major Component", in this context, means a major essential component
    (kernel, window system, and so on) of the specific operating system
    (if any) on which the executable work runs, or a compiler used to
    produce the work, or an object code interpreter used to run it.
    
      The "Corresponding Source" for a work in object code form means all
    the source code needed to generate, install, and (for an executable
    work) run the object code and to modify the work, including scripts to
    control those activities.  However, it does not include the work's
    System Libraries, or general-purpose tools or generally available free
    programs which are used unmodified in performing those activities but
    which are not part of the work.  For example, Corresponding Source
    includes interface definition files associated with source files for
    the work, and the source code for shared libraries and dynamically
    linked subprograms that the work is specifically designed to require,
    such as by intimate data communication or control flow between those
    subprograms and other parts of the work.
    
      The Corresponding Source need not include anything that users
    can regenerate automatically from other parts of the Corresponding
    Source.
    
      The Corresponding Source for a work in source code form is that
    same work.
    
      2. Basic Permissions.
    
      All rights granted under this License are granted for the term of
    copyright on the Program, and are irrevocable provided the stated
    conditions are met.  This License explicitly affirms your unlimited
    permission to run the unmodified Program.  The output from running a
    covered work is covered by this License only if the output, given its
    content, constitutes a covered work.  This License acknowledges your
    rights of fair use or other equivalent, as provided by copyright law.
    
      You may make, run and propagate covered works that you do not
    convey, without conditions so long as your license otherwise remains
    in force.  You may convey covered works to others for the sole purpose
    of having them make modifications exclusively for you, or provide you
    with facilities for running those works, provided that you comply with
    the terms of this License in conveying all material for which you do
    not control copyright.  Those thus making or running the covered works
    for you must do so exclusively on your behalf, under your direction
    and control, on terms that prohibit them from making any copies of
    your copyrighted material outside their relationship with you.
    
      Conveying under any other circumstances is permitted solely under
    the conditions stated below.  Sublicensing is not allowed; section 10
    makes it unnecessary.
    
      3. Protecting Users' Legal Rights From Anti-Circumvention Law.
    
      No covered work shall be deemed part of an effective technological
    measure under any applicable law fulfilling obligations under article
    11 of the WIPO copyright treaty adopted on 20 December 1996, or
    similar laws prohibiting or restricting circumvention of such
    measures.
    
      When you convey a covered work, you waive any legal power to forbid
    circumvention of technological measures to the extent such circumvention
    is effected by exercising rights under this License with respect to
    the covered work, and you disclaim any intention to limit operation or
    modification of the work as a means of enforcing, against the work's
    users, your or third parties' legal rights to forbid circumvention of
    technological measures.
    
      4. Conveying Verbatim Copies.
    
      You may convey verbatim copies of the Program's source code as you
    receive it, in any medium, provided that you conspicuously and
    appropriately publish on each copy an appropriate copyright notice;
    keep intact all notices stating that this License and any
    non-permissive terms added in accord with section 7 apply to the code;
    keep intact all notices of the absence of any warranty; and give all
    recipients a copy of this License along with the Program.
    
      You may charge any price or no price for each copy that you convey,
    and you may offer support or warranty protection for a fee.
    
      5. Conveying Modified Source Versions.
    
      You may convey a work based on the Program, or the modifications to
    produce it from the Program, in the form of source code under the
    terms of section 4, provided that you also meet all of these conditions:
    
        a) The work must carry prominent notices stating that you modified
        it, and giving a relevant date.
    
        b) The work must carry prominent notices stating that it is
        released under this License and any conditions added under section
        7.  This requirement modifies the requirement in section 4 to
        "keep intact all notices".
    
        c) You must license the entire work, as a whole, under this
        License to anyone who comes into possession of a copy.  This
        License will therefore apply, along with any applicable section 7
        additional terms, to the whole of the work, and all its parts,
        regardless of how they are packaged.  This License gives no
        permission to license the work in any other way, but it does not
        invalidate such permission if you have separately received it.
    
        d) If the work has interactive user interfaces, each must display
        Appropriate Legal Notices; however, if the Program has interactive
        interfaces that do not display Appropriate Legal Notices, your
        work need not make them do so.
    
      A compilation of a covered work with other separate and independent
    works, which are not by their nature extensions of the covered work,
    and which are not combined with it such as to form a larger program,
    in or on a volume of a storage or distribution medium, is called an
    "aggregate" if the compilation and its resulting copyright are not
    used to limit the access or legal rights of the compilation's users
    beyond what the individual works permit.  Inclusion of a covered work
    in an aggregate does not cause this License to apply to the other
    parts of the aggregate.
    
      6. Conveying Non-Source Forms.
    
      You may convey a covered work in object code form under the terms
    of sections 4 and 5, provided that you also convey the
    machine-readable Corresponding Source under the terms of this License,
    in one of these ways:
    
        a) Convey the object code in, or embodied in, a physical product
        (including a physical distribution medium), accompanied by the
        Corresponding Source fixed on a durable physical medium
        customarily used for software interchange.
    
        b) Convey the object code in, or embodied in, a physical product
        (including a physical distribution medium), accompanied by a
        written offer, valid for at least three years and valid for as
        long as you offer spare parts or customer support for that product
        model, to give anyone who possesses the object code either (1) a
        copy of the Corresponding Source for all the software in the
        product that is covered by this License, on a durable physical
        medium customarily used for software interchange, for a price no
        more than your reasonable cost of physically performing this
        conveying of source, or (2) access to copy the
        Corresponding Source from a network server at no charge.
    
        c) Convey individual copies of the object code with a copy of the
        written offer to provide the Corresponding Source.  This
        alternative is allowed only occasionally and noncommercially, and
        only if you received the object code with such an offer, in accord
        with subsection 6b.
    
        d) Convey the object code by offering access from a designated
        place (gratis or for a charge), and offer equivalent access to the
        Corresponding Source in the same way through the same place at no
        further charge.  You need not require recipients to copy the
        Corresponding Source along with the object code.  If the place to
        copy the object code is a network server, the Corresponding Source
        may be on a different server (operated by you or a third party)
        that supports equivalent copying facilities, provided you maintain
        clear directions next to the object code saying where to find the
        Corresponding Source.  Regardless of what server hosts the
        Corresponding Source, you remain obligated to ensure that it is
        available for as long as needed to satisfy these requirements.
    
        e) Convey the object code using peer-to-peer transmission, provided
        you inform other peers where the object code and Corresponding
        Source of the work are being offered to the general public at no
        charge under subsection 6d.
    
      A separable portion of the object code, whose source code is excluded
    from the Corresponding Source as a System Library, need not be
    included in conveying the object code work.
    
      A "User Product" is either (1) a "consumer product", which means any
    tangible personal property which is normally used for personal, family,
    or household purposes, or (2) anything designed or sold for incorporation
    into a dwelling.  In determining whether a product is a consumer product,
    doubtful cases shall be resolved in favor of coverage.  For a particular
    product received by a particular user, "normally used" refers to a
    typical or common use of that class of product, regardless of the status
    of the particular user or of the way in which the particular user
    actually uses, or expects or is expected to use, the product.  A product
    is a consumer product regardless of whether the product has substantial
    commercial, industrial or non-consumer uses, unless such uses represent
    the only significant mode of use of the product.
    
      "Installation Information" for a User Product means any methods,
    procedures, authorization keys, or other information required to install
    and execute modified versions of a covered work in that User Product from
    a modified version of its Corresponding Source.  The information must
    suffice to ensure that the continued functioning of the modified object
    code is in no case prevented or interfered with solely because
    modification has been made.
    
      If you convey an object code work under this section in, or with, or
    specifically for use in, a User Product, and the conveying occurs as
    part of a transaction in which the right of possession and use of the
    User Product is transferred to the recipient in perpetuity or for a
    fixed term (regardless of how the transaction is characterized), the
    Corresponding Source conveyed under this section must be accompanied
    by the Installation Information.  But this requirement does not apply
    if neither you nor any third party retains the ability to install
    modified object code on the User Product (for example, the work has
    been installed in ROM).
    
      The requirement to provide Installation Information does not include a
    requirement to continue to provide support service, warranty, or updates
    for a work that has been modified or installed by the recipient, or for
    the User Product in which it has been modified or installed.  Access to a
    network may be denied when the modification itself materially and
    adversely affects the operation of the network or violates the rules and
    protocols for communication across the network.
    
      Corresponding Source conveyed, and Installation Information provided,
    in accord with this section must be in a format that is publicly
    documented (and with an implementation available to the public in
    source code form), and must require no special password or key for
    unpacking, reading or copying.
    
      7. Additional Terms.
    
      "Additional permissions" are terms that supplement the terms of this
    License by making exceptions from one or more of its conditions.
    Additional permissions that are applicable to the entire Program shall
    be treated as though they were included in this License, to the extent
    that they are valid under applicable law.  If additional permissions
    apply only to part of the Program, that part may be used separately
    under those permissions, but the entire Program remains governed by
    this License without regard to the additional permissions.
    
      When you convey a copy of a covered work, you may at your option
    remove any additional permissions from that copy, or from any part of
    it.  (Additional permissions may be written to require their own
    removal in certain cases when you modify the work.)  You may place
    additional permissions on material, added by you to a covered work,
    for which you have or can give appropriate copyright permission.
    
      Notwithstanding any other provision of this License, for material you
    add to a covered work, you may (if authorized by the copyright holders of
    that material) supplement the terms of this License with terms:
    
        a) Disclaiming warranty or limiting liability differently from the
        terms of sections 15 and 16 of this License; or
    
        b) Requiring preservation of specified reasonable legal notices or
        author attributions in that material or in the Appropriate Legal
        Notices displayed by works containing it; or
    
        c) Prohibiting misrepresentation of the origin of that material, or
        requiring that modified versions of such material be marked in
        reasonable ways as different from the original version; or
    
        d) Limiting the use for publicity purposes of names of licensors or
        authors of the material; or
    
        e) Declining to grant rights under trademark law for use of some
        trade names, trademarks, or service marks; or
    
        f) Requiring indemnification of licensors and authors of that
        material by anyone who conveys the material (or modified versions of
        it) with contractual assumptions of liability to the recipient, for
        any liability that these contractual assumptions directly impose on
        those licensors and authors.
    
      All other non-permissive additional terms are considered "further
    restrictions" within the meaning of section 10.  If the Program as you
    received it, or any part of it, contains a notice stating that it is
    governed by this License along with a term that is a further
    restriction, you may remove that term.  If a license document contains
    a further restriction but permits relicensing or conveying under this
    License, you may add to a covered work material governed by the terms
    of that license document, provided that the further restriction does
    not survive such relicensing or conveying.
    
      If you add terms to a covered work in accord with this section, you
    must place, in the relevant source files, a statement of the
    additional terms that apply to those files, or a notice indicating
    where to find the applicable terms.
    
      Additional terms, permissive or non-permissive, may be stated in the
    form of a separately written license, or stated as exceptions;
    the above requirements apply either way.
    
      8. Termination.
    
      You may not propagate or modify a covered work except as expressly
    provided under this License.  Any attempt otherwise to propagate or
    modify it is void, and will automatically terminate your rights under
    this License (including any patent licenses granted under the third
    paragraph of section 11).
    
      However, if you cease all violation of this License, then your
    license from a particular copyright holder is reinstated (a)
    provisionally, unless and until the copyright holder explicitly and
    finally terminates your license, and (b) permanently, if the copyright
    holder fails to notify you of the violation by some reasonable means
    prior to 60 days after the cessation.
    
      Moreover, your license from a particular copyright holder is
    reinstated permanently if the copyright holder notifies you of the
    violation by some reasonable means, this is the first time you have
    received notice of violation of this License (for any work) from that
    copyright holder, and you cure the violation prior to 30 days after
    your receipt of the notice.
    
      Termination of your rights under this section does not terminate the
    licenses of parties who have received copies or rights from you under
    this License.  If your rights have been terminated and not permanently
    reinstated, you do not qualify to receive new licenses for the same
    material under section 10.
    
      9. Acceptance Not Required for Having Copies.
    
      You are not required to accept this License in order to receive or
    run a copy of the Program.  Ancillary propagation of a covered work
    occurring solely as a consequence of using peer-to-peer transmission
    to receive a copy likewise does not require acceptance.  However,
    nothing other than this License grants you permission to propagate or
    modify any covered work.  These actions infringe copyright if you do
    not accept this License.  Therefore, by modifying or propagating a
    covered work, you indicate your acceptance of this License to do so.
    
      10. Automatic Licensing of Downstream Recipients.
    
      Each time you convey a covered work, the recipient automatically
    receives a license from the original licensors, to run, modify and
    propagate that work, subject to this License.  You are not responsible
    for enforcing compliance by third parties with this License.
    
      An "entity transaction" is a transaction transferring control of an
    organization, or substantially all assets of one, or subdividing an
    organization, or merging organizations.  If propagation of a covered
    work results from an entity transaction, each party to that
    transaction who receives a copy of the work also receives whatever
    licenses to the work the party's predecessor in interest had or could
    give under the previous paragraph, plus a right to possession of the
    Corresponding Source of the work from the predecessor in interest, if
    the predecessor has it or can get it with reasonable efforts.
    
      You may not impose any further restrictions on the exercise of the
    rights granted or affirmed under this License.  For example, you may
    not impose a license fee, royalty, or other charge for exercise of
    rights granted under this License, and you may not initiate litigation
    (including a cross-claim or counterclaim in a lawsuit) alleging that
    any patent claim is infringed by making, using, selling, offering for
    sale, or importing the Program or any portion of it.
    
      11. Patents.
    
      A "contributor" is a copyright holder who authorizes use under this
    License of the Program or a work on which the Program is based.  The
    work thus licensed is called the contributor's "contributor version".
    
      A contributor's "essential patent claims" are all patent claims
    owned or controlled by the contributor, whether already acquired or
    hereafter acquired, that would be infringed by some manner, permitted
    by this License, of making, using, or selling its contributor version,
    but do not include claims that would be infringed only as a
    consequence of further modification of the contributor version.  For
    purposes of this definition, "control" includes the right to grant
    patent sublicenses in a manner consistent with the requirements of
    this License.
    
      Each contributor grants you a non-exclusive, worldwide, royalty-free
    patent license under the contributor's essential patent claims, to
    make, use, sell, offer for sale, import and otherwise run, modify and
    propagate the contents of its contributor version.
    
      In the following three paragraphs, a "patent license" is any express
    agreement or commitment, however denominated, not to enforce a patent
    (such as an express permission to practice a patent or covenant not to
    sue for patent infringement).  To "grant" such a patent license to a
    party means to make such an agreement or commitment not to enforce a
    patent against the party.
    
      If you convey a covered work, knowingly relying on a patent license,
    and the Corresponding Source of the work is not available for anyone
    to copy, free of charge and under the terms of this License, through a
    publicly available network server or other readily accessible means,
    then you must either (1) cause the Corresponding Source to be so
    available, or (2) arrange to deprive yourself of the benefit of the
    patent license for this particular work, or (3) arrange, in a manner
    consistent with the requirements of this License, to extend the patent
    license to downstream recipients.  "Knowingly relying" means you have
    actual knowledge that, but for the patent license, your conveying the
    covered work in a country, or your recipient's use of the covered work
    in a country, would infringe one or more identifiable patents in that
    country that you have reason to believe are valid.
    
      If, pursuant to or in connection with a single transaction or
    arrangement, you convey, or propagate by procuring conveyance of, a
    covered work, and grant a patent license to some of the parties
    receiving the covered work authorizing them to use, propagate, modify
    or convey a specific copy of the covered work, then the patent license
    you grant is automatically extended to all recipients of the covered
    work and works based on it.
    
      A patent license is "discriminatory" if it does not include within
    the scope of its coverage, prohibits the exercise of, or is
    conditioned on the non-exercise of one or more of the rights that are
    specifically granted under this License.  You may not convey a covered
    work if you are a party to an arrangement with a third party that is
    in the business of distributing software, under which you make payment
    to the third party based on the extent of your activity of conveying
    the work, and under which the third party grants, to any of the
    parties who would receive the covered work from you, a discriminatory
    patent license (a) in connection with copies of the covered work
    conveyed by you (or copies made from those copies), or (b) primarily
    for and in connection with specific products or compilations that
    contain the covered work, unless you entered into that arrangement,
    or that patent license was granted, prior to 28 March 2007.
    
      Nothing in this License shall be construed as excluding or limiting
    any implied license or other defenses to infringement that may
    otherwise be available to you under applicable patent law.
    
      12. No Surrender of Others' Freedom.
    
      If conditions are imposed on you (whether by court order, agreement or
    otherwise) that contradict the conditions of this License, they do not
    excuse you from the conditions of this License.  If you cannot convey a
    covered work so as to satisfy simultaneously your obligations under this
    License and any other pertinent obligations, then as a consequence you may
    not convey it at all.  For example, if you agree to terms that obligate you
    to collect a royalty for further conveying from those to whom you convey
    the Program, the only way you could satisfy both those terms and this
    License would be to refrain entirely from conveying the Program.
    
      13. Use with the GNU Affero General Public License.
    
      Notwithstanding any other provision of this License, you have
    permission to link or combine any covered work with a work licensed
    under version 3 of the GNU Affero General Public License into a single
    combined work, and to convey the resulting work.  The terms of this
    License will continue to apply to the part which is the covered work,
    but the special requirements of the GNU Affero General Public License,
    section 13, concerning interaction through a network will apply to the
    combination as such.
    
      14. Revised Versions of this License.
    
      The Free Software Foundation may publish revised and/or new versions of
    the GNU General Public License from time to time.  Such new versions will
    be similar in spirit to the present version, but may differ in detail to
    address new problems or concerns.
    
      Each version is given a distinguishing version number.  If the
    Program specifies that a certain numbered version of the GNU General
    Public License "or any later version" applies to it, you have the
    option of following the terms and conditions either of that numbered
    version or of any later version published by the Free Software
    Foundation.  If the Program does not specify a version number of the
    GNU General Public License, you may choose any version ever published
    by the Free Software Foundation.
    
      If the Program specifies that a proxy can decide which future
    versions of the GNU General Public License can be used, that proxy's
    public statement of acceptance of a version permanently authorizes you
    to choose that version for the Program.
    
      Later license versions may give you additional or different
    permissions.  However, no additional obligations are imposed on any
    author or copyright holder as a result of your choosing to follow a
    later version.
    
      15. Disclaimer of Warranty.
    
      THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
    APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
    HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
    OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
    THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
    PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
    IS WITH YOU.  SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
    ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
    
      16. Limitation of Liability.
    
      IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
    WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
    THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
    GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
    USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
    DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
    PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
    EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
    SUCH DAMAGES.
    
      17. Interpretation of Sections 15 and 16.
    
      If the disclaimer of warranty and limitation of liability provided
    above cannot be given local legal effect according to their terms,
    reviewing courts shall apply local law that most closely approximates
    an absolute waiver of all civil liability in connection with the
    Program, unless a warranty or assumption of liability accompanies a
    copy of the Program in return for a fee.
    
                         END OF TERMS AND CONDITIONS
    
                How to Apply These Terms to Your New Programs
    
      If you develop a new program, and you want it to be of the greatest
    possible use to the public, the best way to achieve this is to make it
    free software which everyone can redistribute and change under these terms.
    
      To do so, attach the following notices to the program.  It is safest
    to attach them to the start of each source file to most effectively
    state the exclusion of warranty; and each file should have at least
    the "copyright" line and a pointer to where the full notice is found.
    
        <one line to give the program's name and a brief idea of what it does.>
        Copyright (C) <year>  <name of author>
    
        This program is free software: you can redistribute it and/or modify
        it under the terms of the GNU General Public License as published by
        the Free Software Foundation, either version 3 of the License, or
        (at your option) any later version.
    
        This program is distributed in the hope that it will be useful,
        but WITHOUT ANY WARRANTY; without even the implied warranty of
        MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
        GNU General Public License for more details.
    
        You should have received a copy of the GNU General Public License
        along with this program.  If not, see <http://www.gnu.org/licenses/>.
    
    Also add information on how to contact you by electronic and paper mail.
    
      If the program does terminal interaction, make it output a short
    notice like this when it starts in an interactive mode:
    
        <program>  Copyright (C) <year>  <name of author>
        This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
        This is free software, and you are welcome to redistribute it
        under certain conditions; type `show c' for details.
    
    The hypothetical commands `show w' and `show c' should show the appropriate
    parts of the General Public License.  Of course, your program's commands
    might be different; for a GUI interface, you would use an "about box".
    
      You should also get your employer (if you work as a programmer) or school,
    if any, to sign a "copyright disclaimer" for the program, if necessary.
    For more information on this, and how to apply and follow the GNU GPL, see
    <http://www.gnu.org/licenses/>.
    
      The GNU General Public License does not permit incorporating your program
    into proprietary programs.  If your program is a subroutine library, you
    may consider it more useful to permit linking proprietary applications with
    the library.  If this is what you want to do, use the GNU Lesser General
    Public License instead of this License.  But first, please read
    <http://www.gnu.org/philosophy/why-not-lgpl.html>.
    
    */