ETH Price: $1,975.43 (+0.08%)

Transaction Decoder

Block:
24502990 at Feb-21-2026 04:56:59 AM +UTC
Transaction Fee:
0.0000015985668012 ETH $0.003158
Gas Used:
49,260 Gas / 0.03245162 Gwei

Emitted Events:

601 0x196c20da81fbc324ecdf55501e95ce9f0bd84d14.0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925( 0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925, 0x0000000000000000000000006801122e935458aa23352b3d8d271775af6cc5f0, 0x00000000000000000000000027ca963c279c93801941e1eb8799c23f407d68e7, 0000000000000000000000000000000000000000000000000000001b2bccc149 )

Account State Difference:

  Address   Before After State Difference Code
0x196C20DA...f0bD84d14
(Titan Builder)
14.609891330192093997 Eth14.609891391911524317 Eth0.00000006171943032
0x6801122e...5aF6cc5f0
0.002676543796813358 Eth
Nonce: 4
0.002674945230012158 Eth
Nonce: 5
0.0000015985668012

Execution Trace

Snowbridge: DOT Token.095ea7b3( )
  • TokenLib.38412ce5( )
    // SPDX-License-Identifier: Apache-2.0
    // SPDX-FileCopyrightText: 2025 Snowfork <hello@snowfork.com>
    pragma solidity 0.8.28;
    import {IERC20} from "./interfaces/IERC20.sol";
    import {IERC20Permit} from "./interfaces/IERC20Permit.sol";
    import {ECDSA} from "openzeppelin/utils/cryptography/ECDSA.sol";
    library TokenLib {
        /// The EIP-712 typehash for the contract's domain
        bytes32 public constant DOMAIN_TYPEHASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
        /// The EIP-712 typehash for the permit struct used by the contract
        bytes32 public constant PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
        struct Token {
            mapping(address account => uint256) balance;
            mapping(address account => mapping(address spender => uint256)) allowance;
            mapping(address token => uint256) nonces;
            uint256 totalSupply;
        }
        function mint(Token storage token, address account, uint256 amount) external {
            require(account != address(0), IERC20.InvalidReceiver(address(0)));
            _update(token, address(0), account, amount);
        }
        function burn(Token storage token, address account, uint256 amount) external {
            require(account != address(0), IERC20.InvalidSender(address(0)));
            _update(token, account, address(0), amount);
        }
        function approve(Token storage token, address spender, uint256 amount) external returns (bool) {
            _approve(token, msg.sender, spender, amount, true);
            return true;
        }
        function transfer(Token storage token, address recipient, uint256 amount) external returns (bool) {
            _transfer(token, msg.sender, recipient, amount);
            return true;
        }
        function transferFrom(Token storage token, address owner, address recipient, uint256 amount)
            external
            returns (bool)
        {
            _spendAllowance(token, owner, msg.sender, amount);
            _transfer(token, owner, recipient, amount);
            return true;
        }
        function permit(
            Token storage token,
            string storage tokenName,
            address issuer,
            address spender,
            uint256 value,
            uint256 deadline,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) external {
            require(block.timestamp <= deadline, IERC20Permit.PermitExpired());
            bytes32 digest = keccak256(
                abi.encodePacked(
                    hex"1901",
                    _domainSeparator(tokenName),
                    keccak256(
                        abi.encode(
                            PERMIT_TYPEHASH,
                            issuer,
                            spender,
                            value,
                            token.nonces[issuer]++,
                            deadline
                        )
                    )
                )
            );
            address signatory = ECDSA.recover(digest, v, r, s);
            require(signatory == issuer, IERC20Permit.InvalidSignature());
            _approve(token, issuer, spender, value, true);
        }
        function domainSeparator(string storage name) external view returns (bytes32) {
            return _domainSeparator(name);
        }
        function _domainSeparator(string storage name) internal view returns (bytes32) {
            return keccak256(
                abi.encode(
                    DOMAIN_TYPEHASH,
                    keccak256(bytes(name)),
                    keccak256(bytes("1")),
                    block.chainid,
                    address(this)
                )
            );
        }
        function _transfer(Token storage token, address sender, address recipient, uint256 amount) internal {
            require(sender != address(0), IERC20.InvalidSender(address(0)));
            require(recipient != address(0), IERC20.InvalidReceiver(address(0)));
            _update(token, sender, recipient, amount);
        }
        function _spendAllowance(Token storage token, address owner, address spender, uint256 value)
            internal
            returns (bool)
        {
            uint256 allowance = token.allowance[owner][spender];
            if (allowance != type(uint256).max) {
                require(allowance >= value, IERC20.InsufficientAllowance(spender, allowance, value));
                unchecked {
                    _approve(token, owner, spender, allowance - value, false);
                }
            }
            return true;
        }
        function _approve(Token storage token, address owner, address spender, uint256 amount, bool emitEvent) internal {
            require(owner != address(0), IERC20.InvalidApprover(address(0)));
            require(spender != address(0), IERC20.InvalidSpender(address(0)));
            token.allowance[owner][spender] = amount;
            if (emitEvent) {
                emit IERC20.Approval(owner, spender, amount);
            }
        }
        function _update(Token storage token, address from, address to, uint256 value) internal {
            if (from == address(0)) {
                // Overflow check required: The rest of the code assumes that totalSupply never overflows
                token.totalSupply += value;
            } else {
                uint256 fromBalance = token.balance[from];
                require(fromBalance >= value, IERC20.InsufficientBalance(from, fromBalance, value));
                unchecked {
                    // Overflow not possible: value <= fromBalance <= totalSupply
                    token.balance[from] = fromBalance - value;
                }
            }
            if (to == address(0)) {
                unchecked {
                    // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply
                    token.totalSupply -= value;
                }
            } else {
                unchecked {
                    // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256
                    token.balance[to] += value;
                }
            }
            emit IERC20.Transfer(from, to, value);
        }
    }
    // SPDX-License-Identifier: Apache-2.0
    // SPDX-FileCopyrightText: 2023 Axelar Network
    // SPDX-FileCopyrightText: 2025 Snowfork <hello@snowfork.com>
    pragma solidity 0.8.28;
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        error InvalidSender(address);
        error InvalidReceiver(address);
        error InvalidSpender(address);
        error InvalidApprover(address);
        error InsufficientBalance(address sender, uint256 balance, uint256 needed);
        error InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
        /**
         * @dev Moves `amount` tokens from the caller's account to `recipient`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address recipient, uint256 amount) external returns (bool);
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
        /**
         * @dev Moves `amount` tokens from `sender` to `recipient` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
    }
    // SPDX-License-Identifier: Apache-2.0
    // SPDX-FileCopyrightText: 2023 Axelar Network
    // SPDX-FileCopyrightText: 2023 Snowfork <hello@snowfork.com>
    pragma solidity 0.8.28;
    interface IERC20Permit {
        error PermitExpired();
        error InvalidSignature();
        function DOMAIN_SEPARATOR() external view returns (bytes32);
        function nonces(address account) external view returns (uint256);
        function permit(
            address issuer,
            address spender,
            uint256 value,
            uint256 deadline,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) external;
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)
    pragma solidity ^0.8.0;
    import "../Strings.sol";
    /**
     * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
     *
     * These functions can be used to verify that a message was signed by the holder
     * of the private keys of a given address.
     */
    library ECDSA {
        enum RecoverError {
            NoError,
            InvalidSignature,
            InvalidSignatureLength,
            InvalidSignatureS,
            InvalidSignatureV // Deprecated in v4.8
        }
        function _throwError(RecoverError error) private pure {
            if (error == RecoverError.NoError) {
                return; // no error: do nothing
            } else if (error == RecoverError.InvalidSignature) {
                revert("ECDSA: invalid signature");
            } else if (error == RecoverError.InvalidSignatureLength) {
                revert("ECDSA: invalid signature length");
            } else if (error == RecoverError.InvalidSignatureS) {
                revert("ECDSA: invalid signature 's' value");
            }
        }
        /**
         * @dev Returns the address that signed a hashed message (`hash`) with
         * `signature` or error string. This address can then be used for verification purposes.
         *
         * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
         * this function rejects them by requiring the `s` value to be in the lower
         * half order, and the `v` value to be either 27 or 28.
         *
         * IMPORTANT: `hash` _must_ be the result of a hash operation for the
         * verification to be secure: it is possible to craft signatures that
         * recover to arbitrary addresses for non-hashed data. A safe way to ensure
         * this is by receiving a hash of the original message (which may otherwise
         * be too long), and then calling {toEthSignedMessageHash} on it.
         *
         * Documentation for signature generation:
         * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
         * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
         *
         * _Available since v4.3._
         */
        function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
            if (signature.length == 65) {
                bytes32 r;
                bytes32 s;
                uint8 v;
                // ecrecover takes the signature parameters, and the only way to get them
                // currently is to use assembly.
                /// @solidity memory-safe-assembly
                assembly {
                    r := mload(add(signature, 0x20))
                    s := mload(add(signature, 0x40))
                    v := byte(0, mload(add(signature, 0x60)))
                }
                return tryRecover(hash, v, r, s);
            } else {
                return (address(0), RecoverError.InvalidSignatureLength);
            }
        }
        /**
         * @dev Returns the address that signed a hashed message (`hash`) with
         * `signature`. This address can then be used for verification purposes.
         *
         * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
         * this function rejects them by requiring the `s` value to be in the lower
         * half order, and the `v` value to be either 27 or 28.
         *
         * IMPORTANT: `hash` _must_ be the result of a hash operation for the
         * verification to be secure: it is possible to craft signatures that
         * recover to arbitrary addresses for non-hashed data. A safe way to ensure
         * this is by receiving a hash of the original message (which may otherwise
         * be too long), and then calling {toEthSignedMessageHash} on it.
         */
        function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
            (address recovered, RecoverError error) = tryRecover(hash, signature);
            _throwError(error);
            return recovered;
        }
        /**
         * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
         *
         * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
         *
         * _Available since v4.3._
         */
        function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
        /**
         * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
         *
         * _Available since v4.2._
         */
        function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
            (address recovered, RecoverError error) = tryRecover(hash, r, vs);
            _throwError(error);
            return recovered;
        }
        /**
         * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
         * `r` and `s` signature fields separately.
         *
         * _Available since v4.3._
         */
        function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
            // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
            // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
            // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
            // signatures from current libraries generate a unique signature with an s-value in the lower half order.
            //
            // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
            // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
            // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
            // these malleable signatures as well.
            if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
                return (address(0), RecoverError.InvalidSignatureS);
            }
            // If the signature is valid (and not malleable), return the signer address
            address signer = ecrecover(hash, v, r, s);
            if (signer == address(0)) {
                return (address(0), RecoverError.InvalidSignature);
            }
            return (signer, RecoverError.NoError);
        }
        /**
         * @dev Overload of {ECDSA-recover} that receives the `v`,
         * `r` and `s` signature fields separately.
         */
        function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
            (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
            _throwError(error);
            return recovered;
        }
        /**
         * @dev Returns an Ethereum Signed Message, created from a `hash`. This
         * produces hash corresponding to the one signed with the
         * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
         * JSON-RPC method as part of EIP-191.
         *
         * See {recover}.
         */
        function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
            // 32 is the length in bytes of hash,
            // enforced by the type signature above
            /// @solidity memory-safe-assembly
            assembly {
                mstore(0x00, "\\x19Ethereum Signed Message:\
    32")
                mstore(0x1c, hash)
                message := keccak256(0x00, 0x3c)
            }
        }
        /**
         * @dev Returns an Ethereum Signed Message, created from `s`. This
         * produces hash corresponding to the one signed with the
         * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
         * JSON-RPC method as part of EIP-191.
         *
         * See {recover}.
         */
        function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
            return keccak256(abi.encodePacked("\\x19Ethereum Signed Message:\
    ", Strings.toString(s.length), s));
        }
        /**
         * @dev Returns an Ethereum Signed Typed Data, created from a
         * `domainSeparator` and a `structHash`. This produces hash corresponding
         * to the one signed with the
         * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
         * JSON-RPC method as part of EIP-712.
         *
         * See {recover}.
         */
        function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
            /// @solidity memory-safe-assembly
            assembly {
                let ptr := mload(0x40)
                mstore(ptr, "\\x19\\x01")
                mstore(add(ptr, 0x02), domainSeparator)
                mstore(add(ptr, 0x22), structHash)
                data := keccak256(ptr, 0x42)
            }
        }
        /**
         * @dev Returns an Ethereum Signed Data with intended validator, created from a
         * `validator` and `data` according to the version 0 of EIP-191.
         *
         * See {recover}.
         */
        function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
            return keccak256(abi.encodePacked("\\x19\\x00", validator, data));
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
    pragma solidity ^0.8.0;
    import "./math/Math.sol";
    import "./math/SignedMath.sol";
    /**
     * @dev String operations.
     */
    library Strings {
        bytes16 private constant _SYMBOLS = "0123456789abcdef";
        uint8 private constant _ADDRESS_LENGTH = 20;
        /**
         * @dev Converts a `uint256` to its ASCII `string` decimal representation.
         */
        function toString(uint256 value) internal pure returns (string memory) {
            unchecked {
                uint256 length = Math.log10(value) + 1;
                string memory buffer = new string(length);
                uint256 ptr;
                /// @solidity memory-safe-assembly
                assembly {
                    ptr := add(buffer, add(32, length))
                }
                while (true) {
                    ptr--;
                    /// @solidity memory-safe-assembly
                    assembly {
                        mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                    }
                    value /= 10;
                    if (value == 0) break;
                }
                return buffer;
            }
        }
        /**
         * @dev Converts a `int256` to its ASCII `string` decimal representation.
         */
        function toString(int256 value) internal pure returns (string memory) {
            return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
        }
        /**
         * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
         */
        function toHexString(uint256 value) internal pure returns (string memory) {
            unchecked {
                return toHexString(value, Math.log256(value) + 1);
            }
        }
        /**
         * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
         */
        function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
            bytes memory buffer = new bytes(2 * length + 2);
            buffer[0] = "0";
            buffer[1] = "x";
            for (uint256 i = 2 * length + 1; i > 1; --i) {
                buffer[i] = _SYMBOLS[value & 0xf];
                value >>= 4;
            }
            require(value == 0, "Strings: hex length insufficient");
            return string(buffer);
        }
        /**
         * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
         */
        function toHexString(address addr) internal pure returns (string memory) {
            return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
        }
        /**
         * @dev Returns true if the two strings are equal.
         */
        function equal(string memory a, string memory b) internal pure returns (bool) {
            return keccak256(bytes(a)) == keccak256(bytes(b));
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Standard math utilities missing in the Solidity language.
     */
    library Math {
        enum Rounding {
            Down, // Toward negative infinity
            Up, // Toward infinity
            Zero // Toward zero
        }
        /**
         * @dev Returns the largest of two numbers.
         */
        function max(uint256 a, uint256 b) internal pure returns (uint256) {
            return a > b ? a : b;
        }
        /**
         * @dev Returns the smallest of two numbers.
         */
        function min(uint256 a, uint256 b) internal pure returns (uint256) {
            return a < b ? a : b;
        }
        /**
         * @dev Returns the average of two numbers. The result is rounded towards
         * zero.
         */
        function average(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b) / 2 can overflow.
            return (a & b) + (a ^ b) / 2;
        }
        /**
         * @dev Returns the ceiling of the division of two numbers.
         *
         * This differs from standard division with `/` in that it rounds up instead
         * of rounding down.
         */
        function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b - 1) / b can overflow on addition, so we distribute.
            return a == 0 ? 0 : (a - 1) / b + 1;
        }
        /**
         * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
         * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
         * with further edits by Uniswap Labs also under MIT license.
         */
        function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
            unchecked {
                // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                // variables such that product = prod1 * 2^256 + prod0.
                uint256 prod0; // Least significant 256 bits of the product
                uint256 prod1; // Most significant 256 bits of the product
                assembly {
                    let mm := mulmod(x, y, not(0))
                    prod0 := mul(x, y)
                    prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                }
                // Handle non-overflow cases, 256 by 256 division.
                if (prod1 == 0) {
                    // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                    // The surrounding unchecked block does not change this fact.
                    // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                    return prod0 / denominator;
                }
                // Make sure the result is less than 2^256. Also prevents denominator == 0.
                require(denominator > prod1, "Math: mulDiv overflow");
                ///////////////////////////////////////////////
                // 512 by 256 division.
                ///////////////////////////////////////////////
                // Make division exact by subtracting the remainder from [prod1 prod0].
                uint256 remainder;
                assembly {
                    // Compute remainder using mulmod.
                    remainder := mulmod(x, y, denominator)
                    // Subtract 256 bit number from 512 bit number.
                    prod1 := sub(prod1, gt(remainder, prod0))
                    prod0 := sub(prod0, remainder)
                }
                // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                // See https://cs.stackexchange.com/q/138556/92363.
                // Does not overflow because the denominator cannot be zero at this stage in the function.
                uint256 twos = denominator & (~denominator + 1);
                assembly {
                    // Divide denominator by twos.
                    denominator := div(denominator, twos)
                    // Divide [prod1 prod0] by twos.
                    prod0 := div(prod0, twos)
                    // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                    twos := add(div(sub(0, twos), twos), 1)
                }
                // Shift in bits from prod1 into prod0.
                prod0 |= prod1 * twos;
                // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                // four bits. That is, denominator * inv = 1 mod 2^4.
                uint256 inverse = (3 * denominator) ^ 2;
                // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                // in modular arithmetic, doubling the correct bits in each step.
                inverse *= 2 - denominator * inverse; // inverse mod 2^8
                inverse *= 2 - denominator * inverse; // inverse mod 2^16
                inverse *= 2 - denominator * inverse; // inverse mod 2^32
                inverse *= 2 - denominator * inverse; // inverse mod 2^64
                inverse *= 2 - denominator * inverse; // inverse mod 2^128
                inverse *= 2 - denominator * inverse; // inverse mod 2^256
                // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                // is no longer required.
                result = prod0 * inverse;
                return result;
            }
        }
        /**
         * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
         */
        function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
            uint256 result = mulDiv(x, y, denominator);
            if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                result += 1;
            }
            return result;
        }
        /**
         * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
         *
         * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
         */
        function sqrt(uint256 a) internal pure returns (uint256) {
            if (a == 0) {
                return 0;
            }
            // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
            //
            // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
            // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
            //
            // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
            // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
            // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
            //
            // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
            uint256 result = 1 << (log2(a) >> 1);
            // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
            // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
            // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
            // into the expected uint128 result.
            unchecked {
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                return min(result, a / result);
            }
        }
        /**
         * @notice Calculates sqrt(a), following the selected rounding direction.
         */
        function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = sqrt(a);
                return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 2, rounded down, of a positive value.
         * Returns 0 if given 0.
         */
        function log2(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >> 128 > 0) {
                    value >>= 128;
                    result += 128;
                }
                if (value >> 64 > 0) {
                    value >>= 64;
                    result += 64;
                }
                if (value >> 32 > 0) {
                    value >>= 32;
                    result += 32;
                }
                if (value >> 16 > 0) {
                    value >>= 16;
                    result += 16;
                }
                if (value >> 8 > 0) {
                    value >>= 8;
                    result += 8;
                }
                if (value >> 4 > 0) {
                    value >>= 4;
                    result += 4;
                }
                if (value >> 2 > 0) {
                    value >>= 2;
                    result += 2;
                }
                if (value >> 1 > 0) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log2(value);
                return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 10, rounded down, of a positive value.
         * Returns 0 if given 0.
         */
        function log10(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >= 10 ** 64) {
                    value /= 10 ** 64;
                    result += 64;
                }
                if (value >= 10 ** 32) {
                    value /= 10 ** 32;
                    result += 32;
                }
                if (value >= 10 ** 16) {
                    value /= 10 ** 16;
                    result += 16;
                }
                if (value >= 10 ** 8) {
                    value /= 10 ** 8;
                    result += 8;
                }
                if (value >= 10 ** 4) {
                    value /= 10 ** 4;
                    result += 4;
                }
                if (value >= 10 ** 2) {
                    value /= 10 ** 2;
                    result += 2;
                }
                if (value >= 10 ** 1) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log10(value);
                return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 256, rounded down, of a positive value.
         * Returns 0 if given 0.
         *
         * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
         */
        function log256(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >> 128 > 0) {
                    value >>= 128;
                    result += 16;
                }
                if (value >> 64 > 0) {
                    value >>= 64;
                    result += 8;
                }
                if (value >> 32 > 0) {
                    value >>= 32;
                    result += 4;
                }
                if (value >> 16 > 0) {
                    value >>= 16;
                    result += 2;
                }
                if (value >> 8 > 0) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log256(value);
                return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Standard signed math utilities missing in the Solidity language.
     */
    library SignedMath {
        /**
         * @dev Returns the largest of two signed numbers.
         */
        function max(int256 a, int256 b) internal pure returns (int256) {
            return a > b ? a : b;
        }
        /**
         * @dev Returns the smallest of two signed numbers.
         */
        function min(int256 a, int256 b) internal pure returns (int256) {
            return a < b ? a : b;
        }
        /**
         * @dev Returns the average of two signed numbers without overflow.
         * The result is rounded towards zero.
         */
        function average(int256 a, int256 b) internal pure returns (int256) {
            // Formula from the book "Hacker's Delight"
            int256 x = (a & b) + ((a ^ b) >> 1);
            return x + (int256(uint256(x) >> 255) & (a ^ b));
        }
        /**
         * @dev Returns the absolute unsigned value of a signed value.
         */
        function abs(int256 n) internal pure returns (uint256) {
            unchecked {
                // must be unchecked in order to support `n = type(int256).min`
                return uint256(n >= 0 ? n : -n);
            }
        }
    }