ETH Price: $1,975.55 (+0.35%)

Transaction Decoder

Block:
23131877 at Aug-13-2025 11:37:35 AM +UTC
Transaction Fee:
0.000090289340319402 ETH $0.18
Gas Used:
42,399 Gas / 2.129515798 Gwei

Account State Difference:

  Address   Before After State Difference Code
0x00000000...000000000
(Null: 0x000...000)
14,123.98650427057969391 Eth14,125.58650427057969391 Eth1.6
0x60009156...269375C47
(MEV Bot: 0x6000...c47)
1.646601 Eth0.046601 Eth1.6
0x65d7f0BE...E8b658Ea7
3.045877039507197558 Eth
Nonce: 2796
3.045786750166878156 Eth
Nonce: 2797
0.000090289340319402
(BuilderNet)
71.014984627267957857 Eth71.015024757181552908 Eth0.000040129913595051

Execution Trace

DockerSwapV2.e1ae4379( )
  • 0xc083d355de5599bb80c001d63f75ad995843d7fe.e1ae4379( )
    • ETH 1.6 Null: 0x000...000.CALL( )
      /**
       *Submitted for verification at BscScan.com on 2020-09-29
      */
      
      // File: openzeppelin-solidity/contracts/proxy/Proxy.sol
      
      // SPDX-License-Identifier: MIT
      
      pragma solidity ^0.6.0;
      
      /**
       * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
       * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
       * be specified by overriding the virtual {_implementation} function.
       * 
       * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
       * different contract through the {_delegate} function.
       * 
       * The success and return data of the delegated call will be returned back to the caller of the proxy.
       */
      abstract contract Proxy {
          /**
           * @dev Delegates the current call to `implementation`.
           * 
           * This function does not return to its internall call site, it will return directly to the external caller.
           */
          function _delegate(address implementation) internal {
              // solhint-disable-next-line no-inline-assembly
              assembly {
                  // Copy msg.data. We take full control of memory in this inline assembly
                  // block because it will not return to Solidity code. We overwrite the
                  // Solidity scratch pad at memory position 0.
                  calldatacopy(0, 0, calldatasize())
      
                  // Call the implementation.
                  // out and outsize are 0 because we don't know the size yet.
                  let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
      
                  // Copy the returned data.
                  returndatacopy(0, 0, returndatasize())
      
                  switch result
                  // delegatecall returns 0 on error.
                  case 0 { revert(0, returndatasize()) }
                  default { return(0, returndatasize()) }
              }
          }
      
          /**
           * @dev This is a virtual function that should be overriden so it returns the address to which the fallback function
           * and {_fallback} should delegate.
           */
          function _implementation() internal virtual view returns (address);
      
          /**
           * @dev Delegates the current call to the address returned by `_implementation()`.
           * 
           * This function does not return to its internall call site, it will return directly to the external caller.
           */
          function _fallback() internal {
              _beforeFallback();
              _delegate(_implementation());
          }
      
          /**
           * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
           * function in the contract matches the call data.
           */
          fallback () payable external {
              _fallback();
          }
      
          /**
           * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data
           * is empty.
           */
          receive () payable external {
              _fallback();
          }
      
          /**
           * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback`
           * call, or as part of the Solidity `fallback` or `receive` functions.
           * 
           * If overriden should call `super._beforeFallback()`.
           */
          function _beforeFallback() internal virtual {
          }
      }
      
      // File: openzeppelin-solidity/contracts/utils/Address.sol
      
      // SPDX-License-Identifier: MIT
      
      pragma solidity ^0.6.2;
      
      /**
       * @dev Collection of functions related to the address type
       */
      library Address {
          /**
           * @dev Returns true if `account` is a contract.
           *
           * [IMPORTANT]
           * ====
           * It is unsafe to assume that an address for which this function returns
           * false is an externally-owned account (EOA) and not a contract.
           *
           * Among others, `isContract` will return false for the following
           * types of addresses:
           *
           *  - an externally-owned account
           *  - a contract in construction
           *  - an address where a contract will be created
           *  - an address where a contract lived, but was destroyed
           * ====
           */
          function isContract(address account) internal view returns (bool) {
              // This method relies in extcodesize, which returns 0 for contracts in
              // construction, since the code is only stored at the end of the
              // constructor execution.
      
              uint256 size;
              // solhint-disable-next-line no-inline-assembly
              assembly { size := extcodesize(account) }
              return size > 0;
          }
      
          /**
           * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
           * `recipient`, forwarding all available gas and reverting on errors.
           *
           * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
           * of certain opcodes, possibly making contracts go over the 2300 gas limit
           * imposed by `transfer`, making them unable to receive funds via
           * `transfer`. {sendValue} removes this limitation.
           *
           * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
           *
           * IMPORTANT: because control is transferred to `recipient`, care must be
           * taken to not create reentrancy vulnerabilities. Consider using
           * {ReentrancyGuard} or the
           * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
           */
          function sendValue(address payable recipient, uint256 amount) internal {
              require(address(this).balance >= amount, "Address: insufficient balance");
      
              // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
              (bool success, ) = recipient.call{ value: amount }("");
              require(success, "Address: unable to send value, recipient may have reverted");
          }
      
          /**
           * @dev Performs a Solidity function call using a low level `call`. A
           * plain`call` is an unsafe replacement for a function call: use this
           * function instead.
           *
           * If `target` reverts with a revert reason, it is bubbled up by this
           * function (like regular Solidity function calls).
           *
           * Returns the raw returned data. To convert to the expected return value,
           * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
           *
           * Requirements:
           *
           * - `target` must be a contract.
           * - calling `target` with `data` must not revert.
           *
           * _Available since v3.1._
           */
          function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCall(target, data, "Address: low-level call failed");
          }
      
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
           * `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
              return _functionCallWithValue(target, data, 0, errorMessage);
          }
      
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but also transferring `value` wei to `target`.
           *
           * Requirements:
           *
           * - the calling contract must have an ETH balance of at least `value`.
           * - the called Solidity function must be `payable`.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
              return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
          }
      
          /**
           * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
           * with `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
              require(address(this).balance >= value, "Address: insufficient balance for call");
              return _functionCallWithValue(target, data, value, errorMessage);
          }
      
          function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) {
              require(isContract(target), "Address: call to non-contract");
      
              // solhint-disable-next-line avoid-low-level-calls
              (bool success, bytes memory returndata) = target.call{ value: weiValue }(data);
              if (success) {
                  return returndata;
              } else {
                  // Look for revert reason and bubble it up if present
                  if (returndata.length > 0) {
                      // The easiest way to bubble the revert reason is using memory via assembly
      
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          let returndata_size := mload(returndata)
                          revert(add(32, returndata), returndata_size)
                      }
                  } else {
                      revert(errorMessage);
                  }
              }
          }
      }
      
      // File: openzeppelin-solidity/contracts/proxy/UpgradeableProxy.sol
      
      // SPDX-License-Identifier: MIT
      
      pragma solidity ^0.6.0;
      
      
      
      /**
       * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
       * implementation address that can be changed. This address is stored in storage in the location specified by
       * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
       * implementation behind the proxy.
       * 
       * Upgradeability is only provided internally through {_upgradeTo}. For an externally upgradeable proxy see
       * {TransparentUpgradeableProxy}.
       */
      contract UpgradeableProxy is Proxy {
          /**
           * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`.
           * 
           * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded
           * function call, and allows initializating the storage of the proxy like a Solidity constructor.
           */
          constructor(address _logic, bytes memory _data) public payable {
              assert(_IMPLEMENTATION_SLOT == bytes32(uint256(keccak256("eip1967.proxy.implementation")) - 1));
              _setImplementation(_logic);
              if(_data.length > 0) {
                  // solhint-disable-next-line avoid-low-level-calls
                  (bool success,) = _logic.delegatecall(_data);
                  require(success);
              }
          }
      
          /**
           * @dev Emitted when the implementation is upgraded.
           */
          event Upgraded(address indexed implementation);
      
          /**
           * @dev Storage slot with the address of the current implementation.
           * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
           * validated in the constructor.
           */
          bytes32 private constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
      
          /**
           * @dev Returns the current implementation address.
           */
          function _implementation() internal override view returns (address impl) {
              bytes32 slot = _IMPLEMENTATION_SLOT;
              // solhint-disable-next-line no-inline-assembly
              assembly {
                  impl := sload(slot)
              }
          }
      
          /**
           * @dev Upgrades the proxy to a new implementation.
           * 
           * Emits an {Upgraded} event.
           */
          function _upgradeTo(address newImplementation) internal {
              _setImplementation(newImplementation);
              emit Upgraded(newImplementation);
          }
      
          /**
           * @dev Stores a new address in the EIP1967 implementation slot.
           */
          function _setImplementation(address newImplementation) private {
              require(Address.isContract(newImplementation), "UpgradeableProxy: new implementation is not a contract");
      
              bytes32 slot = _IMPLEMENTATION_SLOT;
      
              // solhint-disable-next-line no-inline-assembly
              assembly {
                  sstore(slot, newImplementation)
              }
          }
      }
      
      // File: openzeppelin-solidity/contracts/proxy/TransparentUpgradeableProxy.sol
      
      // SPDX-License-Identifier: MIT
      
      pragma solidity ^0.6.0;
      
      
      /**
       * @dev This contract implements a proxy that is upgradeable by an admin.
       * 
       * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector
       * clashing], which can potentially be used in an attack, this contract uses the
       * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two
       * things that go hand in hand:
       * 
       * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if
       * that call matches one of the admin functions exposed by the proxy itself.
       * 2. If the admin calls the proxy, it can access the admin functions, but its calls will never be forwarded to the
       * implementation. If the admin tries to call a function on the implementation it will fail with an error that says
       * "admin cannot fallback to proxy target".
       * 
       * These properties mean that the admin account can only be used for admin actions like upgrading the proxy or changing
       * the admin, so it's best if it's a dedicated account that is not used for anything else. This will avoid headaches due
       * to sudden errors when trying to call a function from the proxy implementation.
       * 
       * Our recommendation is for the dedicated account to be an instance of the {ProxyAdmin} contract. If set up this way,
       * you should think of the `ProxyAdmin` instance as the real administrative inerface of your proxy.
       */
      contract TransparentUpgradeableProxy is UpgradeableProxy {
          /**
           * @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and
           * optionally initialized with `_data` as explained in {UpgradeableProxy-constructor}.
           */
          constructor(address _logic, address _admin, bytes memory _data) public payable UpgradeableProxy(_logic, _data) {
              assert(_ADMIN_SLOT == bytes32(uint256(keccak256("eip1967.proxy.admin")) - 1));
              _setAdmin(_admin);
          }
      
          /**
           * @dev Emitted when the admin account has changed.
           */
          event AdminChanged(address previousAdmin, address newAdmin);
      
          /**
           * @dev Storage slot with the admin of the contract.
           * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
           * validated in the constructor.
           */
          bytes32 private constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
      
          /**
           * @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin.
           */
          modifier ifAdmin() {
              if (msg.sender == _admin()) {
                  _;
              } else {
                  _fallback();
              }
          }
      
          /**
           * @dev Returns the current admin.
           * 
           * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyAdmin}.
           * 
           * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
           * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
           * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
           */
          function admin() external ifAdmin returns (address) {
              return _admin();
          }
      
          /**
           * @dev Returns the current implementation.
           * 
           * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyImplementation}.
           * 
           * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
           * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
           * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
           */
          function implementation() external ifAdmin returns (address) {
              return _implementation();
          }
      
          /**
           * @dev Changes the admin of the proxy.
           * 
           * Emits an {AdminChanged} event.
           * 
           * NOTE: Only the admin can call this function. See {ProxyAdmin-changeProxyAdmin}.
           */
          function changeAdmin(address newAdmin) external ifAdmin {
              require(newAdmin != address(0), "TransparentUpgradeableProxy: new admin is the zero address");
              emit AdminChanged(_admin(), newAdmin);
              _setAdmin(newAdmin);
          }
      
          /**
           * @dev Upgrade the implementation of the proxy.
           * 
           * NOTE: Only the admin can call this function. See {ProxyAdmin-upgrade}.
           */
          function upgradeTo(address newImplementation) external ifAdmin {
              _upgradeTo(newImplementation);
          }
      
          /**
           * @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified
           * by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the
           * proxied contract.
           * 
           * NOTE: Only the admin can call this function. See {ProxyAdmin-upgradeAndCall}.
           */
          function upgradeToAndCall(address newImplementation, bytes calldata data) external payable ifAdmin {
              _upgradeTo(newImplementation);
              // solhint-disable-next-line avoid-low-level-calls
              (bool success,) = newImplementation.delegatecall(data);
              require(success);
          }
      
          /**
           * @dev Returns the current admin.
           */
          function _admin() internal view returns (address adm) {
              bytes32 slot = _ADMIN_SLOT;
              // solhint-disable-next-line no-inline-assembly
              assembly {
                  adm := sload(slot)
              }
          }
      
          /**
           * @dev Stores a new address in the EIP1967 admin slot.
           */
          function _setAdmin(address newAdmin) private {
              bytes32 slot = _ADMIN_SLOT;
      
              // solhint-disable-next-line no-inline-assembly
              assembly {
                  sstore(slot, newAdmin)
              }
          }
      
          /**
           * @dev Makes sure the admin cannot access the fallback function. See {Proxy-_beforeFallback}.
           */
          function _beforeFallback() internal override virtual {
              require(msg.sender != _admin(), "TransparentUpgradeableProxy: admin cannot fallback to proxy target");
              super._beforeFallback();
          }
      }
      
      // File: contracts/BEP20UpgradeableProxy.sol
      
      pragma solidity ^0.6.0;
      
      
      contract DockerSwapV2 is TransparentUpgradeableProxy {
      
          constructor(address logic, address admin, bytes memory data) TransparentUpgradeableProxy(logic, admin, data) public {
      
          }
      
      }