ETH Price: $1,942.17 (-2.48%)
Gas: 0.04 Gwei

Transaction Decoder

Block:
24461271 at Feb-15-2026 09:20:59 AM +UTC
Transaction Fee:
0.000156110441046976 ETH $0.30
Gas Used:
535,912 Gas / 0.291298648 Gwei

Emitted Events:

200 FiatTokenProxy.0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925( 0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925, 0x0000000000000000000000006aba0315493b7e6989041c91181337b662fb1b90, 0x000000000000000000000000b300000b72deaeb607a12d5f54773d1c19c7028d, 000000000000000000000000000000000000000000000000000000001dc72db2 )
201 FiatTokenProxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x0000000000000000000000006aba0315493b7e6989041c91181337b662fb1b90, 0x000000000000000000000000b300000b72deaeb607a12d5f54773d1c19c7028d, 000000000000000000000000000000000000000000000000000000001dc72db2 )
202 FiatTokenProxy.0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925( 0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925, 0x000000000000000000000000b300000b72deaeb607a12d5f54773d1c19c7028d, 0x000000000000000000000000111111125421ca6dc452d289314280a0f8842a65, 000000000000000000000000000000000000000000000000000000001dc72db2 )
203 FiatTokenProxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x000000000000000000000000b300000b72deaeb607a12d5f54773d1c19c7028d, 0x000000000000000000000000990636ecb3ff04d33d92e970d3d588bf5cd8d086, 000000000000000000000000000000000000000000000000000000001dc72db2 )
204 FiatTokenProxy.0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925( 0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925, 0x000000000000000000000000990636ecb3ff04d33d92e970d3d588bf5cd8d086, 0x0000000000000000000000009995855c00494d039ab6792f18e368e530dff931, 000000000000000000000000000000000000000000000000000000001dc72db2 )
205 Core.( ca5b3ef9770bb95940bd4e0bff5ead70a5973d904a8b370b52147820e61a2ff6, 0000000000000000000000001dc72db2ffffffffffffffffffffffffe23603e3, 000000000000000000014b71fbb765618000000040030b91117023ce00000173 )
206 TetherToken.Transfer( from=Core, to=0x990636ecB3FF04d33D92e970d3d588bF5cD8d086, value=499776541 )
207 FiatTokenProxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x000000000000000000000000990636ecb3ff04d33d92e970d3d588bf5cd8d086, 0x000000000000000000000000e0e0e08a6a4b9dc7bd67bcb7aade5cf48157d444, 000000000000000000000000000000000000000000000000000000001dc72db2 )
208 WETH9.Transfer( src=UniswapV3Pool, dst=UniswapV2Pair, wad=241121543567657008 )
209 TetherToken.Transfer( from=0x990636ecB3FF04d33D92e970d3d588bF5cD8d086, to=UniswapV3Pool, value=499776541 )
210 UniswapV3Pool.Swap( sender=0x990636ecB3FF04d33D92e970d3d588bF5cD8d086, recipient=UniswapV2Pair, amount0=-241121543567657008, amount1=499776541, sqrtPriceX96=3606966246703186219309928, liquidity=166866657101614361, tick=-199955 )
211 MOG.Transfer( from=UniswapV2Pair, to=MOG, value=0 )
212 MOG.Transfer( from=UniswapV2Pair, to=AggregationRouterV6, value=2615282870583855391829262191 )
213 UniswapV2Pair.Sync( reserve0=16755178393793131638006758148450, reserve1=1540385944475262816982 )
214 UniswapV2Pair.Swap( sender=0x990636ecB3FF04d33D92e970d3d588bF5cD8d086, amount0In=0, amount1In=241121543567657008, amount0Out=2615282870583855391829262191, amount1Out=0, to=AggregationRouterV6 )
215 MOG.Transfer( from=AggregationRouterV6, to=MOG, value=0 )
216 MOG.Transfer( from=AggregationRouterV6, to=[Receiver] 0x6aba0315493b7e6989041c91181337b662fb1b90, value=2615282870583855391829262191 )
217 FiatTokenProxy.0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925( 0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925, 0x000000000000000000000000b300000b72deaeb607a12d5f54773d1c19c7028d, 0x000000000000000000000000111111125421ca6dc452d289314280a0f8842a65, 0000000000000000000000000000000000000000000000000000000000000000 )
218 MOG.Approval( owner=[Receiver] 0x6aba0315493b7e6989041c91181337b662fb1b90, spender=0x73D8bD54F7Cf5FAb43fE4Ef40A62D390644946Db, value=2615282870583855391829262191 )
219 MOG.Transfer( from=[Receiver] 0x6aba0315493b7e6989041c91181337b662fb1b90, to=MOG, value=0 )
220 MOG.Transfer( from=[Receiver] 0x6aba0315493b7e6989041c91181337b662fb1b90, to=0x73D8bD54F7Cf5FAb43fE4Ef40A62D390644946Db, value=2615282870583855391829262191 )
221 0x73d8bd54f7cf5fab43fe4ef40a62d390644946db.0xc9eb79979a9be24cdcb545bcb7ca22c1122b959cfc7bd8a8ffd4cab025afe293( 0xc9eb79979a9be24cdcb545bcb7ca22c1122b959cfc7bd8a8ffd4cab025afe293, 0x00000000000000000000000000000000000000000000000044436ad01f791b01, 0x0000000000000000000000000000000000000000000000000000000046c497ea, 0x000000000000000000000000aaee1a9723aadb7afa2810263653a34ba2c21c7a, 000000000000000000000000000000000000000008734fb07f5fe73c5f45ff6f, 14fef377b881f551321ef6969f626345c41f831b24e7a334b53ebbc9e62c0ba4 )
222 0x6aba0315493b7e6989041c91181337b662fb1b90.0xb269ea1bfae777182ecbadeb1aceea31445e58d011800aef22f18c98bf3137ff( 0xb269ea1bfae777182ecbadeb1aceea31445e58d011800aef22f18c98bf3137ff, 0x00000000000000000000000000000000000000000000000044436ad01f791b01, 000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48, 000000000000000000000000000000000000000000000000000000001dc72db2, 000000000000000000000000aaee1a9723aadb7afa2810263653a34ba2c21c7a, 000000000000000000000000000000000000000008734fb07f5fe73c5f45ff6f, 0000000000000000000000000000000000000000000000000000000046c497ea, 00000000000000000000000073d8bd54f7cf5fab43fe4ef40a62d390644946db )

Account State Difference:

  Address   Before After State Difference Code
(quasarbuilder)
14.637520759806564938 Eth14.637658640011743186 Eth0.000137880205178248
0x6aba0315...662fB1b90
0xA0b86991...E3606eB48
0xaaeE1A97...bA2C21C7a
0xC02aaA39...83C756Cc2
0xc2eaB7d3...649Cb539d
0xc7bBeC68...9bA1b0e9b
(Uniswap V3: USDT 9)
0xc91c69E0...F6Babd8b9
0.925476910492632259 Eth
Nonce: 2426
0.925320800051585283 Eth
Nonce: 2427
0.000156110441046976
0xdAC17F95...13D831ec7
0xe0e0e08A...48157d444
(Ekubo: Core)

Execution Trace

0x6aba0315493b7e6989041c91181337b662fb1b90.25356bc7( )
  • 0x6c2708dca4d553998b2c86724ec24312456baf88.25356bc7( )
    • FiatTokenProxy.70a08231( )
      • FiatTokenV2_2.balanceOf( account=0x6aba0315493b7e6989041C91181337b662fB1b90 ) => ( 339288606885 )
      • MOG.balanceOf( account=0x6aba0315493b7e6989041C91181337b662fB1b90 ) => ( 0 )
      • FiatTokenProxy.095ea7b3( )
        • FiatTokenV2_2.approve( spender=0xb300000b72DEAEb607a12d5f54773D1C19c7028d, value=499592626 ) => ( True )
        • Diamond.810c705b( )
          • 0x7ec117ed6e17a0e8eb643d9d3864081090b41b59.810c705b( )
            • FiatTokenProxy.70a08231( )
              • FiatTokenV2_2.balanceOf( account=0xb300000b72DEAEb607a12d5f54773D1C19c7028d ) => ( 241676745 )
              • MOG.balanceOf( account=0xb300000b72DEAEb607a12d5f54773D1C19c7028d ) => ( 0 )
              • MOG.balanceOf( account=0x6aba0315493b7e6989041C91181337b662fB1b90 ) => ( 0 )
              • FiatTokenProxy.23b872dd( )
                • FiatTokenV2_2.transferFrom( from=0x6aba0315493b7e6989041C91181337b662fB1b90, to=0xb300000b72DEAEb607a12d5f54773D1C19c7028d, value=499592626 ) => ( True )
                • FiatTokenProxy.095ea7b3( )
                  • FiatTokenV2_2.approve( spender=0x111111125421cA6dc452d289314280a0f8842A65, value=499592626 ) => ( True )
                  • AggregationRouterV6.swap( executor=0x990636ecB3FF04d33D92e970d3d588bF5cD8d086, desc=[{name:srcToken, type:address, order:1, indexed:false, value:0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48, valueString:0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48}, {name:dstToken, type:address, order:2, indexed:false, value:0xaaeE1A9723aaDB7afA2810263653A34bA2C21C7a, valueString:0xaaeE1A9723aaDB7afA2810263653A34bA2C21C7a}, {name:srcReceiver, type:address, order:3, indexed:false, value:0x990636ecB3FF04d33D92e970d3d588bF5cD8d086, valueString:0x990636ecB3FF04d33D92e970d3d588bF5cD8d086}, {name:dstReceiver, type:address, order:4, indexed:false, value:0x6aba0315493b7e6989041C91181337b662fB1b90, valueString:0x6aba0315493b7e6989041C91181337b662fB1b90}, {name:amount, type:uint256, order:5, indexed:false, value:499592626, valueString:499592626}, {name:minReturnAmount, type:uint256, order:6, indexed:false, value:1307882774309598511646419437, valueString:1307882774309598511646419437}, {name:flags, type:uint256, order:7, indexed:false, value:0, valueString:0}], data=0x00000000000000000000000000000000000000000000000000024C00021E00A007E5C0D20000000000000000000000000000000000000000000001FA00019300013051329995855C00494D039AB6792F18E368E530DFF931A0B86991C6218B36C1D19D4A2E9EB0CE3606EB4800841D8A7962000000000000000000000000A0B86991C6218B36C1D19D4A2E9EB0CE3606EB48000000000000000000000000DAC17F958D2EE523A2206206994597C13D831EC70000000000000000000000000000000000000000000053E2D6238DA30000003200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000400065A8177FAE270000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000EE4FE0E02A000000000000000000000000000000000000000000000000001AC659F8FD4C005EE63C1E580C7BBEC68D12A0D1830360F8EC58FA599BA1B0E9BDAC17F958D2EE523A2206206994597C13D831EC7C2EAB7D33D3CB97692ECB231A5D0E4A649CB539D00206AE4071138002DC6C0C2EAB7D33D3CB97692ECB231A5D0E4A649CB539D111111125421CA6DC452D289314280A0F8842A6500000000000000000000000000000000000000000439DAF3435D424ED444A9EDC02AAA39B223FE8D0A0E5C4F27EAD9083C756CC20020D6BDBF78AAEE1A9723AADB7AFA2810263653A34BA2C21C7A111111125421CA6DC452D289314280A0F8842A65 ) => ( returnAmount=2615282870583855391829262191, spentAmount=499592626 )
                    • FiatTokenProxy.23b872dd( )
                      • FiatTokenV2_2.transferFrom( from=0xb300000b72DEAEb607a12d5f54773D1C19c7028d, to=0x990636ecB3FF04d33D92e970d3d588bF5cD8d086, value=499592626 ) => ( True )
                      • 1inch: Aggregation Executor 5.4b64e492( )
                        • 1inch: Aggregation Executor 5.07e5c0d2( )
                        • 1inch: Aggregation Executor 5.d6bdbf78( )
                        • MOG.transfer( recipient=0x6aba0315493b7e6989041C91181337b662fB1b90, amount=2615282870583855391829262191 ) => ( True )
                        • FiatTokenProxy.095ea7b3( )
                          • FiatTokenV2_2.approve( spender=0x111111125421cA6dc452d289314280a0f8842A65, value=0 ) => ( True )
                          • MOG.balanceOf( account=0xb300000b72DEAEb607a12d5f54773D1C19c7028d ) => ( 0 )
                          • MOG.balanceOf( account=0x6aba0315493b7e6989041C91181337b662fB1b90 ) => ( 2615282870583855391829262191 )
                          • FiatTokenProxy.70a08231( )
                            • FiatTokenV2_2.balanceOf( account=0xb300000b72DEAEb607a12d5f54773D1C19c7028d ) => ( 241676745 )
                            • FiatTokenProxy.70a08231( )
                              • FiatTokenV2_2.balanceOf( account=0x6aba0315493b7e6989041C91181337b662fB1b90 ) => ( 338789014259 )
                              • MOG.balanceOf( account=0x6aba0315493b7e6989041C91181337b662fB1b90 ) => ( 2615282870583855391829262191 )
                              • MOG.balanceOf( account=0x73D8bD54F7Cf5FAb43fE4Ef40A62D390644946Db ) => ( 2003556130879568445912155848549 )
                              • MOG.approve( spender=0x73D8bD54F7Cf5FAb43fE4Ef40A62D390644946Db, amount=2615282870583855391829262191 ) => ( True )
                              • 0x73d8bd54f7cf5fab43fe4ef40a62d390644946db.fed29397( )
                                • 0x239a2cfccf089ef3228ffdfe2fec557e71b1c139.fed29397( )
                                  • MOG.balanceOf( account=0x73D8bD54F7Cf5FAb43fE4Ef40A62D390644946Db ) => ( 2003556130879568445912155848549 )
                                  • MOG.transferFrom( sender=0x6aba0315493b7e6989041C91181337b662fB1b90, recipient=0x73D8bD54F7Cf5FAb43fE4Ef40A62D390644946Db, amount=2615282870583855391829262191 ) => ( True )
                                  • MOG.balanceOf( account=0x73D8bD54F7Cf5FAb43fE4Ef40A62D390644946Db ) => ( 2006171413750152301303985110740 )
                                  • MOG.balanceOf( account=0x73D8bD54F7Cf5FAb43fE4Ef40A62D390644946Db ) => ( 2006171413750152301303985110740 )
                                    File 1 of 10: FiatTokenProxy
                                    pragma solidity ^0.4.24;
                                    
                                    // File: zos-lib/contracts/upgradeability/Proxy.sol
                                    
                                    /**
                                     * @title Proxy
                                     * @dev Implements delegation of calls to other contracts, with proper
                                     * forwarding of return values and bubbling of failures.
                                     * It defines a fallback function that delegates all calls to the address
                                     * returned by the abstract _implementation() internal function.
                                     */
                                    contract Proxy {
                                      /**
                                       * @dev Fallback function.
                                       * Implemented entirely in `_fallback`.
                                       */
                                      function () payable external {
                                        _fallback();
                                      }
                                    
                                      /**
                                       * @return The Address of the implementation.
                                       */
                                      function _implementation() internal view returns (address);
                                    
                                      /**
                                       * @dev Delegates execution to an implementation contract.
                                       * This is a low level function that doesn't return to its internal call site.
                                       * It will return to the external caller whatever the implementation returns.
                                       * @param implementation Address to delegate.
                                       */
                                      function _delegate(address implementation) internal {
                                        assembly {
                                          // Copy msg.data. We take full control of memory in this inline assembly
                                          // block because it will not return to Solidity code. We overwrite the
                                          // Solidity scratch pad at memory position 0.
                                          calldatacopy(0, 0, calldatasize)
                                    
                                          // Call the implementation.
                                          // out and outsize are 0 because we don't know the size yet.
                                          let result := delegatecall(gas, implementation, 0, calldatasize, 0, 0)
                                    
                                          // Copy the returned data.
                                          returndatacopy(0, 0, returndatasize)
                                    
                                          switch result
                                          // delegatecall returns 0 on error.
                                          case 0 { revert(0, returndatasize) }
                                          default { return(0, returndatasize) }
                                        }
                                      }
                                    
                                      /**
                                       * @dev Function that is run as the first thing in the fallback function.
                                       * Can be redefined in derived contracts to add functionality.
                                       * Redefinitions must call super._willFallback().
                                       */
                                      function _willFallback() internal {
                                      }
                                    
                                      /**
                                       * @dev fallback implementation.
                                       * Extracted to enable manual triggering.
                                       */
                                      function _fallback() internal {
                                        _willFallback();
                                        _delegate(_implementation());
                                      }
                                    }
                                    
                                    // File: openzeppelin-solidity/contracts/AddressUtils.sol
                                    
                                    /**
                                     * Utility library of inline functions on addresses
                                     */
                                    library AddressUtils {
                                    
                                      /**
                                       * Returns whether the target address is a contract
                                       * @dev This function will return false if invoked during the constructor of a contract,
                                       * as the code is not actually created until after the constructor finishes.
                                       * @param addr address to check
                                       * @return whether the target address is a contract
                                       */
                                      function isContract(address addr) internal view returns (bool) {
                                        uint256 size;
                                        // XXX Currently there is no better way to check if there is a contract in an address
                                        // than to check the size of the code at that address.
                                        // See https://ethereum.stackexchange.com/a/14016/36603
                                        // for more details about how this works.
                                        // TODO Check this again before the Serenity release, because all addresses will be
                                        // contracts then.
                                        // solium-disable-next-line security/no-inline-assembly
                                        assembly { size := extcodesize(addr) }
                                        return size > 0;
                                      }
                                    
                                    }
                                    
                                    // File: zos-lib/contracts/upgradeability/UpgradeabilityProxy.sol
                                    
                                    /**
                                     * @title UpgradeabilityProxy
                                     * @dev This contract implements a proxy that allows to change the
                                     * implementation address to which it will delegate.
                                     * Such a change is called an implementation upgrade.
                                     */
                                    contract UpgradeabilityProxy is Proxy {
                                      /**
                                       * @dev Emitted when the implementation is upgraded.
                                       * @param implementation Address of the new implementation.
                                       */
                                      event Upgraded(address implementation);
                                    
                                      /**
                                       * @dev Storage slot with the address of the current implementation.
                                       * This is the keccak-256 hash of "org.zeppelinos.proxy.implementation", and is
                                       * validated in the constructor.
                                       */
                                      bytes32 private constant IMPLEMENTATION_SLOT = 0x7050c9e0f4ca769c69bd3a8ef740bc37934f8e2c036e5a723fd8ee048ed3f8c3;
                                    
                                      /**
                                       * @dev Contract constructor.
                                       * @param _implementation Address of the initial implementation.
                                       */
                                      constructor(address _implementation) public {
                                        assert(IMPLEMENTATION_SLOT == keccak256("org.zeppelinos.proxy.implementation"));
                                    
                                        _setImplementation(_implementation);
                                      }
                                    
                                      /**
                                       * @dev Returns the current implementation.
                                       * @return Address of the current implementation
                                       */
                                      function _implementation() internal view returns (address impl) {
                                        bytes32 slot = IMPLEMENTATION_SLOT;
                                        assembly {
                                          impl := sload(slot)
                                        }
                                      }
                                    
                                      /**
                                       * @dev Upgrades the proxy to a new implementation.
                                       * @param newImplementation Address of the new implementation.
                                       */
                                      function _upgradeTo(address newImplementation) internal {
                                        _setImplementation(newImplementation);
                                        emit Upgraded(newImplementation);
                                      }
                                    
                                      /**
                                       * @dev Sets the implementation address of the proxy.
                                       * @param newImplementation Address of the new implementation.
                                       */
                                      function _setImplementation(address newImplementation) private {
                                        require(AddressUtils.isContract(newImplementation), "Cannot set a proxy implementation to a non-contract address");
                                    
                                        bytes32 slot = IMPLEMENTATION_SLOT;
                                    
                                        assembly {
                                          sstore(slot, newImplementation)
                                        }
                                      }
                                    }
                                    
                                    // File: zos-lib/contracts/upgradeability/AdminUpgradeabilityProxy.sol
                                    
                                    /**
                                     * @title AdminUpgradeabilityProxy
                                     * @dev This contract combines an upgradeability proxy with an authorization
                                     * mechanism for administrative tasks.
                                     * All external functions in this contract must be guarded by the
                                     * `ifAdmin` modifier. See ethereum/solidity#3864 for a Solidity
                                     * feature proposal that would enable this to be done automatically.
                                     */
                                    contract AdminUpgradeabilityProxy is UpgradeabilityProxy {
                                      /**
                                       * @dev Emitted when the administration has been transferred.
                                       * @param previousAdmin Address of the previous admin.
                                       * @param newAdmin Address of the new admin.
                                       */
                                      event AdminChanged(address previousAdmin, address newAdmin);
                                    
                                      /**
                                       * @dev Storage slot with the admin of the contract.
                                       * This is the keccak-256 hash of "org.zeppelinos.proxy.admin", and is
                                       * validated in the constructor.
                                       */
                                      bytes32 private constant ADMIN_SLOT = 0x10d6a54a4754c8869d6886b5f5d7fbfa5b4522237ea5c60d11bc4e7a1ff9390b;
                                    
                                      /**
                                       * @dev Modifier to check whether the `msg.sender` is the admin.
                                       * If it is, it will run the function. Otherwise, it will delegate the call
                                       * to the implementation.
                                       */
                                      modifier ifAdmin() {
                                        if (msg.sender == _admin()) {
                                          _;
                                        } else {
                                          _fallback();
                                        }
                                      }
                                    
                                      /**
                                       * Contract constructor.
                                       * It sets the `msg.sender` as the proxy administrator.
                                       * @param _implementation address of the initial implementation.
                                       */
                                      constructor(address _implementation) UpgradeabilityProxy(_implementation) public {
                                        assert(ADMIN_SLOT == keccak256("org.zeppelinos.proxy.admin"));
                                    
                                        _setAdmin(msg.sender);
                                      }
                                    
                                      /**
                                       * @return The address of the proxy admin.
                                       */
                                      function admin() external view ifAdmin returns (address) {
                                        return _admin();
                                      }
                                    
                                      /**
                                       * @return The address of the implementation.
                                       */
                                      function implementation() external view ifAdmin returns (address) {
                                        return _implementation();
                                      }
                                    
                                      /**
                                       * @dev Changes the admin of the proxy.
                                       * Only the current admin can call this function.
                                       * @param newAdmin Address to transfer proxy administration to.
                                       */
                                      function changeAdmin(address newAdmin) external ifAdmin {
                                        require(newAdmin != address(0), "Cannot change the admin of a proxy to the zero address");
                                        emit AdminChanged(_admin(), newAdmin);
                                        _setAdmin(newAdmin);
                                      }
                                    
                                      /**
                                       * @dev Upgrade the backing implementation of the proxy.
                                       * Only the admin can call this function.
                                       * @param newImplementation Address of the new implementation.
                                       */
                                      function upgradeTo(address newImplementation) external ifAdmin {
                                        _upgradeTo(newImplementation);
                                      }
                                    
                                      /**
                                       * @dev Upgrade the backing implementation of the proxy and call a function
                                       * on the new implementation.
                                       * This is useful to initialize the proxied contract.
                                       * @param newImplementation Address of the new implementation.
                                       * @param data Data to send as msg.data in the low level call.
                                       * It should include the signature and the parameters of the function to be
                                       * called, as described in
                                       * https://solidity.readthedocs.io/en/develop/abi-spec.html#function-selector-and-argument-encoding.
                                       */
                                      function upgradeToAndCall(address newImplementation, bytes data) payable external ifAdmin {
                                        _upgradeTo(newImplementation);
                                        require(address(this).call.value(msg.value)(data));
                                      }
                                    
                                      /**
                                       * @return The admin slot.
                                       */
                                      function _admin() internal view returns (address adm) {
                                        bytes32 slot = ADMIN_SLOT;
                                        assembly {
                                          adm := sload(slot)
                                        }
                                      }
                                    
                                      /**
                                       * @dev Sets the address of the proxy admin.
                                       * @param newAdmin Address of the new proxy admin.
                                       */
                                      function _setAdmin(address newAdmin) internal {
                                        bytes32 slot = ADMIN_SLOT;
                                    
                                        assembly {
                                          sstore(slot, newAdmin)
                                        }
                                      }
                                    
                                      /**
                                       * @dev Only fall back when the sender is not the admin.
                                       */
                                      function _willFallback() internal {
                                        require(msg.sender != _admin(), "Cannot call fallback function from the proxy admin");
                                        super._willFallback();
                                      }
                                    }
                                    
                                    // File: contracts/FiatTokenProxy.sol
                                    
                                    /**
                                    * Copyright CENTRE SECZ 2018
                                    *
                                    * Permission is hereby granted, free of charge, to any person obtaining a copy 
                                    * of this software and associated documentation files (the "Software"), to deal 
                                    * in the Software without restriction, including without limitation the rights 
                                    * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 
                                    * copies of the Software, and to permit persons to whom the Software is furnished to 
                                    * do so, subject to the following conditions:
                                    *
                                    * The above copyright notice and this permission notice shall be included in all 
                                    * copies or substantial portions of the Software.
                                    *
                                    * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 
                                    * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 
                                    * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 
                                    * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
                                    * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 
                                    * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
                                    */
                                    
                                    pragma solidity ^0.4.24;
                                    
                                    
                                    /**
                                     * @title FiatTokenProxy
                                     * @dev This contract proxies FiatToken calls and enables FiatToken upgrades
                                    */ 
                                    contract FiatTokenProxy is AdminUpgradeabilityProxy {
                                        constructor(address _implementation) public AdminUpgradeabilityProxy(_implementation) {
                                        }
                                    }

                                    File 2 of 10: Core
                                    // SPDX-License-Identifier: UNLICENSED
                                    pragma solidity =0.8.28;
                                    import {CallPoints, addressToCallPoints} from "./types/callPoints.sol";
                                    import {PoolKey} from "./types/poolKey.sol";
                                    import {PositionKey, Bounds} from "./types/positionKey.sol";
                                    import {FeesPerLiquidity, feesPerLiquidityFromAmounts} from "./types/feesPerLiquidity.sol";
                                    import {isPriceIncreasing, SqrtRatioLimitWrongDirection, SwapResult, swapResult} from "./math/swap.sol";
                                    import {Position} from "./types/position.sol";
                                    import {Ownable} from "solady/auth/Ownable.sol";
                                    import {tickToSqrtRatio, sqrtRatioToTick} from "./math/ticks.sol";
                                    import {Bitmap} from "./math/bitmap.sol";
                                    import {
                                        shouldCallBeforeInitializePool,
                                        shouldCallAfterInitializePool,
                                        shouldCallBeforeUpdatePosition,
                                        shouldCallAfterUpdatePosition,
                                        shouldCallBeforeSwap,
                                        shouldCallAfterSwap,
                                        shouldCallBeforeCollectFees,
                                        shouldCallAfterCollectFees
                                    } from "./types/callPoints.sol";
                                    import {FixedPointMathLib} from "solady/utils/FixedPointMathLib.sol";
                                    import {SafeTransferLib} from "solady/utils/SafeTransferLib.sol";
                                    import {SafeCastLib} from "solady/utils/SafeCastLib.sol";
                                    import {ExposedStorage} from "./base/ExposedStorage.sol";
                                    import {liquidityDeltaToAmountDelta, addLiquidityDelta, subLiquidityDelta} from "./math/liquidity.sol";
                                    import {computeFee} from "./math/fee.sol";
                                    import {findNextInitializedTick, findPrevInitializedTick, flipTick} from "./math/tickBitmap.sol";
                                    import {ICore, UpdatePositionParameters, IExtension} from "./interfaces/ICore.sol";
                                    import {FlashAccountant} from "./base/FlashAccountant.sol";
                                    import {EfficientHashLib} from "solady/utils/EfficientHashLib.sol";
                                    import {
                                        MIN_TICK,
                                        MAX_TICK,
                                        NATIVE_TOKEN_ADDRESS,
                                        FULL_RANGE_ONLY_TICK_SPACING,
                                        MAX_TICK_SPACING
                                    } from "./math/constants.sol";
                                    import {MIN_SQRT_RATIO, MAX_SQRT_RATIO, SqrtRatio} from "./types/sqrtRatio.sol";
                                    /// @title Ekubo Protocol
                                    /// @author Moody Salem <moody@ekubo.org>
                                    /// @notice Singleton holding all the tokens and containing all the possible operations in Ekubo Protocol
                                    contract Core is ICore, FlashAccountant, Ownable, ExposedStorage {
                                        using {findNextInitializedTick, findPrevInitializedTick, flipTick} for mapping(uint256 word => Bitmap bitmap);
                                        struct TickInfo {
                                            int128 liquidityDelta;
                                            uint128 liquidityNet;
                                        }
                                        struct PoolState {
                                            SqrtRatio sqrtRatio;
                                            int32 tick;
                                            uint128 liquidity;
                                        }
                                        mapping(address extension => bool isRegistered) private isExtensionRegistered;
                                        mapping(address token => uint256 amountCollected) private protocolFeesCollected;
                                        mapping(bytes32 poolId => PoolState) private poolState;
                                        mapping(bytes32 poolId => FeesPerLiquidity feesPerLiquidity) private poolFeesPerLiquidity;
                                        mapping(bytes32 poolId => mapping(bytes32 positionId => Position position)) private poolPositions;
                                        mapping(bytes32 poolId => mapping(int32 tick => TickInfo tickInfo)) private poolTicks;
                                        mapping(bytes32 poolId => mapping(int32 tick => FeesPerLiquidity feesPerLiquidityOutside)) private
                                            poolTickFeesPerLiquidityOutside;
                                        mapping(bytes32 poolId => mapping(uint256 word => Bitmap bitmap)) private poolInitializedTickBitmaps;
                                        mapping(bytes32 key => uint256) private savedBalances;
                                        constructor(address owner) {
                                            _initializeOwner(owner);
                                        }
                                        function withdrawProtocolFees(address recipient, address token, uint256 amount) external onlyOwner {
                                            protocolFeesCollected[token] -= amount;
                                            if (token == NATIVE_TOKEN_ADDRESS) {
                                                SafeTransferLib.safeTransferETH(recipient, amount);
                                            } else {
                                                SafeTransferLib.safeTransfer(token, recipient, amount);
                                            }
                                            emit ProtocolFeesWithdrawn(recipient, token, amount);
                                        }
                                        // Extensions must call this function to become registered. The call points are validated against the caller address
                                        function registerExtension(CallPoints memory expectedCallPoints) external {
                                            CallPoints memory computed = addressToCallPoints(msg.sender);
                                            if (!computed.eq(expectedCallPoints) || !computed.isValid()) revert FailedRegisterInvalidCallPoints();
                                            if (isExtensionRegistered[msg.sender]) revert ExtensionAlreadyRegistered();
                                            isExtensionRegistered[msg.sender] = true;
                                            emit ExtensionRegistered(msg.sender);
                                        }
                                        function initializePool(PoolKey memory poolKey, int32 tick) external returns (SqrtRatio sqrtRatio) {
                                            poolKey.validatePoolKey();
                                            address extension = poolKey.extension();
                                            if (extension != address(0)) {
                                                if (!isExtensionRegistered[extension]) {
                                                    revert ExtensionNotRegistered();
                                                }
                                                if (shouldCallBeforeInitializePool(extension) && extension != msg.sender) {
                                                    IExtension(extension).beforeInitializePool(msg.sender, poolKey, tick);
                                                }
                                            }
                                            bytes32 poolId = poolKey.toPoolId();
                                            PoolState memory price = poolState[poolId];
                                            if (SqrtRatio.unwrap(price.sqrtRatio) != 0) revert PoolAlreadyInitialized();
                                            sqrtRatio = tickToSqrtRatio(tick);
                                            poolState[poolId] = PoolState({sqrtRatio: sqrtRatio, tick: tick, liquidity: 0});
                                            emit PoolInitialized(poolId, poolKey, tick, sqrtRatio);
                                            if (shouldCallAfterInitializePool(extension) && extension != msg.sender) {
                                                IExtension(extension).afterInitializePool(msg.sender, poolKey, tick, sqrtRatio);
                                            }
                                        }
                                        function prevInitializedTick(bytes32 poolId, int32 fromTick, uint32 tickSpacing, uint256 skipAhead)
                                            external
                                            view
                                            returns (int32 tick, bool isInitialized)
                                        {
                                            (tick, isInitialized) =
                                                poolInitializedTickBitmaps[poolId].findPrevInitializedTick(fromTick, tickSpacing, skipAhead);
                                        }
                                        function nextInitializedTick(bytes32 poolId, int32 fromTick, uint32 tickSpacing, uint256 skipAhead)
                                            external
                                            view
                                            returns (int32 tick, bool isInitialized)
                                        {
                                            (tick, isInitialized) =
                                                poolInitializedTickBitmaps[poolId].findNextInitializedTick(fromTick, tickSpacing, skipAhead);
                                        }
                                        function load(address token0, address token1, bytes32 salt, uint128 amount0, uint128 amount1) public {
                                            // note we do not check sort order because for save it must be sorted,
                                            //  so balances will always be zero if token0 and token1 are not sorted
                                            //  and this method will throw InsufficientSavedBalance for non-zero amount
                                            (uint256 id,) = _getLocker();
                                            bytes32 key = EfficientHashLib.hash(
                                                bytes32(uint256(uint160(msg.sender))),
                                                bytes32(uint256(uint160(token0))),
                                                bytes32(uint256(uint160(token1))),
                                                salt
                                            );
                                            unchecked {
                                                uint256 packedBalance = savedBalances[key];
                                                uint128 balance0 = uint128(packedBalance >> 128);
                                                uint128 balance1 = uint128(packedBalance);
                                                if (balance0 < amount0 || balance1 < amount1) {
                                                    revert InsufficientSavedBalance();
                                                }
                                                // unchecked is ok because we reverted if either balance < amount
                                                savedBalances[key] = (uint256(balance0 - amount0) << 128) + uint256(balance1 - amount1);
                                                _accountDebt(id, token0, -int256(uint256(amount0)));
                                                _accountDebt(id, token1, -int256(uint256(amount1)));
                                            }
                                        }
                                        function save(address owner, address token0, address token1, bytes32 salt, uint128 amount0, uint128 amount1)
                                            public
                                            payable
                                        {
                                            if (token0 >= token1) revert SavedBalanceTokensNotSorted();
                                            (uint256 id,) = _requireLocker();
                                            bytes32 key = EfficientHashLib.hash(
                                                bytes32(uint256(uint160(owner))), bytes32(uint256(uint160(token0))), bytes32(uint256(uint160(token1))), salt
                                            );
                                            uint256 packedBalances = savedBalances[key];
                                            uint128 balance0 = uint128(packedBalances >> 128);
                                            uint128 balance1 = uint128(packedBalances);
                                            // we are using checked math here to protect the uint128 additions from overflowing
                                            savedBalances[key] = (uint256(balance0 + amount0) << 128) + uint256(balance1 + amount1);
                                            _maybeAccountDebtToken0(id, token0, int256(uint256(amount0)));
                                            _accountDebt(id, token1, int256(uint256(amount1)));
                                        }
                                        // Returns the pool fees per liquidity inside the given bounds.
                                        function _getPoolFeesPerLiquidityInside(bytes32 poolId, Bounds memory bounds, uint32 tickSpacing)
                                            internal
                                            view
                                            returns (FeesPerLiquidity memory)
                                        {
                                            if (tickSpacing == FULL_RANGE_ONLY_TICK_SPACING) return poolFeesPerLiquidity[poolId];
                                            int32 tick = poolState[poolId].tick;
                                            mapping(int32 => FeesPerLiquidity) storage poolIdEntry = poolTickFeesPerLiquidityOutside[poolId];
                                            FeesPerLiquidity memory lower = poolIdEntry[bounds.lower];
                                            FeesPerLiquidity memory upper = poolIdEntry[bounds.upper];
                                            if (tick < bounds.lower) {
                                                return lower.sub(upper);
                                            } else if (tick < bounds.upper) {
                                                FeesPerLiquidity memory fees = poolFeesPerLiquidity[poolId];
                                                return fees.sub(lower).sub(upper);
                                            } else {
                                                return upper.sub(lower);
                                            }
                                        }
                                        function getPoolFeesPerLiquidityInside(PoolKey memory poolKey, Bounds memory bounds)
                                            external
                                            view
                                            returns (FeesPerLiquidity memory)
                                        {
                                            return _getPoolFeesPerLiquidityInside(poolKey.toPoolId(), bounds, poolKey.tickSpacing());
                                        }
                                        // Accumulates tokens to fees of a pool. Only callable by the extension of the specified pool
                                        // key, i.e. the current locker _must_ be the extension.
                                        // The extension must call this function within a lock callback.
                                        function accumulateAsFees(PoolKey memory poolKey, uint128 amount0, uint128 amount1) external payable {
                                            (uint256 id, address locker) = _requireLocker();
                                            require(locker == poolKey.extension());
                                            bytes32 poolId = poolKey.toPoolId();
                                            // Note we do not check pool is initialized. If the extension calls this for a pool that does not exist,
                                            //  the fees are simply burned since liquidity is 0.
                                            assembly ("memory-safe") {
                                                if or(amount0, amount1) {
                                                    mstore(0, poolId)
                                                    mstore(32, 2)
                                                    let liquidity := shr(128, sload(keccak256(0, 64)))
                                                    if liquidity {
                                                        mstore(32, 3)
                                                        let slot0 := keccak256(0, 64)
                                                        if amount0 {
                                                            let v := div(shl(128, amount0), liquidity)
                                                            sstore(slot0, add(sload(slot0), v))
                                                        }
                                                        if amount1 {
                                                            let slot1 := add(slot0, 1)
                                                            let v := div(shl(128, amount1), liquidity)
                                                            sstore(slot1, add(sload(slot1), v))
                                                        }
                                                    }
                                                }
                                            }
                                            // whether the fees are actually accounted to any position, the caller owes the debt
                                            _maybeAccountDebtToken0(id, poolKey.token0, int256(uint256(amount0)));
                                            _accountDebt(id, poolKey.token1, int256(uint256(amount1)));
                                            emit FeesAccumulated(poolId, amount0, amount1);
                                        }
                                        function _updateTick(bytes32 poolId, int32 tick, uint32 tickSpacing, int128 liquidityDelta, bool isUpper) private {
                                            TickInfo storage tickInfo = poolTicks[poolId][tick];
                                            uint128 liquidityNetNext = addLiquidityDelta(tickInfo.liquidityNet, liquidityDelta);
                                            // this is checked math
                                            int128 liquidityDeltaNext =
                                                isUpper ? tickInfo.liquidityDelta - liquidityDelta : tickInfo.liquidityDelta + liquidityDelta;
                                            if ((tickInfo.liquidityNet == 0) != (liquidityNetNext == 0)) {
                                                flipTick(poolInitializedTickBitmaps[poolId], tick, tickSpacing);
                                            }
                                            tickInfo.liquidityDelta = liquidityDeltaNext;
                                            tickInfo.liquidityNet = liquidityNetNext;
                                        }
                                        function _maybeAccountDebtToken0(uint256 id, address token0, int256 debtChange) private {
                                            if (msg.value == 0) {
                                                _accountDebt(id, token0, debtChange);
                                            } else {
                                                if (msg.value > type(uint128).max) revert PaymentOverflow();
                                                if (token0 == NATIVE_TOKEN_ADDRESS) {
                                                    unchecked {
                                                        _accountDebt(id, NATIVE_TOKEN_ADDRESS, debtChange - int256(msg.value));
                                                    }
                                                } else {
                                                    unchecked {
                                                        _accountDebt(id, token0, debtChange);
                                                        _accountDebt(id, NATIVE_TOKEN_ADDRESS, -int256(msg.value));
                                                    }
                                                }
                                            }
                                        }
                                        function updatePosition(PoolKey memory poolKey, UpdatePositionParameters memory params)
                                            external
                                            payable
                                            returns (int128 delta0, int128 delta1)
                                        {
                                            (uint256 id, address locker) = _requireLocker();
                                            address extension = poolKey.extension();
                                            if (shouldCallBeforeUpdatePosition(extension) && locker != extension) {
                                                IExtension(extension).beforeUpdatePosition(locker, poolKey, params);
                                            }
                                            params.bounds.validateBounds(poolKey.tickSpacing());
                                            if (params.liquidityDelta != 0) {
                                                bytes32 poolId = poolKey.toPoolId();
                                                PoolState memory price = poolState[poolId];
                                                if (SqrtRatio.unwrap(price.sqrtRatio) == 0) revert PoolNotInitialized();
                                                (SqrtRatio sqrtRatioLower, SqrtRatio sqrtRatioUpper) =
                                                    (tickToSqrtRatio(params.bounds.lower), tickToSqrtRatio(params.bounds.upper));
                                                (delta0, delta1) =
                                                    liquidityDeltaToAmountDelta(price.sqrtRatio, params.liquidityDelta, sqrtRatioLower, sqrtRatioUpper);
                                                PositionKey memory positionKey = PositionKey({salt: params.salt, owner: locker, bounds: params.bounds});
                                                if (params.liquidityDelta < 0) {
                                                    if (poolKey.fee() != 0) {
                                                        unchecked {
                                                            // uint128(-delta0) is ok in unchecked block
                                                            uint128 protocolFees0 = computeFee(uint128(-delta0), poolKey.fee());
                                                            uint128 protocolFees1 = computeFee(uint128(-delta1), poolKey.fee());
                                                            if (protocolFees0 > 0) {
                                                                // this will never overflow for a well behaved token since protocol fees are stored as uint256
                                                                protocolFeesCollected[poolKey.token0] += protocolFees0;
                                                                // magnitude of protocolFees0 is at most equal to -delta0, so after addition delta0 will maximally reach 0 and no overflow/underflow check is needed
                                                                // in addition, casting is safe because computed fee is never g.t. the input amount, which is an int128
                                                                delta0 += int128(protocolFees0);
                                                            }
                                                            // same reasoning applies for the unchecked safety here
                                                            if (protocolFees1 > 0) {
                                                                protocolFeesCollected[poolKey.token1] += protocolFees1;
                                                                delta1 += int128(protocolFees1);
                                                            }
                                                        }
                                                    }
                                                }
                                                bytes32 positionId = positionKey.toPositionId();
                                                Position storage position = poolPositions[poolId][positionId];
                                                FeesPerLiquidity memory feesPerLiquidityInside =
                                                    _getPoolFeesPerLiquidityInside(poolId, params.bounds, poolKey.tickSpacing());
                                                (uint128 fees0, uint128 fees1) = position.fees(feesPerLiquidityInside);
                                                uint128 liquidityNext = addLiquidityDelta(position.liquidity, params.liquidityDelta);
                                                if (liquidityNext != 0) {
                                                    position.liquidity = liquidityNext;
                                                    position.feesPerLiquidityInsideLast =
                                                        feesPerLiquidityInside.sub(feesPerLiquidityFromAmounts(fees0, fees1, liquidityNext));
                                                } else {
                                                    if (fees0 != 0 || fees1 != 0) revert MustCollectFeesBeforeWithdrawingAllLiquidity();
                                                    position.liquidity = 0;
                                                    position.feesPerLiquidityInsideLast = FeesPerLiquidity(0, 0);
                                                }
                                                if (!poolKey.isFullRange()) {
                                                    _updateTick(poolId, params.bounds.lower, poolKey.tickSpacing(), params.liquidityDelta, false);
                                                    _updateTick(poolId, params.bounds.upper, poolKey.tickSpacing(), params.liquidityDelta, true);
                                                    if (price.tick >= params.bounds.lower && price.tick < params.bounds.upper) {
                                                        poolState[poolId].liquidity = addLiquidityDelta(poolState[poolId].liquidity, params.liquidityDelta);
                                                    }
                                                } else {
                                                    poolState[poolId].liquidity = addLiquidityDelta(poolState[poolId].liquidity, params.liquidityDelta);
                                                }
                                                _maybeAccountDebtToken0(id, poolKey.token0, delta0);
                                                _accountDebt(id, poolKey.token1, delta1);
                                                emit PositionUpdated(locker, poolId, params, delta0, delta1);
                                            }
                                            if (shouldCallAfterUpdatePosition(extension) && locker != extension) {
                                                IExtension(extension).afterUpdatePosition(locker, poolKey, params, delta0, delta1);
                                            }
                                        }
                                        function collectFees(PoolKey memory poolKey, bytes32 salt, Bounds memory bounds)
                                            external
                                            returns (uint128 amount0, uint128 amount1)
                                        {
                                            (uint256 id, address locker) = _requireLocker();
                                            address extension = poolKey.extension();
                                            if (shouldCallBeforeCollectFees(extension) && locker != extension) {
                                                IExtension(extension).beforeCollectFees(locker, poolKey, salt, bounds);
                                            }
                                            bytes32 poolId = poolKey.toPoolId();
                                            PositionKey memory positionKey = PositionKey({salt: salt, owner: locker, bounds: bounds});
                                            bytes32 positionId = positionKey.toPositionId();
                                            Position memory position = poolPositions[poolId][positionId];
                                            FeesPerLiquidity memory feesPerLiquidityInside =
                                                _getPoolFeesPerLiquidityInside(poolId, bounds, poolKey.tickSpacing());
                                            (amount0, amount1) = position.fees(feesPerLiquidityInside);
                                            poolPositions[poolId][positionId] =
                                                Position({liquidity: position.liquidity, feesPerLiquidityInsideLast: feesPerLiquidityInside});
                                            _accountDebt(id, poolKey.token0, -int256(uint256(amount0)));
                                            _accountDebt(id, poolKey.token1, -int256(uint256(amount1)));
                                            emit PositionFeesCollected(poolId, positionKey, amount0, amount1);
                                            if (shouldCallAfterCollectFees(extension) && locker != extension) {
                                                IExtension(extension).afterCollectFees(locker, poolKey, salt, bounds, amount0, amount1);
                                            }
                                        }
                                        function swap_611415377(
                                            PoolKey memory poolKey,
                                            int128 amount,
                                            bool isToken1,
                                            SqrtRatio sqrtRatioLimit,
                                            uint256 skipAhead
                                        ) external payable returns (int128 delta0, int128 delta1) {
                                            if (!sqrtRatioLimit.isValid()) revert InvalidSqrtRatioLimit();
                                            (uint256 id, address locker) = _requireLocker();
                                            address extension = poolKey.extension();
                                            if (shouldCallBeforeSwap(extension) && locker != extension) {
                                                IExtension(extension).beforeSwap(locker, poolKey, amount, isToken1, sqrtRatioLimit, skipAhead);
                                            }
                                            bytes32 poolId = poolKey.toPoolId();
                                            SqrtRatio sqrtRatio;
                                            int32 tick;
                                            uint128 liquidity;
                                            {
                                                PoolState storage state = poolState[poolId];
                                                (sqrtRatio, tick, liquidity) = (state.sqrtRatio, state.tick, state.liquidity);
                                            }
                                            if (sqrtRatio.isZero()) revert PoolNotInitialized();
                                            // 0 swap amount is no-op
                                            if (amount != 0) {
                                                bool increasing = isPriceIncreasing(amount, isToken1);
                                                if (increasing) {
                                                    if (sqrtRatioLimit < sqrtRatio) revert SqrtRatioLimitWrongDirection();
                                                } else {
                                                    if (sqrtRatioLimit > sqrtRatio) revert SqrtRatioLimitWrongDirection();
                                                }
                                                int128 amountRemaining = amount;
                                                uint128 calculatedAmount = 0;
                                                // the slot where inputTokenFeesPerLiquidity is stored, reused later
                                                bytes32 inputTokenFeesPerLiquiditySlot;
                                                // fees per liquidity only for the input token
                                                uint256 inputTokenFeesPerLiquidity;
                                                // this loads only the input token fees per liquidity
                                                if (poolKey.mustLoadFees()) {
                                                    assembly ("memory-safe") {
                                                        mstore(0, poolId)
                                                        mstore(32, 3)
                                                        inputTokenFeesPerLiquiditySlot := add(keccak256(0, 64), increasing)
                                                        inputTokenFeesPerLiquidity := sload(inputTokenFeesPerLiquiditySlot)
                                                    }
                                                }
                                                while (amountRemaining != 0 && sqrtRatio != sqrtRatioLimit) {
                                                    int32 nextTick;
                                                    bool isInitialized;
                                                    SqrtRatio nextTickSqrtRatio;
                                                    SwapResult memory result;
                                                    if (poolKey.tickSpacing() != FULL_RANGE_ONLY_TICK_SPACING) {
                                                        (nextTick, isInitialized) = increasing
                                                            ? poolInitializedTickBitmaps[poolId].findNextInitializedTick(tick, poolKey.tickSpacing(), skipAhead)
                                                            : poolInitializedTickBitmaps[poolId].findPrevInitializedTick(tick, poolKey.tickSpacing(), skipAhead);
                                                        nextTickSqrtRatio = tickToSqrtRatio(nextTick);
                                                    } else {
                                                        // we never cross ticks in the full range version
                                                        // isInitialized = false;
                                                        (nextTick, nextTickSqrtRatio) = increasing ? (MAX_TICK, MAX_SQRT_RATIO) : (MIN_TICK, MIN_SQRT_RATIO);
                                                    }
                                                    SqrtRatio limitedNextSqrtRatio =
                                                        increasing ? nextTickSqrtRatio.min(sqrtRatioLimit) : nextTickSqrtRatio.max(sqrtRatioLimit);
                                                    result =
                                                        swapResult(sqrtRatio, liquidity, limitedNextSqrtRatio, amountRemaining, isToken1, poolKey.fee());
                                                    // this accounts the fees into the feesPerLiquidity memory struct
                                                    assembly ("memory-safe") {
                                                        // div by 0 returns 0, so it's ok
                                                        let v := div(shl(128, mload(add(result, 96))), liquidity)
                                                        inputTokenFeesPerLiquidity := add(inputTokenFeesPerLiquidity, v)
                                                    }
                                                    amountRemaining -= result.consumedAmount;
                                                    calculatedAmount += result.calculatedAmount;
                                                    if (result.sqrtRatioNext == nextTickSqrtRatio) {
                                                        sqrtRatio = result.sqrtRatioNext;
                                                        tick = increasing ? nextTick : nextTick - 1;
                                                        if (isInitialized) {
                                                            int128 liquidityDelta = poolTicks[poolId][nextTick].liquidityDelta;
                                                            liquidity = increasing
                                                                ? addLiquidityDelta(liquidity, liquidityDelta)
                                                                : subLiquidityDelta(liquidity, liquidityDelta);
                                                            FeesPerLiquidity memory tickFpl = poolTickFeesPerLiquidityOutside[poolId][nextTick];
                                                            FeesPerLiquidity memory totalFpl;
                                                            // load only the slot we didn't load before into totalFpl
                                                            assembly ("memory-safe") {
                                                                mstore(add(totalFpl, mul(32, increasing)), inputTokenFeesPerLiquidity)
                                                                let outputTokenFeesPerLiquidity :=
                                                                    sload(add(sub(inputTokenFeesPerLiquiditySlot, increasing), iszero(increasing)))
                                                                mstore(add(totalFpl, mul(32, iszero(increasing))), outputTokenFeesPerLiquidity)
                                                            }
                                                            poolTickFeesPerLiquidityOutside[poolId][nextTick] = totalFpl.sub(tickFpl);
                                                        }
                                                    } else if (sqrtRatio != result.sqrtRatioNext) {
                                                        sqrtRatio = result.sqrtRatioNext;
                                                        tick = sqrtRatioToTick(sqrtRatio);
                                                    }
                                                }
                                                unchecked {
                                                    int256 calculatedAmountSign = int256(FixedPointMathLib.ternary(amount < 0, 1, type(uint256).max));
                                                    int128 calculatedAmountDelta = SafeCastLib.toInt128(
                                                        FixedPointMathLib.max(type(int128).min, calculatedAmountSign * int256(uint256(calculatedAmount)))
                                                    );
                                                    (delta0, delta1) = isToken1
                                                        ? (calculatedAmountDelta, amount - amountRemaining)
                                                        : (amount - amountRemaining, calculatedAmountDelta);
                                                }
                                                assembly ("memory-safe") {
                                                    mstore(0, poolId)
                                                    mstore(32, 2)
                                                    sstore(keccak256(0, 64), add(add(sqrtRatio, shl(96, and(tick, 0xffffffff))), shl(128, liquidity)))
                                                }
                                                if (poolKey.mustLoadFees()) {
                                                    assembly ("memory-safe") {
                                                        // this stores only the input token fees per liquidity
                                                        sstore(inputTokenFeesPerLiquiditySlot, inputTokenFeesPerLiquidity)
                                                    }
                                                }
                                                _maybeAccountDebtToken0(id, poolKey.token0, delta0);
                                                _accountDebt(id, poolKey.token1, delta1);
                                                assembly ("memory-safe") {
                                                    let o := mload(0x40)
                                                    mstore(o, shl(96, locker))
                                                    mstore(add(o, 20), poolId)
                                                    mstore(add(o, 52), or(shl(128, delta0), and(delta1, 0xffffffffffffffffffffffffffffffff)))
                                                    mstore(add(o, 84), shl(128, liquidity))
                                                    mstore(add(o, 100), shl(160, sqrtRatio))
                                                    mstore(add(o, 112), shl(224, tick))
                                                    log0(o, 116)
                                                }
                                            }
                                            if (shouldCallAfterSwap(extension) && locker != extension) {
                                                IExtension(extension).afterSwap(
                                                    locker, poolKey, amount, isToken1, sqrtRatioLimit, skipAhead, delta0, delta1
                                                );
                                            }
                                        }
                                    }
                                    // SPDX-License-Identifier: UNLICENSED
                                    pragma solidity =0.8.28;
                                    struct CallPoints {
                                        bool beforeInitializePool;
                                        bool afterInitializePool;
                                        bool beforeSwap;
                                        bool afterSwap;
                                        bool beforeUpdatePosition;
                                        bool afterUpdatePosition;
                                        bool beforeCollectFees;
                                        bool afterCollectFees;
                                    }
                                    using {eq, isValid, toUint8} for CallPoints global;
                                    function eq(CallPoints memory a, CallPoints memory b) pure returns (bool) {
                                        return (
                                            a.beforeInitializePool == b.beforeInitializePool && a.afterInitializePool == b.afterInitializePool
                                                && a.beforeSwap == b.beforeSwap && a.afterSwap == b.afterSwap
                                                && a.beforeUpdatePosition == b.beforeUpdatePosition && a.afterUpdatePosition == b.afterUpdatePosition
                                                && a.beforeCollectFees == b.beforeCollectFees && a.afterCollectFees == b.afterCollectFees
                                        );
                                    }
                                    function isValid(CallPoints memory a) pure returns (bool) {
                                        return (
                                            a.beforeInitializePool || a.afterInitializePool || a.beforeSwap || a.afterSwap || a.beforeUpdatePosition
                                                || a.afterUpdatePosition || a.beforeCollectFees || a.afterCollectFees
                                        );
                                    }
                                    function toUint8(CallPoints memory callPoints) pure returns (uint8 b) {
                                        assembly ("memory-safe") {
                                            b :=
                                                add(
                                                    add(
                                                        add(
                                                            add(
                                                                add(
                                                                    add(
                                                                        add(mload(callPoints), mul(128, mload(add(callPoints, 32)))),
                                                                        mul(64, mload(add(callPoints, 64)))
                                                                    ),
                                                                    mul(32, mload(add(callPoints, 96)))
                                                                ),
                                                                mul(16, mload(add(callPoints, 128)))
                                                            ),
                                                            mul(8, mload(add(callPoints, 160)))
                                                        ),
                                                        mul(4, mload(add(callPoints, 192)))
                                                    ),
                                                    mul(2, mload(add(callPoints, 224)))
                                                )
                                        }
                                    }
                                    function addressToCallPoints(address a) pure returns (CallPoints memory result) {
                                        result = byteToCallPoints(uint8(uint160(a) >> 152));
                                    }
                                    function byteToCallPoints(uint8 b) pure returns (CallPoints memory result) {
                                        // note the order of bytes does not match the struct order of elements because we are matching the cairo implementation
                                        // which for legacy reasons has the fields in this order
                                        result = CallPoints({
                                            beforeInitializePool: (b & 1) != 0,
                                            afterInitializePool: (b & 128) != 0,
                                            beforeSwap: (b & 64) != 0,
                                            afterSwap: (b & 32) != 0,
                                            beforeUpdatePosition: (b & 16) != 0,
                                            afterUpdatePosition: (b & 8) != 0,
                                            beforeCollectFees: (b & 4) != 0,
                                            afterCollectFees: (b & 2) != 0
                                        });
                                    }
                                    function shouldCallBeforeInitializePool(address a) pure returns (bool yes) {
                                        assembly ("memory-safe") {
                                            yes := and(shr(152, a), 1)
                                        }
                                    }
                                    function shouldCallAfterInitializePool(address a) pure returns (bool yes) {
                                        assembly ("memory-safe") {
                                            yes := and(shr(159, a), 1)
                                        }
                                    }
                                    function shouldCallBeforeSwap(address a) pure returns (bool yes) {
                                        assembly ("memory-safe") {
                                            yes := and(shr(158, a), 1)
                                        }
                                    }
                                    function shouldCallAfterSwap(address a) pure returns (bool yes) {
                                        assembly ("memory-safe") {
                                            yes := and(shr(157, a), 1)
                                        }
                                    }
                                    function shouldCallBeforeUpdatePosition(address a) pure returns (bool yes) {
                                        assembly ("memory-safe") {
                                            yes := and(shr(156, a), 1)
                                        }
                                    }
                                    function shouldCallAfterUpdatePosition(address a) pure returns (bool yes) {
                                        assembly ("memory-safe") {
                                            yes := and(shr(155, a), 1)
                                        }
                                    }
                                    function shouldCallBeforeCollectFees(address a) pure returns (bool yes) {
                                        assembly ("memory-safe") {
                                            yes := and(shr(154, a), 1)
                                        }
                                    }
                                    function shouldCallAfterCollectFees(address a) pure returns (bool yes) {
                                        assembly ("memory-safe") {
                                            yes := and(shr(153, a), 1)
                                        }
                                    }
                                    // SPDX-License-Identifier: UNLICENSED
                                    pragma solidity =0.8.28;
                                    import {MAX_TICK_SPACING, FULL_RANGE_ONLY_TICK_SPACING} from "../math/constants.sol";
                                    using {toPoolId, validatePoolKey, isFullRange, mustLoadFees, tickSpacing, fee, extension} for PoolKey global;
                                    // address (20 bytes) | fee (8 bytes) | tickSpacing (4 bytes)
                                    type Config is bytes32;
                                    function tickSpacing(PoolKey memory pk) pure returns (uint32 r) {
                                        assembly ("memory-safe") {
                                            r := and(mload(add(64, pk)), 0xffffffff)
                                        }
                                    }
                                    function fee(PoolKey memory pk) pure returns (uint64 r) {
                                        assembly ("memory-safe") {
                                            r := and(mload(add(60, pk)), 0xffffffffffffffff)
                                        }
                                    }
                                    function extension(PoolKey memory pk) pure returns (address r) {
                                        assembly ("memory-safe") {
                                            r := and(mload(add(52, pk)), 0xffffffffffffffffffffffffffffffffffffffff)
                                        }
                                    }
                                    function mustLoadFees(PoolKey memory pk) pure returns (bool r) {
                                        assembly ("memory-safe") {
                                            // only if either of tick spacing and fee are nonzero
                                            // if _both_ are zero, then we know we do not need to load fees for swaps
                                            r := iszero(iszero(and(mload(add(64, pk)), 0xffffffffffffffffffffffff)))
                                        }
                                    }
                                    function isFullRange(PoolKey memory pk) pure returns (bool r) {
                                        r = pk.tickSpacing() == FULL_RANGE_ONLY_TICK_SPACING;
                                    }
                                    function toConfig(uint64 _fee, uint32 _tickSpacing, address _extension) pure returns (Config c) {
                                        assembly ("memory-safe") {
                                            c := add(add(shl(96, _extension), shl(32, _fee)), _tickSpacing)
                                        }
                                    }
                                    // Each pool has its own state associated with this key
                                    struct PoolKey {
                                        address token0;
                                        address token1;
                                        Config config;
                                    }
                                    error TokensMustBeSorted();
                                    error InvalidTickSpacing();
                                    function validatePoolKey(PoolKey memory key) pure {
                                        if (key.token0 >= key.token1) revert TokensMustBeSorted();
                                        if (key.tickSpacing() > MAX_TICK_SPACING) {
                                            revert InvalidTickSpacing();
                                        }
                                    }
                                    function toPoolId(PoolKey memory key) pure returns (bytes32 result) {
                                        assembly ("memory-safe") {
                                            // it's already copied into memory
                                            result := keccak256(key, 96)
                                        }
                                    }
                                    // SPDX-License-Identifier: UNLICENSED
                                    pragma solidity =0.8.28;
                                    import {MIN_TICK, MAX_TICK, FULL_RANGE_ONLY_TICK_SPACING} from "../math/constants.sol";
                                    using {toPositionId} for PositionKey global;
                                    using {validateBounds} for Bounds global;
                                    // Bounds are lower and upper prices for which a position is active
                                    struct Bounds {
                                        int32 lower;
                                        int32 upper;
                                    }
                                    error BoundsOrder();
                                    error MinMaxBounds();
                                    error BoundsTickSpacing();
                                    error FullRangeOnlyPool();
                                    function validateBounds(Bounds memory bounds, uint32 tickSpacing) pure {
                                        if (tickSpacing == FULL_RANGE_ONLY_TICK_SPACING) {
                                            if (bounds.lower != MIN_TICK || bounds.upper != MAX_TICK) revert FullRangeOnlyPool();
                                        } else {
                                            if (bounds.lower >= bounds.upper) revert BoundsOrder();
                                            if (bounds.lower < MIN_TICK || bounds.upper > MAX_TICK) revert MinMaxBounds();
                                            int32 spacing = int32(tickSpacing);
                                            if (bounds.lower % spacing != 0 || bounds.upper % spacing != 0) revert BoundsTickSpacing();
                                        }
                                    }
                                    // A position is keyed by the pool and this position key
                                    struct PositionKey {
                                        bytes32 salt;
                                        address owner;
                                        Bounds bounds;
                                    }
                                    function toPositionId(PositionKey memory key) pure returns (bytes32 result) {
                                        assembly ("memory-safe") {
                                            // salt and owner
                                            mstore(0, keccak256(key, 64))
                                            // bounds
                                            mstore(32, keccak256(mload(add(key, 64)), 64))
                                            result := keccak256(0, 64)
                                        }
                                    }
                                    // SPDX-License-Identifier: UNLICENSED
                                    pragma solidity =0.8.28;
                                    // The total fees per liquidity for each token.
                                    // Since these are always read together we put them in a struct, even though they cannot be packed.
                                    struct FeesPerLiquidity {
                                        uint256 value0;
                                        uint256 value1;
                                    }
                                    using {sub} for FeesPerLiquidity global;
                                    function sub(FeesPerLiquidity memory a, FeesPerLiquidity memory b) pure returns (FeesPerLiquidity memory result) {
                                        assembly ("memory-safe") {
                                            mstore(result, sub(mload(a), mload(b)))
                                            mstore(add(result, 32), sub(mload(add(a, 32)), mload(add(b, 32))))
                                        }
                                    }
                                    function feesPerLiquidityFromAmounts(uint128 amount0, uint128 amount1, uint128 liquidity)
                                        pure
                                        returns (FeesPerLiquidity memory result)
                                    {
                                        assembly ("memory-safe") {
                                            mstore(result, div(shl(128, amount0), liquidity))
                                            mstore(add(result, 32), div(shl(128, amount1), liquidity))
                                        }
                                    }
                                    // SPDX-License-Identifier: UNLICENSED
                                    pragma solidity =0.8.28;
                                    import {FixedPointMathLib} from "solady/utils/FixedPointMathLib.sol";
                                    import {computeFee, amountBeforeFee} from "./fee.sol";
                                    import {nextSqrtRatioFromAmount0, nextSqrtRatioFromAmount1} from "./sqrtRatio.sol";
                                    import {amount0Delta, amount1Delta} from "./delta.sol";
                                    import {SafeCastLib} from "solady/utils/SafeCastLib.sol";
                                    import {isPriceIncreasing} from "./isPriceIncreasing.sol";
                                    import {SqrtRatio} from "../types/sqrtRatio.sol";
                                    struct SwapResult {
                                        int128 consumedAmount;
                                        uint128 calculatedAmount;
                                        SqrtRatio sqrtRatioNext;
                                        uint128 feeAmount;
                                    }
                                    function noOpSwapResult(SqrtRatio sqrtRatioNext) pure returns (SwapResult memory) {
                                        return SwapResult({consumedAmount: 0, calculatedAmount: 0, feeAmount: 0, sqrtRatioNext: sqrtRatioNext});
                                    }
                                    error SqrtRatioLimitWrongDirection();
                                    function swapResult(
                                        SqrtRatio sqrtRatio,
                                        uint128 liquidity,
                                        SqrtRatio sqrtRatioLimit,
                                        int128 amount,
                                        bool isToken1,
                                        uint64 fee
                                    ) pure returns (SwapResult memory) {
                                        if (amount == 0 || sqrtRatio == sqrtRatioLimit) {
                                            return noOpSwapResult(sqrtRatio);
                                        }
                                        bool increasing = isPriceIncreasing(amount, isToken1);
                                        // We know sqrtRatio != sqrtRatioLimit because we early return above if it is
                                        if ((sqrtRatioLimit > sqrtRatio) != increasing) revert SqrtRatioLimitWrongDirection();
                                        if (liquidity == 0) {
                                            // if the pool is empty, the swap will always move all the way to the limit price
                                            return noOpSwapResult(sqrtRatioLimit);
                                        }
                                        bool isExactOut = amount < 0;
                                        // this amount is what moves the price
                                        int128 priceImpactAmount;
                                        if (isExactOut) {
                                            priceImpactAmount = amount;
                                        } else {
                                            unchecked {
                                                // cast is safe because amount is g.t.e. 0
                                                // then cast back to int128 is also safe because computeFee never returns a value g.t. the input amount
                                                priceImpactAmount = amount - int128(computeFee(uint128(amount), fee));
                                            }
                                        }
                                        SqrtRatio sqrtRatioNextFromAmount;
                                        if (isToken1) {
                                            sqrtRatioNextFromAmount = nextSqrtRatioFromAmount1(sqrtRatio, liquidity, priceImpactAmount);
                                        } else {
                                            sqrtRatioNextFromAmount = nextSqrtRatioFromAmount0(sqrtRatio, liquidity, priceImpactAmount);
                                        }
                                        int128 consumedAmount;
                                        uint128 calculatedAmount;
                                        uint128 feeAmount;
                                        // the amount requires a swapping past the sqrt ratio limit,
                                        // so we need to compute the result of swapping only to the limit
                                        if (
                                            (increasing && sqrtRatioNextFromAmount > sqrtRatioLimit)
                                                || (!increasing && sqrtRatioNextFromAmount < sqrtRatioLimit)
                                        ) {
                                            uint128 specifiedAmountDelta;
                                            uint128 calculatedAmountDelta;
                                            if (isToken1) {
                                                specifiedAmountDelta = amount1Delta(sqrtRatioLimit, sqrtRatio, liquidity, !isExactOut);
                                                calculatedAmountDelta = amount0Delta(sqrtRatioLimit, sqrtRatio, liquidity, isExactOut);
                                            } else {
                                                specifiedAmountDelta = amount0Delta(sqrtRatioLimit, sqrtRatio, liquidity, !isExactOut);
                                                calculatedAmountDelta = amount1Delta(sqrtRatioLimit, sqrtRatio, liquidity, isExactOut);
                                            }
                                            if (isExactOut) {
                                                uint128 beforeFee = amountBeforeFee(calculatedAmountDelta, fee);
                                                consumedAmount = -SafeCastLib.toInt128(specifiedAmountDelta);
                                                calculatedAmount = beforeFee;
                                                feeAmount = beforeFee - calculatedAmountDelta;
                                            } else {
                                                uint128 beforeFee = amountBeforeFee(specifiedAmountDelta, fee);
                                                consumedAmount = SafeCastLib.toInt128(beforeFee);
                                                calculatedAmount = calculatedAmountDelta;
                                                feeAmount = beforeFee - specifiedAmountDelta;
                                            }
                                            return SwapResult({
                                                consumedAmount: consumedAmount,
                                                calculatedAmount: calculatedAmount,
                                                sqrtRatioNext: sqrtRatioLimit,
                                                feeAmount: feeAmount
                                            });
                                        }
                                        if (sqrtRatioNextFromAmount == sqrtRatio) {
                                            assert(!isExactOut);
                                            return SwapResult({
                                                consumedAmount: amount,
                                                calculatedAmount: 0,
                                                sqrtRatioNext: sqrtRatio,
                                                feeAmount: uint128(amount)
                                            });
                                        }
                                        // rounds down for calculated == output, up for calculated == input
                                        uint128 calculatedAmountWithoutFee;
                                        if (isToken1) {
                                            calculatedAmountWithoutFee = amount0Delta(sqrtRatioNextFromAmount, sqrtRatio, liquidity, isExactOut);
                                        } else {
                                            calculatedAmountWithoutFee = amount1Delta(sqrtRatioNextFromAmount, sqrtRatio, liquidity, isExactOut);
                                        }
                                        // add on the fee to calculated amount for exact output
                                        if (isExactOut) {
                                            uint128 includingFee = amountBeforeFee(calculatedAmountWithoutFee, fee);
                                            calculatedAmount = includingFee;
                                            feeAmount = includingFee - calculatedAmountWithoutFee;
                                        } else {
                                            calculatedAmount = calculatedAmountWithoutFee;
                                            feeAmount = uint128(amount - priceImpactAmount);
                                        }
                                        return SwapResult({
                                            consumedAmount: amount,
                                            calculatedAmount: calculatedAmount,
                                            sqrtRatioNext: sqrtRatioNextFromAmount,
                                            feeAmount: feeAmount
                                        });
                                    }
                                    // SPDX-License-Identifier: UNLICENSED
                                    pragma solidity =0.8.28;
                                    import {FeesPerLiquidity} from "./feesPerLiquidity.sol";
                                    import {FixedPointMathLib} from "solady/utils/FixedPointMathLib.sol";
                                    struct Position {
                                        uint128 liquidity;
                                        FeesPerLiquidity feesPerLiquidityInsideLast;
                                    }
                                    using {fees} for Position global;
                                    /// @dev Returns the fee amounts of token0 and token1 owed to a position based on the given fees per liquidity inside snapshot
                                    ///      Note if the computed fees overflows the uint128 type, it will return only the lower 128 bits. It is assumed that accumulated
                                    ///      fees will never exceed type(uint128).max.
                                    function fees(Position memory position, FeesPerLiquidity memory feesPerLiquidityInside)
                                        pure
                                        returns (uint128, uint128)
                                    {
                                        FeesPerLiquidity memory difference = feesPerLiquidityInside.sub(position.feesPerLiquidityInsideLast);
                                        return (
                                            uint128(FixedPointMathLib.fullMulDivN(difference.value0, position.liquidity, 128)),
                                            uint128(FixedPointMathLib.fullMulDivN(difference.value1, position.liquidity, 128))
                                        );
                                    }
                                    // SPDX-License-Identifier: MIT
                                    pragma solidity ^0.8.4;
                                    /// @notice Simple single owner authorization mixin.
                                    /// @author Solady (https://github.com/vectorized/solady/blob/main/src/auth/Ownable.sol)
                                    ///
                                    /// @dev Note:
                                    /// This implementation does NOT auto-initialize the owner to `msg.sender`.
                                    /// You MUST call the `_initializeOwner` in the constructor / initializer.
                                    ///
                                    /// While the ownable portion follows
                                    /// [EIP-173](https://eips.ethereum.org/EIPS/eip-173) for compatibility,
                                    /// the nomenclature for the 2-step ownership handover may be unique to this codebase.
                                    abstract contract Ownable {
                                        /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                        /*                       CUSTOM ERRORS                        */
                                        /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                        /// @dev The caller is not authorized to call the function.
                                        error Unauthorized();
                                        /// @dev The `newOwner` cannot be the zero address.
                                        error NewOwnerIsZeroAddress();
                                        /// @dev The `pendingOwner` does not have a valid handover request.
                                        error NoHandoverRequest();
                                        /// @dev Cannot double-initialize.
                                        error AlreadyInitialized();
                                        /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                        /*                           EVENTS                           */
                                        /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                        /// @dev The ownership is transferred from `oldOwner` to `newOwner`.
                                        /// This event is intentionally kept the same as OpenZeppelin's Ownable to be
                                        /// compatible with indexers and [EIP-173](https://eips.ethereum.org/EIPS/eip-173),
                                        /// despite it not being as lightweight as a single argument event.
                                        event OwnershipTransferred(address indexed oldOwner, address indexed newOwner);
                                        /// @dev An ownership handover to `pendingOwner` has been requested.
                                        event OwnershipHandoverRequested(address indexed pendingOwner);
                                        /// @dev The ownership handover to `pendingOwner` has been canceled.
                                        event OwnershipHandoverCanceled(address indexed pendingOwner);
                                        /// @dev `keccak256(bytes("OwnershipTransferred(address,address)"))`.
                                        uint256 private constant _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE =
                                            0x8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0;
                                        /// @dev `keccak256(bytes("OwnershipHandoverRequested(address)"))`.
                                        uint256 private constant _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE =
                                            0xdbf36a107da19e49527a7176a1babf963b4b0ff8cde35ee35d6cd8f1f9ac7e1d;
                                        /// @dev `keccak256(bytes("OwnershipHandoverCanceled(address)"))`.
                                        uint256 private constant _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE =
                                            0xfa7b8eab7da67f412cc9575ed43464468f9bfbae89d1675917346ca6d8fe3c92;
                                        /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                        /*                          STORAGE                           */
                                        /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                        /// @dev The owner slot is given by:
                                        /// `bytes32(~uint256(uint32(bytes4(keccak256("_OWNER_SLOT_NOT")))))`.
                                        /// It is intentionally chosen to be a high value
                                        /// to avoid collision with lower slots.
                                        /// The choice of manual storage layout is to enable compatibility
                                        /// with both regular and upgradeable contracts.
                                        bytes32 internal constant _OWNER_SLOT =
                                            0xffffffffffffffffffffffffffffffffffffffffffffffffffffffff74873927;
                                        /// The ownership handover slot of `newOwner` is given by:
                                        /// ```
                                        ///     mstore(0x00, or(shl(96, user), _HANDOVER_SLOT_SEED))
                                        ///     let handoverSlot := keccak256(0x00, 0x20)
                                        /// ```
                                        /// It stores the expiry timestamp of the two-step ownership handover.
                                        uint256 private constant _HANDOVER_SLOT_SEED = 0x389a75e1;
                                        /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                        /*                     INTERNAL FUNCTIONS                     */
                                        /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                        /// @dev Override to return true to make `_initializeOwner` prevent double-initialization.
                                        function _guardInitializeOwner() internal pure virtual returns (bool guard) {}
                                        /// @dev Initializes the owner directly without authorization guard.
                                        /// This function must be called upon initialization,
                                        /// regardless of whether the contract is upgradeable or not.
                                        /// This is to enable generalization to both regular and upgradeable contracts,
                                        /// and to save gas in case the initial owner is not the caller.
                                        /// For performance reasons, this function will not check if there
                                        /// is an existing owner.
                                        function _initializeOwner(address newOwner) internal virtual {
                                            if (_guardInitializeOwner()) {
                                                /// @solidity memory-safe-assembly
                                                assembly {
                                                    let ownerSlot := _OWNER_SLOT
                                                    if sload(ownerSlot) {
                                                        mstore(0x00, 0x0dc149f0) // `AlreadyInitialized()`.
                                                        revert(0x1c, 0x04)
                                                    }
                                                    // Clean the upper 96 bits.
                                                    newOwner := shr(96, shl(96, newOwner))
                                                    // Store the new value.
                                                    sstore(ownerSlot, or(newOwner, shl(255, iszero(newOwner))))
                                                    // Emit the {OwnershipTransferred} event.
                                                    log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner)
                                                }
                                            } else {
                                                /// @solidity memory-safe-assembly
                                                assembly {
                                                    // Clean the upper 96 bits.
                                                    newOwner := shr(96, shl(96, newOwner))
                                                    // Store the new value.
                                                    sstore(_OWNER_SLOT, newOwner)
                                                    // Emit the {OwnershipTransferred} event.
                                                    log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner)
                                                }
                                            }
                                        }
                                        /// @dev Sets the owner directly without authorization guard.
                                        function _setOwner(address newOwner) internal virtual {
                                            if (_guardInitializeOwner()) {
                                                /// @solidity memory-safe-assembly
                                                assembly {
                                                    let ownerSlot := _OWNER_SLOT
                                                    // Clean the upper 96 bits.
                                                    newOwner := shr(96, shl(96, newOwner))
                                                    // Emit the {OwnershipTransferred} event.
                                                    log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner)
                                                    // Store the new value.
                                                    sstore(ownerSlot, or(newOwner, shl(255, iszero(newOwner))))
                                                }
                                            } else {
                                                /// @solidity memory-safe-assembly
                                                assembly {
                                                    let ownerSlot := _OWNER_SLOT
                                                    // Clean the upper 96 bits.
                                                    newOwner := shr(96, shl(96, newOwner))
                                                    // Emit the {OwnershipTransferred} event.
                                                    log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner)
                                                    // Store the new value.
                                                    sstore(ownerSlot, newOwner)
                                                }
                                            }
                                        }
                                        /// @dev Throws if the sender is not the owner.
                                        function _checkOwner() internal view virtual {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                // If the caller is not the stored owner, revert.
                                                if iszero(eq(caller(), sload(_OWNER_SLOT))) {
                                                    mstore(0x00, 0x82b42900) // `Unauthorized()`.
                                                    revert(0x1c, 0x04)
                                                }
                                            }
                                        }
                                        /// @dev Returns how long a two-step ownership handover is valid for in seconds.
                                        /// Override to return a different value if needed.
                                        /// Made internal to conserve bytecode. Wrap it in a public function if needed.
                                        function _ownershipHandoverValidFor() internal view virtual returns (uint64) {
                                            return 48 * 3600;
                                        }
                                        /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                        /*                  PUBLIC UPDATE FUNCTIONS                   */
                                        /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                        /// @dev Allows the owner to transfer the ownership to `newOwner`.
                                        function transferOwnership(address newOwner) public payable virtual onlyOwner {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                if iszero(shl(96, newOwner)) {
                                                    mstore(0x00, 0x7448fbae) // `NewOwnerIsZeroAddress()`.
                                                    revert(0x1c, 0x04)
                                                }
                                            }
                                            _setOwner(newOwner);
                                        }
                                        /// @dev Allows the owner to renounce their ownership.
                                        function renounceOwnership() public payable virtual onlyOwner {
                                            _setOwner(address(0));
                                        }
                                        /// @dev Request a two-step ownership handover to the caller.
                                        /// The request will automatically expire in 48 hours (172800 seconds) by default.
                                        function requestOwnershipHandover() public payable virtual {
                                            unchecked {
                                                uint256 expires = block.timestamp + _ownershipHandoverValidFor();
                                                /// @solidity memory-safe-assembly
                                                assembly {
                                                    // Compute and set the handover slot to `expires`.
                                                    mstore(0x0c, _HANDOVER_SLOT_SEED)
                                                    mstore(0x00, caller())
                                                    sstore(keccak256(0x0c, 0x20), expires)
                                                    // Emit the {OwnershipHandoverRequested} event.
                                                    log2(0, 0, _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE, caller())
                                                }
                                            }
                                        }
                                        /// @dev Cancels the two-step ownership handover to the caller, if any.
                                        function cancelOwnershipHandover() public payable virtual {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                // Compute and set the handover slot to 0.
                                                mstore(0x0c, _HANDOVER_SLOT_SEED)
                                                mstore(0x00, caller())
                                                sstore(keccak256(0x0c, 0x20), 0)
                                                // Emit the {OwnershipHandoverCanceled} event.
                                                log2(0, 0, _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE, caller())
                                            }
                                        }
                                        /// @dev Allows the owner to complete the two-step ownership handover to `pendingOwner`.
                                        /// Reverts if there is no existing ownership handover requested by `pendingOwner`.
                                        function completeOwnershipHandover(address pendingOwner) public payable virtual onlyOwner {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                // Compute and set the handover slot to 0.
                                                mstore(0x0c, _HANDOVER_SLOT_SEED)
                                                mstore(0x00, pendingOwner)
                                                let handoverSlot := keccak256(0x0c, 0x20)
                                                // If the handover does not exist, or has expired.
                                                if gt(timestamp(), sload(handoverSlot)) {
                                                    mstore(0x00, 0x6f5e8818) // `NoHandoverRequest()`.
                                                    revert(0x1c, 0x04)
                                                }
                                                // Set the handover slot to 0.
                                                sstore(handoverSlot, 0)
                                            }
                                            _setOwner(pendingOwner);
                                        }
                                        /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                        /*                   PUBLIC READ FUNCTIONS                    */
                                        /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                        /// @dev Returns the owner of the contract.
                                        function owner() public view virtual returns (address result) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                result := sload(_OWNER_SLOT)
                                            }
                                        }
                                        /// @dev Returns the expiry timestamp for the two-step ownership handover to `pendingOwner`.
                                        function ownershipHandoverExpiresAt(address pendingOwner)
                                            public
                                            view
                                            virtual
                                            returns (uint256 result)
                                        {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                // Compute the handover slot.
                                                mstore(0x0c, _HANDOVER_SLOT_SEED)
                                                mstore(0x00, pendingOwner)
                                                // Load the handover slot.
                                                result := sload(keccak256(0x0c, 0x20))
                                            }
                                        }
                                        /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                        /*                         MODIFIERS                          */
                                        /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                        /// @dev Marks a function as only callable by the owner.
                                        modifier onlyOwner() virtual {
                                            _checkOwner();
                                            _;
                                        }
                                    }
                                    // SPDX-License-Identifier: UNLICENSED
                                    pragma solidity =0.8.28;
                                    import {MAX_TICK_SPACING, MAX_TICK_MAGNITUDE} from "./constants.sol";
                                    import {FixedPointMathLib} from "solady/utils/FixedPointMathLib.sol";
                                    import {SqrtRatio, toSqrtRatio} from "../types/sqrtRatio.sol";
                                    error InvalidTick(int32 tick);
                                    // Returns the sqrtRatio corresponding for the tick
                                    function tickToSqrtRatio(int32 tick) pure returns (SqrtRatio r) {
                                        unchecked {
                                            uint256 t = FixedPointMathLib.abs(tick);
                                            if (t > MAX_TICK_MAGNITUDE) revert InvalidTick(tick);
                                            uint256 ratio;
                                            assembly ("memory-safe") {
                                                ratio := sub(0x100000000000000000000000000000000, mul(and(t, 0x1), 0x8637b66cd638344daef276cd7c5))
                                            }
                                            if ((t & 0x2) != 0) {
                                                ratio = (ratio * 0xffffef390978c398134b4ff3764fe410) >> 128;
                                            }
                                            if ((t & 0x4) != 0) {
                                                ratio = (ratio * 0xffffde72140b00a354bd3dc828e976c9) >> 128;
                                            }
                                            if ((t & 0x8) != 0) {
                                                ratio = (ratio * 0xffffbce42c7be6c998ad6318193c0b18) >> 128;
                                            }
                                            if ((t & 0x10) != 0) {
                                                ratio = (ratio * 0xffff79c86a8f6150a32d9778eceef97c) >> 128;
                                            }
                                            if ((t & 0x20) != 0) {
                                                ratio = (ratio * 0xfffef3911b7cff24ba1b3dbb5f8f5974) >> 128;
                                            }
                                            if ((t & 0x40) != 0) {
                                                ratio = (ratio * 0xfffde72350725cc4ea8feece3b5f13c8) >> 128;
                                            }
                                            if ((t & 0x80) != 0) {
                                                ratio = (ratio * 0xfffbce4b06c196e9247ac87695d53c60) >> 128;
                                            }
                                            if ((t & 0x100) != 0) {
                                                ratio = (ratio * 0xfff79ca7a4d1bf1ee8556cea23cdbaa5) >> 128;
                                            }
                                            if ((t & 0x200) != 0) {
                                                ratio = (ratio * 0xffef3995a5b6a6267530f207142a5764) >> 128;
                                            }
                                            if ((t & 0x400) != 0) {
                                                ratio = (ratio * 0xffde7444b28145508125d10077ba83b8) >> 128;
                                            }
                                            if ((t & 0x800) != 0) {
                                                ratio = (ratio * 0xffbceceeb791747f10df216f2e53ec57) >> 128;
                                            }
                                            if ((t & 0x1000) != 0) {
                                                ratio = (ratio * 0xff79eb706b9a64c6431d76e63531e929) >> 128;
                                            }
                                            if ((t & 0x2000) != 0) {
                                                ratio = (ratio * 0xfef41d1a5f2ae3a20676bec6f7f9459a) >> 128;
                                            }
                                            if ((t & 0x4000) != 0) {
                                                ratio = (ratio * 0xfde95287d26d81bea159c37073122c73) >> 128;
                                            }
                                            if ((t & 0x8000) != 0) {
                                                ratio = (ratio * 0xfbd701c7cbc4c8a6bb81efd232d1e4e7) >> 128;
                                            }
                                            if ((t & 0x10000) != 0) {
                                                ratio = (ratio * 0xf7bf5211c72f5185f372aeb1d48f937e) >> 128;
                                            }
                                            if ((t & 0x20000) != 0) {
                                                ratio = (ratio * 0xefc2bf59df33ecc28125cf78ec4f167f) >> 128;
                                            }
                                            if ((t & 0x40000) != 0) {
                                                ratio = (ratio * 0xe08d35706200796273f0b3a981d90cfd) >> 128;
                                            }
                                            if ((t & 0x80000) != 0) {
                                                ratio = (ratio * 0xc4f76b68947482dc198a48a54348c4ed) >> 128;
                                            }
                                            if ((t & 0x100000) != 0) {
                                                ratio = (ratio * 0x978bcb9894317807e5fa4498eee7c0fa) >> 128;
                                            }
                                            if ((t & 0x200000) != 0) {
                                                ratio = (ratio * 0x59b63684b86e9f486ec54727371ba6ca) >> 128;
                                            }
                                            if ((t & 0x400000) != 0) {
                                                ratio = (ratio * 0x1f703399d88f6aa83a28b22d4a1f56e3) >> 128;
                                            }
                                            if ((t & 0x800000) != 0) {
                                                ratio = (ratio * 0x3dc5dac7376e20fc8679758d1bcdcfc) >> 128;
                                            }
                                            if ((t & 0x1000000) != 0) {
                                                ratio = (ratio * 0xee7e32d61fdb0a5e622b820f681d0) >> 128;
                                            }
                                            if ((t & 0x2000000) != 0) {
                                                ratio = (ratio * 0xde2ee4bc381afa7089aa84bb66) >> 128;
                                            }
                                            if ((t & 0x4000000) != 0) {
                                                ratio = (ratio * 0xc0d55d4d7152c25fb139) >> 128;
                                            }
                                            if (tick > 0) {
                                                ratio = type(uint256).max / ratio;
                                            }
                                            r = toSqrtRatio(ratio, false);
                                        }
                                    }
                                    function sqrtRatioToTick(SqrtRatio sqrtRatio) pure returns (int32) {
                                        unchecked {
                                            uint256 sqrtRatioFixed = sqrtRatio.toFixed();
                                            bool negative = (sqrtRatioFixed >> 128) == 0;
                                            uint256 x = negative ? (type(uint256).max / sqrtRatioFixed) : sqrtRatioFixed;
                                            // we know x >> 128 is never zero because we check bounds above and then reciprocate sqrtRatio if the high 128 bits are zero
                                            // so we don't need to handle the exceptional case of log2(0)
                                            uint256 msbHigh = FixedPointMathLib.log2(x >> 128);
                                            x = x >> (msbHigh + 1);
                                            uint256 log2_unsigned = msbHigh * 0x10000000000000000;
                                            assembly ("memory-safe") {
                                                // 63
                                                x := shr(127, mul(x, x))
                                                let is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                                log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x8000000000000000))
                                                x := shr(is_high_nonzero, x)
                                                // 62
                                                x := shr(127, mul(x, x))
                                                is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                                log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x4000000000000000))
                                                x := shr(is_high_nonzero, x)
                                                // 61
                                                x := shr(127, mul(x, x))
                                                is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                                log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x2000000000000000))
                                                x := shr(is_high_nonzero, x)
                                                // 60
                                                x := shr(127, mul(x, x))
                                                is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                                log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x1000000000000000))
                                                x := shr(is_high_nonzero, x)
                                                // 59
                                                x := shr(127, mul(x, x))
                                                is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                                log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x800000000000000))
                                                x := shr(is_high_nonzero, x)
                                                // 58
                                                x := shr(127, mul(x, x))
                                                is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                                log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x400000000000000))
                                                x := shr(is_high_nonzero, x)
                                                // 57
                                                x := shr(127, mul(x, x))
                                                is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                                log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x200000000000000))
                                                x := shr(is_high_nonzero, x)
                                                // 56
                                                x := shr(127, mul(x, x))
                                                is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                                log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x100000000000000))
                                                x := shr(is_high_nonzero, x)
                                                // 55
                                                x := shr(127, mul(x, x))
                                                is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                                log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x80000000000000))
                                                x := shr(is_high_nonzero, x)
                                                // 54
                                                x := shr(127, mul(x, x))
                                                is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                                log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x40000000000000))
                                                x := shr(is_high_nonzero, x)
                                                // 53
                                                x := shr(127, mul(x, x))
                                                is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                                log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x20000000000000))
                                                x := shr(is_high_nonzero, x)
                                                // 52
                                                x := shr(127, mul(x, x))
                                                is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                                log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x10000000000000))
                                                x := shr(is_high_nonzero, x)
                                                // 51
                                                x := shr(127, mul(x, x))
                                                is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                                log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x8000000000000))
                                                x := shr(is_high_nonzero, x)
                                                // 50
                                                x := shr(127, mul(x, x))
                                                is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                                log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x4000000000000))
                                                x := shr(is_high_nonzero, x)
                                                // 49
                                                x := shr(127, mul(x, x))
                                                is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                                log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x2000000000000))
                                                x := shr(is_high_nonzero, x)
                                                // 48
                                                x := shr(127, mul(x, x))
                                                is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                                log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x1000000000000))
                                                x := shr(is_high_nonzero, x)
                                                // 47
                                                x := shr(127, mul(x, x))
                                                is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                                log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x800000000000))
                                                x := shr(is_high_nonzero, x)
                                                // 46
                                                x := shr(127, mul(x, x))
                                                is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                                log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x400000000000))
                                                x := shr(is_high_nonzero, x)
                                                // 45
                                                x := shr(127, mul(x, x))
                                                is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                                log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x200000000000))
                                                x := shr(is_high_nonzero, x)
                                                // 44
                                                x := shr(127, mul(x, x))
                                                is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                                log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x100000000000))
                                                x := shr(is_high_nonzero, x)
                                                // 43
                                                x := shr(127, mul(x, x))
                                                is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                                log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x80000000000))
                                                x := shr(is_high_nonzero, x)
                                                // 42
                                                x := shr(127, mul(x, x))
                                                is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                                log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x40000000000))
                                            }
                                            // 25572630076711825471857579 == 2**64/(log base 2 of sqrt tick size)
                                            // https://www.wolframalpha.com/input?i=floor%28%281%2F+log+base+2+of+%28sqrt%281.000001%29%29%29*2**64%29
                                            int256 logBaseTickSizeX128 =
                                                (negative ? -int256(log2_unsigned) : int256(log2_unsigned)) * 25572630076711825471857579;
                                            int32 tickLow;
                                            int32 tickHigh;
                                            if (negative) {
                                                tickLow = int32((logBaseTickSizeX128 - 112469616488610087266845472033458199637) >> 128);
                                                tickHigh = int32((logBaseTickSizeX128) >> 128);
                                            } else {
                                                tickLow = int32((logBaseTickSizeX128) >> 128);
                                                tickHigh = int32((logBaseTickSizeX128 + 112469616488610087266845472033458199637) >> 128);
                                            }
                                            if (tickLow == tickHigh) {
                                                return tickLow;
                                            }
                                            if (tickToSqrtRatio(tickHigh) <= sqrtRatio) return tickHigh;
                                            return tickLow;
                                        }
                                    }
                                    // SPDX-License-Identifier: UNLICENSED
                                    pragma solidity =0.8.28;
                                    import {LibBit} from "solady/utils/LibBit.sol";
                                    type Bitmap is uint256;
                                    using {toggle, isSet, leSetBit, geSetBit} for Bitmap global;
                                    function toggle(Bitmap bitmap, uint8 index) pure returns (Bitmap result) {
                                        assembly ("memory-safe") {
                                            result := xor(bitmap, shl(index, 1))
                                        }
                                    }
                                    function isSet(Bitmap bitmap, uint8 index) pure returns (bool yes) {
                                        assembly ("memory-safe") {
                                            yes := and(shr(index, bitmap), 1)
                                        }
                                    }
                                    // Returns the index of the most significant bit that is set _and_ less or equally significant to index, or 256 if no such bit exists.
                                    function leSetBit(Bitmap bitmap, uint8 index) pure returns (uint256) {
                                        unchecked {
                                            uint256 masked;
                                            assembly ("memory-safe") {
                                                masked := and(bitmap, sub(shl(add(index, 1), 1), 1))
                                            }
                                            return LibBit.fls(masked);
                                        }
                                    }
                                    // Returns the index of the least significant bit that is set _and_ more or equally significant to index, or 256 if no such bit exists.
                                    function geSetBit(Bitmap bitmap, uint8 index) pure returns (uint256) {
                                        unchecked {
                                            uint256 masked;
                                            assembly ("memory-safe") {
                                                masked := and(bitmap, not(sub(shl(index, 1), 1)))
                                            }
                                            return LibBit.ffs(masked);
                                        }
                                    }
                                    // SPDX-License-Identifier: MIT
                                    pragma solidity ^0.8.4;
                                    /// @notice Arithmetic library with operations for fixed-point numbers.
                                    /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/FixedPointMathLib.sol)
                                    /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
                                    library FixedPointMathLib {
                                        /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                        /*                       CUSTOM ERRORS                        */
                                        /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                        /// @dev The operation failed, as the output exceeds the maximum value of uint256.
                                        error ExpOverflow();
                                        /// @dev The operation failed, as the output exceeds the maximum value of uint256.
                                        error FactorialOverflow();
                                        /// @dev The operation failed, due to an overflow.
                                        error RPowOverflow();
                                        /// @dev The mantissa is too big to fit.
                                        error MantissaOverflow();
                                        /// @dev The operation failed, due to an multiplication overflow.
                                        error MulWadFailed();
                                        /// @dev The operation failed, due to an multiplication overflow.
                                        error SMulWadFailed();
                                        /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
                                        error DivWadFailed();
                                        /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
                                        error SDivWadFailed();
                                        /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
                                        error MulDivFailed();
                                        /// @dev The division failed, as the denominator is zero.
                                        error DivFailed();
                                        /// @dev The full precision multiply-divide operation failed, either due
                                        /// to the result being larger than 256 bits, or a division by a zero.
                                        error FullMulDivFailed();
                                        /// @dev The output is undefined, as the input is less-than-or-equal to zero.
                                        error LnWadUndefined();
                                        /// @dev The input outside the acceptable domain.
                                        error OutOfDomain();
                                        /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                        /*                         CONSTANTS                          */
                                        /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                        /// @dev The scalar of ETH and most ERC20s.
                                        uint256 internal constant WAD = 1e18;
                                        /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                        /*              SIMPLIFIED FIXED POINT OPERATIONS             */
                                        /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                        /// @dev Equivalent to `(x * y) / WAD` rounded down.
                                        function mulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
                                                if gt(x, div(not(0), y)) {
                                                    if y {
                                                        mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                                                        revert(0x1c, 0x04)
                                                    }
                                                }
                                                z := div(mul(x, y), WAD)
                                            }
                                        }
                                        /// @dev Equivalent to `(x * y) / WAD` rounded down.
                                        function sMulWad(int256 x, int256 y) internal pure returns (int256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := mul(x, y)
                                                // Equivalent to `require((x == 0 || z / x == y) && !(x == -1 && y == type(int256).min))`.
                                                if iszero(gt(or(iszero(x), eq(sdiv(z, x), y)), lt(not(x), eq(y, shl(255, 1))))) {
                                                    mstore(0x00, 0xedcd4dd4) // `SMulWadFailed()`.
                                                    revert(0x1c, 0x04)
                                                }
                                                z := sdiv(z, WAD)
                                            }
                                        }
                                        /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
                                        function rawMulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := div(mul(x, y), WAD)
                                            }
                                        }
                                        /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
                                        function rawSMulWad(int256 x, int256 y) internal pure returns (int256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := sdiv(mul(x, y), WAD)
                                            }
                                        }
                                        /// @dev Equivalent to `(x * y) / WAD` rounded up.
                                        function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := mul(x, y)
                                                // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
                                                if iszero(eq(div(z, y), x)) {
                                                    if y {
                                                        mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                                                        revert(0x1c, 0x04)
                                                    }
                                                }
                                                z := add(iszero(iszero(mod(z, WAD))), div(z, WAD))
                                            }
                                        }
                                        /// @dev Equivalent to `(x * y) / WAD` rounded up, but without overflow checks.
                                        function rawMulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD))
                                            }
                                        }
                                        /// @dev Equivalent to `(x * WAD) / y` rounded down.
                                        function divWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                // Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`.
                                                if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) {
                                                    mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                                                    revert(0x1c, 0x04)
                                                }
                                                z := div(mul(x, WAD), y)
                                            }
                                        }
                                        /// @dev Equivalent to `(x * WAD) / y` rounded down.
                                        function sDivWad(int256 x, int256 y) internal pure returns (int256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := mul(x, WAD)
                                                // Equivalent to `require(y != 0 && ((x * WAD) / WAD == x))`.
                                                if iszero(mul(y, eq(sdiv(z, WAD), x))) {
                                                    mstore(0x00, 0x5c43740d) // `SDivWadFailed()`.
                                                    revert(0x1c, 0x04)
                                                }
                                                z := sdiv(z, y)
                                            }
                                        }
                                        /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
                                        function rawDivWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := div(mul(x, WAD), y)
                                            }
                                        }
                                        /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
                                        function rawSDivWad(int256 x, int256 y) internal pure returns (int256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := sdiv(mul(x, WAD), y)
                                            }
                                        }
                                        /// @dev Equivalent to `(x * WAD) / y` rounded up.
                                        function divWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                // Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`.
                                                if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) {
                                                    mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                                                    revert(0x1c, 0x04)
                                                }
                                                z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
                                            }
                                        }
                                        /// @dev Equivalent to `(x * WAD) / y` rounded up, but without overflow and divide by zero checks.
                                        function rawDivWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
                                            }
                                        }
                                        /// @dev Equivalent to `x` to the power of `y`.
                                        /// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`.
                                        /// Note: This function is an approximation.
                                        function powWad(int256 x, int256 y) internal pure returns (int256) {
                                            // Using `ln(x)` means `x` must be greater than 0.
                                            return expWad((lnWad(x) * y) / int256(WAD));
                                        }
                                        /// @dev Returns `exp(x)`, denominated in `WAD`.
                                        /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
                                        /// Note: This function is an approximation. Monotonically increasing.
                                        function expWad(int256 x) internal pure returns (int256 r) {
                                            unchecked {
                                                // When the result is less than 0.5 we return zero.
                                                // This happens when `x <= (log(1e-18) * 1e18) ~ -4.15e19`.
                                                if (x <= -41446531673892822313) return r;
                                                /// @solidity memory-safe-assembly
                                                assembly {
                                                    // When the result is greater than `(2**255 - 1) / 1e18` we can not represent it as
                                                    // an int. This happens when `x >= floor(log((2**255 - 1) / 1e18) * 1e18) ≈ 135`.
                                                    if iszero(slt(x, 135305999368893231589)) {
                                                        mstore(0x00, 0xa37bfec9) // `ExpOverflow()`.
                                                        revert(0x1c, 0x04)
                                                    }
                                                }
                                                // `x` is now in the range `(-42, 136) * 1e18`. Convert to `(-42, 136) * 2**96`
                                                // for more intermediate precision and a binary basis. This base conversion
                                                // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                                                x = (x << 78) / 5 ** 18;
                                                // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                                                // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                                                // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                                                int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96;
                                                x = x - k * 54916777467707473351141471128;
                                                // `k` is in the range `[-61, 195]`.
                                                // Evaluate using a (6, 7)-term rational approximation.
                                                // `p` is made monic, we'll multiply by a scale factor later.
                                                int256 y = x + 1346386616545796478920950773328;
                                                y = ((y * x) >> 96) + 57155421227552351082224309758442;
                                                int256 p = y + x - 94201549194550492254356042504812;
                                                p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                                                p = p * x + (4385272521454847904659076985693276 << 96);
                                                // We leave `p` in `2**192` basis so we don't need to scale it back up for the division.
                                                int256 q = x - 2855989394907223263936484059900;
                                                q = ((q * x) >> 96) + 50020603652535783019961831881945;
                                                q = ((q * x) >> 96) - 533845033583426703283633433725380;
                                                q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                                                q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                                                q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                                                /// @solidity memory-safe-assembly
                                                assembly {
                                                    // Div in assembly because solidity adds a zero check despite the unchecked.
                                                    // The q polynomial won't have zeros in the domain as all its roots are complex.
                                                    // No scaling is necessary because p is already `2**96` too large.
                                                    r := sdiv(p, q)
                                                }
                                                // r should be in the range `(0.09, 0.25) * 2**96`.
                                                // We now need to multiply r by:
                                                // - The scale factor `s ≈ 6.031367120`.
                                                // - The `2**k` factor from the range reduction.
                                                // - The `1e18 / 2**96` factor for base conversion.
                                                // We do this all at once, with an intermediate result in `2**213`
                                                // basis, so the final right shift is always by a positive amount.
                                                r = int256(
                                                    (uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)
                                                );
                                            }
                                        }
                                        /// @dev Returns `ln(x)`, denominated in `WAD`.
                                        /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
                                        /// Note: This function is an approximation. Monotonically increasing.
                                        function lnWad(int256 x) internal pure returns (int256 r) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                // We want to convert `x` from `10**18` fixed point to `2**96` fixed point.
                                                // We do this by multiplying by `2**96 / 10**18`. But since
                                                // `ln(x * C) = ln(x) + ln(C)`, we can simply do nothing here
                                                // and add `ln(2**96 / 10**18)` at the end.
                                                // Compute `k = log2(x) - 96`, `r = 159 - k = 255 - log2(x) = 255 ^ log2(x)`.
                                                r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                                                r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                                                r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                                                r := or(r, shl(4, lt(0xffff, shr(r, x))))
                                                r := or(r, shl(3, lt(0xff, shr(r, x))))
                                                // We place the check here for more optimal stack operations.
                                                if iszero(sgt(x, 0)) {
                                                    mstore(0x00, 0x1615e638) // `LnWadUndefined()`.
                                                    revert(0x1c, 0x04)
                                                }
                                                // forgefmt: disable-next-item
                                                r := xor(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                                                    0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff))
                                                // Reduce range of x to (1, 2) * 2**96
                                                // ln(2^k * x) = k * ln(2) + ln(x)
                                                x := shr(159, shl(r, x))
                                                // Evaluate using a (8, 8)-term rational approximation.
                                                // `p` is made monic, we will multiply by a scale factor later.
                                                // forgefmt: disable-next-item
                                                let p := sub( // This heavily nested expression is to avoid stack-too-deep for via-ir.
                                                    sar(96, mul(add(43456485725739037958740375743393,
                                                    sar(96, mul(add(24828157081833163892658089445524,
                                                    sar(96, mul(add(3273285459638523848632254066296,
                                                        x), x))), x))), x)), 11111509109440967052023855526967)
                                                p := sub(sar(96, mul(p, x)), 45023709667254063763336534515857)
                                                p := sub(sar(96, mul(p, x)), 14706773417378608786704636184526)
                                                p := sub(mul(p, x), shl(96, 795164235651350426258249787498))
                                                // We leave `p` in `2**192` basis so we don't need to scale it back up for the division.
                                                // `q` is monic by convention.
                                                let q := add(5573035233440673466300451813936, x)
                                                q := add(71694874799317883764090561454958, sar(96, mul(x, q)))
                                                q := add(283447036172924575727196451306956, sar(96, mul(x, q)))
                                                q := add(401686690394027663651624208769553, sar(96, mul(x, q)))
                                                q := add(204048457590392012362485061816622, sar(96, mul(x, q)))
                                                q := add(31853899698501571402653359427138, sar(96, mul(x, q)))
                                                q := add(909429971244387300277376558375, sar(96, mul(x, q)))
                                                // `p / q` is in the range `(0, 0.125) * 2**96`.
                                                // Finalization, we need to:
                                                // - Multiply by the scale factor `s = 5.549…`.
                                                // - Add `ln(2**96 / 10**18)`.
                                                // - Add `k * ln(2)`.
                                                // - Multiply by `10**18 / 2**96 = 5**18 >> 78`.
                                                // The q polynomial is known not to have zeros in the domain.
                                                // No scaling required because p is already `2**96` too large.
                                                p := sdiv(p, q)
                                                // Multiply by the scaling factor: `s * 5**18 * 2**96`, base is now `5**18 * 2**192`.
                                                p := mul(1677202110996718588342820967067443963516166, p)
                                                // Add `ln(2) * k * 5**18 * 2**192`.
                                                // forgefmt: disable-next-item
                                                p := add(mul(16597577552685614221487285958193947469193820559219878177908093499208371, sub(159, r)), p)
                                                // Add `ln(2**96 / 10**18) * 5**18 * 2**192`.
                                                p := add(600920179829731861736702779321621459595472258049074101567377883020018308, p)
                                                // Base conversion: mul `2**18 / 2**192`.
                                                r := sar(174, p)
                                            }
                                        }
                                        /// @dev Returns `W_0(x)`, denominated in `WAD`.
                                        /// See: https://en.wikipedia.org/wiki/Lambert_W_function
                                        /// a.k.a. Product log function. This is an approximation of the principal branch.
                                        /// Note: This function is an approximation. Monotonically increasing.
                                        function lambertW0Wad(int256 x) internal pure returns (int256 w) {
                                            // forgefmt: disable-next-item
                                            unchecked {
                                                if ((w = x) <= -367879441171442322) revert OutOfDomain(); // `x` less than `-1/e`.
                                                (int256 wad, int256 p) = (int256(WAD), x);
                                                uint256 c; // Whether we need to avoid catastrophic cancellation.
                                                uint256 i = 4; // Number of iterations.
                                                if (w <= 0x1ffffffffffff) {
                                                    if (-0x4000000000000 <= w) {
                                                        i = 1; // Inputs near zero only take one step to converge.
                                                    } else if (w <= -0x3ffffffffffffff) {
                                                        i = 32; // Inputs near `-1/e` take very long to converge.
                                                    }
                                                } else if (uint256(w >> 63) == uint256(0)) {
                                                    /// @solidity memory-safe-assembly
                                                    assembly {
                                                        // Inline log2 for more performance, since the range is small.
                                                        let v := shr(49, w)
                                                        let l := shl(3, lt(0xff, v))
                                                        l := add(or(l, byte(and(0x1f, shr(shr(l, v), 0x8421084210842108cc6318c6db6d54be)),
                                                            0x0706060506020504060203020504030106050205030304010505030400000000)), 49)
                                                        w := sdiv(shl(l, 7), byte(sub(l, 31), 0x0303030303030303040506080c13))
                                                        c := gt(l, 60)
                                                        i := add(2, add(gt(l, 53), c))
                                                    }
                                                } else {
                                                    int256 ll = lnWad(w = lnWad(w));
                                                    /// @solidity memory-safe-assembly
                                                    assembly {
                                                        // `w = ln(x) - ln(ln(x)) + b * ln(ln(x)) / ln(x)`.
                                                        w := add(sdiv(mul(ll, 1023715080943847266), w), sub(w, ll))
                                                        i := add(3, iszero(shr(68, x)))
                                                        c := iszero(shr(143, x))
                                                    }
                                                    if (c == uint256(0)) {
                                                        do { // If `x` is big, use Newton's so that intermediate values won't overflow.
                                                            int256 e = expWad(w);
                                                            /// @solidity memory-safe-assembly
                                                            assembly {
                                                                let t := mul(w, div(e, wad))
                                                                w := sub(w, sdiv(sub(t, x), div(add(e, t), wad)))
                                                            }
                                                            if (p <= w) break;
                                                            p = w;
                                                        } while (--i != uint256(0));
                                                        /// @solidity memory-safe-assembly
                                                        assembly {
                                                            w := sub(w, sgt(w, 2))
                                                        }
                                                        return w;
                                                    }
                                                }
                                                do { // Otherwise, use Halley's for faster convergence.
                                                    int256 e = expWad(w);
                                                    /// @solidity memory-safe-assembly
                                                    assembly {
                                                        let t := add(w, wad)
                                                        let s := sub(mul(w, e), mul(x, wad))
                                                        w := sub(w, sdiv(mul(s, wad), sub(mul(e, t), sdiv(mul(add(t, wad), s), add(t, t)))))
                                                    }
                                                    if (p <= w) break;
                                                    p = w;
                                                } while (--i != c);
                                                /// @solidity memory-safe-assembly
                                                assembly {
                                                    w := sub(w, sgt(w, 2))
                                                }
                                                // For certain ranges of `x`, we'll use the quadratic-rate recursive formula of
                                                // R. Iacono and J.P. Boyd for the last iteration, to avoid catastrophic cancellation.
                                                if (c == uint256(0)) return w;
                                                int256 t = w | 1;
                                                /// @solidity memory-safe-assembly
                                                assembly {
                                                    x := sdiv(mul(x, wad), t)
                                                }
                                                x = (t * (wad + lnWad(x)));
                                                /// @solidity memory-safe-assembly
                                                assembly {
                                                    w := sdiv(x, add(wad, t))
                                                }
                                            }
                                        }
                                        /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                        /*                  GENERAL NUMBER UTILITIES                  */
                                        /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                        /// @dev Returns `a * b == x * y`, with full precision.
                                        function fullMulEq(uint256 a, uint256 b, uint256 x, uint256 y)
                                            internal
                                            pure
                                            returns (bool result)
                                        {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                result := and(eq(mul(a, b), mul(x, y)), eq(mulmod(x, y, not(0)), mulmod(a, b, not(0))))
                                            }
                                        }
                                        /// @dev Calculates `floor(x * y / d)` with full precision.
                                        /// Throws if result overflows a uint256 or when `d` is zero.
                                        /// Credit to Remco Bloemen under MIT license: https://2π.com/21/muldiv
                                        function fullMulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                // 512-bit multiply `[p1 p0] = x * y`.
                                                // Compute the product mod `2**256` and mod `2**256 - 1`
                                                // then use the Chinese Remainder Theorem to reconstruct
                                                // the 512 bit result. The result is stored in two 256
                                                // variables such that `product = p1 * 2**256 + p0`.
                                                // Temporarily use `z` as `p0` to save gas.
                                                z := mul(x, y) // Lower 256 bits of `x * y`.
                                                for {} 1 {} {
                                                    // If overflows.
                                                    if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                                                        let mm := mulmod(x, y, not(0))
                                                        let p1 := sub(mm, add(z, lt(mm, z))) // Upper 256 bits of `x * y`.
                                                        /*------------------- 512 by 256 division --------------------*/
                                                        // Make division exact by subtracting the remainder from `[p1 p0]`.
                                                        let r := mulmod(x, y, d) // Compute remainder using mulmod.
                                                        let t := and(d, sub(0, d)) // The least significant bit of `d`. `t >= 1`.
                                                        // Make sure `z` is less than `2**256`. Also prevents `d == 0`.
                                                        // Placing the check here seems to give more optimal stack operations.
                                                        if iszero(gt(d, p1)) {
                                                            mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                                                            revert(0x1c, 0x04)
                                                        }
                                                        d := div(d, t) // Divide `d` by `t`, which is a power of two.
                                                        // Invert `d mod 2**256`
                                                        // Now that `d` is an odd number, it has an inverse
                                                        // modulo `2**256` such that `d * inv = 1 mod 2**256`.
                                                        // Compute the inverse by starting with a seed that is correct
                                                        // correct for four bits. That is, `d * inv = 1 mod 2**4`.
                                                        let inv := xor(2, mul(3, d))
                                                        // Now use Newton-Raphson iteration to improve the precision.
                                                        // Thanks to Hensel's lifting lemma, this also works in modular
                                                        // arithmetic, doubling the correct bits in each step.
                                                        inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**8
                                                        inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**16
                                                        inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**32
                                                        inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**64
                                                        inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**128
                                                        z :=
                                                            mul(
                                                                // Divide [p1 p0] by the factors of two.
                                                                // Shift in bits from `p1` into `p0`. For this we need
                                                                // to flip `t` such that it is `2**256 / t`.
                                                                or(mul(sub(p1, gt(r, z)), add(div(sub(0, t), t), 1)), div(sub(z, r), t)),
                                                                mul(sub(2, mul(d, inv)), inv) // inverse mod 2**256
                                                            )
                                                        break
                                                    }
                                                    z := div(z, d)
                                                    break
                                                }
                                            }
                                        }
                                        /// @dev Calculates `floor(x * y / d)` with full precision.
                                        /// Behavior is undefined if `d` is zero or the final result cannot fit in 256 bits.
                                        /// Performs the full 512 bit calculation regardless.
                                        function fullMulDivUnchecked(uint256 x, uint256 y, uint256 d)
                                            internal
                                            pure
                                            returns (uint256 z)
                                        {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := mul(x, y)
                                                let mm := mulmod(x, y, not(0))
                                                let p1 := sub(mm, add(z, lt(mm, z)))
                                                let t := and(d, sub(0, d))
                                                let r := mulmod(x, y, d)
                                                d := div(d, t)
                                                let inv := xor(2, mul(3, d))
                                                inv := mul(inv, sub(2, mul(d, inv)))
                                                inv := mul(inv, sub(2, mul(d, inv)))
                                                inv := mul(inv, sub(2, mul(d, inv)))
                                                inv := mul(inv, sub(2, mul(d, inv)))
                                                inv := mul(inv, sub(2, mul(d, inv)))
                                                z :=
                                                    mul(
                                                        or(mul(sub(p1, gt(r, z)), add(div(sub(0, t), t), 1)), div(sub(z, r), t)),
                                                        mul(sub(2, mul(d, inv)), inv)
                                                    )
                                            }
                                        }
                                        /// @dev Calculates `floor(x * y / d)` with full precision, rounded up.
                                        /// Throws if result overflows a uint256 or when `d` is zero.
                                        /// Credit to Uniswap-v3-core under MIT license:
                                        /// https://github.com/Uniswap/v3-core/blob/main/contracts/libraries/FullMath.sol
                                        function fullMulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
                                            z = fullMulDiv(x, y, d);
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                if mulmod(x, y, d) {
                                                    z := add(z, 1)
                                                    if iszero(z) {
                                                        mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                                                        revert(0x1c, 0x04)
                                                    }
                                                }
                                            }
                                        }
                                        /// @dev Calculates `floor(x * y / 2 ** n)` with full precision.
                                        /// Throws if result overflows a uint256.
                                        /// Credit to Philogy under MIT license:
                                        /// https://github.com/SorellaLabs/angstrom/blob/main/contracts/src/libraries/X128MathLib.sol
                                        function fullMulDivN(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                // Temporarily use `z` as `p0` to save gas.
                                                z := mul(x, y) // Lower 256 bits of `x * y`. We'll call this `z`.
                                                for {} 1 {} {
                                                    if iszero(or(iszero(x), eq(div(z, x), y))) {
                                                        let k := and(n, 0xff) // `n`, cleaned.
                                                        let mm := mulmod(x, y, not(0))
                                                        let p1 := sub(mm, add(z, lt(mm, z))) // Upper 256 bits of `x * y`.
                                                        //         |      p1     |      z     |
                                                        // Before: | p1_0 ¦ p1_1 | z_0  ¦ z_1 |
                                                        // Final:  |   0  ¦ p1_0 | p1_1 ¦ z_0 |
                                                        // Check that final `z` doesn't overflow by checking that p1_0 = 0.
                                                        if iszero(shr(k, p1)) {
                                                            z := add(shl(sub(256, k), p1), shr(k, z))
                                                            break
                                                        }
                                                        mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                                                        revert(0x1c, 0x04)
                                                    }
                                                    z := shr(and(n, 0xff), z)
                                                    break
                                                }
                                            }
                                        }
                                        /// @dev Returns `floor(x * y / d)`.
                                        /// Reverts if `x * y` overflows, or `d` is zero.
                                        function mulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := mul(x, y)
                                                // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
                                                if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                                                    mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                                                    revert(0x1c, 0x04)
                                                }
                                                z := div(z, d)
                                            }
                                        }
                                        /// @dev Returns `ceil(x * y / d)`.
                                        /// Reverts if `x * y` overflows, or `d` is zero.
                                        function mulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := mul(x, y)
                                                // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
                                                if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                                                    mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                                                    revert(0x1c, 0x04)
                                                }
                                                z := add(iszero(iszero(mod(z, d))), div(z, d))
                                            }
                                        }
                                        /// @dev Returns `x`, the modular multiplicative inverse of `a`, such that `(a * x) % n == 1`.
                                        function invMod(uint256 a, uint256 n) internal pure returns (uint256 x) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let g := n
                                                let r := mod(a, n)
                                                for { let y := 1 } 1 {} {
                                                    let q := div(g, r)
                                                    let t := g
                                                    g := r
                                                    r := sub(t, mul(r, q))
                                                    let u := x
                                                    x := y
                                                    y := sub(u, mul(y, q))
                                                    if iszero(r) { break }
                                                }
                                                x := mul(eq(g, 1), add(x, mul(slt(x, 0), n)))
                                            }
                                        }
                                        /// @dev Returns `ceil(x / d)`.
                                        /// Reverts if `d` is zero.
                                        function divUp(uint256 x, uint256 d) internal pure returns (uint256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                if iszero(d) {
                                                    mstore(0x00, 0x65244e4e) // `DivFailed()`.
                                                    revert(0x1c, 0x04)
                                                }
                                                z := add(iszero(iszero(mod(x, d))), div(x, d))
                                            }
                                        }
                                        /// @dev Returns `max(0, x - y)`. Alias for `saturatingSub`.
                                        function zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := mul(gt(x, y), sub(x, y))
                                            }
                                        }
                                        /// @dev Returns `max(0, x - y)`.
                                        function saturatingSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := mul(gt(x, y), sub(x, y))
                                            }
                                        }
                                        /// @dev Returns `min(2 ** 256 - 1, x + y)`.
                                        function saturatingAdd(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := or(sub(0, lt(add(x, y), x)), add(x, y))
                                            }
                                        }
                                        /// @dev Returns `min(2 ** 256 - 1, x * y)`.
                                        function saturatingMul(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := or(sub(or(iszero(x), eq(div(mul(x, y), x), y)), 1), mul(x, y))
                                            }
                                        }
                                        /// @dev Returns `condition ? x : y`, without branching.
                                        function ternary(bool condition, uint256 x, uint256 y) internal pure returns (uint256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := xor(x, mul(xor(x, y), iszero(condition)))
                                            }
                                        }
                                        /// @dev Returns `condition ? x : y`, without branching.
                                        function ternary(bool condition, bytes32 x, bytes32 y) internal pure returns (bytes32 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := xor(x, mul(xor(x, y), iszero(condition)))
                                            }
                                        }
                                        /// @dev Returns `condition ? x : y`, without branching.
                                        function ternary(bool condition, address x, address y) internal pure returns (address z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := xor(x, mul(xor(x, y), iszero(condition)))
                                            }
                                        }
                                        /// @dev Returns `x != 0 ? x : y`, without branching.
                                        function coalesce(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := or(x, mul(y, iszero(x)))
                                            }
                                        }
                                        /// @dev Returns `x != bytes32(0) ? x : y`, without branching.
                                        function coalesce(bytes32 x, bytes32 y) internal pure returns (bytes32 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := or(x, mul(y, iszero(x)))
                                            }
                                        }
                                        /// @dev Returns `x != address(0) ? x : y`, without branching.
                                        function coalesce(address x, address y) internal pure returns (address z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := or(x, mul(y, iszero(shl(96, x))))
                                            }
                                        }
                                        /// @dev Exponentiate `x` to `y` by squaring, denominated in base `b`.
                                        /// Reverts if the computation overflows.
                                        function rpow(uint256 x, uint256 y, uint256 b) internal pure returns (uint256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := mul(b, iszero(y)) // `0 ** 0 = 1`. Otherwise, `0 ** n = 0`.
                                                if x {
                                                    z := xor(b, mul(xor(b, x), and(y, 1))) // `z = isEven(y) ? scale : x`
                                                    let half := shr(1, b) // Divide `b` by 2.
                                                    // Divide `y` by 2 every iteration.
                                                    for { y := shr(1, y) } y { y := shr(1, y) } {
                                                        let xx := mul(x, x) // Store x squared.
                                                        let xxRound := add(xx, half) // Round to the nearest number.
                                                        // Revert if `xx + half` overflowed, or if `x ** 2` overflows.
                                                        if or(lt(xxRound, xx), shr(128, x)) {
                                                            mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                                                            revert(0x1c, 0x04)
                                                        }
                                                        x := div(xxRound, b) // Set `x` to scaled `xxRound`.
                                                        // If `y` is odd:
                                                        if and(y, 1) {
                                                            let zx := mul(z, x) // Compute `z * x`.
                                                            let zxRound := add(zx, half) // Round to the nearest number.
                                                            // If `z * x` overflowed or `zx + half` overflowed:
                                                            if or(xor(div(zx, x), z), lt(zxRound, zx)) {
                                                                // Revert if `x` is non-zero.
                                                                if x {
                                                                    mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                                                                    revert(0x1c, 0x04)
                                                                }
                                                            }
                                                            z := div(zxRound, b) // Return properly scaled `zxRound`.
                                                        }
                                                    }
                                                }
                                            }
                                        }
                                        /// @dev Returns the square root of `x`, rounded down.
                                        function sqrt(uint256 x) internal pure returns (uint256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                // `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`.
                                                z := 181 // The "correct" value is 1, but this saves a multiplication later.
                                                // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                                                // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                                                // Let `y = x / 2**r`. We check `y >= 2**(k + 8)`
                                                // but shift right by `k` bits to ensure that if `x >= 256`, then `y >= 256`.
                                                let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x))
                                                r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x))))
                                                r := or(r, shl(5, lt(0xffffffffff, shr(r, x))))
                                                r := or(r, shl(4, lt(0xffffff, shr(r, x))))
                                                z := shl(shr(1, r), z)
                                                // Goal was to get `z*z*y` within a small factor of `x`. More iterations could
                                                // get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`.
                                                // We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small.
                                                // That's not possible if `x < 256` but we can just verify those cases exhaustively.
                                                // Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`.
                                                // Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`.
                                                // Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps.
                                                // For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)`
                                                // is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`,
                                                // with largest error when `s = 1` and when `s = 256` or `1/256`.
                                                // Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`.
                                                // Then we can estimate `sqrt(y)` using
                                                // `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`.
                                                // There is no overflow risk here since `y < 2**136` after the first branch above.
                                                z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181.
                                                // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                                                z := shr(1, add(z, div(x, z)))
                                                z := shr(1, add(z, div(x, z)))
                                                z := shr(1, add(z, div(x, z)))
                                                z := shr(1, add(z, div(x, z)))
                                                z := shr(1, add(z, div(x, z)))
                                                z := shr(1, add(z, div(x, z)))
                                                z := shr(1, add(z, div(x, z)))
                                                // If `x+1` is a perfect square, the Babylonian method cycles between
                                                // `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor.
                                                // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                                                z := sub(z, lt(div(x, z), z))
                                            }
                                        }
                                        /// @dev Returns the cube root of `x`, rounded down.
                                        /// Credit to bout3fiddy and pcaversaccio under AGPLv3 license:
                                        /// https://github.com/pcaversaccio/snekmate/blob/main/src/utils/Math.vy
                                        /// Formally verified by xuwinnie:
                                        /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf
                                        function cbrt(uint256 x) internal pure returns (uint256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                                                r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                                                r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                                                r := or(r, shl(4, lt(0xffff, shr(r, x))))
                                                r := or(r, shl(3, lt(0xff, shr(r, x))))
                                                // Makeshift lookup table to nudge the approximate log2 result.
                                                z := div(shl(div(r, 3), shl(lt(0xf, shr(r, x)), 0xf)), xor(7, mod(r, 3)))
                                                // Newton-Raphson's.
                                                z := div(add(add(div(x, mul(z, z)), z), z), 3)
                                                z := div(add(add(div(x, mul(z, z)), z), z), 3)
                                                z := div(add(add(div(x, mul(z, z)), z), z), 3)
                                                z := div(add(add(div(x, mul(z, z)), z), z), 3)
                                                z := div(add(add(div(x, mul(z, z)), z), z), 3)
                                                z := div(add(add(div(x, mul(z, z)), z), z), 3)
                                                z := div(add(add(div(x, mul(z, z)), z), z), 3)
                                                // Round down.
                                                z := sub(z, lt(div(x, mul(z, z)), z))
                                            }
                                        }
                                        /// @dev Returns the square root of `x`, denominated in `WAD`, rounded down.
                                        function sqrtWad(uint256 x) internal pure returns (uint256 z) {
                                            unchecked {
                                                if (x <= type(uint256).max / 10 ** 18) return sqrt(x * 10 ** 18);
                                                z = (1 + sqrt(x)) * 10 ** 9;
                                                z = (fullMulDivUnchecked(x, 10 ** 18, z) + z) >> 1;
                                            }
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := sub(z, gt(999999999999999999, sub(mulmod(z, z, x), 1))) // Round down.
                                            }
                                        }
                                        /// @dev Returns the cube root of `x`, denominated in `WAD`, rounded down.
                                        /// Formally verified by xuwinnie:
                                        /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf
                                        function cbrtWad(uint256 x) internal pure returns (uint256 z) {
                                            unchecked {
                                                if (x <= type(uint256).max / 10 ** 36) return cbrt(x * 10 ** 36);
                                                z = (1 + cbrt(x)) * 10 ** 12;
                                                z = (fullMulDivUnchecked(x, 10 ** 36, z * z) + z + z) / 3;
                                            }
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let p := x
                                                for {} 1 {} {
                                                    if iszero(shr(229, p)) {
                                                        if iszero(shr(199, p)) {
                                                            p := mul(p, 100000000000000000) // 10 ** 17.
                                                            break
                                                        }
                                                        p := mul(p, 100000000) // 10 ** 8.
                                                        break
                                                    }
                                                    if iszero(shr(249, p)) { p := mul(p, 100) }
                                                    break
                                                }
                                                let t := mulmod(mul(z, z), z, p)
                                                z := sub(z, gt(lt(t, shr(1, p)), iszero(t))) // Round down.
                                            }
                                        }
                                        /// @dev Returns the factorial of `x`.
                                        function factorial(uint256 x) internal pure returns (uint256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := 1
                                                if iszero(lt(x, 58)) {
                                                    mstore(0x00, 0xaba0f2a2) // `FactorialOverflow()`.
                                                    revert(0x1c, 0x04)
                                                }
                                                for {} x { x := sub(x, 1) } { z := mul(z, x) }
                                            }
                                        }
                                        /// @dev Returns the log2 of `x`.
                                        /// Equivalent to computing the index of the most significant bit (MSB) of `x`.
                                        /// Returns 0 if `x` is zero.
                                        function log2(uint256 x) internal pure returns (uint256 r) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                                                r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                                                r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                                                r := or(r, shl(4, lt(0xffff, shr(r, x))))
                                                r := or(r, shl(3, lt(0xff, shr(r, x))))
                                                // forgefmt: disable-next-item
                                                r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                                                    0x0706060506020504060203020504030106050205030304010505030400000000))
                                            }
                                        }
                                        /// @dev Returns the log2 of `x`, rounded up.
                                        /// Returns 0 if `x` is zero.
                                        function log2Up(uint256 x) internal pure returns (uint256 r) {
                                            r = log2(x);
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                r := add(r, lt(shl(r, 1), x))
                                            }
                                        }
                                        /// @dev Returns the log10 of `x`.
                                        /// Returns 0 if `x` is zero.
                                        function log10(uint256 x) internal pure returns (uint256 r) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                if iszero(lt(x, 100000000000000000000000000000000000000)) {
                                                    x := div(x, 100000000000000000000000000000000000000)
                                                    r := 38
                                                }
                                                if iszero(lt(x, 100000000000000000000)) {
                                                    x := div(x, 100000000000000000000)
                                                    r := add(r, 20)
                                                }
                                                if iszero(lt(x, 10000000000)) {
                                                    x := div(x, 10000000000)
                                                    r := add(r, 10)
                                                }
                                                if iszero(lt(x, 100000)) {
                                                    x := div(x, 100000)
                                                    r := add(r, 5)
                                                }
                                                r := add(r, add(gt(x, 9), add(gt(x, 99), add(gt(x, 999), gt(x, 9999)))))
                                            }
                                        }
                                        /// @dev Returns the log10 of `x`, rounded up.
                                        /// Returns 0 if `x` is zero.
                                        function log10Up(uint256 x) internal pure returns (uint256 r) {
                                            r = log10(x);
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                r := add(r, lt(exp(10, r), x))
                                            }
                                        }
                                        /// @dev Returns the log256 of `x`.
                                        /// Returns 0 if `x` is zero.
                                        function log256(uint256 x) internal pure returns (uint256 r) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                                                r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                                                r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                                                r := or(r, shl(4, lt(0xffff, shr(r, x))))
                                                r := or(shr(3, r), lt(0xff, shr(r, x)))
                                            }
                                        }
                                        /// @dev Returns the log256 of `x`, rounded up.
                                        /// Returns 0 if `x` is zero.
                                        function log256Up(uint256 x) internal pure returns (uint256 r) {
                                            r = log256(x);
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                r := add(r, lt(shl(shl(3, r), 1), x))
                                            }
                                        }
                                        /// @dev Returns the scientific notation format `mantissa * 10 ** exponent` of `x`.
                                        /// Useful for compressing prices (e.g. using 25 bit mantissa and 7 bit exponent).
                                        function sci(uint256 x) internal pure returns (uint256 mantissa, uint256 exponent) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                mantissa := x
                                                if mantissa {
                                                    if iszero(mod(mantissa, 1000000000000000000000000000000000)) {
                                                        mantissa := div(mantissa, 1000000000000000000000000000000000)
                                                        exponent := 33
                                                    }
                                                    if iszero(mod(mantissa, 10000000000000000000)) {
                                                        mantissa := div(mantissa, 10000000000000000000)
                                                        exponent := add(exponent, 19)
                                                    }
                                                    if iszero(mod(mantissa, 1000000000000)) {
                                                        mantissa := div(mantissa, 1000000000000)
                                                        exponent := add(exponent, 12)
                                                    }
                                                    if iszero(mod(mantissa, 1000000)) {
                                                        mantissa := div(mantissa, 1000000)
                                                        exponent := add(exponent, 6)
                                                    }
                                                    if iszero(mod(mantissa, 10000)) {
                                                        mantissa := div(mantissa, 10000)
                                                        exponent := add(exponent, 4)
                                                    }
                                                    if iszero(mod(mantissa, 100)) {
                                                        mantissa := div(mantissa, 100)
                                                        exponent := add(exponent, 2)
                                                    }
                                                    if iszero(mod(mantissa, 10)) {
                                                        mantissa := div(mantissa, 10)
                                                        exponent := add(exponent, 1)
                                                    }
                                                }
                                            }
                                        }
                                        /// @dev Convenience function for packing `x` into a smaller number using `sci`.
                                        /// The `mantissa` will be in bits [7..255] (the upper 249 bits).
                                        /// The `exponent` will be in bits [0..6] (the lower 7 bits).
                                        /// Use `SafeCastLib` to safely ensure that the `packed` number is small
                                        /// enough to fit in the desired unsigned integer type:
                                        /// ```
                                        ///     uint32 packed = SafeCastLib.toUint32(FixedPointMathLib.packSci(777 ether));
                                        /// ```
                                        function packSci(uint256 x) internal pure returns (uint256 packed) {
                                            (x, packed) = sci(x); // Reuse for `mantissa` and `exponent`.
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                if shr(249, x) {
                                                    mstore(0x00, 0xce30380c) // `MantissaOverflow()`.
                                                    revert(0x1c, 0x04)
                                                }
                                                packed := or(shl(7, x), packed)
                                            }
                                        }
                                        /// @dev Convenience function for unpacking a packed number from `packSci`.
                                        function unpackSci(uint256 packed) internal pure returns (uint256 unpacked) {
                                            unchecked {
                                                unpacked = (packed >> 7) * 10 ** (packed & 0x7f);
                                            }
                                        }
                                        /// @dev Returns the average of `x` and `y`. Rounds towards zero.
                                        function avg(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                            unchecked {
                                                z = (x & y) + ((x ^ y) >> 1);
                                            }
                                        }
                                        /// @dev Returns the average of `x` and `y`. Rounds towards negative infinity.
                                        function avg(int256 x, int256 y) internal pure returns (int256 z) {
                                            unchecked {
                                                z = (x >> 1) + (y >> 1) + (x & y & 1);
                                            }
                                        }
                                        /// @dev Returns the absolute value of `x`.
                                        function abs(int256 x) internal pure returns (uint256 z) {
                                            unchecked {
                                                z = (uint256(x) + uint256(x >> 255)) ^ uint256(x >> 255);
                                            }
                                        }
                                        /// @dev Returns the absolute distance between `x` and `y`.
                                        function dist(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := add(xor(sub(0, gt(x, y)), sub(y, x)), gt(x, y))
                                            }
                                        }
                                        /// @dev Returns the absolute distance between `x` and `y`.
                                        function dist(int256 x, int256 y) internal pure returns (uint256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := add(xor(sub(0, sgt(x, y)), sub(y, x)), sgt(x, y))
                                            }
                                        }
                                        /// @dev Returns the minimum of `x` and `y`.
                                        function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := xor(x, mul(xor(x, y), lt(y, x)))
                                            }
                                        }
                                        /// @dev Returns the minimum of `x` and `y`.
                                        function min(int256 x, int256 y) internal pure returns (int256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := xor(x, mul(xor(x, y), slt(y, x)))
                                            }
                                        }
                                        /// @dev Returns the maximum of `x` and `y`.
                                        function max(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := xor(x, mul(xor(x, y), gt(y, x)))
                                            }
                                        }
                                        /// @dev Returns the maximum of `x` and `y`.
                                        function max(int256 x, int256 y) internal pure returns (int256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := xor(x, mul(xor(x, y), sgt(y, x)))
                                            }
                                        }
                                        /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
                                        function clamp(uint256 x, uint256 minValue, uint256 maxValue)
                                            internal
                                            pure
                                            returns (uint256 z)
                                        {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := xor(x, mul(xor(x, minValue), gt(minValue, x)))
                                                z := xor(z, mul(xor(z, maxValue), lt(maxValue, z)))
                                            }
                                        }
                                        /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
                                        function clamp(int256 x, int256 minValue, int256 maxValue) internal pure returns (int256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := xor(x, mul(xor(x, minValue), sgt(minValue, x)))
                                                z := xor(z, mul(xor(z, maxValue), slt(maxValue, z)))
                                            }
                                        }
                                        /// @dev Returns greatest common divisor of `x` and `y`.
                                        function gcd(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                for { z := x } y {} {
                                                    let t := y
                                                    y := mod(z, y)
                                                    z := t
                                                }
                                            }
                                        }
                                        /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`,
                                        /// with `t` clamped between `begin` and `end` (inclusive).
                                        /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
                                        /// If `begins == end`, returns `t <= begin ? a : b`.
                                        function lerp(uint256 a, uint256 b, uint256 t, uint256 begin, uint256 end)
                                            internal
                                            pure
                                            returns (uint256)
                                        {
                                            if (begin > end) (t, begin, end) = (~t, ~begin, ~end);
                                            if (t <= begin) return a;
                                            if (t >= end) return b;
                                            unchecked {
                                                if (b >= a) return a + fullMulDiv(b - a, t - begin, end - begin);
                                                return a - fullMulDiv(a - b, t - begin, end - begin);
                                            }
                                        }
                                        /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`.
                                        /// with `t` clamped between `begin` and `end` (inclusive).
                                        /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
                                        /// If `begins == end`, returns `t <= begin ? a : b`.
                                        function lerp(int256 a, int256 b, int256 t, int256 begin, int256 end)
                                            internal
                                            pure
                                            returns (int256)
                                        {
                                            if (begin > end) (t, begin, end) = (~t, ~begin, ~end);
                                            if (t <= begin) return a;
                                            if (t >= end) return b;
                                            // forgefmt: disable-next-item
                                            unchecked {
                                                if (b >= a) return int256(uint256(a) + fullMulDiv(uint256(b - a),
                                                    uint256(t - begin), uint256(end - begin)));
                                                return int256(uint256(a) - fullMulDiv(uint256(a - b),
                                                    uint256(t - begin), uint256(end - begin)));
                                            }
                                        }
                                        /// @dev Returns if `x` is an even number. Some people may need this.
                                        function isEven(uint256 x) internal pure returns (bool) {
                                            return x & uint256(1) == uint256(0);
                                        }
                                        /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                        /*                   RAW NUMBER OPERATIONS                    */
                                        /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                        /// @dev Returns `x + y`, without checking for overflow.
                                        function rawAdd(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                            unchecked {
                                                z = x + y;
                                            }
                                        }
                                        /// @dev Returns `x + y`, without checking for overflow.
                                        function rawAdd(int256 x, int256 y) internal pure returns (int256 z) {
                                            unchecked {
                                                z = x + y;
                                            }
                                        }
                                        /// @dev Returns `x - y`, without checking for underflow.
                                        function rawSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                            unchecked {
                                                z = x - y;
                                            }
                                        }
                                        /// @dev Returns `x - y`, without checking for underflow.
                                        function rawSub(int256 x, int256 y) internal pure returns (int256 z) {
                                            unchecked {
                                                z = x - y;
                                            }
                                        }
                                        /// @dev Returns `x * y`, without checking for overflow.
                                        function rawMul(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                            unchecked {
                                                z = x * y;
                                            }
                                        }
                                        /// @dev Returns `x * y`, without checking for overflow.
                                        function rawMul(int256 x, int256 y) internal pure returns (int256 z) {
                                            unchecked {
                                                z = x * y;
                                            }
                                        }
                                        /// @dev Returns `x / y`, returning 0 if `y` is zero.
                                        function rawDiv(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := div(x, y)
                                            }
                                        }
                                        /// @dev Returns `x / y`, returning 0 if `y` is zero.
                                        function rawSDiv(int256 x, int256 y) internal pure returns (int256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := sdiv(x, y)
                                            }
                                        }
                                        /// @dev Returns `x % y`, returning 0 if `y` is zero.
                                        function rawMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := mod(x, y)
                                            }
                                        }
                                        /// @dev Returns `x % y`, returning 0 if `y` is zero.
                                        function rawSMod(int256 x, int256 y) internal pure returns (int256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := smod(x, y)
                                            }
                                        }
                                        /// @dev Returns `(x + y) % d`, return 0 if `d` if zero.
                                        function rawAddMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := addmod(x, y, d)
                                            }
                                        }
                                        /// @dev Returns `(x * y) % d`, return 0 if `d` if zero.
                                        function rawMulMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := mulmod(x, y, d)
                                            }
                                        }
                                    }
                                    // SPDX-License-Identifier: MIT
                                    pragma solidity ^0.8.4;
                                    /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
                                    /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SafeTransferLib.sol)
                                    /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol)
                                    /// @author Permit2 operations from (https://github.com/Uniswap/permit2/blob/main/src/libraries/Permit2Lib.sol)
                                    ///
                                    /// @dev Note:
                                    /// - For ETH transfers, please use `forceSafeTransferETH` for DoS protection.
                                    library SafeTransferLib {
                                        /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                        /*                       CUSTOM ERRORS                        */
                                        /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                        /// @dev The ETH transfer has failed.
                                        error ETHTransferFailed();
                                        /// @dev The ERC20 `transferFrom` has failed.
                                        error TransferFromFailed();
                                        /// @dev The ERC20 `transfer` has failed.
                                        error TransferFailed();
                                        /// @dev The ERC20 `approve` has failed.
                                        error ApproveFailed();
                                        /// @dev The ERC20 `totalSupply` query has failed.
                                        error TotalSupplyQueryFailed();
                                        /// @dev The Permit2 operation has failed.
                                        error Permit2Failed();
                                        /// @dev The Permit2 amount must be less than `2**160 - 1`.
                                        error Permit2AmountOverflow();
                                        /// @dev The Permit2 approve operation has failed.
                                        error Permit2ApproveFailed();
                                        /// @dev The Permit2 lockdown operation has failed.
                                        error Permit2LockdownFailed();
                                        /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                        /*                         CONSTANTS                          */
                                        /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                        /// @dev Suggested gas stipend for contract receiving ETH that disallows any storage writes.
                                        uint256 internal constant GAS_STIPEND_NO_STORAGE_WRITES = 2300;
                                        /// @dev Suggested gas stipend for contract receiving ETH to perform a few
                                        /// storage reads and writes, but low enough to prevent griefing.
                                        uint256 internal constant GAS_STIPEND_NO_GRIEF = 100000;
                                        /// @dev The unique EIP-712 domain domain separator for the DAI token contract.
                                        bytes32 internal constant DAI_DOMAIN_SEPARATOR =
                                            0xdbb8cf42e1ecb028be3f3dbc922e1d878b963f411dc388ced501601c60f7c6f7;
                                        /// @dev The address for the WETH9 contract on Ethereum mainnet.
                                        address internal constant WETH9 = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
                                        /// @dev The canonical Permit2 address.
                                        /// [Github](https://github.com/Uniswap/permit2)
                                        /// [Etherscan](https://etherscan.io/address/0x000000000022D473030F116dDEE9F6B43aC78BA3)
                                        address internal constant PERMIT2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3;
                                        /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                        /*                       ETH OPERATIONS                       */
                                        /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                        // If the ETH transfer MUST succeed with a reasonable gas budget, use the force variants.
                                        //
                                        // The regular variants:
                                        // - Forwards all remaining gas to the target.
                                        // - Reverts if the target reverts.
                                        // - Reverts if the current contract has insufficient balance.
                                        //
                                        // The force variants:
                                        // - Forwards with an optional gas stipend
                                        //   (defaults to `GAS_STIPEND_NO_GRIEF`, which is sufficient for most cases).
                                        // - If the target reverts, or if the gas stipend is exhausted,
                                        //   creates a temporary contract to force send the ETH via `SELFDESTRUCT`.
                                        //   Future compatible with `SENDALL`: https://eips.ethereum.org/EIPS/eip-4758.
                                        // - Reverts if the current contract has insufficient balance.
                                        //
                                        // The try variants:
                                        // - Forwards with a mandatory gas stipend.
                                        // - Instead of reverting, returns whether the transfer succeeded.
                                        /// @dev Sends `amount` (in wei) ETH to `to`.
                                        function safeTransferETH(address to, uint256 amount) internal {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                if iszero(call(gas(), to, amount, codesize(), 0x00, codesize(), 0x00)) {
                                                    mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                                                    revert(0x1c, 0x04)
                                                }
                                            }
                                        }
                                        /// @dev Sends all the ETH in the current contract to `to`.
                                        function safeTransferAllETH(address to) internal {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                // Transfer all the ETH and check if it succeeded or not.
                                                if iszero(call(gas(), to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
                                                    mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                                                    revert(0x1c, 0x04)
                                                }
                                            }
                                        }
                                        /// @dev Force sends `amount` (in wei) ETH to `to`, with a `gasStipend`.
                                        function forceSafeTransferETH(address to, uint256 amount, uint256 gasStipend) internal {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                if lt(selfbalance(), amount) {
                                                    mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                                                    revert(0x1c, 0x04)
                                                }
                                                if iszero(call(gasStipend, to, amount, codesize(), 0x00, codesize(), 0x00)) {
                                                    mstore(0x00, to) // Store the address in scratch space.
                                                    mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                                                    mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                                                    if iszero(create(amount, 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
                                                }
                                            }
                                        }
                                        /// @dev Force sends all the ETH in the current contract to `to`, with a `gasStipend`.
                                        function forceSafeTransferAllETH(address to, uint256 gasStipend) internal {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                if iszero(call(gasStipend, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
                                                    mstore(0x00, to) // Store the address in scratch space.
                                                    mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                                                    mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                                                    if iszero(create(selfbalance(), 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
                                                }
                                            }
                                        }
                                        /// @dev Force sends `amount` (in wei) ETH to `to`, with `GAS_STIPEND_NO_GRIEF`.
                                        function forceSafeTransferETH(address to, uint256 amount) internal {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                if lt(selfbalance(), amount) {
                                                    mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                                                    revert(0x1c, 0x04)
                                                }
                                                if iszero(call(GAS_STIPEND_NO_GRIEF, to, amount, codesize(), 0x00, codesize(), 0x00)) {
                                                    mstore(0x00, to) // Store the address in scratch space.
                                                    mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                                                    mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                                                    if iszero(create(amount, 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
                                                }
                                            }
                                        }
                                        /// @dev Force sends all the ETH in the current contract to `to`, with `GAS_STIPEND_NO_GRIEF`.
                                        function forceSafeTransferAllETH(address to) internal {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                // forgefmt: disable-next-item
                                                if iszero(call(GAS_STIPEND_NO_GRIEF, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
                                                    mstore(0x00, to) // Store the address in scratch space.
                                                    mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                                                    mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                                                    if iszero(create(selfbalance(), 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
                                                }
                                            }
                                        }
                                        /// @dev Sends `amount` (in wei) ETH to `to`, with a `gasStipend`.
                                        function trySafeTransferETH(address to, uint256 amount, uint256 gasStipend)
                                            internal
                                            returns (bool success)
                                        {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                success := call(gasStipend, to, amount, codesize(), 0x00, codesize(), 0x00)
                                            }
                                        }
                                        /// @dev Sends all the ETH in the current contract to `to`, with a `gasStipend`.
                                        function trySafeTransferAllETH(address to, uint256 gasStipend)
                                            internal
                                            returns (bool success)
                                        {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                success := call(gasStipend, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)
                                            }
                                        }
                                        /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                        /*                      ERC20 OPERATIONS                      */
                                        /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                        /// @dev Sends `amount` of ERC20 `token` from `from` to `to`.
                                        /// Reverts upon failure.
                                        ///
                                        /// The `from` account must have at least `amount` approved for
                                        /// the current contract to manage.
                                        function safeTransferFrom(address token, address from, address to, uint256 amount) internal {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let m := mload(0x40) // Cache the free memory pointer.
                                                mstore(0x60, amount) // Store the `amount` argument.
                                                mstore(0x40, to) // Store the `to` argument.
                                                mstore(0x2c, shl(96, from)) // Store the `from` argument.
                                                mstore(0x0c, 0x23b872dd000000000000000000000000) // `transferFrom(address,address,uint256)`.
                                                let success := call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20)
                                                if iszero(and(eq(mload(0x00), 1), success)) {
                                                    if iszero(lt(or(iszero(extcodesize(token)), returndatasize()), success)) {
                                                        mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
                                                        revert(0x1c, 0x04)
                                                    }
                                                }
                                                mstore(0x60, 0) // Restore the zero slot to zero.
                                                mstore(0x40, m) // Restore the free memory pointer.
                                            }
                                        }
                                        /// @dev Sends `amount` of ERC20 `token` from `from` to `to`.
                                        ///
                                        /// The `from` account must have at least `amount` approved for the current contract to manage.
                                        function trySafeTransferFrom(address token, address from, address to, uint256 amount)
                                            internal
                                            returns (bool success)
                                        {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let m := mload(0x40) // Cache the free memory pointer.
                                                mstore(0x60, amount) // Store the `amount` argument.
                                                mstore(0x40, to) // Store the `to` argument.
                                                mstore(0x2c, shl(96, from)) // Store the `from` argument.
                                                mstore(0x0c, 0x23b872dd000000000000000000000000) // `transferFrom(address,address,uint256)`.
                                                success := call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20)
                                                if iszero(and(eq(mload(0x00), 1), success)) {
                                                    success := lt(or(iszero(extcodesize(token)), returndatasize()), success)
                                                }
                                                mstore(0x60, 0) // Restore the zero slot to zero.
                                                mstore(0x40, m) // Restore the free memory pointer.
                                            }
                                        }
                                        /// @dev Sends all of ERC20 `token` from `from` to `to`.
                                        /// Reverts upon failure.
                                        ///
                                        /// The `from` account must have their entire balance approved for the current contract to manage.
                                        function safeTransferAllFrom(address token, address from, address to)
                                            internal
                                            returns (uint256 amount)
                                        {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let m := mload(0x40) // Cache the free memory pointer.
                                                mstore(0x40, to) // Store the `to` argument.
                                                mstore(0x2c, shl(96, from)) // Store the `from` argument.
                                                mstore(0x0c, 0x70a08231000000000000000000000000) // `balanceOf(address)`.
                                                // Read the balance, reverting upon failure.
                                                if iszero(
                                                    and( // The arguments of `and` are evaluated from right to left.
                                                        gt(returndatasize(), 0x1f), // At least 32 bytes returned.
                                                        staticcall(gas(), token, 0x1c, 0x24, 0x60, 0x20)
                                                    )
                                                ) {
                                                    mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
                                                    revert(0x1c, 0x04)
                                                }
                                                mstore(0x00, 0x23b872dd) // `transferFrom(address,address,uint256)`.
                                                amount := mload(0x60) // The `amount` is already at 0x60. We'll need to return it.
                                                // Perform the transfer, reverting upon failure.
                                                let success := call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20)
                                                if iszero(and(eq(mload(0x00), 1), success)) {
                                                    if iszero(lt(or(iszero(extcodesize(token)), returndatasize()), success)) {
                                                        mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
                                                        revert(0x1c, 0x04)
                                                    }
                                                }
                                                mstore(0x60, 0) // Restore the zero slot to zero.
                                                mstore(0x40, m) // Restore the free memory pointer.
                                            }
                                        }
                                        /// @dev Sends `amount` of ERC20 `token` from the current contract to `to`.
                                        /// Reverts upon failure.
                                        function safeTransfer(address token, address to, uint256 amount) internal {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                mstore(0x14, to) // Store the `to` argument.
                                                mstore(0x34, amount) // Store the `amount` argument.
                                                mstore(0x00, 0xa9059cbb000000000000000000000000) // `transfer(address,uint256)`.
                                                // Perform the transfer, reverting upon failure.
                                                let success := call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                                                if iszero(and(eq(mload(0x00), 1), success)) {
                                                    if iszero(lt(or(iszero(extcodesize(token)), returndatasize()), success)) {
                                                        mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
                                                        revert(0x1c, 0x04)
                                                    }
                                                }
                                                mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
                                            }
                                        }
                                        /// @dev Sends all of ERC20 `token` from the current contract to `to`.
                                        /// Reverts upon failure.
                                        function safeTransferAll(address token, address to) internal returns (uint256 amount) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                mstore(0x00, 0x70a08231) // Store the function selector of `balanceOf(address)`.
                                                mstore(0x20, address()) // Store the address of the current contract.
                                                // Read the balance, reverting upon failure.
                                                if iszero(
                                                    and( // The arguments of `and` are evaluated from right to left.
                                                        gt(returndatasize(), 0x1f), // At least 32 bytes returned.
                                                        staticcall(gas(), token, 0x1c, 0x24, 0x34, 0x20)
                                                    )
                                                ) {
                                                    mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
                                                    revert(0x1c, 0x04)
                                                }
                                                mstore(0x14, to) // Store the `to` argument.
                                                amount := mload(0x34) // The `amount` is already at 0x34. We'll need to return it.
                                                mstore(0x00, 0xa9059cbb000000000000000000000000) // `transfer(address,uint256)`.
                                                // Perform the transfer, reverting upon failure.
                                                let success := call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                                                if iszero(and(eq(mload(0x00), 1), success)) {
                                                    if iszero(lt(or(iszero(extcodesize(token)), returndatasize()), success)) {
                                                        mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
                                                        revert(0x1c, 0x04)
                                                    }
                                                }
                                                mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
                                            }
                                        }
                                        /// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract.
                                        /// Reverts upon failure.
                                        function safeApprove(address token, address to, uint256 amount) internal {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                mstore(0x14, to) // Store the `to` argument.
                                                mstore(0x34, amount) // Store the `amount` argument.
                                                mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
                                                let success := call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                                                if iszero(and(eq(mload(0x00), 1), success)) {
                                                    if iszero(lt(or(iszero(extcodesize(token)), returndatasize()), success)) {
                                                        mstore(0x00, 0x3e3f8f73) // `ApproveFailed()`.
                                                        revert(0x1c, 0x04)
                                                    }
                                                }
                                                mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
                                            }
                                        }
                                        /// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract.
                                        /// If the initial attempt to approve fails, attempts to reset the approved amount to zero,
                                        /// then retries the approval again (some tokens, e.g. USDT, requires this).
                                        /// Reverts upon failure.
                                        function safeApproveWithRetry(address token, address to, uint256 amount) internal {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                mstore(0x14, to) // Store the `to` argument.
                                                mstore(0x34, amount) // Store the `amount` argument.
                                                mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
                                                // Perform the approval, retrying upon failure.
                                                let success := call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                                                if iszero(and(eq(mload(0x00), 1), success)) {
                                                    if iszero(lt(or(iszero(extcodesize(token)), returndatasize()), success)) {
                                                        mstore(0x34, 0) // Store 0 for the `amount`.
                                                        mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
                                                        pop(call(gas(), token, 0, 0x10, 0x44, codesize(), 0x00)) // Reset the approval.
                                                        mstore(0x34, amount) // Store back the original `amount`.
                                                        // Retry the approval, reverting upon failure.
                                                        success := call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                                                        if iszero(and(eq(mload(0x00), 1), success)) {
                                                            // Check the `extcodesize` again just in case the token selfdestructs lol.
                                                            if iszero(lt(or(iszero(extcodesize(token)), returndatasize()), success)) {
                                                                mstore(0x00, 0x3e3f8f73) // `ApproveFailed()`.
                                                                revert(0x1c, 0x04)
                                                            }
                                                        }
                                                    }
                                                }
                                                mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
                                            }
                                        }
                                        /// @dev Returns the amount of ERC20 `token` owned by `account`.
                                        /// Returns zero if the `token` does not exist.
                                        function balanceOf(address token, address account) internal view returns (uint256 amount) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                mstore(0x14, account) // Store the `account` argument.
                                                mstore(0x00, 0x70a08231000000000000000000000000) // `balanceOf(address)`.
                                                amount :=
                                                    mul( // The arguments of `mul` are evaluated from right to left.
                                                        mload(0x20),
                                                        and( // The arguments of `and` are evaluated from right to left.
                                                            gt(returndatasize(), 0x1f), // At least 32 bytes returned.
                                                            staticcall(gas(), token, 0x10, 0x24, 0x20, 0x20)
                                                        )
                                                    )
                                            }
                                        }
                                        /// @dev Returns the total supply of the `token`.
                                        /// Reverts if the token does not exist or does not implement `totalSupply()`.
                                        function totalSupply(address token) internal view returns (uint256 result) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                mstore(0x00, 0x18160ddd) // `totalSupply()`.
                                                if iszero(
                                                    and(gt(returndatasize(), 0x1f), staticcall(gas(), token, 0x1c, 0x04, 0x00, 0x20))
                                                ) {
                                                    mstore(0x00, 0x54cd9435) // `TotalSupplyQueryFailed()`.
                                                    revert(0x1c, 0x04)
                                                }
                                                result := mload(0x00)
                                            }
                                        }
                                        /// @dev Sends `amount` of ERC20 `token` from `from` to `to`.
                                        /// If the initial attempt fails, try to use Permit2 to transfer the token.
                                        /// Reverts upon failure.
                                        ///
                                        /// The `from` account must have at least `amount` approved for the current contract to manage.
                                        function safeTransferFrom2(address token, address from, address to, uint256 amount) internal {
                                            if (!trySafeTransferFrom(token, from, to, amount)) {
                                                permit2TransferFrom(token, from, to, amount);
                                            }
                                        }
                                        /// @dev Sends `amount` of ERC20 `token` from `from` to `to` via Permit2.
                                        /// Reverts upon failure.
                                        function permit2TransferFrom(address token, address from, address to, uint256 amount)
                                            internal
                                        {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let m := mload(0x40)
                                                mstore(add(m, 0x74), shr(96, shl(96, token)))
                                                mstore(add(m, 0x54), amount)
                                                mstore(add(m, 0x34), to)
                                                mstore(add(m, 0x20), shl(96, from))
                                                // `transferFrom(address,address,uint160,address)`.
                                                mstore(m, 0x36c78516000000000000000000000000)
                                                let p := PERMIT2
                                                let exists := eq(chainid(), 1)
                                                if iszero(exists) { exists := iszero(iszero(extcodesize(p))) }
                                                if iszero(
                                                    and(
                                                        call(gas(), p, 0, add(m, 0x10), 0x84, codesize(), 0x00),
                                                        lt(iszero(extcodesize(token)), exists) // Token has code and Permit2 exists.
                                                    )
                                                ) {
                                                    mstore(0x00, 0x7939f4248757f0fd) // `TransferFromFailed()` or `Permit2AmountOverflow()`.
                                                    revert(add(0x18, shl(2, iszero(iszero(shr(160, amount))))), 0x04)
                                                }
                                            }
                                        }
                                        /// @dev Permit a user to spend a given amount of
                                        /// another user's tokens via native EIP-2612 permit if possible, falling
                                        /// back to Permit2 if native permit fails or is not implemented on the token.
                                        function permit2(
                                            address token,
                                            address owner,
                                            address spender,
                                            uint256 amount,
                                            uint256 deadline,
                                            uint8 v,
                                            bytes32 r,
                                            bytes32 s
                                        ) internal {
                                            bool success;
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                for {} shl(96, xor(token, WETH9)) {} {
                                                    mstore(0x00, 0x3644e515) // `DOMAIN_SEPARATOR()`.
                                                    if iszero(
                                                        and( // The arguments of `and` are evaluated from right to left.
                                                            lt(iszero(mload(0x00)), eq(returndatasize(), 0x20)), // Returns 1 non-zero word.
                                                            // Gas stipend to limit gas burn for tokens that don't refund gas when
                                                            // an non-existing function is called. 5K should be enough for a SLOAD.
                                                            staticcall(5000, token, 0x1c, 0x04, 0x00, 0x20)
                                                        )
                                                    ) { break }
                                                    // After here, we can be sure that token is a contract.
                                                    let m := mload(0x40)
                                                    mstore(add(m, 0x34), spender)
                                                    mstore(add(m, 0x20), shl(96, owner))
                                                    mstore(add(m, 0x74), deadline)
                                                    if eq(mload(0x00), DAI_DOMAIN_SEPARATOR) {
                                                        mstore(0x14, owner)
                                                        mstore(0x00, 0x7ecebe00000000000000000000000000) // `nonces(address)`.
                                                        mstore(
                                                            add(m, 0x94),
                                                            lt(iszero(amount), staticcall(gas(), token, 0x10, 0x24, add(m, 0x54), 0x20))
                                                        )
                                                        mstore(m, 0x8fcbaf0c000000000000000000000000) // `IDAIPermit.permit`.
                                                        // `nonces` is already at `add(m, 0x54)`.
                                                        // `amount != 0` is already stored at `add(m, 0x94)`.
                                                        mstore(add(m, 0xb4), and(0xff, v))
                                                        mstore(add(m, 0xd4), r)
                                                        mstore(add(m, 0xf4), s)
                                                        success := call(gas(), token, 0, add(m, 0x10), 0x104, codesize(), 0x00)
                                                        break
                                                    }
                                                    mstore(m, 0xd505accf000000000000000000000000) // `IERC20Permit.permit`.
                                                    mstore(add(m, 0x54), amount)
                                                    mstore(add(m, 0x94), and(0xff, v))
                                                    mstore(add(m, 0xb4), r)
                                                    mstore(add(m, 0xd4), s)
                                                    success := call(gas(), token, 0, add(m, 0x10), 0xe4, codesize(), 0x00)
                                                    break
                                                }
                                            }
                                            if (!success) simplePermit2(token, owner, spender, amount, deadline, v, r, s);
                                        }
                                        /// @dev Simple permit on the Permit2 contract.
                                        function simplePermit2(
                                            address token,
                                            address owner,
                                            address spender,
                                            uint256 amount,
                                            uint256 deadline,
                                            uint8 v,
                                            bytes32 r,
                                            bytes32 s
                                        ) internal {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let m := mload(0x40)
                                                mstore(m, 0x927da105) // `allowance(address,address,address)`.
                                                {
                                                    let addressMask := shr(96, not(0))
                                                    mstore(add(m, 0x20), and(addressMask, owner))
                                                    mstore(add(m, 0x40), and(addressMask, token))
                                                    mstore(add(m, 0x60), and(addressMask, spender))
                                                    mstore(add(m, 0xc0), and(addressMask, spender))
                                                }
                                                let p := mul(PERMIT2, iszero(shr(160, amount)))
                                                if iszero(
                                                    and( // The arguments of `and` are evaluated from right to left.
                                                        gt(returndatasize(), 0x5f), // Returns 3 words: `amount`, `expiration`, `nonce`.
                                                        staticcall(gas(), p, add(m, 0x1c), 0x64, add(m, 0x60), 0x60)
                                                    )
                                                ) {
                                                    mstore(0x00, 0x6b836e6b8757f0fd) // `Permit2Failed()` or `Permit2AmountOverflow()`.
                                                    revert(add(0x18, shl(2, iszero(p))), 0x04)
                                                }
                                                mstore(m, 0x2b67b570) // `Permit2.permit` (PermitSingle variant).
                                                // `owner` is already `add(m, 0x20)`.
                                                // `token` is already at `add(m, 0x40)`.
                                                mstore(add(m, 0x60), amount)
                                                mstore(add(m, 0x80), 0xffffffffffff) // `expiration = type(uint48).max`.
                                                // `nonce` is already at `add(m, 0xa0)`.
                                                // `spender` is already at `add(m, 0xc0)`.
                                                mstore(add(m, 0xe0), deadline)
                                                mstore(add(m, 0x100), 0x100) // `signature` offset.
                                                mstore(add(m, 0x120), 0x41) // `signature` length.
                                                mstore(add(m, 0x140), r)
                                                mstore(add(m, 0x160), s)
                                                mstore(add(m, 0x180), shl(248, v))
                                                if iszero( // Revert if token does not have code, or if the call fails.
                                                mul(extcodesize(token), call(gas(), p, 0, add(m, 0x1c), 0x184, codesize(), 0x00))) {
                                                    mstore(0x00, 0x6b836e6b) // `Permit2Failed()`.
                                                    revert(0x1c, 0x04)
                                                }
                                            }
                                        }
                                        /// @dev Approves `spender` to spend `amount` of `token` for `address(this)`.
                                        function permit2Approve(address token, address spender, uint160 amount, uint48 expiration)
                                            internal
                                        {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let addressMask := shr(96, not(0))
                                                let m := mload(0x40)
                                                mstore(m, 0x87517c45) // `approve(address,address,uint160,uint48)`.
                                                mstore(add(m, 0x20), and(addressMask, token))
                                                mstore(add(m, 0x40), and(addressMask, spender))
                                                mstore(add(m, 0x60), and(addressMask, amount))
                                                mstore(add(m, 0x80), and(0xffffffffffff, expiration))
                                                if iszero(call(gas(), PERMIT2, 0, add(m, 0x1c), 0xa0, codesize(), 0x00)) {
                                                    mstore(0x00, 0x324f14ae) // `Permit2ApproveFailed()`.
                                                    revert(0x1c, 0x04)
                                                }
                                            }
                                        }
                                        /// @dev Revokes an approval for `token` and `spender` for `address(this)`.
                                        function permit2Lockdown(address token, address spender) internal {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let m := mload(0x40)
                                                mstore(m, 0xcc53287f) // `Permit2.lockdown`.
                                                mstore(add(m, 0x20), 0x20) // Offset of the `approvals`.
                                                mstore(add(m, 0x40), 1) // `approvals.length`.
                                                mstore(add(m, 0x60), shr(96, shl(96, token)))
                                                mstore(add(m, 0x80), shr(96, shl(96, spender)))
                                                if iszero(call(gas(), PERMIT2, 0, add(m, 0x1c), 0xa0, codesize(), 0x00)) {
                                                    mstore(0x00, 0x96b3de23) // `Permit2LockdownFailed()`.
                                                    revert(0x1c, 0x04)
                                                }
                                            }
                                        }
                                    }
                                    // SPDX-License-Identifier: MIT
                                    pragma solidity ^0.8.4;
                                    /// @notice Safe integer casting library that reverts on overflow.
                                    /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SafeCastLib.sol)
                                    /// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/math/SafeCast.sol)
                                    /// @dev Optimized for runtime gas for very high number of optimizer runs (i.e. >= 1000000).
                                    library SafeCastLib {
                                        /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                        /*                       CUSTOM ERRORS                        */
                                        /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                        /// @dev Unable to cast to the target type due to overflow.
                                        error Overflow();
                                        /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                        /*          UNSIGNED INTEGER SAFE CASTING OPERATIONS          */
                                        /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                        /// @dev Casts `x` to a uint8. Reverts on overflow.
                                        function toUint8(uint256 x) internal pure returns (uint8) {
                                            if (x >= 1 << 8) _revertOverflow();
                                            return uint8(x);
                                        }
                                        /// @dev Casts `x` to a uint16. Reverts on overflow.
                                        function toUint16(uint256 x) internal pure returns (uint16) {
                                            if (x >= 1 << 16) _revertOverflow();
                                            return uint16(x);
                                        }
                                        /// @dev Casts `x` to a uint24. Reverts on overflow.
                                        function toUint24(uint256 x) internal pure returns (uint24) {
                                            if (x >= 1 << 24) _revertOverflow();
                                            return uint24(x);
                                        }
                                        /// @dev Casts `x` to a uint32. Reverts on overflow.
                                        function toUint32(uint256 x) internal pure returns (uint32) {
                                            if (x >= 1 << 32) _revertOverflow();
                                            return uint32(x);
                                        }
                                        /// @dev Casts `x` to a uint40. Reverts on overflow.
                                        function toUint40(uint256 x) internal pure returns (uint40) {
                                            if (x >= 1 << 40) _revertOverflow();
                                            return uint40(x);
                                        }
                                        /// @dev Casts `x` to a uint48. Reverts on overflow.
                                        function toUint48(uint256 x) internal pure returns (uint48) {
                                            if (x >= 1 << 48) _revertOverflow();
                                            return uint48(x);
                                        }
                                        /// @dev Casts `x` to a uint56. Reverts on overflow.
                                        function toUint56(uint256 x) internal pure returns (uint56) {
                                            if (x >= 1 << 56) _revertOverflow();
                                            return uint56(x);
                                        }
                                        /// @dev Casts `x` to a uint64. Reverts on overflow.
                                        function toUint64(uint256 x) internal pure returns (uint64) {
                                            if (x >= 1 << 64) _revertOverflow();
                                            return uint64(x);
                                        }
                                        /// @dev Casts `x` to a uint72. Reverts on overflow.
                                        function toUint72(uint256 x) internal pure returns (uint72) {
                                            if (x >= 1 << 72) _revertOverflow();
                                            return uint72(x);
                                        }
                                        /// @dev Casts `x` to a uint80. Reverts on overflow.
                                        function toUint80(uint256 x) internal pure returns (uint80) {
                                            if (x >= 1 << 80) _revertOverflow();
                                            return uint80(x);
                                        }
                                        /// @dev Casts `x` to a uint88. Reverts on overflow.
                                        function toUint88(uint256 x) internal pure returns (uint88) {
                                            if (x >= 1 << 88) _revertOverflow();
                                            return uint88(x);
                                        }
                                        /// @dev Casts `x` to a uint96. Reverts on overflow.
                                        function toUint96(uint256 x) internal pure returns (uint96) {
                                            if (x >= 1 << 96) _revertOverflow();
                                            return uint96(x);
                                        }
                                        /// @dev Casts `x` to a uint104. Reverts on overflow.
                                        function toUint104(uint256 x) internal pure returns (uint104) {
                                            if (x >= 1 << 104) _revertOverflow();
                                            return uint104(x);
                                        }
                                        /// @dev Casts `x` to a uint112. Reverts on overflow.
                                        function toUint112(uint256 x) internal pure returns (uint112) {
                                            if (x >= 1 << 112) _revertOverflow();
                                            return uint112(x);
                                        }
                                        /// @dev Casts `x` to a uint120. Reverts on overflow.
                                        function toUint120(uint256 x) internal pure returns (uint120) {
                                            if (x >= 1 << 120) _revertOverflow();
                                            return uint120(x);
                                        }
                                        /// @dev Casts `x` to a uint128. Reverts on overflow.
                                        function toUint128(uint256 x) internal pure returns (uint128) {
                                            if (x >= 1 << 128) _revertOverflow();
                                            return uint128(x);
                                        }
                                        /// @dev Casts `x` to a uint136. Reverts on overflow.
                                        function toUint136(uint256 x) internal pure returns (uint136) {
                                            if (x >= 1 << 136) _revertOverflow();
                                            return uint136(x);
                                        }
                                        /// @dev Casts `x` to a uint144. Reverts on overflow.
                                        function toUint144(uint256 x) internal pure returns (uint144) {
                                            if (x >= 1 << 144) _revertOverflow();
                                            return uint144(x);
                                        }
                                        /// @dev Casts `x` to a uint152. Reverts on overflow.
                                        function toUint152(uint256 x) internal pure returns (uint152) {
                                            if (x >= 1 << 152) _revertOverflow();
                                            return uint152(x);
                                        }
                                        /// @dev Casts `x` to a uint160. Reverts on overflow.
                                        function toUint160(uint256 x) internal pure returns (uint160) {
                                            if (x >= 1 << 160) _revertOverflow();
                                            return uint160(x);
                                        }
                                        /// @dev Casts `x` to a uint168. Reverts on overflow.
                                        function toUint168(uint256 x) internal pure returns (uint168) {
                                            if (x >= 1 << 168) _revertOverflow();
                                            return uint168(x);
                                        }
                                        /// @dev Casts `x` to a uint176. Reverts on overflow.
                                        function toUint176(uint256 x) internal pure returns (uint176) {
                                            if (x >= 1 << 176) _revertOverflow();
                                            return uint176(x);
                                        }
                                        /// @dev Casts `x` to a uint184. Reverts on overflow.
                                        function toUint184(uint256 x) internal pure returns (uint184) {
                                            if (x >= 1 << 184) _revertOverflow();
                                            return uint184(x);
                                        }
                                        /// @dev Casts `x` to a uint192. Reverts on overflow.
                                        function toUint192(uint256 x) internal pure returns (uint192) {
                                            if (x >= 1 << 192) _revertOverflow();
                                            return uint192(x);
                                        }
                                        /// @dev Casts `x` to a uint200. Reverts on overflow.
                                        function toUint200(uint256 x) internal pure returns (uint200) {
                                            if (x >= 1 << 200) _revertOverflow();
                                            return uint200(x);
                                        }
                                        /// @dev Casts `x` to a uint208. Reverts on overflow.
                                        function toUint208(uint256 x) internal pure returns (uint208) {
                                            if (x >= 1 << 208) _revertOverflow();
                                            return uint208(x);
                                        }
                                        /// @dev Casts `x` to a uint216. Reverts on overflow.
                                        function toUint216(uint256 x) internal pure returns (uint216) {
                                            if (x >= 1 << 216) _revertOverflow();
                                            return uint216(x);
                                        }
                                        /// @dev Casts `x` to a uint224. Reverts on overflow.
                                        function toUint224(uint256 x) internal pure returns (uint224) {
                                            if (x >= 1 << 224) _revertOverflow();
                                            return uint224(x);
                                        }
                                        /// @dev Casts `x` to a uint232. Reverts on overflow.
                                        function toUint232(uint256 x) internal pure returns (uint232) {
                                            if (x >= 1 << 232) _revertOverflow();
                                            return uint232(x);
                                        }
                                        /// @dev Casts `x` to a uint240. Reverts on overflow.
                                        function toUint240(uint256 x) internal pure returns (uint240) {
                                            if (x >= 1 << 240) _revertOverflow();
                                            return uint240(x);
                                        }
                                        /// @dev Casts `x` to a uint248. Reverts on overflow.
                                        function toUint248(uint256 x) internal pure returns (uint248) {
                                            if (x >= 1 << 248) _revertOverflow();
                                            return uint248(x);
                                        }
                                        /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                        /*           SIGNED INTEGER SAFE CASTING OPERATIONS           */
                                        /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                        /// @dev Casts `x` to a int8. Reverts on overflow.
                                        function toInt8(int256 x) internal pure returns (int8) {
                                            unchecked {
                                                if (((1 << 7) + uint256(x)) >> 8 == uint256(0)) return int8(x);
                                                _revertOverflow();
                                            }
                                        }
                                        /// @dev Casts `x` to a int16. Reverts on overflow.
                                        function toInt16(int256 x) internal pure returns (int16) {
                                            unchecked {
                                                if (((1 << 15) + uint256(x)) >> 16 == uint256(0)) return int16(x);
                                                _revertOverflow();
                                            }
                                        }
                                        /// @dev Casts `x` to a int24. Reverts on overflow.
                                        function toInt24(int256 x) internal pure returns (int24) {
                                            unchecked {
                                                if (((1 << 23) + uint256(x)) >> 24 == uint256(0)) return int24(x);
                                                _revertOverflow();
                                            }
                                        }
                                        /// @dev Casts `x` to a int32. Reverts on overflow.
                                        function toInt32(int256 x) internal pure returns (int32) {
                                            unchecked {
                                                if (((1 << 31) + uint256(x)) >> 32 == uint256(0)) return int32(x);
                                                _revertOverflow();
                                            }
                                        }
                                        /// @dev Casts `x` to a int40. Reverts on overflow.
                                        function toInt40(int256 x) internal pure returns (int40) {
                                            unchecked {
                                                if (((1 << 39) + uint256(x)) >> 40 == uint256(0)) return int40(x);
                                                _revertOverflow();
                                            }
                                        }
                                        /// @dev Casts `x` to a int48. Reverts on overflow.
                                        function toInt48(int256 x) internal pure returns (int48) {
                                            unchecked {
                                                if (((1 << 47) + uint256(x)) >> 48 == uint256(0)) return int48(x);
                                                _revertOverflow();
                                            }
                                        }
                                        /// @dev Casts `x` to a int56. Reverts on overflow.
                                        function toInt56(int256 x) internal pure returns (int56) {
                                            unchecked {
                                                if (((1 << 55) + uint256(x)) >> 56 == uint256(0)) return int56(x);
                                                _revertOverflow();
                                            }
                                        }
                                        /// @dev Casts `x` to a int64. Reverts on overflow.
                                        function toInt64(int256 x) internal pure returns (int64) {
                                            unchecked {
                                                if (((1 << 63) + uint256(x)) >> 64 == uint256(0)) return int64(x);
                                                _revertOverflow();
                                            }
                                        }
                                        /// @dev Casts `x` to a int72. Reverts on overflow.
                                        function toInt72(int256 x) internal pure returns (int72) {
                                            unchecked {
                                                if (((1 << 71) + uint256(x)) >> 72 == uint256(0)) return int72(x);
                                                _revertOverflow();
                                            }
                                        }
                                        /// @dev Casts `x` to a int80. Reverts on overflow.
                                        function toInt80(int256 x) internal pure returns (int80) {
                                            unchecked {
                                                if (((1 << 79) + uint256(x)) >> 80 == uint256(0)) return int80(x);
                                                _revertOverflow();
                                            }
                                        }
                                        /// @dev Casts `x` to a int88. Reverts on overflow.
                                        function toInt88(int256 x) internal pure returns (int88) {
                                            unchecked {
                                                if (((1 << 87) + uint256(x)) >> 88 == uint256(0)) return int88(x);
                                                _revertOverflow();
                                            }
                                        }
                                        /// @dev Casts `x` to a int96. Reverts on overflow.
                                        function toInt96(int256 x) internal pure returns (int96) {
                                            unchecked {
                                                if (((1 << 95) + uint256(x)) >> 96 == uint256(0)) return int96(x);
                                                _revertOverflow();
                                            }
                                        }
                                        /// @dev Casts `x` to a int104. Reverts on overflow.
                                        function toInt104(int256 x) internal pure returns (int104) {
                                            unchecked {
                                                if (((1 << 103) + uint256(x)) >> 104 == uint256(0)) return int104(x);
                                                _revertOverflow();
                                            }
                                        }
                                        /// @dev Casts `x` to a int112. Reverts on overflow.
                                        function toInt112(int256 x) internal pure returns (int112) {
                                            unchecked {
                                                if (((1 << 111) + uint256(x)) >> 112 == uint256(0)) return int112(x);
                                                _revertOverflow();
                                            }
                                        }
                                        /// @dev Casts `x` to a int120. Reverts on overflow.
                                        function toInt120(int256 x) internal pure returns (int120) {
                                            unchecked {
                                                if (((1 << 119) + uint256(x)) >> 120 == uint256(0)) return int120(x);
                                                _revertOverflow();
                                            }
                                        }
                                        /// @dev Casts `x` to a int128. Reverts on overflow.
                                        function toInt128(int256 x) internal pure returns (int128) {
                                            unchecked {
                                                if (((1 << 127) + uint256(x)) >> 128 == uint256(0)) return int128(x);
                                                _revertOverflow();
                                            }
                                        }
                                        /// @dev Casts `x` to a int136. Reverts on overflow.
                                        function toInt136(int256 x) internal pure returns (int136) {
                                            unchecked {
                                                if (((1 << 135) + uint256(x)) >> 136 == uint256(0)) return int136(x);
                                                _revertOverflow();
                                            }
                                        }
                                        /// @dev Casts `x` to a int144. Reverts on overflow.
                                        function toInt144(int256 x) internal pure returns (int144) {
                                            unchecked {
                                                if (((1 << 143) + uint256(x)) >> 144 == uint256(0)) return int144(x);
                                                _revertOverflow();
                                            }
                                        }
                                        /// @dev Casts `x` to a int152. Reverts on overflow.
                                        function toInt152(int256 x) internal pure returns (int152) {
                                            unchecked {
                                                if (((1 << 151) + uint256(x)) >> 152 == uint256(0)) return int152(x);
                                                _revertOverflow();
                                            }
                                        }
                                        /// @dev Casts `x` to a int160. Reverts on overflow.
                                        function toInt160(int256 x) internal pure returns (int160) {
                                            unchecked {
                                                if (((1 << 159) + uint256(x)) >> 160 == uint256(0)) return int160(x);
                                                _revertOverflow();
                                            }
                                        }
                                        /// @dev Casts `x` to a int168. Reverts on overflow.
                                        function toInt168(int256 x) internal pure returns (int168) {
                                            unchecked {
                                                if (((1 << 167) + uint256(x)) >> 168 == uint256(0)) return int168(x);
                                                _revertOverflow();
                                            }
                                        }
                                        /// @dev Casts `x` to a int176. Reverts on overflow.
                                        function toInt176(int256 x) internal pure returns (int176) {
                                            unchecked {
                                                if (((1 << 175) + uint256(x)) >> 176 == uint256(0)) return int176(x);
                                                _revertOverflow();
                                            }
                                        }
                                        /// @dev Casts `x` to a int184. Reverts on overflow.
                                        function toInt184(int256 x) internal pure returns (int184) {
                                            unchecked {
                                                if (((1 << 183) + uint256(x)) >> 184 == uint256(0)) return int184(x);
                                                _revertOverflow();
                                            }
                                        }
                                        /// @dev Casts `x` to a int192. Reverts on overflow.
                                        function toInt192(int256 x) internal pure returns (int192) {
                                            unchecked {
                                                if (((1 << 191) + uint256(x)) >> 192 == uint256(0)) return int192(x);
                                                _revertOverflow();
                                            }
                                        }
                                        /// @dev Casts `x` to a int200. Reverts on overflow.
                                        function toInt200(int256 x) internal pure returns (int200) {
                                            unchecked {
                                                if (((1 << 199) + uint256(x)) >> 200 == uint256(0)) return int200(x);
                                                _revertOverflow();
                                            }
                                        }
                                        /// @dev Casts `x` to a int208. Reverts on overflow.
                                        function toInt208(int256 x) internal pure returns (int208) {
                                            unchecked {
                                                if (((1 << 207) + uint256(x)) >> 208 == uint256(0)) return int208(x);
                                                _revertOverflow();
                                            }
                                        }
                                        /// @dev Casts `x` to a int216. Reverts on overflow.
                                        function toInt216(int256 x) internal pure returns (int216) {
                                            unchecked {
                                                if (((1 << 215) + uint256(x)) >> 216 == uint256(0)) return int216(x);
                                                _revertOverflow();
                                            }
                                        }
                                        /// @dev Casts `x` to a int224. Reverts on overflow.
                                        function toInt224(int256 x) internal pure returns (int224) {
                                            unchecked {
                                                if (((1 << 223) + uint256(x)) >> 224 == uint256(0)) return int224(x);
                                                _revertOverflow();
                                            }
                                        }
                                        /// @dev Casts `x` to a int232. Reverts on overflow.
                                        function toInt232(int256 x) internal pure returns (int232) {
                                            unchecked {
                                                if (((1 << 231) + uint256(x)) >> 232 == uint256(0)) return int232(x);
                                                _revertOverflow();
                                            }
                                        }
                                        /// @dev Casts `x` to a int240. Reverts on overflow.
                                        function toInt240(int256 x) internal pure returns (int240) {
                                            unchecked {
                                                if (((1 << 239) + uint256(x)) >> 240 == uint256(0)) return int240(x);
                                                _revertOverflow();
                                            }
                                        }
                                        /// @dev Casts `x` to a int248. Reverts on overflow.
                                        function toInt248(int256 x) internal pure returns (int248) {
                                            unchecked {
                                                if (((1 << 247) + uint256(x)) >> 248 == uint256(0)) return int248(x);
                                                _revertOverflow();
                                            }
                                        }
                                        /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                        /*               OTHER SAFE CASTING OPERATIONS                */
                                        /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                        /// @dev Casts `x` to a int8. Reverts on overflow.
                                        function toInt8(uint256 x) internal pure returns (int8) {
                                            if (x >= 1 << 7) _revertOverflow();
                                            return int8(int256(x));
                                        }
                                        /// @dev Casts `x` to a int16. Reverts on overflow.
                                        function toInt16(uint256 x) internal pure returns (int16) {
                                            if (x >= 1 << 15) _revertOverflow();
                                            return int16(int256(x));
                                        }
                                        /// @dev Casts `x` to a int24. Reverts on overflow.
                                        function toInt24(uint256 x) internal pure returns (int24) {
                                            if (x >= 1 << 23) _revertOverflow();
                                            return int24(int256(x));
                                        }
                                        /// @dev Casts `x` to a int32. Reverts on overflow.
                                        function toInt32(uint256 x) internal pure returns (int32) {
                                            if (x >= 1 << 31) _revertOverflow();
                                            return int32(int256(x));
                                        }
                                        /// @dev Casts `x` to a int40. Reverts on overflow.
                                        function toInt40(uint256 x) internal pure returns (int40) {
                                            if (x >= 1 << 39) _revertOverflow();
                                            return int40(int256(x));
                                        }
                                        /// @dev Casts `x` to a int48. Reverts on overflow.
                                        function toInt48(uint256 x) internal pure returns (int48) {
                                            if (x >= 1 << 47) _revertOverflow();
                                            return int48(int256(x));
                                        }
                                        /// @dev Casts `x` to a int56. Reverts on overflow.
                                        function toInt56(uint256 x) internal pure returns (int56) {
                                            if (x >= 1 << 55) _revertOverflow();
                                            return int56(int256(x));
                                        }
                                        /// @dev Casts `x` to a int64. Reverts on overflow.
                                        function toInt64(uint256 x) internal pure returns (int64) {
                                            if (x >= 1 << 63) _revertOverflow();
                                            return int64(int256(x));
                                        }
                                        /// @dev Casts `x` to a int72. Reverts on overflow.
                                        function toInt72(uint256 x) internal pure returns (int72) {
                                            if (x >= 1 << 71) _revertOverflow();
                                            return int72(int256(x));
                                        }
                                        /// @dev Casts `x` to a int80. Reverts on overflow.
                                        function toInt80(uint256 x) internal pure returns (int80) {
                                            if (x >= 1 << 79) _revertOverflow();
                                            return int80(int256(x));
                                        }
                                        /// @dev Casts `x` to a int88. Reverts on overflow.
                                        function toInt88(uint256 x) internal pure returns (int88) {
                                            if (x >= 1 << 87) _revertOverflow();
                                            return int88(int256(x));
                                        }
                                        /// @dev Casts `x` to a int96. Reverts on overflow.
                                        function toInt96(uint256 x) internal pure returns (int96) {
                                            if (x >= 1 << 95) _revertOverflow();
                                            return int96(int256(x));
                                        }
                                        /// @dev Casts `x` to a int104. Reverts on overflow.
                                        function toInt104(uint256 x) internal pure returns (int104) {
                                            if (x >= 1 << 103) _revertOverflow();
                                            return int104(int256(x));
                                        }
                                        /// @dev Casts `x` to a int112. Reverts on overflow.
                                        function toInt112(uint256 x) internal pure returns (int112) {
                                            if (x >= 1 << 111) _revertOverflow();
                                            return int112(int256(x));
                                        }
                                        /// @dev Casts `x` to a int120. Reverts on overflow.
                                        function toInt120(uint256 x) internal pure returns (int120) {
                                            if (x >= 1 << 119) _revertOverflow();
                                            return int120(int256(x));
                                        }
                                        /// @dev Casts `x` to a int128. Reverts on overflow.
                                        function toInt128(uint256 x) internal pure returns (int128) {
                                            if (x >= 1 << 127) _revertOverflow();
                                            return int128(int256(x));
                                        }
                                        /// @dev Casts `x` to a int136. Reverts on overflow.
                                        function toInt136(uint256 x) internal pure returns (int136) {
                                            if (x >= 1 << 135) _revertOverflow();
                                            return int136(int256(x));
                                        }
                                        /// @dev Casts `x` to a int144. Reverts on overflow.
                                        function toInt144(uint256 x) internal pure returns (int144) {
                                            if (x >= 1 << 143) _revertOverflow();
                                            return int144(int256(x));
                                        }
                                        /// @dev Casts `x` to a int152. Reverts on overflow.
                                        function toInt152(uint256 x) internal pure returns (int152) {
                                            if (x >= 1 << 151) _revertOverflow();
                                            return int152(int256(x));
                                        }
                                        /// @dev Casts `x` to a int160. Reverts on overflow.
                                        function toInt160(uint256 x) internal pure returns (int160) {
                                            if (x >= 1 << 159) _revertOverflow();
                                            return int160(int256(x));
                                        }
                                        /// @dev Casts `x` to a int168. Reverts on overflow.
                                        function toInt168(uint256 x) internal pure returns (int168) {
                                            if (x >= 1 << 167) _revertOverflow();
                                            return int168(int256(x));
                                        }
                                        /// @dev Casts `x` to a int176. Reverts on overflow.
                                        function toInt176(uint256 x) internal pure returns (int176) {
                                            if (x >= 1 << 175) _revertOverflow();
                                            return int176(int256(x));
                                        }
                                        /// @dev Casts `x` to a int184. Reverts on overflow.
                                        function toInt184(uint256 x) internal pure returns (int184) {
                                            if (x >= 1 << 183) _revertOverflow();
                                            return int184(int256(x));
                                        }
                                        /// @dev Casts `x` to a int192. Reverts on overflow.
                                        function toInt192(uint256 x) internal pure returns (int192) {
                                            if (x >= 1 << 191) _revertOverflow();
                                            return int192(int256(x));
                                        }
                                        /// @dev Casts `x` to a int200. Reverts on overflow.
                                        function toInt200(uint256 x) internal pure returns (int200) {
                                            if (x >= 1 << 199) _revertOverflow();
                                            return int200(int256(x));
                                        }
                                        /// @dev Casts `x` to a int208. Reverts on overflow.
                                        function toInt208(uint256 x) internal pure returns (int208) {
                                            if (x >= 1 << 207) _revertOverflow();
                                            return int208(int256(x));
                                        }
                                        /// @dev Casts `x` to a int216. Reverts on overflow.
                                        function toInt216(uint256 x) internal pure returns (int216) {
                                            if (x >= 1 << 215) _revertOverflow();
                                            return int216(int256(x));
                                        }
                                        /// @dev Casts `x` to a int224. Reverts on overflow.
                                        function toInt224(uint256 x) internal pure returns (int224) {
                                            if (x >= 1 << 223) _revertOverflow();
                                            return int224(int256(x));
                                        }
                                        /// @dev Casts `x` to a int232. Reverts on overflow.
                                        function toInt232(uint256 x) internal pure returns (int232) {
                                            if (x >= 1 << 231) _revertOverflow();
                                            return int232(int256(x));
                                        }
                                        /// @dev Casts `x` to a int240. Reverts on overflow.
                                        function toInt240(uint256 x) internal pure returns (int240) {
                                            if (x >= 1 << 239) _revertOverflow();
                                            return int240(int256(x));
                                        }
                                        /// @dev Casts `x` to a int248. Reverts on overflow.
                                        function toInt248(uint256 x) internal pure returns (int248) {
                                            if (x >= 1 << 247) _revertOverflow();
                                            return int248(int256(x));
                                        }
                                        /// @dev Casts `x` to a int256. Reverts on overflow.
                                        function toInt256(uint256 x) internal pure returns (int256) {
                                            if (int256(x) >= 0) return int256(x);
                                            _revertOverflow();
                                        }
                                        /// @dev Casts `x` to a uint256. Reverts on overflow.
                                        function toUint256(int256 x) internal pure returns (uint256) {
                                            if (x >= 0) return uint256(x);
                                            _revertOverflow();
                                        }
                                        /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                        /*                      PRIVATE HELPERS                       */
                                        /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                        function _revertOverflow() private pure {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                // Store the function selector of `Overflow()`.
                                                mstore(0x00, 0x35278d12)
                                                // Revert with (offset, size).
                                                revert(0x1c, 0x04)
                                            }
                                        }
                                    }
                                    // SPDX-License-Identifier: UNLICENSED
                                    pragma solidity =0.8.28;
                                    import {IExposedStorage} from "../interfaces/IExposedStorage.sol";
                                    abstract contract ExposedStorage is IExposedStorage {
                                        function sload() external view {
                                            assembly ("memory-safe") {
                                                for { let i := 4 } lt(i, calldatasize()) { i := add(i, 32) } { mstore(sub(i, 4), sload(calldataload(i))) }
                                                return(0, sub(calldatasize(), 4))
                                            }
                                        }
                                        function tload() external view {
                                            assembly ("memory-safe") {
                                                for { let i := 4 } lt(i, calldatasize()) { i := add(i, 32) } { mstore(sub(i, 4), tload(calldataload(i))) }
                                                return(0, sub(calldatasize(), 4))
                                            }
                                        }
                                    }
                                    // SPDX-License-Identifier: UNLICENSED
                                    pragma solidity =0.8.28;
                                    import {FixedPointMathLib} from "solady/utils/FixedPointMathLib.sol";
                                    import {SafeCastLib} from "solady/utils/SafeCastLib.sol";
                                    import {amount0Delta, amount1Delta, sortAndConvertToFixedSqrtRatios} from "./delta.sol";
                                    import {SqrtRatio} from "../types/sqrtRatio.sol";
                                    /**
                                     * @notice Returns the token0 and token1 delta owed for a given change in liquidity.
                                     * @param sqrtRatio        Current price (as a sqrt ratio).
                                     * @param liquidityDelta   Signed liquidity change; positive = added, negative = removed.
                                     * @param sqrtRatioLower   The lower bound of the price range (as a sqrt ratio).
                                     * @param sqrtRatioUpper   The upper bound of the price range (as a sqrt ratio).
                                     */
                                    function liquidityDeltaToAmountDelta(
                                        SqrtRatio sqrtRatio,
                                        int128 liquidityDelta,
                                        SqrtRatio sqrtRatioLower,
                                        SqrtRatio sqrtRatioUpper
                                    ) pure returns (int128 delta0, int128 delta1) {
                                        unchecked {
                                            if (liquidityDelta == 0) {
                                                return (0, 0);
                                            }
                                            bool isPositive = (liquidityDelta > 0);
                                            // type(uint256).max cast to int256 is -1
                                            int256 sign = int256(FixedPointMathLib.ternary(isPositive, 1, type(uint256).max));
                                            // absolute value of a int128 always fits in a uint128
                                            uint128 magnitude = uint128(FixedPointMathLib.abs(liquidityDelta));
                                            if (sqrtRatio <= sqrtRatioLower) {
                                                delta0 = SafeCastLib.toInt128(
                                                    sign * int256(uint256(amount0Delta(sqrtRatioLower, sqrtRatioUpper, magnitude, isPositive)))
                                                );
                                            } else if (sqrtRatio < sqrtRatioUpper) {
                                                delta0 = SafeCastLib.toInt128(
                                                    sign * int256(uint256(amount0Delta(sqrtRatio, sqrtRatioUpper, magnitude, isPositive)))
                                                );
                                                delta1 = SafeCastLib.toInt128(
                                                    sign * int256(uint256(amount1Delta(sqrtRatioLower, sqrtRatio, magnitude, isPositive)))
                                                );
                                            } else {
                                                delta1 = SafeCastLib.toInt128(
                                                    sign * int256(uint256(amount1Delta(sqrtRatioLower, sqrtRatioUpper, magnitude, isPositive)))
                                                );
                                            }
                                        }
                                    }
                                    function maxLiquidityForToken0(uint256 sqrtRatioLower, uint256 sqrtRatioUpper, uint128 amount) pure returns (uint256) {
                                        unchecked {
                                            uint256 numerator_1 = FixedPointMathLib.fullMulDivN(sqrtRatioLower, sqrtRatioUpper, 128);
                                            return FixedPointMathLib.fullMulDiv(amount, numerator_1, (sqrtRatioUpper - sqrtRatioLower));
                                        }
                                    }
                                    function maxLiquidityForToken1(uint256 sqrtRatioLower, uint256 sqrtRatioUpper, uint128 amount) pure returns (uint256) {
                                        unchecked {
                                            return (uint256(amount) << 128) / (sqrtRatioUpper - sqrtRatioLower);
                                        }
                                    }
                                    function maxLiquidity(
                                        SqrtRatio _sqrtRatio,
                                        SqrtRatio sqrtRatioA,
                                        SqrtRatio sqrtRatioB,
                                        uint128 amount0,
                                        uint128 amount1
                                    ) pure returns (uint128) {
                                        uint256 sqrtRatio = _sqrtRatio.toFixed();
                                        (uint256 sqrtRatioLower, uint256 sqrtRatioUpper) = sortAndConvertToFixedSqrtRatios(sqrtRatioA, sqrtRatioB);
                                        if (sqrtRatio <= sqrtRatioLower) {
                                            return uint128(
                                                FixedPointMathLib.min(type(uint128).max, maxLiquidityForToken0(sqrtRatioLower, sqrtRatioUpper, amount0))
                                            );
                                        } else if (sqrtRatio < sqrtRatioUpper) {
                                            return uint128(
                                                FixedPointMathLib.min(
                                                    type(uint128).max,
                                                    FixedPointMathLib.min(
                                                        maxLiquidityForToken0(sqrtRatio, sqrtRatioUpper, amount0),
                                                        maxLiquidityForToken1(sqrtRatioLower, sqrtRatio, amount1)
                                                    )
                                                )
                                            );
                                        } else {
                                            return uint128(
                                                FixedPointMathLib.min(type(uint128).max, maxLiquidityForToken1(sqrtRatioLower, sqrtRatioUpper, amount1))
                                            );
                                        }
                                    }
                                    error LiquidityDeltaOverflow();
                                    function addLiquidityDelta(uint128 liquidity, int128 liquidityDelta) pure returns (uint128 result) {
                                        assembly ("memory-safe") {
                                            result := add(liquidity, liquidityDelta)
                                            if and(result, shl(128, 0xffffffffffffffffffffffffffffffff)) {
                                                mstore(0, shl(224, 0x6d862c50))
                                                revert(0, 4)
                                            }
                                        }
                                    }
                                    function subLiquidityDelta(uint128 liquidity, int128 liquidityDelta) pure returns (uint128 result) {
                                        assembly ("memory-safe") {
                                            result := sub(liquidity, liquidityDelta)
                                            if and(result, shl(128, 0xffffffffffffffffffffffffffffffff)) {
                                                mstore(0, shl(224, 0x6d862c50))
                                                revert(0, 4)
                                            }
                                        }
                                    }
                                    // SPDX-License-Identifier: UNLICENSED
                                    pragma solidity =0.8.28;
                                    // Returns the fee to charge based on the amount, which is the fee (a 0.64 number) times the
                                    // amount, rounded up
                                    function computeFee(uint128 amount, uint64 fee) pure returns (uint128 result) {
                                        assembly ("memory-safe") {
                                            result := shr(64, add(mul(amount, fee), 0xffffffffffffffff))
                                        }
                                    }
                                    error AmountBeforeFeeOverflow();
                                    // Returns the amount before the fee is applied, which is the amount minus the fee, rounded up
                                    function amountBeforeFee(uint128 afterFee, uint64 fee) pure returns (uint128 result) {
                                        uint256 r;
                                        assembly ("memory-safe") {
                                            let v := shl(64, afterFee)
                                            let d := sub(0x10000000000000000, fee)
                                            let q := div(v, d)
                                            r := add(iszero(iszero(mod(v, d))), q)
                                        }
                                        if (r > type(uint128).max) {
                                            revert AmountBeforeFeeOverflow();
                                        }
                                        result = uint128(r);
                                    }
                                    // SPDX-License-Identifier: UNLICENSED
                                    pragma solidity =0.8.28;
                                    import {Bitmap} from "../math/bitmap.sol";
                                    import {MIN_TICK, MAX_TICK} from "../math/constants.sol";
                                    import {FixedPointMathLib} from "solady/utils/FixedPointMathLib.sol";
                                    // Returns the index of the word and the index _in_ that word which contains the bit representing whether the tick is initialized
                                    // Addition of the offset does two things--it centers the 0 tick within a single bitmap regardless of tick spacing,
                                    // and gives us a contiguous range of unsigned integers for all ticks
                                    // Always rounds the tick down to the nearest multiple of tickSpacing
                                    function tickToBitmapWordAndIndex(int32 tick, uint32 tickSpacing) pure returns (uint256 word, uint256 index) {
                                        assembly ("memory-safe") {
                                            let rawIndex := add(sub(sdiv(tick, tickSpacing), slt(smod(tick, tickSpacing), 0)), 89421695)
                                            word := div(rawIndex, 256)
                                            index := mod(rawIndex, 256)
                                        }
                                    }
                                    // Returns the index of the word and the index _in_ that word which contains the bit representing whether the tick is initialized
                                    /// @dev This function is only safe if tickSpacing is between 1 and MAX_TICK_SPACING, and word/index correspond to the results of tickToBitmapWordAndIndex for a tick between MIN_TICK and MAX_TICK
                                    function bitmapWordAndIndexToTick(uint256 word, uint256 index, uint32 tickSpacing) pure returns (int32 tick) {
                                        assembly ("memory-safe") {
                                            let rawIndex := add(mul(word, 256), index)
                                            tick := mul(sub(rawIndex, 89421695), tickSpacing)
                                        }
                                    }
                                    // Flips the tick in the bitmap from true to false or vice versa
                                    function flipTick(mapping(uint256 word => Bitmap bitmap) storage map, int32 tick, uint32 tickSpacing) {
                                        (uint256 word, uint256 index) = tickToBitmapWordAndIndex(tick, tickSpacing);
                                        assembly ("memory-safe") {
                                            mstore(0, word)
                                            mstore(32, map.slot)
                                            let k := keccak256(0, 64)
                                            let v := sload(k)
                                            sstore(k, xor(v, shl(index, 1)))
                                        }
                                    }
                                    function findNextInitializedTick(
                                        mapping(uint256 word => Bitmap bitmap) storage map,
                                        int32 fromTick,
                                        uint32 tickSpacing,
                                        uint256 skipAhead
                                    ) view returns (int32 nextTick, bool isInitialized) {
                                        unchecked {
                                            nextTick = fromTick;
                                            while (true) {
                                                // convert the given tick to the bitmap position of the next nearest potential initialized tick
                                                (uint256 word, uint256 index) = tickToBitmapWordAndIndex(nextTick + int32(tickSpacing), tickSpacing);
                                                // find the index of the previous tick in that word
                                                uint256 nextIndex = map[word].geSetBit(uint8(index));
                                                // if we found one, return it
                                                if (nextIndex != 256) {
                                                    (nextTick, isInitialized) = (bitmapWordAndIndexToTick(word, nextIndex, tickSpacing), true);
                                                    break;
                                                }
                                                // otherwise, return the tick of the most significant bit in the word
                                                nextTick = bitmapWordAndIndexToTick(word, 255, tickSpacing);
                                                if (nextTick >= MAX_TICK) {
                                                    nextTick = MAX_TICK;
                                                    break;
                                                }
                                                // if we are done searching, stop here
                                                if (skipAhead == 0) {
                                                    break;
                                                }
                                                skipAhead--;
                                            }
                                        }
                                    }
                                    function findPrevInitializedTick(
                                        mapping(uint256 word => Bitmap bitmap) storage map,
                                        int32 fromTick,
                                        uint32 tickSpacing,
                                        uint256 skipAhead
                                    ) view returns (int32 prevTick, bool isInitialized) {
                                        unchecked {
                                            prevTick = fromTick;
                                            while (true) {
                                                // convert the given tick to its bitmap position
                                                (uint256 word, uint256 index) = tickToBitmapWordAndIndex(prevTick, tickSpacing);
                                                // find the index of the previous tick in that word
                                                uint256 prevIndex = map[word].leSetBit(uint8(index));
                                                if (prevIndex != 256) {
                                                    (prevTick, isInitialized) = (bitmapWordAndIndexToTick(word, prevIndex, tickSpacing), true);
                                                    break;
                                                }
                                                prevTick = bitmapWordAndIndexToTick(word, 0, tickSpacing);
                                                if (prevTick <= MIN_TICK) {
                                                    prevTick = MIN_TICK;
                                                    break;
                                                }
                                                if (skipAhead == 0) {
                                                    break;
                                                }
                                                skipAhead--;
                                                prevTick--;
                                            }
                                        }
                                    }
                                    // SPDX-License-Identifier: UNLICENSED
                                    pragma solidity =0.8.28;
                                    import {CallPoints} from "../types/callPoints.sol";
                                    import {PoolKey} from "../types/poolKey.sol";
                                    import {PositionKey, Bounds} from "../types/positionKey.sol";
                                    import {FeesPerLiquidity} from "../types/feesPerLiquidity.sol";
                                    import {IExposedStorage} from "../interfaces/IExposedStorage.sol";
                                    import {IFlashAccountant} from "../interfaces/IFlashAccountant.sol";
                                    import {SqrtRatio} from "../types/sqrtRatio.sol";
                                    struct UpdatePositionParameters {
                                        bytes32 salt;
                                        Bounds bounds;
                                        int128 liquidityDelta;
                                    }
                                    interface IExtension {
                                        function beforeInitializePool(address caller, PoolKey calldata key, int32 tick) external;
                                        function afterInitializePool(address caller, PoolKey calldata key, int32 tick, SqrtRatio sqrtRatio) external;
                                        function beforeUpdatePosition(address locker, PoolKey memory poolKey, UpdatePositionParameters memory params)
                                            external;
                                        function afterUpdatePosition(
                                            address locker,
                                            PoolKey memory poolKey,
                                            UpdatePositionParameters memory params,
                                            int128 delta0,
                                            int128 delta1
                                        ) external;
                                        function beforeSwap(
                                            address locker,
                                            PoolKey memory poolKey,
                                            int128 amount,
                                            bool isToken1,
                                            SqrtRatio sqrtRatioLimit,
                                            uint256 skipAhead
                                        ) external;
                                        function afterSwap(
                                            address locker,
                                            PoolKey memory poolKey,
                                            int128 amount,
                                            bool isToken1,
                                            SqrtRatio sqrtRatioLimit,
                                            uint256 skipAhead,
                                            int128 delta0,
                                            int128 delta1
                                        ) external;
                                        function beforeCollectFees(address locker, PoolKey memory poolKey, bytes32 salt, Bounds memory bounds) external;
                                        function afterCollectFees(
                                            address locker,
                                            PoolKey memory poolKey,
                                            bytes32 salt,
                                            Bounds memory bounds,
                                            uint128 amount0,
                                            uint128 amount1
                                        ) external;
                                    }
                                    interface ICore is IFlashAccountant, IExposedStorage {
                                        event ProtocolFeesWithdrawn(address recipient, address token, uint256 amount);
                                        event ExtensionRegistered(address extension);
                                        event PoolInitialized(bytes32 poolId, PoolKey poolKey, int32 tick, SqrtRatio sqrtRatio);
                                        event PositionFeesCollected(bytes32 poolId, PositionKey positionKey, uint128 amount0, uint128 amount1);
                                        event FeesAccumulated(bytes32 poolId, uint128 amount0, uint128 amount1);
                                        event PositionUpdated(
                                            address locker, bytes32 poolId, UpdatePositionParameters params, int128 delta0, int128 delta1
                                        );
                                        // This error is thrown by swaps and deposits when this particular deployment of the contract is expired.
                                        error FailedRegisterInvalidCallPoints();
                                        error ExtensionAlreadyRegistered();
                                        error InsufficientSavedBalance();
                                        error PoolAlreadyInitialized();
                                        error ExtensionNotRegistered();
                                        error PoolNotInitialized();
                                        error MustCollectFeesBeforeWithdrawingAllLiquidity();
                                        error SqrtRatioLimitOutOfRange();
                                        error InvalidSqrtRatioLimit();
                                        error SavedBalanceTokensNotSorted();
                                        // Allows the owner of the contract to withdraw the protocol withdrawal fees collected
                                        // To withdraw the native token protocol fees, call with token = NATIVE_TOKEN_ADDRESS
                                        function withdrawProtocolFees(address recipient, address token, uint256 amount) external;
                                        // Extensions must call this function to become registered. The call points are validated against the caller address
                                        function registerExtension(CallPoints memory expectedCallPoints) external;
                                        // Sets the initial price for a new pool in terms of tick.
                                        function initializePool(PoolKey memory poolKey, int32 tick) external returns (SqrtRatio sqrtRatio);
                                        function prevInitializedTick(bytes32 poolId, int32 fromTick, uint32 tickSpacing, uint256 skipAhead)
                                            external
                                            view
                                            returns (int32 tick, bool isInitialized);
                                        function nextInitializedTick(bytes32 poolId, int32 fromTick, uint32 tickSpacing, uint256 skipAhead)
                                            external
                                            view
                                            returns (int32 tick, bool isInitialized);
                                        // Loads 2 tokens from the saved balances of the caller as payment in the current context.
                                        function load(address token0, address token1, bytes32 salt, uint128 amount0, uint128 amount1) external;
                                        // Saves an amount of 2 tokens to be used later, in a single slot.
                                        function save(address owner, address token0, address token1, bytes32 salt, uint128 amount0, uint128 amount1)
                                            external
                                            payable;
                                        // Returns the pool fees per liquidity inside the given bounds.
                                        function getPoolFeesPerLiquidityInside(PoolKey memory poolKey, Bounds memory bounds)
                                            external
                                            view
                                            returns (FeesPerLiquidity memory);
                                        // Accumulates tokens to fees of a pool. Only callable by the extension of the specified pool
                                        // key, i.e. the current locker _must_ be the extension.
                                        // The extension must call this function within a lock callback.
                                        function accumulateAsFees(PoolKey memory poolKey, uint128 amount0, uint128 amount1) external payable;
                                        function updatePosition(PoolKey memory poolKey, UpdatePositionParameters memory params)
                                            external
                                            payable
                                            returns (int128 delta0, int128 delta1);
                                        function collectFees(PoolKey memory poolKey, bytes32 salt, Bounds memory bounds)
                                            external
                                            returns (uint128 amount0, uint128 amount1);
                                        function swap_611415377(
                                            PoolKey memory poolKey,
                                            int128 amount,
                                            bool isToken1,
                                            SqrtRatio sqrtRatioLimit,
                                            uint256 skipAhead
                                        ) external payable returns (int128 delta0, int128 delta1);
                                    }
                                    // SPDX-License-Identifier: UNLICENSED
                                    pragma solidity =0.8.28;
                                    import {NATIVE_TOKEN_ADDRESS} from "../math/constants.sol";
                                    import {IPayer, IFlashAccountant} from "../interfaces/IFlashAccountant.sol";
                                    import {SafeTransferLib} from "solady/utils/SafeTransferLib.sol";
                                    abstract contract FlashAccountant is IFlashAccountant {
                                        // These offsets are selected so that they do not accidentally overlap with any other base contract's use of transient storage
                                        // cast keccak "FlashAccountant#CURRENT_LOCKER_SLOT"
                                        uint256 private constant _CURRENT_LOCKER_SLOT = 0x07cc7f5195d862f505d6b095c82f92e00cfc1766f5bca4383c28dc5fca1555fd;
                                        // cast keccak "FlashAccountant#NONZERO_DEBT_COUNT_OFFSET"
                                        uint256 private constant _NONZERO_DEBT_COUNT_OFFSET =
                                            0x7772acfd7e0f66ebb20a058830296c3dc1301b111d23348e1c961d324223190d;
                                        // cast keccak "FlashAccountant#DEBT_HASH_OFFSET"
                                        uint256 private constant _DEBT_HASH_OFFSET = 0x3fee1dc3ade45aa30d633b5b8645760533723e46597841ef1126c6577a091742;
                                        // cast keccak "FlashAccountant#PAY_REENTRANCY_LOCK"
                                        uint256 private constant _PAY_REENTRANCY_LOCK = 0xe1be600102d456bf2d4dee36e1641404df82292916888bf32557e00dfe166412;
                                        function _getLocker() internal view returns (uint256 id, address locker) {
                                            assembly ("memory-safe") {
                                                let current := tload(_CURRENT_LOCKER_SLOT)
                                                if iszero(current) {
                                                    // cast sig "NotLocked()"
                                                    mstore(0, shl(224, 0x1834e265))
                                                    revert(0, 4)
                                                }
                                                id := sub(shr(160, current), 1)
                                                locker := shr(96, shl(96, current))
                                            }
                                        }
                                        function _requireLocker() internal view returns (uint256 id, address locker) {
                                            (id, locker) = _getLocker();
                                            if (locker != msg.sender) revert LockerOnly();
                                        }
                                        // We assume debtChange cannot exceed a 128 bits value, even though it uses a int256 container
                                        // This must be enforced at the places it is called for this contract's safety
                                        // Negative means erasing debt, positive means adding debt
                                        function _accountDebt(uint256 id, address token, int256 debtChange) internal {
                                            assembly ("memory-safe") {
                                                if iszero(iszero(debtChange)) {
                                                    mstore(0, add(add(shl(160, id), token), _DEBT_HASH_OFFSET))
                                                    let deltaSlot := keccak256(0, 32)
                                                    let current := tload(deltaSlot)
                                                    // we know this never overflows because debtChange is only ever derived from 128 bit values in inheriting contracts
                                                    let next := add(current, debtChange)
                                                    let nextZero := iszero(next)
                                                    if xor(iszero(current), nextZero) {
                                                        let nzdCountSlot := add(id, _NONZERO_DEBT_COUNT_OFFSET)
                                                        tstore(nzdCountSlot, add(sub(tload(nzdCountSlot), nextZero), iszero(nextZero)))
                                                    }
                                                    tstore(deltaSlot, next)
                                                }
                                            }
                                        }
                                        // The entrypoint for all operations on the core contract
                                        function lock() external {
                                            assembly ("memory-safe") {
                                                let current := tload(_CURRENT_LOCKER_SLOT)
                                                let id := shr(160, current)
                                                // store the count
                                                tstore(_CURRENT_LOCKER_SLOT, or(shl(160, add(id, 1)), caller()))
                                                let free := mload(0x40)
                                                // Prepare call to locked(uint256) -> selector 0xb45a3c0e
                                                mstore(free, shl(224, 0xb45a3c0e))
                                                mstore(add(free, 4), id) // ID argument
                                                calldatacopy(add(free, 36), 4, sub(calldatasize(), 4))
                                                // Call the original caller with the packed data
                                                let success := call(gas(), caller(), 0, free, add(calldatasize(), 32), 0, 0)
                                                // Pass through the error on failure
                                                if iszero(success) {
                                                    returndatacopy(free, 0, returndatasize())
                                                    revert(free, returndatasize())
                                                }
                                                // Undo the "locker" state changes
                                                tstore(_CURRENT_LOCKER_SLOT, current)
                                                // Check if something is nonzero
                                                let nonzeroDebtCount := tload(add(_NONZERO_DEBT_COUNT_OFFSET, id))
                                                if nonzeroDebtCount {
                                                    // cast sig "DebtsNotZeroed(uint256)"
                                                    mstore(0x00, 0x9731ba37)
                                                    mstore(0x20, id)
                                                    revert(0x1c, 0x24)
                                                }
                                                // Directly return whatever the subcall returned
                                                returndatacopy(free, 0, returndatasize())
                                                return(free, returndatasize())
                                            }
                                        }
                                        // Allows forwarding the lock context to another actor, allowing them to act on the original locker's debt
                                        function forward(address to) external {
                                            (uint256 id, address locker) = _requireLocker();
                                            // update this lock's locker to the forwarded address for the duration of the forwarded
                                            // call, meaning only the forwarded address can update state
                                            assembly ("memory-safe") {
                                                tstore(_CURRENT_LOCKER_SLOT, or(shl(160, add(id, 1)), to))
                                                let free := mload(0x40)
                                                // Prepare call to forwarded(uint256,address) -> selector 0x64919dea
                                                mstore(free, shl(224, 0x64919dea))
                                                mstore(add(free, 4), id)
                                                mstore(add(free, 36), locker)
                                                calldatacopy(add(free, 68), 36, sub(calldatasize(), 36))
                                                // Call the forwardee with the packed data
                                                let success := call(gas(), to, 0, free, add(32, calldatasize()), 0, 0)
                                                // Pass through the error on failure
                                                if iszero(success) {
                                                    returndatacopy(free, 0, returndatasize())
                                                    revert(free, returndatasize())
                                                }
                                                tstore(_CURRENT_LOCKER_SLOT, or(shl(160, add(id, 1)), locker))
                                                // Directly return whatever the subcall returned
                                                returndatacopy(free, 0, returndatasize())
                                                return(free, returndatasize())
                                            }
                                        }
                                        function pay(address token) external returns (uint128 payment) {
                                            assembly ("memory-safe") {
                                                if tload(_PAY_REENTRANCY_LOCK) {
                                                    // cast sig "PayReentrance()"
                                                    mstore(0, 0xced108be)
                                                    revert(0x1c, 0x04)
                                                }
                                                tstore(_PAY_REENTRANCY_LOCK, 1)
                                            }
                                            (uint256 id,) = _getLocker();
                                            assembly ("memory-safe") {
                                                let free := mload(0x40)
                                                mstore(20, address()) // Store the `account` argument.
                                                mstore(0, 0x70a08231000000000000000000000000) // `balanceOf(address)`.
                                                let tokenBalanceBefore :=
                                                    mul( // The arguments of `mul` are evaluated from right to left.
                                                        mload(free),
                                                        and( // The arguments of `and` are evaluated from right to left.
                                                            gt(returndatasize(), 0x1f), // At least 32 bytes returned.
                                                            staticcall(gas(), token, 0x10, 0x24, free, 0x20)
                                                        )
                                                    )
                                                // Prepare call to "payCallback(uint256,address)"
                                                mstore(free, shl(224, 0x599d0714))
                                                mstore(add(free, 4), id)
                                                mstore(add(free, 36), token)
                                                // copy the token, plus anything else that they wanted to forward
                                                calldatacopy(add(free, 68), 36, sub(calldatasize(), 36))
                                                // Call the forwardee with the packed data
                                                // Pass through the error on failure
                                                if iszero(call(gas(), caller(), 0, free, add(32, calldatasize()), 0, 0)) {
                                                    returndatacopy(free, 0, returndatasize())
                                                    revert(free, returndatasize())
                                                }
                                                // Arguments are still in scratch, we don't need to rewrite them
                                                let tokenBalanceAfter :=
                                                    mul( // The arguments of `mul` are evaluated from right to left.
                                                        mload(0x20),
                                                        and( // The arguments of `and` are evaluated from right to left.
                                                            gt(returndatasize(), 0x1f), // At least 32 bytes returned.
                                                            staticcall(gas(), token, 0x10, 0x24, 0x20, 0x20)
                                                        )
                                                    )
                                                if lt(tokenBalanceAfter, tokenBalanceBefore) {
                                                    // cast sig "NoPaymentMade()"
                                                    mstore(0x00, 0x01b243b9)
                                                    revert(0x1c, 4)
                                                }
                                                payment := sub(tokenBalanceAfter, tokenBalanceBefore)
                                                // We never expect tokens to have this much total supply
                                                if gt(payment, 0xffffffffffffffffffffffffffffffff) {
                                                    // cast sig "PaymentOverflow()"
                                                    mstore(0x00, 0x9cac58ca)
                                                    revert(0x1c, 4)
                                                }
                                            }
                                            // The unary negative operator never fails because payment is less than max uint128
                                            unchecked {
                                                _accountDebt(id, token, -int256(uint256(payment)));
                                            }
                                            assembly ("memory-safe") {
                                                tstore(_PAY_REENTRANCY_LOCK, 0)
                                            }
                                        }
                                        function withdraw(address token, address recipient, uint128 amount) external {
                                            (uint256 id,) = _requireLocker();
                                            _accountDebt(id, token, int256(uint256(amount)));
                                            if (token == NATIVE_TOKEN_ADDRESS) {
                                                SafeTransferLib.safeTransferETH(recipient, amount);
                                            } else {
                                                SafeTransferLib.safeTransfer(token, recipient, amount);
                                            }
                                        }
                                        receive() external payable {
                                            (uint256 id,) = _getLocker();
                                            // Note because we use msg.value here, this contract can never be multicallable, i.e. it should never expose the ability
                                            //      to delegatecall itself more than once in a single call
                                            unchecked {
                                                // We never expect the native token to exceed this supply
                                                if (msg.value > type(uint128).max) revert PaymentOverflow();
                                                _accountDebt(id, NATIVE_TOKEN_ADDRESS, -int256(msg.value));
                                            }
                                        }
                                    }
                                    // SPDX-License-Identifier: MIT
                                    pragma solidity ^0.8.4;
                                    /// @notice Library for efficiently performing keccak256 hashes.
                                    /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/EfficientHashLib.sol)
                                    /// @dev To avoid stack-too-deep, you can use:
                                    /// ```
                                    /// bytes32[] memory buffer = EfficientHashLib.malloc(10);
                                    /// EfficientHashLib.set(buffer, 0, value0);
                                    /// ..
                                    /// EfficientHashLib.set(buffer, 9, value9);
                                    /// bytes32 finalHash = EfficientHashLib.hash(buffer);
                                    /// ```
                                    library EfficientHashLib {
                                        /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                        /*               MALLOC-LESS HASHING OPERATIONS               */
                                        /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                        /// @dev Returns `keccak256(abi.encode(v0))`.
                                        function hash(bytes32 v0) internal pure returns (bytes32 result) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                mstore(0x00, v0)
                                                result := keccak256(0x00, 0x20)
                                            }
                                        }
                                        /// @dev Returns `keccak256(abi.encode(v0))`.
                                        function hash(uint256 v0) internal pure returns (bytes32 result) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                mstore(0x00, v0)
                                                result := keccak256(0x00, 0x20)
                                            }
                                        }
                                        /// @dev Returns `keccak256(abi.encode(v0, v1))`.
                                        function hash(bytes32 v0, bytes32 v1) internal pure returns (bytes32 result) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                mstore(0x00, v0)
                                                mstore(0x20, v1)
                                                result := keccak256(0x00, 0x40)
                                            }
                                        }
                                        /// @dev Returns `keccak256(abi.encode(v0, v1))`.
                                        function hash(uint256 v0, uint256 v1) internal pure returns (bytes32 result) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                mstore(0x00, v0)
                                                mstore(0x20, v1)
                                                result := keccak256(0x00, 0x40)
                                            }
                                        }
                                        /// @dev Returns `keccak256(abi.encode(v0, v1, v2))`.
                                        function hash(bytes32 v0, bytes32 v1, bytes32 v2) internal pure returns (bytes32 result) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let m := mload(0x40)
                                                mstore(m, v0)
                                                mstore(add(m, 0x20), v1)
                                                mstore(add(m, 0x40), v2)
                                                result := keccak256(m, 0x60)
                                            }
                                        }
                                        /// @dev Returns `keccak256(abi.encode(v0, v1, v2))`.
                                        function hash(uint256 v0, uint256 v1, uint256 v2) internal pure returns (bytes32 result) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let m := mload(0x40)
                                                mstore(m, v0)
                                                mstore(add(m, 0x20), v1)
                                                mstore(add(m, 0x40), v2)
                                                result := keccak256(m, 0x60)
                                            }
                                        }
                                        /// @dev Returns `keccak256(abi.encode(v0, v1, v2, v3))`.
                                        function hash(bytes32 v0, bytes32 v1, bytes32 v2, bytes32 v3)
                                            internal
                                            pure
                                            returns (bytes32 result)
                                        {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let m := mload(0x40)
                                                mstore(m, v0)
                                                mstore(add(m, 0x20), v1)
                                                mstore(add(m, 0x40), v2)
                                                mstore(add(m, 0x60), v3)
                                                result := keccak256(m, 0x80)
                                            }
                                        }
                                        /// @dev Returns `keccak256(abi.encode(v0, v1, v2, v3))`.
                                        function hash(uint256 v0, uint256 v1, uint256 v2, uint256 v3)
                                            internal
                                            pure
                                            returns (bytes32 result)
                                        {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let m := mload(0x40)
                                                mstore(m, v0)
                                                mstore(add(m, 0x20), v1)
                                                mstore(add(m, 0x40), v2)
                                                mstore(add(m, 0x60), v3)
                                                result := keccak256(m, 0x80)
                                            }
                                        }
                                        /// @dev Returns `keccak256(abi.encode(v0, .., v4))`.
                                        function hash(bytes32 v0, bytes32 v1, bytes32 v2, bytes32 v3, bytes32 v4)
                                            internal
                                            pure
                                            returns (bytes32 result)
                                        {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let m := mload(0x40)
                                                mstore(m, v0)
                                                mstore(add(m, 0x20), v1)
                                                mstore(add(m, 0x40), v2)
                                                mstore(add(m, 0x60), v3)
                                                mstore(add(m, 0x80), v4)
                                                result := keccak256(m, 0xa0)
                                            }
                                        }
                                        /// @dev Returns `keccak256(abi.encode(v0, .., v4))`.
                                        function hash(uint256 v0, uint256 v1, uint256 v2, uint256 v3, uint256 v4)
                                            internal
                                            pure
                                            returns (bytes32 result)
                                        {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let m := mload(0x40)
                                                mstore(m, v0)
                                                mstore(add(m, 0x20), v1)
                                                mstore(add(m, 0x40), v2)
                                                mstore(add(m, 0x60), v3)
                                                mstore(add(m, 0x80), v4)
                                                result := keccak256(m, 0xa0)
                                            }
                                        }
                                        /// @dev Returns `keccak256(abi.encode(v0, .., v5))`.
                                        function hash(bytes32 v0, bytes32 v1, bytes32 v2, bytes32 v3, bytes32 v4, bytes32 v5)
                                            internal
                                            pure
                                            returns (bytes32 result)
                                        {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let m := mload(0x40)
                                                mstore(m, v0)
                                                mstore(add(m, 0x20), v1)
                                                mstore(add(m, 0x40), v2)
                                                mstore(add(m, 0x60), v3)
                                                mstore(add(m, 0x80), v4)
                                                mstore(add(m, 0xa0), v5)
                                                result := keccak256(m, 0xc0)
                                            }
                                        }
                                        /// @dev Returns `keccak256(abi.encode(v0, .., v5))`.
                                        function hash(uint256 v0, uint256 v1, uint256 v2, uint256 v3, uint256 v4, uint256 v5)
                                            internal
                                            pure
                                            returns (bytes32 result)
                                        {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let m := mload(0x40)
                                                mstore(m, v0)
                                                mstore(add(m, 0x20), v1)
                                                mstore(add(m, 0x40), v2)
                                                mstore(add(m, 0x60), v3)
                                                mstore(add(m, 0x80), v4)
                                                mstore(add(m, 0xa0), v5)
                                                result := keccak256(m, 0xc0)
                                            }
                                        }
                                        /// @dev Returns `keccak256(abi.encode(v0, .., v6))`.
                                        function hash(
                                            bytes32 v0,
                                            bytes32 v1,
                                            bytes32 v2,
                                            bytes32 v3,
                                            bytes32 v4,
                                            bytes32 v5,
                                            bytes32 v6
                                        ) internal pure returns (bytes32 result) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let m := mload(0x40)
                                                mstore(m, v0)
                                                mstore(add(m, 0x20), v1)
                                                mstore(add(m, 0x40), v2)
                                                mstore(add(m, 0x60), v3)
                                                mstore(add(m, 0x80), v4)
                                                mstore(add(m, 0xa0), v5)
                                                mstore(add(m, 0xc0), v6)
                                                result := keccak256(m, 0xe0)
                                            }
                                        }
                                        /// @dev Returns `keccak256(abi.encode(v0, .., v6))`.
                                        function hash(
                                            uint256 v0,
                                            uint256 v1,
                                            uint256 v2,
                                            uint256 v3,
                                            uint256 v4,
                                            uint256 v5,
                                            uint256 v6
                                        ) internal pure returns (bytes32 result) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let m := mload(0x40)
                                                mstore(m, v0)
                                                mstore(add(m, 0x20), v1)
                                                mstore(add(m, 0x40), v2)
                                                mstore(add(m, 0x60), v3)
                                                mstore(add(m, 0x80), v4)
                                                mstore(add(m, 0xa0), v5)
                                                mstore(add(m, 0xc0), v6)
                                                result := keccak256(m, 0xe0)
                                            }
                                        }
                                        /// @dev Returns `keccak256(abi.encode(v0, .., v7))`.
                                        function hash(
                                            bytes32 v0,
                                            bytes32 v1,
                                            bytes32 v2,
                                            bytes32 v3,
                                            bytes32 v4,
                                            bytes32 v5,
                                            bytes32 v6,
                                            bytes32 v7
                                        ) internal pure returns (bytes32 result) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let m := mload(0x40)
                                                mstore(m, v0)
                                                mstore(add(m, 0x20), v1)
                                                mstore(add(m, 0x40), v2)
                                                mstore(add(m, 0x60), v3)
                                                mstore(add(m, 0x80), v4)
                                                mstore(add(m, 0xa0), v5)
                                                mstore(add(m, 0xc0), v6)
                                                mstore(add(m, 0xe0), v7)
                                                result := keccak256(m, 0x100)
                                            }
                                        }
                                        /// @dev Returns `keccak256(abi.encode(v0, .., v7))`.
                                        function hash(
                                            uint256 v0,
                                            uint256 v1,
                                            uint256 v2,
                                            uint256 v3,
                                            uint256 v4,
                                            uint256 v5,
                                            uint256 v6,
                                            uint256 v7
                                        ) internal pure returns (bytes32 result) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let m := mload(0x40)
                                                mstore(m, v0)
                                                mstore(add(m, 0x20), v1)
                                                mstore(add(m, 0x40), v2)
                                                mstore(add(m, 0x60), v3)
                                                mstore(add(m, 0x80), v4)
                                                mstore(add(m, 0xa0), v5)
                                                mstore(add(m, 0xc0), v6)
                                                mstore(add(m, 0xe0), v7)
                                                result := keccak256(m, 0x100)
                                            }
                                        }
                                        /// @dev Returns `keccak256(abi.encode(v0, .., v8))`.
                                        function hash(
                                            bytes32 v0,
                                            bytes32 v1,
                                            bytes32 v2,
                                            bytes32 v3,
                                            bytes32 v4,
                                            bytes32 v5,
                                            bytes32 v6,
                                            bytes32 v7,
                                            bytes32 v8
                                        ) internal pure returns (bytes32 result) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let m := mload(0x40)
                                                mstore(m, v0)
                                                mstore(add(m, 0x20), v1)
                                                mstore(add(m, 0x40), v2)
                                                mstore(add(m, 0x60), v3)
                                                mstore(add(m, 0x80), v4)
                                                mstore(add(m, 0xa0), v5)
                                                mstore(add(m, 0xc0), v6)
                                                mstore(add(m, 0xe0), v7)
                                                mstore(add(m, 0x100), v8)
                                                result := keccak256(m, 0x120)
                                            }
                                        }
                                        /// @dev Returns `keccak256(abi.encode(v0, .., v8))`.
                                        function hash(
                                            uint256 v0,
                                            uint256 v1,
                                            uint256 v2,
                                            uint256 v3,
                                            uint256 v4,
                                            uint256 v5,
                                            uint256 v6,
                                            uint256 v7,
                                            uint256 v8
                                        ) internal pure returns (bytes32 result) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let m := mload(0x40)
                                                mstore(m, v0)
                                                mstore(add(m, 0x20), v1)
                                                mstore(add(m, 0x40), v2)
                                                mstore(add(m, 0x60), v3)
                                                mstore(add(m, 0x80), v4)
                                                mstore(add(m, 0xa0), v5)
                                                mstore(add(m, 0xc0), v6)
                                                mstore(add(m, 0xe0), v7)
                                                mstore(add(m, 0x100), v8)
                                                result := keccak256(m, 0x120)
                                            }
                                        }
                                        /// @dev Returns `keccak256(abi.encode(v0, .., v9))`.
                                        function hash(
                                            bytes32 v0,
                                            bytes32 v1,
                                            bytes32 v2,
                                            bytes32 v3,
                                            bytes32 v4,
                                            bytes32 v5,
                                            bytes32 v6,
                                            bytes32 v7,
                                            bytes32 v8,
                                            bytes32 v9
                                        ) internal pure returns (bytes32 result) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let m := mload(0x40)
                                                mstore(m, v0)
                                                mstore(add(m, 0x20), v1)
                                                mstore(add(m, 0x40), v2)
                                                mstore(add(m, 0x60), v3)
                                                mstore(add(m, 0x80), v4)
                                                mstore(add(m, 0xa0), v5)
                                                mstore(add(m, 0xc0), v6)
                                                mstore(add(m, 0xe0), v7)
                                                mstore(add(m, 0x100), v8)
                                                mstore(add(m, 0x120), v9)
                                                result := keccak256(m, 0x140)
                                            }
                                        }
                                        /// @dev Returns `keccak256(abi.encode(v0, .., v9))`.
                                        function hash(
                                            uint256 v0,
                                            uint256 v1,
                                            uint256 v2,
                                            uint256 v3,
                                            uint256 v4,
                                            uint256 v5,
                                            uint256 v6,
                                            uint256 v7,
                                            uint256 v8,
                                            uint256 v9
                                        ) internal pure returns (bytes32 result) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let m := mload(0x40)
                                                mstore(m, v0)
                                                mstore(add(m, 0x20), v1)
                                                mstore(add(m, 0x40), v2)
                                                mstore(add(m, 0x60), v3)
                                                mstore(add(m, 0x80), v4)
                                                mstore(add(m, 0xa0), v5)
                                                mstore(add(m, 0xc0), v6)
                                                mstore(add(m, 0xe0), v7)
                                                mstore(add(m, 0x100), v8)
                                                mstore(add(m, 0x120), v9)
                                                result := keccak256(m, 0x140)
                                            }
                                        }
                                        /// @dev Returns `keccak256(abi.encode(v0, .., v10))`.
                                        function hash(
                                            bytes32 v0,
                                            bytes32 v1,
                                            bytes32 v2,
                                            bytes32 v3,
                                            bytes32 v4,
                                            bytes32 v5,
                                            bytes32 v6,
                                            bytes32 v7,
                                            bytes32 v8,
                                            bytes32 v9,
                                            bytes32 v10
                                        ) internal pure returns (bytes32 result) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let m := mload(0x40)
                                                mstore(m, v0)
                                                mstore(add(m, 0x20), v1)
                                                mstore(add(m, 0x40), v2)
                                                mstore(add(m, 0x60), v3)
                                                mstore(add(m, 0x80), v4)
                                                mstore(add(m, 0xa0), v5)
                                                mstore(add(m, 0xc0), v6)
                                                mstore(add(m, 0xe0), v7)
                                                mstore(add(m, 0x100), v8)
                                                mstore(add(m, 0x120), v9)
                                                mstore(add(m, 0x140), v10)
                                                result := keccak256(m, 0x160)
                                            }
                                        }
                                        /// @dev Returns `keccak256(abi.encode(v0, .., v10))`.
                                        function hash(
                                            uint256 v0,
                                            uint256 v1,
                                            uint256 v2,
                                            uint256 v3,
                                            uint256 v4,
                                            uint256 v5,
                                            uint256 v6,
                                            uint256 v7,
                                            uint256 v8,
                                            uint256 v9,
                                            uint256 v10
                                        ) internal pure returns (bytes32 result) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let m := mload(0x40)
                                                mstore(m, v0)
                                                mstore(add(m, 0x20), v1)
                                                mstore(add(m, 0x40), v2)
                                                mstore(add(m, 0x60), v3)
                                                mstore(add(m, 0x80), v4)
                                                mstore(add(m, 0xa0), v5)
                                                mstore(add(m, 0xc0), v6)
                                                mstore(add(m, 0xe0), v7)
                                                mstore(add(m, 0x100), v8)
                                                mstore(add(m, 0x120), v9)
                                                mstore(add(m, 0x140), v10)
                                                result := keccak256(m, 0x160)
                                            }
                                        }
                                        /// @dev Returns `keccak256(abi.encode(v0, .., v11))`.
                                        function hash(
                                            bytes32 v0,
                                            bytes32 v1,
                                            bytes32 v2,
                                            bytes32 v3,
                                            bytes32 v4,
                                            bytes32 v5,
                                            bytes32 v6,
                                            bytes32 v7,
                                            bytes32 v8,
                                            bytes32 v9,
                                            bytes32 v10,
                                            bytes32 v11
                                        ) internal pure returns (bytes32 result) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let m := mload(0x40)
                                                mstore(m, v0)
                                                mstore(add(m, 0x20), v1)
                                                mstore(add(m, 0x40), v2)
                                                mstore(add(m, 0x60), v3)
                                                mstore(add(m, 0x80), v4)
                                                mstore(add(m, 0xa0), v5)
                                                mstore(add(m, 0xc0), v6)
                                                mstore(add(m, 0xe0), v7)
                                                mstore(add(m, 0x100), v8)
                                                mstore(add(m, 0x120), v9)
                                                mstore(add(m, 0x140), v10)
                                                mstore(add(m, 0x160), v11)
                                                result := keccak256(m, 0x180)
                                            }
                                        }
                                        /// @dev Returns `keccak256(abi.encode(v0, .., v11))`.
                                        function hash(
                                            uint256 v0,
                                            uint256 v1,
                                            uint256 v2,
                                            uint256 v3,
                                            uint256 v4,
                                            uint256 v5,
                                            uint256 v6,
                                            uint256 v7,
                                            uint256 v8,
                                            uint256 v9,
                                            uint256 v10,
                                            uint256 v11
                                        ) internal pure returns (bytes32 result) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let m := mload(0x40)
                                                mstore(m, v0)
                                                mstore(add(m, 0x20), v1)
                                                mstore(add(m, 0x40), v2)
                                                mstore(add(m, 0x60), v3)
                                                mstore(add(m, 0x80), v4)
                                                mstore(add(m, 0xa0), v5)
                                                mstore(add(m, 0xc0), v6)
                                                mstore(add(m, 0xe0), v7)
                                                mstore(add(m, 0x100), v8)
                                                mstore(add(m, 0x120), v9)
                                                mstore(add(m, 0x140), v10)
                                                mstore(add(m, 0x160), v11)
                                                result := keccak256(m, 0x180)
                                            }
                                        }
                                        /// @dev Returns `keccak256(abi.encode(v0, .., v12))`.
                                        function hash(
                                            bytes32 v0,
                                            bytes32 v1,
                                            bytes32 v2,
                                            bytes32 v3,
                                            bytes32 v4,
                                            bytes32 v5,
                                            bytes32 v6,
                                            bytes32 v7,
                                            bytes32 v8,
                                            bytes32 v9,
                                            bytes32 v10,
                                            bytes32 v11,
                                            bytes32 v12
                                        ) internal pure returns (bytes32 result) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let m := mload(0x40)
                                                mstore(m, v0)
                                                mstore(add(m, 0x20), v1)
                                                mstore(add(m, 0x40), v2)
                                                mstore(add(m, 0x60), v3)
                                                mstore(add(m, 0x80), v4)
                                                mstore(add(m, 0xa0), v5)
                                                mstore(add(m, 0xc0), v6)
                                                mstore(add(m, 0xe0), v7)
                                                mstore(add(m, 0x100), v8)
                                                mstore(add(m, 0x120), v9)
                                                mstore(add(m, 0x140), v10)
                                                mstore(add(m, 0x160), v11)
                                                mstore(add(m, 0x180), v12)
                                                result := keccak256(m, 0x1a0)
                                            }
                                        }
                                        /// @dev Returns `keccak256(abi.encode(v0, .., v12))`.
                                        function hash(
                                            uint256 v0,
                                            uint256 v1,
                                            uint256 v2,
                                            uint256 v3,
                                            uint256 v4,
                                            uint256 v5,
                                            uint256 v6,
                                            uint256 v7,
                                            uint256 v8,
                                            uint256 v9,
                                            uint256 v10,
                                            uint256 v11,
                                            uint256 v12
                                        ) internal pure returns (bytes32 result) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let m := mload(0x40)
                                                mstore(m, v0)
                                                mstore(add(m, 0x20), v1)
                                                mstore(add(m, 0x40), v2)
                                                mstore(add(m, 0x60), v3)
                                                mstore(add(m, 0x80), v4)
                                                mstore(add(m, 0xa0), v5)
                                                mstore(add(m, 0xc0), v6)
                                                mstore(add(m, 0xe0), v7)
                                                mstore(add(m, 0x100), v8)
                                                mstore(add(m, 0x120), v9)
                                                mstore(add(m, 0x140), v10)
                                                mstore(add(m, 0x160), v11)
                                                mstore(add(m, 0x180), v12)
                                                result := keccak256(m, 0x1a0)
                                            }
                                        }
                                        /// @dev Returns `keccak256(abi.encode(v0, .., v13))`.
                                        function hash(
                                            bytes32 v0,
                                            bytes32 v1,
                                            bytes32 v2,
                                            bytes32 v3,
                                            bytes32 v4,
                                            bytes32 v5,
                                            bytes32 v6,
                                            bytes32 v7,
                                            bytes32 v8,
                                            bytes32 v9,
                                            bytes32 v10,
                                            bytes32 v11,
                                            bytes32 v12,
                                            bytes32 v13
                                        ) internal pure returns (bytes32 result) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let m := mload(0x40)
                                                mstore(m, v0)
                                                mstore(add(m, 0x20), v1)
                                                mstore(add(m, 0x40), v2)
                                                mstore(add(m, 0x60), v3)
                                                mstore(add(m, 0x80), v4)
                                                mstore(add(m, 0xa0), v5)
                                                mstore(add(m, 0xc0), v6)
                                                mstore(add(m, 0xe0), v7)
                                                mstore(add(m, 0x100), v8)
                                                mstore(add(m, 0x120), v9)
                                                mstore(add(m, 0x140), v10)
                                                mstore(add(m, 0x160), v11)
                                                mstore(add(m, 0x180), v12)
                                                mstore(add(m, 0x1a0), v13)
                                                result := keccak256(m, 0x1c0)
                                            }
                                        }
                                        /// @dev Returns `keccak256(abi.encode(v0, .., v13))`.
                                        function hash(
                                            uint256 v0,
                                            uint256 v1,
                                            uint256 v2,
                                            uint256 v3,
                                            uint256 v4,
                                            uint256 v5,
                                            uint256 v6,
                                            uint256 v7,
                                            uint256 v8,
                                            uint256 v9,
                                            uint256 v10,
                                            uint256 v11,
                                            uint256 v12,
                                            uint256 v13
                                        ) internal pure returns (bytes32 result) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let m := mload(0x40)
                                                mstore(m, v0)
                                                mstore(add(m, 0x20), v1)
                                                mstore(add(m, 0x40), v2)
                                                mstore(add(m, 0x60), v3)
                                                mstore(add(m, 0x80), v4)
                                                mstore(add(m, 0xa0), v5)
                                                mstore(add(m, 0xc0), v6)
                                                mstore(add(m, 0xe0), v7)
                                                mstore(add(m, 0x100), v8)
                                                mstore(add(m, 0x120), v9)
                                                mstore(add(m, 0x140), v10)
                                                mstore(add(m, 0x160), v11)
                                                mstore(add(m, 0x180), v12)
                                                mstore(add(m, 0x1a0), v13)
                                                result := keccak256(m, 0x1c0)
                                            }
                                        }
                                        /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                        /*             BYTES32 BUFFER HASHING OPERATIONS              */
                                        /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                        /// @dev Returns `keccak256(abi.encode(buffer[0], .., buffer[buffer.length - 1]))`.
                                        function hash(bytes32[] memory buffer) internal pure returns (bytes32 result) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                result := keccak256(add(buffer, 0x20), shl(5, mload(buffer)))
                                            }
                                        }
                                        /// @dev Sets `buffer[i]` to `value`, without a bounds check.
                                        /// Returns the `buffer` for function chaining.
                                        function set(bytes32[] memory buffer, uint256 i, bytes32 value)
                                            internal
                                            pure
                                            returns (bytes32[] memory)
                                        {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                mstore(add(buffer, shl(5, add(1, i))), value)
                                            }
                                            return buffer;
                                        }
                                        /// @dev Sets `buffer[i]` to `value`, without a bounds check.
                                        /// Returns the `buffer` for function chaining.
                                        function set(bytes32[] memory buffer, uint256 i, uint256 value)
                                            internal
                                            pure
                                            returns (bytes32[] memory)
                                        {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                mstore(add(buffer, shl(5, add(1, i))), value)
                                            }
                                            return buffer;
                                        }
                                        /// @dev Returns `new bytes32[](n)`, without zeroing out the memory.
                                        function malloc(uint256 n) internal pure returns (bytes32[] memory buffer) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                buffer := mload(0x40)
                                                mstore(buffer, n)
                                                mstore(0x40, add(shl(5, add(1, n)), buffer))
                                            }
                                        }
                                        /// @dev Frees memory that has been allocated for `buffer`.
                                        /// No-op if `buffer.length` is zero, or if new memory has been allocated after `buffer`.
                                        function free(bytes32[] memory buffer) internal pure {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let n := mload(buffer)
                                                mstore(shl(6, lt(iszero(n), eq(add(shl(5, add(1, n)), buffer), mload(0x40)))), buffer)
                                            }
                                        }
                                        /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                        /*                      EQUALITY CHECKS                       */
                                        /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                        /// @dev Returns `a == abi.decode(b, (bytes32))`.
                                        function eq(bytes32 a, bytes memory b) internal pure returns (bool result) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                result := and(eq(0x20, mload(b)), eq(a, mload(add(b, 0x20))))
                                            }
                                        }
                                        /// @dev Returns `abi.decode(a, (bytes32)) == a`.
                                        function eq(bytes memory a, bytes32 b) internal pure returns (bool result) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                result := and(eq(0x20, mload(a)), eq(b, mload(add(a, 0x20))))
                                            }
                                        }
                                        /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                        /*               BYTE SLICE HASHING OPERATIONS                */
                                        /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                        /// @dev Returns the keccak256 of the slice from `start` to `end` (exclusive).
                                        /// `start` and `end` are byte offsets.
                                        function hash(bytes memory b, uint256 start, uint256 end)
                                            internal
                                            pure
                                            returns (bytes32 result)
                                        {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let n := mload(b)
                                                end := xor(end, mul(xor(end, n), lt(n, end)))
                                                start := xor(start, mul(xor(start, n), lt(n, start)))
                                                result := keccak256(add(add(b, 0x20), start), mul(gt(end, start), sub(end, start)))
                                            }
                                        }
                                        /// @dev Returns the keccak256 of the slice from `start` to the end of the bytes.
                                        function hash(bytes memory b, uint256 start) internal pure returns (bytes32 result) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let n := mload(b)
                                                start := xor(start, mul(xor(start, n), lt(n, start)))
                                                result := keccak256(add(add(b, 0x20), start), mul(gt(n, start), sub(n, start)))
                                            }
                                        }
                                        /// @dev Returns the keccak256 of the bytes.
                                        function hash(bytes memory b) internal pure returns (bytes32 result) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                result := keccak256(add(b, 0x20), mload(b))
                                            }
                                        }
                                        /// @dev Returns the keccak256 of the slice from `start` to `end` (exclusive).
                                        /// `start` and `end` are byte offsets.
                                        function hashCalldata(bytes calldata b, uint256 start, uint256 end)
                                            internal
                                            pure
                                            returns (bytes32 result)
                                        {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                end := xor(end, mul(xor(end, b.length), lt(b.length, end)))
                                                start := xor(start, mul(xor(start, b.length), lt(b.length, start)))
                                                let n := mul(gt(end, start), sub(end, start))
                                                calldatacopy(mload(0x40), add(b.offset, start), n)
                                                result := keccak256(mload(0x40), n)
                                            }
                                        }
                                        /// @dev Returns the keccak256 of the slice from `start` to the end of the bytes.
                                        function hashCalldata(bytes calldata b, uint256 start) internal pure returns (bytes32 result) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                start := xor(start, mul(xor(start, b.length), lt(b.length, start)))
                                                let n := mul(gt(b.length, start), sub(b.length, start))
                                                calldatacopy(mload(0x40), add(b.offset, start), n)
                                                result := keccak256(mload(0x40), n)
                                            }
                                        }
                                        /// @dev Returns the keccak256 of the bytes.
                                        function hashCalldata(bytes calldata b) internal pure returns (bytes32 result) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                calldatacopy(mload(0x40), b.offset, b.length)
                                                result := keccak256(mload(0x40), b.length)
                                            }
                                        }
                                        /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                        /*                      SHA2-256 HELPERS                      */
                                        /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                        /// @dev Returns `sha256(abi.encode(b))`. Yes, it's more efficient.
                                        function sha2(bytes32 b) internal view returns (bytes32 result) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                mstore(0x00, b)
                                                result := mload(staticcall(gas(), 2, 0x00, 0x20, 0x01, 0x20))
                                                if iszero(returndatasize()) { invalid() }
                                            }
                                        }
                                        /// @dev Returns the sha256 of the slice from `start` to `end` (exclusive).
                                        /// `start` and `end` are byte offsets.
                                        function sha2(bytes memory b, uint256 start, uint256 end)
                                            internal
                                            view
                                            returns (bytes32 result)
                                        {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let n := mload(b)
                                                end := xor(end, mul(xor(end, n), lt(n, end)))
                                                start := xor(start, mul(xor(start, n), lt(n, start)))
                                                // forgefmt: disable-next-item
                                                result := mload(staticcall(gas(), 2, add(add(b, 0x20), start),
                                                    mul(gt(end, start), sub(end, start)), 0x01, 0x20))
                                                if iszero(returndatasize()) { invalid() }
                                            }
                                        }
                                        /// @dev Returns the sha256 of the slice from `start` to the end of the bytes.
                                        function sha2(bytes memory b, uint256 start) internal view returns (bytes32 result) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let n := mload(b)
                                                start := xor(start, mul(xor(start, n), lt(n, start)))
                                                // forgefmt: disable-next-item
                                                result := mload(staticcall(gas(), 2, add(add(b, 0x20), start),
                                                    mul(gt(n, start), sub(n, start)), 0x01, 0x20))
                                                if iszero(returndatasize()) { invalid() }
                                            }
                                        }
                                        /// @dev Returns the sha256 of the bytes.
                                        function sha2(bytes memory b) internal view returns (bytes32 result) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                result := mload(staticcall(gas(), 2, add(b, 0x20), mload(b), 0x01, 0x20))
                                                if iszero(returndatasize()) { invalid() }
                                            }
                                        }
                                        /// @dev Returns the sha256 of the slice from `start` to `end` (exclusive).
                                        /// `start` and `end` are byte offsets.
                                        function sha2Calldata(bytes calldata b, uint256 start, uint256 end)
                                            internal
                                            view
                                            returns (bytes32 result)
                                        {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                end := xor(end, mul(xor(end, b.length), lt(b.length, end)))
                                                start := xor(start, mul(xor(start, b.length), lt(b.length, start)))
                                                let n := mul(gt(end, start), sub(end, start))
                                                calldatacopy(mload(0x40), add(b.offset, start), n)
                                                result := mload(staticcall(gas(), 2, mload(0x40), n, 0x01, 0x20))
                                                if iszero(returndatasize()) { invalid() }
                                            }
                                        }
                                        /// @dev Returns the sha256 of the slice from `start` to the end of the bytes.
                                        function sha2Calldata(bytes calldata b, uint256 start) internal view returns (bytes32 result) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                start := xor(start, mul(xor(start, b.length), lt(b.length, start)))
                                                let n := mul(gt(b.length, start), sub(b.length, start))
                                                calldatacopy(mload(0x40), add(b.offset, start), n)
                                                result := mload(staticcall(gas(), 2, mload(0x40), n, 0x01, 0x20))
                                                if iszero(returndatasize()) { invalid() }
                                            }
                                        }
                                        /// @dev Returns the sha256 of the bytes.
                                        function sha2Calldata(bytes calldata b) internal view returns (bytes32 result) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                calldatacopy(mload(0x40), b.offset, b.length)
                                                result := mload(staticcall(gas(), 2, mload(0x40), b.length, 0x01, 0x20))
                                                if iszero(returndatasize()) { invalid() }
                                            }
                                        }
                                    }
                                    // SPDX-License-Identifier: UNLICENSED
                                    pragma solidity =0.8.28;
                                    int32 constant MIN_TICK = -88722835;
                                    int32 constant MAX_TICK = 88722835;
                                    uint32 constant MAX_TICK_MAGNITUDE = uint32(MAX_TICK);
                                    uint32 constant MAX_TICK_SPACING = 698605;
                                    uint32 constant FULL_RANGE_ONLY_TICK_SPACING = 0;
                                    // We use this address to represent the native token within the protocol
                                    address constant NATIVE_TOKEN_ADDRESS = address(0);
                                    // SPDX-License-Identifier: UNLICENSED
                                    pragma solidity =0.8.28;
                                    // A dynamic fixed point number (a la floating point) that stores a shifting 94 bit view of the underlying fixed point value,
                                    //  based on the most significant bits (mantissa)
                                    // If the most significant 2 bits are 11, it represents a 64.30
                                    // If the most significant 2 bits are 10, it represents a 32.62 number
                                    // If the most significant 2 bits are 01, it represents a 0.94 number
                                    // If the most significant 2 bits are 00, it represents a 0.126 number that is always less than 2**-32
                                    type SqrtRatio is uint96;
                                    uint96 constant MIN_SQRT_RATIO_RAW = 4611797791050542631;
                                    SqrtRatio constant MIN_SQRT_RATIO = SqrtRatio.wrap(MIN_SQRT_RATIO_RAW);
                                    uint96 constant MAX_SQRT_RATIO_RAW = 79227682466138141934206691491;
                                    SqrtRatio constant MAX_SQRT_RATIO = SqrtRatio.wrap(MAX_SQRT_RATIO_RAW);
                                    uint96 constant TWO_POW_95 = 0x800000000000000000000000;
                                    uint96 constant TWO_POW_94 = 0x400000000000000000000000;
                                    uint96 constant TWO_POW_62 = 0x4000000000000000;
                                    uint96 constant TWO_POW_62_MINUS_ONE = 0x3fffffffffffffff;
                                    uint96 constant BIT_MASK = 0xc00000000000000000000000; // TWO_POW_95 | TWO_POW_94
                                    SqrtRatio constant ONE = SqrtRatio.wrap((TWO_POW_95) + (1 << 62));
                                    using {
                                        toFixed,
                                        isValid,
                                        ge as >=,
                                        le as <=,
                                        lt as <,
                                        gt as >,
                                        eq as ==,
                                        neq as !=,
                                        isZero,
                                        min,
                                        max
                                    } for SqrtRatio global;
                                    function isValid(SqrtRatio sqrtRatio) pure returns (bool r) {
                                        assembly ("memory-safe") {
                                            r :=
                                                and(
                                                    // greater than or equal to TWO_POW_62, i.e. the whole number portion is nonzero
                                                    gt(and(sqrtRatio, not(BIT_MASK)), TWO_POW_62_MINUS_ONE),
                                                    // and between min/max sqrt ratio
                                                    and(iszero(lt(sqrtRatio, MIN_SQRT_RATIO_RAW)), iszero(gt(sqrtRatio, MAX_SQRT_RATIO_RAW)))
                                                )
                                        }
                                    }
                                    error ValueOverflowsSqrtRatioContainer();
                                    // If passing a value greater than this constant with roundUp = true, toSqrtRatio will overflow
                                    // For roundUp = false, the constant is type(uint192).max
                                    uint256 constant MAX_FIXED_VALUE_ROUND_UP =
                                        0x1000000000000000000000000000000000000000000000000 - 0x4000000000000000000000000;
                                    // Converts a 64.128 value into the compact SqrtRatio representation
                                    function toSqrtRatio(uint256 sqrtRatio, bool roundUp) pure returns (SqrtRatio r) {
                                        assembly ("memory-safe") {
                                            let addend := mul(roundUp, 0x3)
                                            // lt 2**96 after rounding up
                                            switch lt(sqrtRatio, sub(0x1000000000000000000000000, addend))
                                            case 1 { r := shr(2, add(sqrtRatio, addend)) }
                                            default {
                                                // 2**34 - 1
                                                addend := mul(roundUp, 0x3ffffffff)
                                                // lt 2**128 after rounding up
                                                switch lt(sqrtRatio, sub(0x100000000000000000000000000000000, addend))
                                                case 1 { r := or(TWO_POW_94, shr(34, add(sqrtRatio, addend))) }
                                                default {
                                                    addend := mul(roundUp, 0x3ffffffffffffffff)
                                                    // lt 2**160 after rounding up
                                                    switch lt(sqrtRatio, sub(0x10000000000000000000000000000000000000000, addend))
                                                    case 1 { r := or(TWO_POW_95, shr(66, add(sqrtRatio, addend))) }
                                                    default {
                                                        // 2**98 - 1
                                                        addend := mul(roundUp, 0x3ffffffffffffffffffffffff)
                                                        switch lt(sqrtRatio, sub(0x1000000000000000000000000000000000000000000000000, addend))
                                                        case 1 { r := or(BIT_MASK, shr(98, add(sqrtRatio, addend))) }
                                                        default {
                                                            // cast sig "ValueOverflowsSqrtRatioContainer()"
                                                            mstore(0, shl(224, 0xa10459f4))
                                                            revert(0, 4)
                                                        }
                                                    }
                                                }
                                            }
                                        }
                                    }
                                    // Returns the 64.128 representation of the given sqrt ratio
                                    function toFixed(SqrtRatio sqrtRatio) pure returns (uint256 r) {
                                        assembly ("memory-safe") {
                                            r := shl(add(2, shr(89, and(sqrtRatio, BIT_MASK))), and(sqrtRatio, not(BIT_MASK)))
                                        }
                                    }
                                    // The below operators assume that the SqrtRatio is valid, i.e. SqrtRatio#isValid returns true
                                    function lt(SqrtRatio a, SqrtRatio b) pure returns (bool r) {
                                        r = SqrtRatio.unwrap(a) < SqrtRatio.unwrap(b);
                                    }
                                    function gt(SqrtRatio a, SqrtRatio b) pure returns (bool r) {
                                        r = SqrtRatio.unwrap(a) > SqrtRatio.unwrap(b);
                                    }
                                    function le(SqrtRatio a, SqrtRatio b) pure returns (bool r) {
                                        r = SqrtRatio.unwrap(a) <= SqrtRatio.unwrap(b);
                                    }
                                    function ge(SqrtRatio a, SqrtRatio b) pure returns (bool r) {
                                        r = SqrtRatio.unwrap(a) >= SqrtRatio.unwrap(b);
                                    }
                                    function eq(SqrtRatio a, SqrtRatio b) pure returns (bool r) {
                                        r = SqrtRatio.unwrap(a) == SqrtRatio.unwrap(b);
                                    }
                                    function neq(SqrtRatio a, SqrtRatio b) pure returns (bool r) {
                                        r = SqrtRatio.unwrap(a) != SqrtRatio.unwrap(b);
                                    }
                                    function isZero(SqrtRatio a) pure returns (bool r) {
                                        assembly ("memory-safe") {
                                            r := iszero(a)
                                        }
                                    }
                                    function max(SqrtRatio a, SqrtRatio b) pure returns (SqrtRatio r) {
                                        assembly ("memory-safe") {
                                            r := xor(a, mul(xor(a, b), gt(b, a)))
                                        }
                                    }
                                    function min(SqrtRatio a, SqrtRatio b) pure returns (SqrtRatio r) {
                                        assembly ("memory-safe") {
                                            r := xor(a, mul(xor(a, b), lt(b, a)))
                                        }
                                    }
                                    // SPDX-License-Identifier: UNLICENSED
                                    pragma solidity =0.8.28;
                                    import {FixedPointMathLib} from "solady/utils/FixedPointMathLib.sol";
                                    import {SqrtRatio, toSqrtRatio, MAX_FIXED_VALUE_ROUND_UP} from "../types/sqrtRatio.sol";
                                    error ZeroLiquidityNextSqrtRatioFromAmount0();
                                    // Compute the next ratio from a delta amount0, always rounded towards starting price for input, and
                                    // away from starting price for output
                                    function nextSqrtRatioFromAmount0(SqrtRatio _sqrtRatio, uint128 liquidity, int128 amount)
                                        pure
                                        returns (SqrtRatio sqrtRatioNext)
                                    {
                                        if (amount == 0) {
                                            return _sqrtRatio;
                                        }
                                        if (liquidity == 0) {
                                            revert ZeroLiquidityNextSqrtRatioFromAmount0();
                                        }
                                        uint256 sqrtRatio = _sqrtRatio.toFixed();
                                        uint256 liquidityX128 = uint256(liquidity) << 128;
                                        uint256 amountAbs = FixedPointMathLib.abs(int256(amount));
                                        if (amount < 0) {
                                            unchecked {
                                                // multiplication will revert on overflow, so we return the maximum value for the type
                                                if (amountAbs > type(uint256).max / sqrtRatio) {
                                                    return SqrtRatio.wrap(type(uint96).max);
                                                }
                                                uint256 product = sqrtRatio * amountAbs;
                                                // again it will overflow if this is the case, so return the max value
                                                if (product >= liquidityX128) {
                                                    return SqrtRatio.wrap(type(uint96).max);
                                                }
                                                uint256 denominator = liquidityX128 - product;
                                                uint256 resultFixed = FixedPointMathLib.fullMulDivUp(liquidityX128, sqrtRatio, denominator);
                                                if (resultFixed > MAX_FIXED_VALUE_ROUND_UP) {
                                                    return SqrtRatio.wrap(type(uint96).max);
                                                }
                                                sqrtRatioNext = toSqrtRatio(resultFixed, true);
                                            }
                                        } else {
                                            uint256 denominator;
                                            unchecked {
                                                uint256 denominatorP1 = liquidityX128 / sqrtRatio;
                                                // this can never overflow, amountAbs is limited to 2**128-1 and liquidityX128 / sqrtRatio is limited to (2**128-1 << 128)
                                                // adding the 2 values can at most equal type(uint256).max
                                                denominator = denominatorP1 + amountAbs;
                                            }
                                            sqrtRatioNext = toSqrtRatio(FixedPointMathLib.divUp(liquidityX128, denominator), true);
                                        }
                                    }
                                    error ZeroLiquidityNextSqrtRatioFromAmount1();
                                    function nextSqrtRatioFromAmount1(SqrtRatio _sqrtRatio, uint128 liquidity, int128 amount)
                                        pure
                                        returns (SqrtRatio sqrtRatioNext)
                                    {
                                        if (amount == 0) {
                                            return _sqrtRatio;
                                        }
                                        if (liquidity == 0) {
                                            revert ZeroLiquidityNextSqrtRatioFromAmount1();
                                        }
                                        uint256 sqrtRatio = _sqrtRatio.toFixed();
                                        unchecked {
                                            uint256 shiftedAmountAbs = FixedPointMathLib.abs(int256(amount)) << 128;
                                            uint256 quotient = shiftedAmountAbs / liquidity;
                                            if (amount < 0) {
                                                if (quotient >= sqrtRatio) {
                                                    // Underflow => return 0
                                                    return SqrtRatio.wrap(0);
                                                }
                                                uint256 sqrtRatioNextFixed = sqrtRatio - quotient;
                                                assembly ("memory-safe") {
                                                    // subtraction of 1 is safe because sqrtRatio > quotient => sqrtRatio - quotient >= 1
                                                    sqrtRatioNextFixed := sub(sqrtRatioNextFixed, iszero(iszero(mod(shiftedAmountAbs, liquidity))))
                                                }
                                                sqrtRatioNext = toSqrtRatio(sqrtRatioNextFixed, false);
                                            } else {
                                                uint256 sum = sqrtRatio + quotient;
                                                if (sum < sqrtRatio || sum > type(uint192).max) {
                                                    return SqrtRatio.wrap(type(uint96).max);
                                                }
                                                sqrtRatioNext = toSqrtRatio(sum, false);
                                            }
                                        }
                                    }
                                    // SPDX-License-Identifier: UNLICENSED
                                    pragma solidity =0.8.28;
                                    import {FixedPointMathLib} from "solady/utils/FixedPointMathLib.sol";
                                    import {SqrtRatio} from "../types/sqrtRatio.sol";
                                    error Amount0DeltaOverflow();
                                    error Amount1DeltaOverflow();
                                    function sortAndConvertToFixedSqrtRatios(SqrtRatio sqrtRatioA, SqrtRatio sqrtRatioB)
                                        pure
                                        returns (uint256 sqrtRatioLower, uint256 sqrtRatioUpper)
                                    {
                                        uint256 aFixed = sqrtRatioA.toFixed();
                                        uint256 bFixed = sqrtRatioB.toFixed();
                                        (sqrtRatioLower, sqrtRatioUpper) = (FixedPointMathLib.min(aFixed, bFixed), FixedPointMathLib.max(aFixed, bFixed));
                                    }
                                    function amount0Delta(SqrtRatio sqrtRatioA, SqrtRatio sqrtRatioB, uint128 liquidity, bool roundUp)
                                        pure
                                        returns (uint128 amount0)
                                    {
                                        unchecked {
                                            (uint256 sqrtRatioLower, uint256 sqrtRatioUpper) = sortAndConvertToFixedSqrtRatios(sqrtRatioA, sqrtRatioB);
                                            if (roundUp) {
                                                uint256 result0 = FixedPointMathLib.fullMulDivUp(
                                                    (uint256(liquidity) << 128), (sqrtRatioUpper - sqrtRatioLower), sqrtRatioUpper
                                                );
                                                uint256 result = FixedPointMathLib.divUp(result0, sqrtRatioLower);
                                                if (result > type(uint128).max) revert Amount0DeltaOverflow();
                                                amount0 = uint128(result);
                                            } else {
                                                uint256 result0 = FixedPointMathLib.fullMulDiv(
                                                    (uint256(liquidity) << 128), (sqrtRatioUpper - sqrtRatioLower), sqrtRatioUpper
                                                );
                                                uint256 result = result0 / sqrtRatioLower;
                                                if (result > type(uint128).max) revert Amount0DeltaOverflow();
                                                amount0 = uint128(result);
                                            }
                                        }
                                    }
                                    function amount1Delta(SqrtRatio sqrtRatioA, SqrtRatio sqrtRatioB, uint128 liquidity, bool roundUp)
                                        pure
                                        returns (uint128 amount1)
                                    {
                                        unchecked {
                                            (uint256 sqrtRatioLower, uint256 sqrtRatioUpper) = sortAndConvertToFixedSqrtRatios(sqrtRatioA, sqrtRatioB);
                                            uint256 difference = sqrtRatioUpper - sqrtRatioLower;
                                            if (roundUp) {
                                                uint256 result = FixedPointMathLib.fullMulDivN(difference, liquidity, 128);
                                                assembly {
                                                    // addition is safe from overflow because the result of fullMulDivN will never equal type(uint256).max
                                                    result :=
                                                        add(result, iszero(iszero(mulmod(difference, liquidity, 0x100000000000000000000000000000000))))
                                                }
                                                if (result > type(uint128).max) revert Amount1DeltaOverflow();
                                                amount1 = uint128(result);
                                            } else {
                                                uint256 result = FixedPointMathLib.fullMulDivN(difference, liquidity, 128);
                                                if (result > type(uint128).max) revert Amount1DeltaOverflow();
                                                amount1 = uint128(result);
                                            }
                                        }
                                    }
                                    // SPDX-License-Identifier: UNLICENSED
                                    pragma solidity =0.8.28;
                                    function isPriceIncreasing(int128 amount, bool isToken1) pure returns (bool increasing) {
                                        assembly ("memory-safe") {
                                            increasing := xor(isToken1, slt(amount, 0))
                                        }
                                    }
                                    // SPDX-License-Identifier: MIT
                                    pragma solidity ^0.8.4;
                                    /// @notice Library for bit twiddling and boolean operations.
                                    /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibBit.sol)
                                    /// @author Inspired by (https://graphics.stanford.edu/~seander/bithacks.html)
                                    library LibBit {
                                        /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                        /*                  BIT TWIDDLING OPERATIONS                  */
                                        /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                        /// @dev Find last set.
                                        /// Returns the index of the most significant bit of `x`,
                                        /// counting from the least significant bit position.
                                        /// If `x` is zero, returns 256.
                                        function fls(uint256 x) internal pure returns (uint256 r) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                r := or(shl(8, iszero(x)), shl(7, lt(0xffffffffffffffffffffffffffffffff, x)))
                                                r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                                                r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                                                r := or(r, shl(4, lt(0xffff, shr(r, x))))
                                                r := or(r, shl(3, lt(0xff, shr(r, x))))
                                                // forgefmt: disable-next-item
                                                r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                                                    0x0706060506020504060203020504030106050205030304010505030400000000))
                                            }
                                        }
                                        /// @dev Count leading zeros.
                                        /// Returns the number of zeros preceding the most significant one bit.
                                        /// If `x` is zero, returns 256.
                                        function clz(uint256 x) internal pure returns (uint256 r) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                                                r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                                                r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                                                r := or(r, shl(4, lt(0xffff, shr(r, x))))
                                                r := or(r, shl(3, lt(0xff, shr(r, x))))
                                                // forgefmt: disable-next-item
                                                r := add(xor(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                                                    0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff)), iszero(x))
                                            }
                                        }
                                        /// @dev Find first set.
                                        /// Returns the index of the least significant bit of `x`,
                                        /// counting from the least significant bit position.
                                        /// If `x` is zero, returns 256.
                                        /// Equivalent to `ctz` (count trailing zeros), which gives
                                        /// the number of zeros following the least significant one bit.
                                        function ffs(uint256 x) internal pure returns (uint256 r) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                // Isolate the least significant bit.
                                                x := and(x, add(not(x), 1))
                                                // For the upper 3 bits of the result, use a De Bruijn-like lookup.
                                                // Credit to adhusson: https://blog.adhusson.com/cheap-find-first-set-evm/
                                                // forgefmt: disable-next-item
                                                r := shl(5, shr(252, shl(shl(2, shr(250, mul(x,
                                                    0xb6db6db6ddddddddd34d34d349249249210842108c6318c639ce739cffffffff))),
                                                    0x8040405543005266443200005020610674053026020000107506200176117077)))
                                                // For the lower 5 bits of the result, use a De Bruijn lookup.
                                                // forgefmt: disable-next-item
                                                r := or(r, byte(and(div(0xd76453e0, shr(r, x)), 0x1f),
                                                    0x001f0d1e100c1d070f090b19131c1706010e11080a1a141802121b1503160405))
                                            }
                                        }
                                        /// @dev Returns the number of set bits in `x`.
                                        function popCount(uint256 x) internal pure returns (uint256 c) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let max := not(0)
                                                let isMax := eq(x, max)
                                                x := sub(x, and(shr(1, x), div(max, 3)))
                                                x := add(and(x, div(max, 5)), and(shr(2, x), div(max, 5)))
                                                x := and(add(x, shr(4, x)), div(max, 17))
                                                c := or(shl(8, isMax), shr(248, mul(x, div(max, 255))))
                                            }
                                        }
                                        /// @dev Returns whether `x` is a power of 2.
                                        function isPo2(uint256 x) internal pure returns (bool result) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                // Equivalent to `x && !(x & (x - 1))`.
                                                result := iszero(add(and(x, sub(x, 1)), iszero(x)))
                                            }
                                        }
                                        /// @dev Returns `x` reversed at the bit level.
                                        function reverseBits(uint256 x) internal pure returns (uint256 r) {
                                            uint256 m0 = 0x0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f;
                                            uint256 m1 = m0 ^ (m0 << 2);
                                            uint256 m2 = m1 ^ (m1 << 1);
                                            r = reverseBytes(x);
                                            r = (m2 & (r >> 1)) | ((m2 & r) << 1);
                                            r = (m1 & (r >> 2)) | ((m1 & r) << 2);
                                            r = (m0 & (r >> 4)) | ((m0 & r) << 4);
                                        }
                                        /// @dev Returns `x` reversed at the byte level.
                                        function reverseBytes(uint256 x) internal pure returns (uint256 r) {
                                            unchecked {
                                                // Computing masks on-the-fly reduces bytecode size by about 200 bytes.
                                                uint256 m0 = 0x100000000000000000000000000000001 * (~toUint(x == uint256(0)) >> 192);
                                                uint256 m1 = m0 ^ (m0 << 32);
                                                uint256 m2 = m1 ^ (m1 << 16);
                                                uint256 m3 = m2 ^ (m2 << 8);
                                                r = (m3 & (x >> 8)) | ((m3 & x) << 8);
                                                r = (m2 & (r >> 16)) | ((m2 & r) << 16);
                                                r = (m1 & (r >> 32)) | ((m1 & r) << 32);
                                                r = (m0 & (r >> 64)) | ((m0 & r) << 64);
                                                r = (r >> 128) | (r << 128);
                                            }
                                        }
                                        /// @dev Returns the common prefix of `x` and `y` at the bit level.
                                        function commonBitPrefix(uint256 x, uint256 y) internal pure returns (uint256) {
                                            unchecked {
                                                uint256 s = 256 - clz(x ^ y);
                                                return (x >> s) << s;
                                            }
                                        }
                                        /// @dev Returns the common prefix of `x` and `y` at the nibble level.
                                        function commonNibblePrefix(uint256 x, uint256 y) internal pure returns (uint256) {
                                            unchecked {
                                                uint256 s = (64 - (clz(x ^ y) >> 2)) << 2;
                                                return (x >> s) << s;
                                            }
                                        }
                                        /// @dev Returns the common prefix of `x` and `y` at the byte level.
                                        function commonBytePrefix(uint256 x, uint256 y) internal pure returns (uint256) {
                                            unchecked {
                                                uint256 s = (32 - (clz(x ^ y) >> 3)) << 3;
                                                return (x >> s) << s;
                                            }
                                        }
                                        /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                        /*                     BOOLEAN OPERATIONS                     */
                                        /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                        // A Solidity bool on the stack or memory is represented as a 256-bit word.
                                        // Non-zero values are true, zero is false.
                                        // A clean bool is either 0 (false) or 1 (true) under the hood.
                                        // Usually, if not always, the bool result of a regular Solidity expression,
                                        // or the argument of a public/external function will be a clean bool.
                                        // You can usually use the raw variants for more performance.
                                        // If uncertain, test (best with exact compiler settings).
                                        // Or use the non-raw variants (compiler can sometimes optimize out the double `iszero`s).
                                        /// @dev Returns `x & y`. Inputs must be clean.
                                        function rawAnd(bool x, bool y) internal pure returns (bool z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := and(x, y)
                                            }
                                        }
                                        /// @dev Returns `x & y`.
                                        function and(bool x, bool y) internal pure returns (bool z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := and(iszero(iszero(x)), iszero(iszero(y)))
                                            }
                                        }
                                        /// @dev Returns `x | y`. Inputs must be clean.
                                        function rawOr(bool x, bool y) internal pure returns (bool z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := or(x, y)
                                            }
                                        }
                                        /// @dev Returns `x | y`.
                                        function or(bool x, bool y) internal pure returns (bool z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := or(iszero(iszero(x)), iszero(iszero(y)))
                                            }
                                        }
                                        /// @dev Returns 1 if `b` is true, else 0. Input must be clean.
                                        function rawToUint(bool b) internal pure returns (uint256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := b
                                            }
                                        }
                                        /// @dev Returns 1 if `b` is true, else 0.
                                        function toUint(bool b) internal pure returns (uint256 z) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                z := iszero(iszero(b))
                                            }
                                        }
                                    }
                                    // SPDX-License-Identifier: UNLICENSED
                                    pragma solidity =0.8.28;
                                    // Exposes all the storage of a contract via view methods.
                                    // Absent https://eips.ethereum.org/EIPS/eip-2330 this makes it easier to access specific pieces of state in the inheriting contract.
                                    interface IExposedStorage {
                                        // Loads each slot after the function selector from the contract's storage and returns all of them.
                                        function sload() external view;
                                        // Loads each slot after the function selector from the contract's transient storage and returns all of them.
                                        function tload() external view;
                                    }
                                    // SPDX-License-Identifier: UNLICENSED
                                    pragma solidity =0.8.28;
                                    interface ILocker {
                                        function locked(uint256 id) external;
                                    }
                                    interface IForwardee {
                                        function forwarded(uint256 id, address originalLocker) external;
                                    }
                                    interface IPayer {
                                        function payCallback(uint256 id, address token) external;
                                    }
                                    interface IFlashAccountant {
                                        error NotLocked();
                                        error LockerOnly();
                                        error NoPaymentMade();
                                        error DebtsNotZeroed(uint256 id);
                                        // Thrown if the contract receives too much payment in the payment callback or from a direct native token transfer
                                        error PaymentOverflow();
                                        error PayReentrance();
                                        // Create a lock context
                                        // Any data passed after the function signature is passed through back to the caller after the locked function signature and data, with no additional encoding
                                        // In addition, any data returned from ILocker#locked is also returned from this function exactly as is, i.e. with no additional encoding or decoding
                                        // Reverts are also bubbled up
                                        function lock() external;
                                        // Forward the lock from the current locker to the given address
                                        // Any additional calldata is also passed through to the forwardee, with no additional encoding
                                        // In addition, any data returned from IForwardee#forwarded is also returned from this function exactly as is, i.e. with no additional encoding or decoding
                                        // Reverts are also bubbled up
                                        function forward(address to) external;
                                        // Pays the given amount of token, by calling the payCallback function on the caller to afford them the opportunity to make the payment.
                                        // This function, unlike lock and forward, does not return any of the returndata from the callback.
                                        // This function also cannot be re-entered like lock and forward.
                                        // Must be locked, as the contract accounts the payment against the current locker's debts.
                                        // Token must not be the NATIVE_TOKEN_ADDRESS, as the `balanceOf` calls will fail.
                                        // If you want to pay in the chain's native token, simply transfer it to this contract using a call.
                                        // The payer must implement payCallback in which they must transfer the token to Core.
                                        function pay(address token) external returns (uint128 payment);
                                        // Withdraws a token amount from the accountant to the given recipient.
                                        // The contract must be locked, as it tracks the withdrawn amount against the current locker's delta.
                                        function withdraw(address token, address recipient, uint128 amount) external;
                                        // This contract can receive ETH as a payment as well
                                        receive() external payable;
                                    }
                                    

                                    File 3 of 10: TetherToken
                                    pragma solidity ^0.4.17;
                                    
                                    /**
                                     * @title SafeMath
                                     * @dev Math operations with safety checks that throw on error
                                     */
                                    library SafeMath {
                                        function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                                            if (a == 0) {
                                                return 0;
                                            }
                                            uint256 c = a * b;
                                            assert(c / a == b);
                                            return c;
                                        }
                                    
                                        function div(uint256 a, uint256 b) internal pure returns (uint256) {
                                            // assert(b > 0); // Solidity automatically throws when dividing by 0
                                            uint256 c = a / b;
                                            // assert(a == b * c + a % b); // There is no case in which this doesn't hold
                                            return c;
                                        }
                                    
                                        function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                                            assert(b <= a);
                                            return a - b;
                                        }
                                    
                                        function add(uint256 a, uint256 b) internal pure returns (uint256) {
                                            uint256 c = a + b;
                                            assert(c >= a);
                                            return c;
                                        }
                                    }
                                    
                                    /**
                                     * @title Ownable
                                     * @dev The Ownable contract has an owner address, and provides basic authorization control
                                     * functions, this simplifies the implementation of "user permissions".
                                     */
                                    contract Ownable {
                                        address public owner;
                                    
                                        /**
                                          * @dev The Ownable constructor sets the original `owner` of the contract to the sender
                                          * account.
                                          */
                                        function Ownable() public {
                                            owner = msg.sender;
                                        }
                                    
                                        /**
                                          * @dev Throws if called by any account other than the owner.
                                          */
                                        modifier onlyOwner() {
                                            require(msg.sender == owner);
                                            _;
                                        }
                                    
                                        /**
                                        * @dev Allows the current owner to transfer control of the contract to a newOwner.
                                        * @param newOwner The address to transfer ownership to.
                                        */
                                        function transferOwnership(address newOwner) public onlyOwner {
                                            if (newOwner != address(0)) {
                                                owner = newOwner;
                                            }
                                        }
                                    
                                    }
                                    
                                    /**
                                     * @title ERC20Basic
                                     * @dev Simpler version of ERC20 interface
                                     * @dev see https://github.com/ethereum/EIPs/issues/20
                                     */
                                    contract ERC20Basic {
                                        uint public _totalSupply;
                                        function totalSupply() public constant returns (uint);
                                        function balanceOf(address who) public constant returns (uint);
                                        function transfer(address to, uint value) public;
                                        event Transfer(address indexed from, address indexed to, uint value);
                                    }
                                    
                                    /**
                                     * @title ERC20 interface
                                     * @dev see https://github.com/ethereum/EIPs/issues/20
                                     */
                                    contract ERC20 is ERC20Basic {
                                        function allowance(address owner, address spender) public constant returns (uint);
                                        function transferFrom(address from, address to, uint value) public;
                                        function approve(address spender, uint value) public;
                                        event Approval(address indexed owner, address indexed spender, uint value);
                                    }
                                    
                                    /**
                                     * @title Basic token
                                     * @dev Basic version of StandardToken, with no allowances.
                                     */
                                    contract BasicToken is Ownable, ERC20Basic {
                                        using SafeMath for uint;
                                    
                                        mapping(address => uint) public balances;
                                    
                                        // additional variables for use if transaction fees ever became necessary
                                        uint public basisPointsRate = 0;
                                        uint public maximumFee = 0;
                                    
                                        /**
                                        * @dev Fix for the ERC20 short address attack.
                                        */
                                        modifier onlyPayloadSize(uint size) {
                                            require(!(msg.data.length < size + 4));
                                            _;
                                        }
                                    
                                        /**
                                        * @dev transfer token for a specified address
                                        * @param _to The address to transfer to.
                                        * @param _value The amount to be transferred.
                                        */
                                        function transfer(address _to, uint _value) public onlyPayloadSize(2 * 32) {
                                            uint fee = (_value.mul(basisPointsRate)).div(10000);
                                            if (fee > maximumFee) {
                                                fee = maximumFee;
                                            }
                                            uint sendAmount = _value.sub(fee);
                                            balances[msg.sender] = balances[msg.sender].sub(_value);
                                            balances[_to] = balances[_to].add(sendAmount);
                                            if (fee > 0) {
                                                balances[owner] = balances[owner].add(fee);
                                                Transfer(msg.sender, owner, fee);
                                            }
                                            Transfer(msg.sender, _to, sendAmount);
                                        }
                                    
                                        /**
                                        * @dev Gets the balance of the specified address.
                                        * @param _owner The address to query the the balance of.
                                        * @return An uint representing the amount owned by the passed address.
                                        */
                                        function balanceOf(address _owner) public constant returns (uint balance) {
                                            return balances[_owner];
                                        }
                                    
                                    }
                                    
                                    /**
                                     * @title Standard ERC20 token
                                     *
                                     * @dev Implementation of the basic standard token.
                                     * @dev https://github.com/ethereum/EIPs/issues/20
                                     * @dev Based oncode by FirstBlood: https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol
                                     */
                                    contract StandardToken is BasicToken, ERC20 {
                                    
                                        mapping (address => mapping (address => uint)) public allowed;
                                    
                                        uint public constant MAX_UINT = 2**256 - 1;
                                    
                                        /**
                                        * @dev Transfer tokens from one address to another
                                        * @param _from address The address which you want to send tokens from
                                        * @param _to address The address which you want to transfer to
                                        * @param _value uint the amount of tokens to be transferred
                                        */
                                        function transferFrom(address _from, address _to, uint _value) public onlyPayloadSize(3 * 32) {
                                            var _allowance = allowed[_from][msg.sender];
                                    
                                            // Check is not needed because sub(_allowance, _value) will already throw if this condition is not met
                                            // if (_value > _allowance) throw;
                                    
                                            uint fee = (_value.mul(basisPointsRate)).div(10000);
                                            if (fee > maximumFee) {
                                                fee = maximumFee;
                                            }
                                            if (_allowance < MAX_UINT) {
                                                allowed[_from][msg.sender] = _allowance.sub(_value);
                                            }
                                            uint sendAmount = _value.sub(fee);
                                            balances[_from] = balances[_from].sub(_value);
                                            balances[_to] = balances[_to].add(sendAmount);
                                            if (fee > 0) {
                                                balances[owner] = balances[owner].add(fee);
                                                Transfer(_from, owner, fee);
                                            }
                                            Transfer(_from, _to, sendAmount);
                                        }
                                    
                                        /**
                                        * @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender.
                                        * @param _spender The address which will spend the funds.
                                        * @param _value The amount of tokens to be spent.
                                        */
                                        function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) {
                                    
                                            // To change the approve amount you first have to reduce the addresses`
                                            //  allowance to zero by calling `approve(_spender, 0)` if it is not
                                            //  already 0 to mitigate the race condition described here:
                                            //  https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                                            require(!((_value != 0) && (allowed[msg.sender][_spender] != 0)));
                                    
                                            allowed[msg.sender][_spender] = _value;
                                            Approval(msg.sender, _spender, _value);
                                        }
                                    
                                        /**
                                        * @dev Function to check the amount of tokens than an owner allowed to a spender.
                                        * @param _owner address The address which owns the funds.
                                        * @param _spender address The address which will spend the funds.
                                        * @return A uint specifying the amount of tokens still available for the spender.
                                        */
                                        function allowance(address _owner, address _spender) public constant returns (uint remaining) {
                                            return allowed[_owner][_spender];
                                        }
                                    
                                    }
                                    
                                    
                                    /**
                                     * @title Pausable
                                     * @dev Base contract which allows children to implement an emergency stop mechanism.
                                     */
                                    contract Pausable is Ownable {
                                      event Pause();
                                      event Unpause();
                                    
                                      bool public paused = false;
                                    
                                    
                                      /**
                                       * @dev Modifier to make a function callable only when the contract is not paused.
                                       */
                                      modifier whenNotPaused() {
                                        require(!paused);
                                        _;
                                      }
                                    
                                      /**
                                       * @dev Modifier to make a function callable only when the contract is paused.
                                       */
                                      modifier whenPaused() {
                                        require(paused);
                                        _;
                                      }
                                    
                                      /**
                                       * @dev called by the owner to pause, triggers stopped state
                                       */
                                      function pause() onlyOwner whenNotPaused public {
                                        paused = true;
                                        Pause();
                                      }
                                    
                                      /**
                                       * @dev called by the owner to unpause, returns to normal state
                                       */
                                      function unpause() onlyOwner whenPaused public {
                                        paused = false;
                                        Unpause();
                                      }
                                    }
                                    
                                    contract BlackList is Ownable, BasicToken {
                                    
                                        /////// Getters to allow the same blacklist to be used also by other contracts (including upgraded Tether) ///////
                                        function getBlackListStatus(address _maker) external constant returns (bool) {
                                            return isBlackListed[_maker];
                                        }
                                    
                                        function getOwner() external constant returns (address) {
                                            return owner;
                                        }
                                    
                                        mapping (address => bool) public isBlackListed;
                                        
                                        function addBlackList (address _evilUser) public onlyOwner {
                                            isBlackListed[_evilUser] = true;
                                            AddedBlackList(_evilUser);
                                        }
                                    
                                        function removeBlackList (address _clearedUser) public onlyOwner {
                                            isBlackListed[_clearedUser] = false;
                                            RemovedBlackList(_clearedUser);
                                        }
                                    
                                        function destroyBlackFunds (address _blackListedUser) public onlyOwner {
                                            require(isBlackListed[_blackListedUser]);
                                            uint dirtyFunds = balanceOf(_blackListedUser);
                                            balances[_blackListedUser] = 0;
                                            _totalSupply -= dirtyFunds;
                                            DestroyedBlackFunds(_blackListedUser, dirtyFunds);
                                        }
                                    
                                        event DestroyedBlackFunds(address _blackListedUser, uint _balance);
                                    
                                        event AddedBlackList(address _user);
                                    
                                        event RemovedBlackList(address _user);
                                    
                                    }
                                    
                                    contract UpgradedStandardToken is StandardToken{
                                        // those methods are called by the legacy contract
                                        // and they must ensure msg.sender to be the contract address
                                        function transferByLegacy(address from, address to, uint value) public;
                                        function transferFromByLegacy(address sender, address from, address spender, uint value) public;
                                        function approveByLegacy(address from, address spender, uint value) public;
                                    }
                                    
                                    contract TetherToken is Pausable, StandardToken, BlackList {
                                    
                                        string public name;
                                        string public symbol;
                                        uint public decimals;
                                        address public upgradedAddress;
                                        bool public deprecated;
                                    
                                        //  The contract can be initialized with a number of tokens
                                        //  All the tokens are deposited to the owner address
                                        //
                                        // @param _balance Initial supply of the contract
                                        // @param _name Token Name
                                        // @param _symbol Token symbol
                                        // @param _decimals Token decimals
                                        function TetherToken(uint _initialSupply, string _name, string _symbol, uint _decimals) public {
                                            _totalSupply = _initialSupply;
                                            name = _name;
                                            symbol = _symbol;
                                            decimals = _decimals;
                                            balances[owner] = _initialSupply;
                                            deprecated = false;
                                        }
                                    
                                        // Forward ERC20 methods to upgraded contract if this one is deprecated
                                        function transfer(address _to, uint _value) public whenNotPaused {
                                            require(!isBlackListed[msg.sender]);
                                            if (deprecated) {
                                                return UpgradedStandardToken(upgradedAddress).transferByLegacy(msg.sender, _to, _value);
                                            } else {
                                                return super.transfer(_to, _value);
                                            }
                                        }
                                    
                                        // Forward ERC20 methods to upgraded contract if this one is deprecated
                                        function transferFrom(address _from, address _to, uint _value) public whenNotPaused {
                                            require(!isBlackListed[_from]);
                                            if (deprecated) {
                                                return UpgradedStandardToken(upgradedAddress).transferFromByLegacy(msg.sender, _from, _to, _value);
                                            } else {
                                                return super.transferFrom(_from, _to, _value);
                                            }
                                        }
                                    
                                        // Forward ERC20 methods to upgraded contract if this one is deprecated
                                        function balanceOf(address who) public constant returns (uint) {
                                            if (deprecated) {
                                                return UpgradedStandardToken(upgradedAddress).balanceOf(who);
                                            } else {
                                                return super.balanceOf(who);
                                            }
                                        }
                                    
                                        // Forward ERC20 methods to upgraded contract if this one is deprecated
                                        function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) {
                                            if (deprecated) {
                                                return UpgradedStandardToken(upgradedAddress).approveByLegacy(msg.sender, _spender, _value);
                                            } else {
                                                return super.approve(_spender, _value);
                                            }
                                        }
                                    
                                        // Forward ERC20 methods to upgraded contract if this one is deprecated
                                        function allowance(address _owner, address _spender) public constant returns (uint remaining) {
                                            if (deprecated) {
                                                return StandardToken(upgradedAddress).allowance(_owner, _spender);
                                            } else {
                                                return super.allowance(_owner, _spender);
                                            }
                                        }
                                    
                                        // deprecate current contract in favour of a new one
                                        function deprecate(address _upgradedAddress) public onlyOwner {
                                            deprecated = true;
                                            upgradedAddress = _upgradedAddress;
                                            Deprecate(_upgradedAddress);
                                        }
                                    
                                        // deprecate current contract if favour of a new one
                                        function totalSupply() public constant returns (uint) {
                                            if (deprecated) {
                                                return StandardToken(upgradedAddress).totalSupply();
                                            } else {
                                                return _totalSupply;
                                            }
                                        }
                                    
                                        // Issue a new amount of tokens
                                        // these tokens are deposited into the owner address
                                        //
                                        // @param _amount Number of tokens to be issued
                                        function issue(uint amount) public onlyOwner {
                                            require(_totalSupply + amount > _totalSupply);
                                            require(balances[owner] + amount > balances[owner]);
                                    
                                            balances[owner] += amount;
                                            _totalSupply += amount;
                                            Issue(amount);
                                        }
                                    
                                        // Redeem tokens.
                                        // These tokens are withdrawn from the owner address
                                        // if the balance must be enough to cover the redeem
                                        // or the call will fail.
                                        // @param _amount Number of tokens to be issued
                                        function redeem(uint amount) public onlyOwner {
                                            require(_totalSupply >= amount);
                                            require(balances[owner] >= amount);
                                    
                                            _totalSupply -= amount;
                                            balances[owner] -= amount;
                                            Redeem(amount);
                                        }
                                    
                                        function setParams(uint newBasisPoints, uint newMaxFee) public onlyOwner {
                                            // Ensure transparency by hardcoding limit beyond which fees can never be added
                                            require(newBasisPoints < 20);
                                            require(newMaxFee < 50);
                                    
                                            basisPointsRate = newBasisPoints;
                                            maximumFee = newMaxFee.mul(10**decimals);
                                    
                                            Params(basisPointsRate, maximumFee);
                                        }
                                    
                                        // Called when new token are issued
                                        event Issue(uint amount);
                                    
                                        // Called when tokens are redeemed
                                        event Redeem(uint amount);
                                    
                                        // Called when contract is deprecated
                                        event Deprecate(address newAddress);
                                    
                                        // Called if contract ever adds fees
                                        event Params(uint feeBasisPoints, uint maxFee);
                                    }

                                    File 4 of 10: UniswapV3Pool
                                    // SPDX-License-Identifier: BUSL-1.1
                                    pragma solidity =0.7.6;
                                    import './interfaces/IUniswapV3Pool.sol';
                                    import './NoDelegateCall.sol';
                                    import './libraries/LowGasSafeMath.sol';
                                    import './libraries/SafeCast.sol';
                                    import './libraries/Tick.sol';
                                    import './libraries/TickBitmap.sol';
                                    import './libraries/Position.sol';
                                    import './libraries/Oracle.sol';
                                    import './libraries/FullMath.sol';
                                    import './libraries/FixedPoint128.sol';
                                    import './libraries/TransferHelper.sol';
                                    import './libraries/TickMath.sol';
                                    import './libraries/LiquidityMath.sol';
                                    import './libraries/SqrtPriceMath.sol';
                                    import './libraries/SwapMath.sol';
                                    import './interfaces/IUniswapV3PoolDeployer.sol';
                                    import './interfaces/IUniswapV3Factory.sol';
                                    import './interfaces/IERC20Minimal.sol';
                                    import './interfaces/callback/IUniswapV3MintCallback.sol';
                                    import './interfaces/callback/IUniswapV3SwapCallback.sol';
                                    import './interfaces/callback/IUniswapV3FlashCallback.sol';
                                    contract UniswapV3Pool is IUniswapV3Pool, NoDelegateCall {
                                        using LowGasSafeMath for uint256;
                                        using LowGasSafeMath for int256;
                                        using SafeCast for uint256;
                                        using SafeCast for int256;
                                        using Tick for mapping(int24 => Tick.Info);
                                        using TickBitmap for mapping(int16 => uint256);
                                        using Position for mapping(bytes32 => Position.Info);
                                        using Position for Position.Info;
                                        using Oracle for Oracle.Observation[65535];
                                        /// @inheritdoc IUniswapV3PoolImmutables
                                        address public immutable override factory;
                                        /// @inheritdoc IUniswapV3PoolImmutables
                                        address public immutable override token0;
                                        /// @inheritdoc IUniswapV3PoolImmutables
                                        address public immutable override token1;
                                        /// @inheritdoc IUniswapV3PoolImmutables
                                        uint24 public immutable override fee;
                                        /// @inheritdoc IUniswapV3PoolImmutables
                                        int24 public immutable override tickSpacing;
                                        /// @inheritdoc IUniswapV3PoolImmutables
                                        uint128 public immutable override maxLiquidityPerTick;
                                        struct Slot0 {
                                            // the current price
                                            uint160 sqrtPriceX96;
                                            // the current tick
                                            int24 tick;
                                            // the most-recently updated index of the observations array
                                            uint16 observationIndex;
                                            // the current maximum number of observations that are being stored
                                            uint16 observationCardinality;
                                            // the next maximum number of observations to store, triggered in observations.write
                                            uint16 observationCardinalityNext;
                                            // the current protocol fee as a percentage of the swap fee taken on withdrawal
                                            // represented as an integer denominator (1/x)%
                                            uint8 feeProtocol;
                                            // whether the pool is locked
                                            bool unlocked;
                                        }
                                        /// @inheritdoc IUniswapV3PoolState
                                        Slot0 public override slot0;
                                        /// @inheritdoc IUniswapV3PoolState
                                        uint256 public override feeGrowthGlobal0X128;
                                        /// @inheritdoc IUniswapV3PoolState
                                        uint256 public override feeGrowthGlobal1X128;
                                        // accumulated protocol fees in token0/token1 units
                                        struct ProtocolFees {
                                            uint128 token0;
                                            uint128 token1;
                                        }
                                        /// @inheritdoc IUniswapV3PoolState
                                        ProtocolFees public override protocolFees;
                                        /// @inheritdoc IUniswapV3PoolState
                                        uint128 public override liquidity;
                                        /// @inheritdoc IUniswapV3PoolState
                                        mapping(int24 => Tick.Info) public override ticks;
                                        /// @inheritdoc IUniswapV3PoolState
                                        mapping(int16 => uint256) public override tickBitmap;
                                        /// @inheritdoc IUniswapV3PoolState
                                        mapping(bytes32 => Position.Info) public override positions;
                                        /// @inheritdoc IUniswapV3PoolState
                                        Oracle.Observation[65535] public override observations;
                                        /// @dev Mutually exclusive reentrancy protection into the pool to/from a method. This method also prevents entrance
                                        /// to a function before the pool is initialized. The reentrancy guard is required throughout the contract because
                                        /// we use balance checks to determine the payment status of interactions such as mint, swap and flash.
                                        modifier lock() {
                                            require(slot0.unlocked, 'LOK');
                                            slot0.unlocked = false;
                                            _;
                                            slot0.unlocked = true;
                                        }
                                        /// @dev Prevents calling a function from anyone except the address returned by IUniswapV3Factory#owner()
                                        modifier onlyFactoryOwner() {
                                            require(msg.sender == IUniswapV3Factory(factory).owner());
                                            _;
                                        }
                                        constructor() {
                                            int24 _tickSpacing;
                                            (factory, token0, token1, fee, _tickSpacing) = IUniswapV3PoolDeployer(msg.sender).parameters();
                                            tickSpacing = _tickSpacing;
                                            maxLiquidityPerTick = Tick.tickSpacingToMaxLiquidityPerTick(_tickSpacing);
                                        }
                                        /// @dev Common checks for valid tick inputs.
                                        function checkTicks(int24 tickLower, int24 tickUpper) private pure {
                                            require(tickLower < tickUpper, 'TLU');
                                            require(tickLower >= TickMath.MIN_TICK, 'TLM');
                                            require(tickUpper <= TickMath.MAX_TICK, 'TUM');
                                        }
                                        /// @dev Returns the block timestamp truncated to 32 bits, i.e. mod 2**32. This method is overridden in tests.
                                        function _blockTimestamp() internal view virtual returns (uint32) {
                                            return uint32(block.timestamp); // truncation is desired
                                        }
                                        /// @dev Get the pool's balance of token0
                                        /// @dev This function is gas optimized to avoid a redundant extcodesize check in addition to the returndatasize
                                        /// check
                                        function balance0() private view returns (uint256) {
                                            (bool success, bytes memory data) =
                                                token0.staticcall(abi.encodeWithSelector(IERC20Minimal.balanceOf.selector, address(this)));
                                            require(success && data.length >= 32);
                                            return abi.decode(data, (uint256));
                                        }
                                        /// @dev Get the pool's balance of token1
                                        /// @dev This function is gas optimized to avoid a redundant extcodesize check in addition to the returndatasize
                                        /// check
                                        function balance1() private view returns (uint256) {
                                            (bool success, bytes memory data) =
                                                token1.staticcall(abi.encodeWithSelector(IERC20Minimal.balanceOf.selector, address(this)));
                                            require(success && data.length >= 32);
                                            return abi.decode(data, (uint256));
                                        }
                                        /// @inheritdoc IUniswapV3PoolDerivedState
                                        function snapshotCumulativesInside(int24 tickLower, int24 tickUpper)
                                            external
                                            view
                                            override
                                            noDelegateCall
                                            returns (
                                                int56 tickCumulativeInside,
                                                uint160 secondsPerLiquidityInsideX128,
                                                uint32 secondsInside
                                            )
                                        {
                                            checkTicks(tickLower, tickUpper);
                                            int56 tickCumulativeLower;
                                            int56 tickCumulativeUpper;
                                            uint160 secondsPerLiquidityOutsideLowerX128;
                                            uint160 secondsPerLiquidityOutsideUpperX128;
                                            uint32 secondsOutsideLower;
                                            uint32 secondsOutsideUpper;
                                            {
                                                Tick.Info storage lower = ticks[tickLower];
                                                Tick.Info storage upper = ticks[tickUpper];
                                                bool initializedLower;
                                                (tickCumulativeLower, secondsPerLiquidityOutsideLowerX128, secondsOutsideLower, initializedLower) = (
                                                    lower.tickCumulativeOutside,
                                                    lower.secondsPerLiquidityOutsideX128,
                                                    lower.secondsOutside,
                                                    lower.initialized
                                                );
                                                require(initializedLower);
                                                bool initializedUpper;
                                                (tickCumulativeUpper, secondsPerLiquidityOutsideUpperX128, secondsOutsideUpper, initializedUpper) = (
                                                    upper.tickCumulativeOutside,
                                                    upper.secondsPerLiquidityOutsideX128,
                                                    upper.secondsOutside,
                                                    upper.initialized
                                                );
                                                require(initializedUpper);
                                            }
                                            Slot0 memory _slot0 = slot0;
                                            if (_slot0.tick < tickLower) {
                                                return (
                                                    tickCumulativeLower - tickCumulativeUpper,
                                                    secondsPerLiquidityOutsideLowerX128 - secondsPerLiquidityOutsideUpperX128,
                                                    secondsOutsideLower - secondsOutsideUpper
                                                );
                                            } else if (_slot0.tick < tickUpper) {
                                                uint32 time = _blockTimestamp();
                                                (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) =
                                                    observations.observeSingle(
                                                        time,
                                                        0,
                                                        _slot0.tick,
                                                        _slot0.observationIndex,
                                                        liquidity,
                                                        _slot0.observationCardinality
                                                    );
                                                return (
                                                    tickCumulative - tickCumulativeLower - tickCumulativeUpper,
                                                    secondsPerLiquidityCumulativeX128 -
                                                        secondsPerLiquidityOutsideLowerX128 -
                                                        secondsPerLiquidityOutsideUpperX128,
                                                    time - secondsOutsideLower - secondsOutsideUpper
                                                );
                                            } else {
                                                return (
                                                    tickCumulativeUpper - tickCumulativeLower,
                                                    secondsPerLiquidityOutsideUpperX128 - secondsPerLiquidityOutsideLowerX128,
                                                    secondsOutsideUpper - secondsOutsideLower
                                                );
                                            }
                                        }
                                        /// @inheritdoc IUniswapV3PoolDerivedState
                                        function observe(uint32[] calldata secondsAgos)
                                            external
                                            view
                                            override
                                            noDelegateCall
                                            returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s)
                                        {
                                            return
                                                observations.observe(
                                                    _blockTimestamp(),
                                                    secondsAgos,
                                                    slot0.tick,
                                                    slot0.observationIndex,
                                                    liquidity,
                                                    slot0.observationCardinality
                                                );
                                        }
                                        /// @inheritdoc IUniswapV3PoolActions
                                        function increaseObservationCardinalityNext(uint16 observationCardinalityNext)
                                            external
                                            override
                                            lock
                                            noDelegateCall
                                        {
                                            uint16 observationCardinalityNextOld = slot0.observationCardinalityNext; // for the event
                                            uint16 observationCardinalityNextNew =
                                                observations.grow(observationCardinalityNextOld, observationCardinalityNext);
                                            slot0.observationCardinalityNext = observationCardinalityNextNew;
                                            if (observationCardinalityNextOld != observationCardinalityNextNew)
                                                emit IncreaseObservationCardinalityNext(observationCardinalityNextOld, observationCardinalityNextNew);
                                        }
                                        /// @inheritdoc IUniswapV3PoolActions
                                        /// @dev not locked because it initializes unlocked
                                        function initialize(uint160 sqrtPriceX96) external override {
                                            require(slot0.sqrtPriceX96 == 0, 'AI');
                                            int24 tick = TickMath.getTickAtSqrtRatio(sqrtPriceX96);
                                            (uint16 cardinality, uint16 cardinalityNext) = observations.initialize(_blockTimestamp());
                                            slot0 = Slot0({
                                                sqrtPriceX96: sqrtPriceX96,
                                                tick: tick,
                                                observationIndex: 0,
                                                observationCardinality: cardinality,
                                                observationCardinalityNext: cardinalityNext,
                                                feeProtocol: 0,
                                                unlocked: true
                                            });
                                            emit Initialize(sqrtPriceX96, tick);
                                        }
                                        struct ModifyPositionParams {
                                            // the address that owns the position
                                            address owner;
                                            // the lower and upper tick of the position
                                            int24 tickLower;
                                            int24 tickUpper;
                                            // any change in liquidity
                                            int128 liquidityDelta;
                                        }
                                        /// @dev Effect some changes to a position
                                        /// @param params the position details and the change to the position's liquidity to effect
                                        /// @return position a storage pointer referencing the position with the given owner and tick range
                                        /// @return amount0 the amount of token0 owed to the pool, negative if the pool should pay the recipient
                                        /// @return amount1 the amount of token1 owed to the pool, negative if the pool should pay the recipient
                                        function _modifyPosition(ModifyPositionParams memory params)
                                            private
                                            noDelegateCall
                                            returns (
                                                Position.Info storage position,
                                                int256 amount0,
                                                int256 amount1
                                            )
                                        {
                                            checkTicks(params.tickLower, params.tickUpper);
                                            Slot0 memory _slot0 = slot0; // SLOAD for gas optimization
                                            position = _updatePosition(
                                                params.owner,
                                                params.tickLower,
                                                params.tickUpper,
                                                params.liquidityDelta,
                                                _slot0.tick
                                            );
                                            if (params.liquidityDelta != 0) {
                                                if (_slot0.tick < params.tickLower) {
                                                    // current tick is below the passed range; liquidity can only become in range by crossing from left to
                                                    // right, when we'll need _more_ token0 (it's becoming more valuable) so user must provide it
                                                    amount0 = SqrtPriceMath.getAmount0Delta(
                                                        TickMath.getSqrtRatioAtTick(params.tickLower),
                                                        TickMath.getSqrtRatioAtTick(params.tickUpper),
                                                        params.liquidityDelta
                                                    );
                                                } else if (_slot0.tick < params.tickUpper) {
                                                    // current tick is inside the passed range
                                                    uint128 liquidityBefore = liquidity; // SLOAD for gas optimization
                                                    // write an oracle entry
                                                    (slot0.observationIndex, slot0.observationCardinality) = observations.write(
                                                        _slot0.observationIndex,
                                                        _blockTimestamp(),
                                                        _slot0.tick,
                                                        liquidityBefore,
                                                        _slot0.observationCardinality,
                                                        _slot0.observationCardinalityNext
                                                    );
                                                    amount0 = SqrtPriceMath.getAmount0Delta(
                                                        _slot0.sqrtPriceX96,
                                                        TickMath.getSqrtRatioAtTick(params.tickUpper),
                                                        params.liquidityDelta
                                                    );
                                                    amount1 = SqrtPriceMath.getAmount1Delta(
                                                        TickMath.getSqrtRatioAtTick(params.tickLower),
                                                        _slot0.sqrtPriceX96,
                                                        params.liquidityDelta
                                                    );
                                                    liquidity = LiquidityMath.addDelta(liquidityBefore, params.liquidityDelta);
                                                } else {
                                                    // current tick is above the passed range; liquidity can only become in range by crossing from right to
                                                    // left, when we'll need _more_ token1 (it's becoming more valuable) so user must provide it
                                                    amount1 = SqrtPriceMath.getAmount1Delta(
                                                        TickMath.getSqrtRatioAtTick(params.tickLower),
                                                        TickMath.getSqrtRatioAtTick(params.tickUpper),
                                                        params.liquidityDelta
                                                    );
                                                }
                                            }
                                        }
                                        /// @dev Gets and updates a position with the given liquidity delta
                                        /// @param owner the owner of the position
                                        /// @param tickLower the lower tick of the position's tick range
                                        /// @param tickUpper the upper tick of the position's tick range
                                        /// @param tick the current tick, passed to avoid sloads
                                        function _updatePosition(
                                            address owner,
                                            int24 tickLower,
                                            int24 tickUpper,
                                            int128 liquidityDelta,
                                            int24 tick
                                        ) private returns (Position.Info storage position) {
                                            position = positions.get(owner, tickLower, tickUpper);
                                            uint256 _feeGrowthGlobal0X128 = feeGrowthGlobal0X128; // SLOAD for gas optimization
                                            uint256 _feeGrowthGlobal1X128 = feeGrowthGlobal1X128; // SLOAD for gas optimization
                                            // if we need to update the ticks, do it
                                            bool flippedLower;
                                            bool flippedUpper;
                                            if (liquidityDelta != 0) {
                                                uint32 time = _blockTimestamp();
                                                (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) =
                                                    observations.observeSingle(
                                                        time,
                                                        0,
                                                        slot0.tick,
                                                        slot0.observationIndex,
                                                        liquidity,
                                                        slot0.observationCardinality
                                                    );
                                                flippedLower = ticks.update(
                                                    tickLower,
                                                    tick,
                                                    liquidityDelta,
                                                    _feeGrowthGlobal0X128,
                                                    _feeGrowthGlobal1X128,
                                                    secondsPerLiquidityCumulativeX128,
                                                    tickCumulative,
                                                    time,
                                                    false,
                                                    maxLiquidityPerTick
                                                );
                                                flippedUpper = ticks.update(
                                                    tickUpper,
                                                    tick,
                                                    liquidityDelta,
                                                    _feeGrowthGlobal0X128,
                                                    _feeGrowthGlobal1X128,
                                                    secondsPerLiquidityCumulativeX128,
                                                    tickCumulative,
                                                    time,
                                                    true,
                                                    maxLiquidityPerTick
                                                );
                                                if (flippedLower) {
                                                    tickBitmap.flipTick(tickLower, tickSpacing);
                                                }
                                                if (flippedUpper) {
                                                    tickBitmap.flipTick(tickUpper, tickSpacing);
                                                }
                                            }
                                            (uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128) =
                                                ticks.getFeeGrowthInside(tickLower, tickUpper, tick, _feeGrowthGlobal0X128, _feeGrowthGlobal1X128);
                                            position.update(liquidityDelta, feeGrowthInside0X128, feeGrowthInside1X128);
                                            // clear any tick data that is no longer needed
                                            if (liquidityDelta < 0) {
                                                if (flippedLower) {
                                                    ticks.clear(tickLower);
                                                }
                                                if (flippedUpper) {
                                                    ticks.clear(tickUpper);
                                                }
                                            }
                                        }
                                        /// @inheritdoc IUniswapV3PoolActions
                                        /// @dev noDelegateCall is applied indirectly via _modifyPosition
                                        function mint(
                                            address recipient,
                                            int24 tickLower,
                                            int24 tickUpper,
                                            uint128 amount,
                                            bytes calldata data
                                        ) external override lock returns (uint256 amount0, uint256 amount1) {
                                            require(amount > 0);
                                            (, int256 amount0Int, int256 amount1Int) =
                                                _modifyPosition(
                                                    ModifyPositionParams({
                                                        owner: recipient,
                                                        tickLower: tickLower,
                                                        tickUpper: tickUpper,
                                                        liquidityDelta: int256(amount).toInt128()
                                                    })
                                                );
                                            amount0 = uint256(amount0Int);
                                            amount1 = uint256(amount1Int);
                                            uint256 balance0Before;
                                            uint256 balance1Before;
                                            if (amount0 > 0) balance0Before = balance0();
                                            if (amount1 > 0) balance1Before = balance1();
                                            IUniswapV3MintCallback(msg.sender).uniswapV3MintCallback(amount0, amount1, data);
                                            if (amount0 > 0) require(balance0Before.add(amount0) <= balance0(), 'M0');
                                            if (amount1 > 0) require(balance1Before.add(amount1) <= balance1(), 'M1');
                                            emit Mint(msg.sender, recipient, tickLower, tickUpper, amount, amount0, amount1);
                                        }
                                        /// @inheritdoc IUniswapV3PoolActions
                                        function collect(
                                            address recipient,
                                            int24 tickLower,
                                            int24 tickUpper,
                                            uint128 amount0Requested,
                                            uint128 amount1Requested
                                        ) external override lock returns (uint128 amount0, uint128 amount1) {
                                            // we don't need to checkTicks here, because invalid positions will never have non-zero tokensOwed{0,1}
                                            Position.Info storage position = positions.get(msg.sender, tickLower, tickUpper);
                                            amount0 = amount0Requested > position.tokensOwed0 ? position.tokensOwed0 : amount0Requested;
                                            amount1 = amount1Requested > position.tokensOwed1 ? position.tokensOwed1 : amount1Requested;
                                            if (amount0 > 0) {
                                                position.tokensOwed0 -= amount0;
                                                TransferHelper.safeTransfer(token0, recipient, amount0);
                                            }
                                            if (amount1 > 0) {
                                                position.tokensOwed1 -= amount1;
                                                TransferHelper.safeTransfer(token1, recipient, amount1);
                                            }
                                            emit Collect(msg.sender, recipient, tickLower, tickUpper, amount0, amount1);
                                        }
                                        /// @inheritdoc IUniswapV3PoolActions
                                        /// @dev noDelegateCall is applied indirectly via _modifyPosition
                                        function burn(
                                            int24 tickLower,
                                            int24 tickUpper,
                                            uint128 amount
                                        ) external override lock returns (uint256 amount0, uint256 amount1) {
                                            (Position.Info storage position, int256 amount0Int, int256 amount1Int) =
                                                _modifyPosition(
                                                    ModifyPositionParams({
                                                        owner: msg.sender,
                                                        tickLower: tickLower,
                                                        tickUpper: tickUpper,
                                                        liquidityDelta: -int256(amount).toInt128()
                                                    })
                                                );
                                            amount0 = uint256(-amount0Int);
                                            amount1 = uint256(-amount1Int);
                                            if (amount0 > 0 || amount1 > 0) {
                                                (position.tokensOwed0, position.tokensOwed1) = (
                                                    position.tokensOwed0 + uint128(amount0),
                                                    position.tokensOwed1 + uint128(amount1)
                                                );
                                            }
                                            emit Burn(msg.sender, tickLower, tickUpper, amount, amount0, amount1);
                                        }
                                        struct SwapCache {
                                            // the protocol fee for the input token
                                            uint8 feeProtocol;
                                            // liquidity at the beginning of the swap
                                            uint128 liquidityStart;
                                            // the timestamp of the current block
                                            uint32 blockTimestamp;
                                            // the current value of the tick accumulator, computed only if we cross an initialized tick
                                            int56 tickCumulative;
                                            // the current value of seconds per liquidity accumulator, computed only if we cross an initialized tick
                                            uint160 secondsPerLiquidityCumulativeX128;
                                            // whether we've computed and cached the above two accumulators
                                            bool computedLatestObservation;
                                        }
                                        // the top level state of the swap, the results of which are recorded in storage at the end
                                        struct SwapState {
                                            // the amount remaining to be swapped in/out of the input/output asset
                                            int256 amountSpecifiedRemaining;
                                            // the amount already swapped out/in of the output/input asset
                                            int256 amountCalculated;
                                            // current sqrt(price)
                                            uint160 sqrtPriceX96;
                                            // the tick associated with the current price
                                            int24 tick;
                                            // the global fee growth of the input token
                                            uint256 feeGrowthGlobalX128;
                                            // amount of input token paid as protocol fee
                                            uint128 protocolFee;
                                            // the current liquidity in range
                                            uint128 liquidity;
                                        }
                                        struct StepComputations {
                                            // the price at the beginning of the step
                                            uint160 sqrtPriceStartX96;
                                            // the next tick to swap to from the current tick in the swap direction
                                            int24 tickNext;
                                            // whether tickNext is initialized or not
                                            bool initialized;
                                            // sqrt(price) for the next tick (1/0)
                                            uint160 sqrtPriceNextX96;
                                            // how much is being swapped in in this step
                                            uint256 amountIn;
                                            // how much is being swapped out
                                            uint256 amountOut;
                                            // how much fee is being paid in
                                            uint256 feeAmount;
                                        }
                                        /// @inheritdoc IUniswapV3PoolActions
                                        function swap(
                                            address recipient,
                                            bool zeroForOne,
                                            int256 amountSpecified,
                                            uint160 sqrtPriceLimitX96,
                                            bytes calldata data
                                        ) external override noDelegateCall returns (int256 amount0, int256 amount1) {
                                            require(amountSpecified != 0, 'AS');
                                            Slot0 memory slot0Start = slot0;
                                            require(slot0Start.unlocked, 'LOK');
                                            require(
                                                zeroForOne
                                                    ? sqrtPriceLimitX96 < slot0Start.sqrtPriceX96 && sqrtPriceLimitX96 > TickMath.MIN_SQRT_RATIO
                                                    : sqrtPriceLimitX96 > slot0Start.sqrtPriceX96 && sqrtPriceLimitX96 < TickMath.MAX_SQRT_RATIO,
                                                'SPL'
                                            );
                                            slot0.unlocked = false;
                                            SwapCache memory cache =
                                                SwapCache({
                                                    liquidityStart: liquidity,
                                                    blockTimestamp: _blockTimestamp(),
                                                    feeProtocol: zeroForOne ? (slot0Start.feeProtocol % 16) : (slot0Start.feeProtocol >> 4),
                                                    secondsPerLiquidityCumulativeX128: 0,
                                                    tickCumulative: 0,
                                                    computedLatestObservation: false
                                                });
                                            bool exactInput = amountSpecified > 0;
                                            SwapState memory state =
                                                SwapState({
                                                    amountSpecifiedRemaining: amountSpecified,
                                                    amountCalculated: 0,
                                                    sqrtPriceX96: slot0Start.sqrtPriceX96,
                                                    tick: slot0Start.tick,
                                                    feeGrowthGlobalX128: zeroForOne ? feeGrowthGlobal0X128 : feeGrowthGlobal1X128,
                                                    protocolFee: 0,
                                                    liquidity: cache.liquidityStart
                                                });
                                            // continue swapping as long as we haven't used the entire input/output and haven't reached the price limit
                                            while (state.amountSpecifiedRemaining != 0 && state.sqrtPriceX96 != sqrtPriceLimitX96) {
                                                StepComputations memory step;
                                                step.sqrtPriceStartX96 = state.sqrtPriceX96;
                                                (step.tickNext, step.initialized) = tickBitmap.nextInitializedTickWithinOneWord(
                                                    state.tick,
                                                    tickSpacing,
                                                    zeroForOne
                                                );
                                                // ensure that we do not overshoot the min/max tick, as the tick bitmap is not aware of these bounds
                                                if (step.tickNext < TickMath.MIN_TICK) {
                                                    step.tickNext = TickMath.MIN_TICK;
                                                } else if (step.tickNext > TickMath.MAX_TICK) {
                                                    step.tickNext = TickMath.MAX_TICK;
                                                }
                                                // get the price for the next tick
                                                step.sqrtPriceNextX96 = TickMath.getSqrtRatioAtTick(step.tickNext);
                                                // compute values to swap to the target tick, price limit, or point where input/output amount is exhausted
                                                (state.sqrtPriceX96, step.amountIn, step.amountOut, step.feeAmount) = SwapMath.computeSwapStep(
                                                    state.sqrtPriceX96,
                                                    (zeroForOne ? step.sqrtPriceNextX96 < sqrtPriceLimitX96 : step.sqrtPriceNextX96 > sqrtPriceLimitX96)
                                                        ? sqrtPriceLimitX96
                                                        : step.sqrtPriceNextX96,
                                                    state.liquidity,
                                                    state.amountSpecifiedRemaining,
                                                    fee
                                                );
                                                if (exactInput) {
                                                    state.amountSpecifiedRemaining -= (step.amountIn + step.feeAmount).toInt256();
                                                    state.amountCalculated = state.amountCalculated.sub(step.amountOut.toInt256());
                                                } else {
                                                    state.amountSpecifiedRemaining += step.amountOut.toInt256();
                                                    state.amountCalculated = state.amountCalculated.add((step.amountIn + step.feeAmount).toInt256());
                                                }
                                                // if the protocol fee is on, calculate how much is owed, decrement feeAmount, and increment protocolFee
                                                if (cache.feeProtocol > 0) {
                                                    uint256 delta = step.feeAmount / cache.feeProtocol;
                                                    step.feeAmount -= delta;
                                                    state.protocolFee += uint128(delta);
                                                }
                                                // update global fee tracker
                                                if (state.liquidity > 0)
                                                    state.feeGrowthGlobalX128 += FullMath.mulDiv(step.feeAmount, FixedPoint128.Q128, state.liquidity);
                                                // shift tick if we reached the next price
                                                if (state.sqrtPriceX96 == step.sqrtPriceNextX96) {
                                                    // if the tick is initialized, run the tick transition
                                                    if (step.initialized) {
                                                        // check for the placeholder value, which we replace with the actual value the first time the swap
                                                        // crosses an initialized tick
                                                        if (!cache.computedLatestObservation) {
                                                            (cache.tickCumulative, cache.secondsPerLiquidityCumulativeX128) = observations.observeSingle(
                                                                cache.blockTimestamp,
                                                                0,
                                                                slot0Start.tick,
                                                                slot0Start.observationIndex,
                                                                cache.liquidityStart,
                                                                slot0Start.observationCardinality
                                                            );
                                                            cache.computedLatestObservation = true;
                                                        }
                                                        int128 liquidityNet =
                                                            ticks.cross(
                                                                step.tickNext,
                                                                (zeroForOne ? state.feeGrowthGlobalX128 : feeGrowthGlobal0X128),
                                                                (zeroForOne ? feeGrowthGlobal1X128 : state.feeGrowthGlobalX128),
                                                                cache.secondsPerLiquidityCumulativeX128,
                                                                cache.tickCumulative,
                                                                cache.blockTimestamp
                                                            );
                                                        // if we're moving leftward, we interpret liquidityNet as the opposite sign
                                                        // safe because liquidityNet cannot be type(int128).min
                                                        if (zeroForOne) liquidityNet = -liquidityNet;
                                                        state.liquidity = LiquidityMath.addDelta(state.liquidity, liquidityNet);
                                                    }
                                                    state.tick = zeroForOne ? step.tickNext - 1 : step.tickNext;
                                                } else if (state.sqrtPriceX96 != step.sqrtPriceStartX96) {
                                                    // recompute unless we're on a lower tick boundary (i.e. already transitioned ticks), and haven't moved
                                                    state.tick = TickMath.getTickAtSqrtRatio(state.sqrtPriceX96);
                                                }
                                            }
                                            // update tick and write an oracle entry if the tick change
                                            if (state.tick != slot0Start.tick) {
                                                (uint16 observationIndex, uint16 observationCardinality) =
                                                    observations.write(
                                                        slot0Start.observationIndex,
                                                        cache.blockTimestamp,
                                                        slot0Start.tick,
                                                        cache.liquidityStart,
                                                        slot0Start.observationCardinality,
                                                        slot0Start.observationCardinalityNext
                                                    );
                                                (slot0.sqrtPriceX96, slot0.tick, slot0.observationIndex, slot0.observationCardinality) = (
                                                    state.sqrtPriceX96,
                                                    state.tick,
                                                    observationIndex,
                                                    observationCardinality
                                                );
                                            } else {
                                                // otherwise just update the price
                                                slot0.sqrtPriceX96 = state.sqrtPriceX96;
                                            }
                                            // update liquidity if it changed
                                            if (cache.liquidityStart != state.liquidity) liquidity = state.liquidity;
                                            // update fee growth global and, if necessary, protocol fees
                                            // overflow is acceptable, protocol has to withdraw before it hits type(uint128).max fees
                                            if (zeroForOne) {
                                                feeGrowthGlobal0X128 = state.feeGrowthGlobalX128;
                                                if (state.protocolFee > 0) protocolFees.token0 += state.protocolFee;
                                            } else {
                                                feeGrowthGlobal1X128 = state.feeGrowthGlobalX128;
                                                if (state.protocolFee > 0) protocolFees.token1 += state.protocolFee;
                                            }
                                            (amount0, amount1) = zeroForOne == exactInput
                                                ? (amountSpecified - state.amountSpecifiedRemaining, state.amountCalculated)
                                                : (state.amountCalculated, amountSpecified - state.amountSpecifiedRemaining);
                                            // do the transfers and collect payment
                                            if (zeroForOne) {
                                                if (amount1 < 0) TransferHelper.safeTransfer(token1, recipient, uint256(-amount1));
                                                uint256 balance0Before = balance0();
                                                IUniswapV3SwapCallback(msg.sender).uniswapV3SwapCallback(amount0, amount1, data);
                                                require(balance0Before.add(uint256(amount0)) <= balance0(), 'IIA');
                                            } else {
                                                if (amount0 < 0) TransferHelper.safeTransfer(token0, recipient, uint256(-amount0));
                                                uint256 balance1Before = balance1();
                                                IUniswapV3SwapCallback(msg.sender).uniswapV3SwapCallback(amount0, amount1, data);
                                                require(balance1Before.add(uint256(amount1)) <= balance1(), 'IIA');
                                            }
                                            emit Swap(msg.sender, recipient, amount0, amount1, state.sqrtPriceX96, state.liquidity, state.tick);
                                            slot0.unlocked = true;
                                        }
                                        /// @inheritdoc IUniswapV3PoolActions
                                        function flash(
                                            address recipient,
                                            uint256 amount0,
                                            uint256 amount1,
                                            bytes calldata data
                                        ) external override lock noDelegateCall {
                                            uint128 _liquidity = liquidity;
                                            require(_liquidity > 0, 'L');
                                            uint256 fee0 = FullMath.mulDivRoundingUp(amount0, fee, 1e6);
                                            uint256 fee1 = FullMath.mulDivRoundingUp(amount1, fee, 1e6);
                                            uint256 balance0Before = balance0();
                                            uint256 balance1Before = balance1();
                                            if (amount0 > 0) TransferHelper.safeTransfer(token0, recipient, amount0);
                                            if (amount1 > 0) TransferHelper.safeTransfer(token1, recipient, amount1);
                                            IUniswapV3FlashCallback(msg.sender).uniswapV3FlashCallback(fee0, fee1, data);
                                            uint256 balance0After = balance0();
                                            uint256 balance1After = balance1();
                                            require(balance0Before.add(fee0) <= balance0After, 'F0');
                                            require(balance1Before.add(fee1) <= balance1After, 'F1');
                                            // sub is safe because we know balanceAfter is gt balanceBefore by at least fee
                                            uint256 paid0 = balance0After - balance0Before;
                                            uint256 paid1 = balance1After - balance1Before;
                                            if (paid0 > 0) {
                                                uint8 feeProtocol0 = slot0.feeProtocol % 16;
                                                uint256 fees0 = feeProtocol0 == 0 ? 0 : paid0 / feeProtocol0;
                                                if (uint128(fees0) > 0) protocolFees.token0 += uint128(fees0);
                                                feeGrowthGlobal0X128 += FullMath.mulDiv(paid0 - fees0, FixedPoint128.Q128, _liquidity);
                                            }
                                            if (paid1 > 0) {
                                                uint8 feeProtocol1 = slot0.feeProtocol >> 4;
                                                uint256 fees1 = feeProtocol1 == 0 ? 0 : paid1 / feeProtocol1;
                                                if (uint128(fees1) > 0) protocolFees.token1 += uint128(fees1);
                                                feeGrowthGlobal1X128 += FullMath.mulDiv(paid1 - fees1, FixedPoint128.Q128, _liquidity);
                                            }
                                            emit Flash(msg.sender, recipient, amount0, amount1, paid0, paid1);
                                        }
                                        /// @inheritdoc IUniswapV3PoolOwnerActions
                                        function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external override lock onlyFactoryOwner {
                                            require(
                                                (feeProtocol0 == 0 || (feeProtocol0 >= 4 && feeProtocol0 <= 10)) &&
                                                    (feeProtocol1 == 0 || (feeProtocol1 >= 4 && feeProtocol1 <= 10))
                                            );
                                            uint8 feeProtocolOld = slot0.feeProtocol;
                                            slot0.feeProtocol = feeProtocol0 + (feeProtocol1 << 4);
                                            emit SetFeeProtocol(feeProtocolOld % 16, feeProtocolOld >> 4, feeProtocol0, feeProtocol1);
                                        }
                                        /// @inheritdoc IUniswapV3PoolOwnerActions
                                        function collectProtocol(
                                            address recipient,
                                            uint128 amount0Requested,
                                            uint128 amount1Requested
                                        ) external override lock onlyFactoryOwner returns (uint128 amount0, uint128 amount1) {
                                            amount0 = amount0Requested > protocolFees.token0 ? protocolFees.token0 : amount0Requested;
                                            amount1 = amount1Requested > protocolFees.token1 ? protocolFees.token1 : amount1Requested;
                                            if (amount0 > 0) {
                                                if (amount0 == protocolFees.token0) amount0--; // ensure that the slot is not cleared, for gas savings
                                                protocolFees.token0 -= amount0;
                                                TransferHelper.safeTransfer(token0, recipient, amount0);
                                            }
                                            if (amount1 > 0) {
                                                if (amount1 == protocolFees.token1) amount1--; // ensure that the slot is not cleared, for gas savings
                                                protocolFees.token1 -= amount1;
                                                TransferHelper.safeTransfer(token1, recipient, amount1);
                                            }
                                            emit CollectProtocol(msg.sender, recipient, amount0, amount1);
                                        }
                                    }
                                    // SPDX-License-Identifier: GPL-2.0-or-later
                                    pragma solidity >=0.5.0;
                                    import './pool/IUniswapV3PoolImmutables.sol';
                                    import './pool/IUniswapV3PoolState.sol';
                                    import './pool/IUniswapV3PoolDerivedState.sol';
                                    import './pool/IUniswapV3PoolActions.sol';
                                    import './pool/IUniswapV3PoolOwnerActions.sol';
                                    import './pool/IUniswapV3PoolEvents.sol';
                                    /// @title The interface for a Uniswap V3 Pool
                                    /// @notice A Uniswap pool facilitates swapping and automated market making between any two assets that strictly conform
                                    /// to the ERC20 specification
                                    /// @dev The pool interface is broken up into many smaller pieces
                                    interface IUniswapV3Pool is
                                        IUniswapV3PoolImmutables,
                                        IUniswapV3PoolState,
                                        IUniswapV3PoolDerivedState,
                                        IUniswapV3PoolActions,
                                        IUniswapV3PoolOwnerActions,
                                        IUniswapV3PoolEvents
                                    {
                                    }
                                    // SPDX-License-Identifier: BUSL-1.1
                                    pragma solidity =0.7.6;
                                    /// @title Prevents delegatecall to a contract
                                    /// @notice Base contract that provides a modifier for preventing delegatecall to methods in a child contract
                                    abstract contract NoDelegateCall {
                                        /// @dev The original address of this contract
                                        address private immutable original;
                                        constructor() {
                                            // Immutables are computed in the init code of the contract, and then inlined into the deployed bytecode.
                                            // In other words, this variable won't change when it's checked at runtime.
                                            original = address(this);
                                        }
                                        /// @dev Private method is used instead of inlining into modifier because modifiers are copied into each method,
                                        ///     and the use of immutable means the address bytes are copied in every place the modifier is used.
                                        function checkNotDelegateCall() private view {
                                            require(address(this) == original);
                                        }
                                        /// @notice Prevents delegatecall into the modified method
                                        modifier noDelegateCall() {
                                            checkNotDelegateCall();
                                            _;
                                        }
                                    }
                                    // SPDX-License-Identifier: GPL-2.0-or-later
                                    pragma solidity >=0.7.0;
                                    /// @title Optimized overflow and underflow safe math operations
                                    /// @notice Contains methods for doing math operations that revert on overflow or underflow for minimal gas cost
                                    library LowGasSafeMath {
                                        /// @notice Returns x + y, reverts if sum overflows uint256
                                        /// @param x The augend
                                        /// @param y The addend
                                        /// @return z The sum of x and y
                                        function add(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                            require((z = x + y) >= x);
                                        }
                                        /// @notice Returns x - y, reverts if underflows
                                        /// @param x The minuend
                                        /// @param y The subtrahend
                                        /// @return z The difference of x and y
                                        function sub(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                            require((z = x - y) <= x);
                                        }
                                        /// @notice Returns x * y, reverts if overflows
                                        /// @param x The multiplicand
                                        /// @param y The multiplier
                                        /// @return z The product of x and y
                                        function mul(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                            require(x == 0 || (z = x * y) / x == y);
                                        }
                                        /// @notice Returns x + y, reverts if overflows or underflows
                                        /// @param x The augend
                                        /// @param y The addend
                                        /// @return z The sum of x and y
                                        function add(int256 x, int256 y) internal pure returns (int256 z) {
                                            require((z = x + y) >= x == (y >= 0));
                                        }
                                        /// @notice Returns x - y, reverts if overflows or underflows
                                        /// @param x The minuend
                                        /// @param y The subtrahend
                                        /// @return z The difference of x and y
                                        function sub(int256 x, int256 y) internal pure returns (int256 z) {
                                            require((z = x - y) <= x == (y >= 0));
                                        }
                                    }
                                    // SPDX-License-Identifier: GPL-2.0-or-later
                                    pragma solidity >=0.5.0;
                                    /// @title Safe casting methods
                                    /// @notice Contains methods for safely casting between types
                                    library SafeCast {
                                        /// @notice Cast a uint256 to a uint160, revert on overflow
                                        /// @param y The uint256 to be downcasted
                                        /// @return z The downcasted integer, now type uint160
                                        function toUint160(uint256 y) internal pure returns (uint160 z) {
                                            require((z = uint160(y)) == y);
                                        }
                                        /// @notice Cast a int256 to a int128, revert on overflow or underflow
                                        /// @param y The int256 to be downcasted
                                        /// @return z The downcasted integer, now type int128
                                        function toInt128(int256 y) internal pure returns (int128 z) {
                                            require((z = int128(y)) == y);
                                        }
                                        /// @notice Cast a uint256 to a int256, revert on overflow
                                        /// @param y The uint256 to be casted
                                        /// @return z The casted integer, now type int256
                                        function toInt256(uint256 y) internal pure returns (int256 z) {
                                            require(y < 2**255);
                                            z = int256(y);
                                        }
                                    }
                                    // SPDX-License-Identifier: BUSL-1.1
                                    pragma solidity >=0.5.0;
                                    import './LowGasSafeMath.sol';
                                    import './SafeCast.sol';
                                    import './TickMath.sol';
                                    import './LiquidityMath.sol';
                                    /// @title Tick
                                    /// @notice Contains functions for managing tick processes and relevant calculations
                                    library Tick {
                                        using LowGasSafeMath for int256;
                                        using SafeCast for int256;
                                        // info stored for each initialized individual tick
                                        struct Info {
                                            // the total position liquidity that references this tick
                                            uint128 liquidityGross;
                                            // amount of net liquidity added (subtracted) when tick is crossed from left to right (right to left),
                                            int128 liquidityNet;
                                            // fee growth per unit of liquidity on the _other_ side of this tick (relative to the current tick)
                                            // only has relative meaning, not absolute — the value depends on when the tick is initialized
                                            uint256 feeGrowthOutside0X128;
                                            uint256 feeGrowthOutside1X128;
                                            // the cumulative tick value on the other side of the tick
                                            int56 tickCumulativeOutside;
                                            // the seconds per unit of liquidity on the _other_ side of this tick (relative to the current tick)
                                            // only has relative meaning, not absolute — the value depends on when the tick is initialized
                                            uint160 secondsPerLiquidityOutsideX128;
                                            // the seconds spent on the other side of the tick (relative to the current tick)
                                            // only has relative meaning, not absolute — the value depends on when the tick is initialized
                                            uint32 secondsOutside;
                                            // true iff the tick is initialized, i.e. the value is exactly equivalent to the expression liquidityGross != 0
                                            // these 8 bits are set to prevent fresh sstores when crossing newly initialized ticks
                                            bool initialized;
                                        }
                                        /// @notice Derives max liquidity per tick from given tick spacing
                                        /// @dev Executed within the pool constructor
                                        /// @param tickSpacing The amount of required tick separation, realized in multiples of `tickSpacing`
                                        ///     e.g., a tickSpacing of 3 requires ticks to be initialized every 3rd tick i.e., ..., -6, -3, 0, 3, 6, ...
                                        /// @return The max liquidity per tick
                                        function tickSpacingToMaxLiquidityPerTick(int24 tickSpacing) internal pure returns (uint128) {
                                            int24 minTick = (TickMath.MIN_TICK / tickSpacing) * tickSpacing;
                                            int24 maxTick = (TickMath.MAX_TICK / tickSpacing) * tickSpacing;
                                            uint24 numTicks = uint24((maxTick - minTick) / tickSpacing) + 1;
                                            return type(uint128).max / numTicks;
                                        }
                                        /// @notice Retrieves fee growth data
                                        /// @param self The mapping containing all tick information for initialized ticks
                                        /// @param tickLower The lower tick boundary of the position
                                        /// @param tickUpper The upper tick boundary of the position
                                        /// @param tickCurrent The current tick
                                        /// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
                                        /// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
                                        /// @return feeGrowthInside0X128 The all-time fee growth in token0, per unit of liquidity, inside the position's tick boundaries
                                        /// @return feeGrowthInside1X128 The all-time fee growth in token1, per unit of liquidity, inside the position's tick boundaries
                                        function getFeeGrowthInside(
                                            mapping(int24 => Tick.Info) storage self,
                                            int24 tickLower,
                                            int24 tickUpper,
                                            int24 tickCurrent,
                                            uint256 feeGrowthGlobal0X128,
                                            uint256 feeGrowthGlobal1X128
                                        ) internal view returns (uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128) {
                                            Info storage lower = self[tickLower];
                                            Info storage upper = self[tickUpper];
                                            // calculate fee growth below
                                            uint256 feeGrowthBelow0X128;
                                            uint256 feeGrowthBelow1X128;
                                            if (tickCurrent >= tickLower) {
                                                feeGrowthBelow0X128 = lower.feeGrowthOutside0X128;
                                                feeGrowthBelow1X128 = lower.feeGrowthOutside1X128;
                                            } else {
                                                feeGrowthBelow0X128 = feeGrowthGlobal0X128 - lower.feeGrowthOutside0X128;
                                                feeGrowthBelow1X128 = feeGrowthGlobal1X128 - lower.feeGrowthOutside1X128;
                                            }
                                            // calculate fee growth above
                                            uint256 feeGrowthAbove0X128;
                                            uint256 feeGrowthAbove1X128;
                                            if (tickCurrent < tickUpper) {
                                                feeGrowthAbove0X128 = upper.feeGrowthOutside0X128;
                                                feeGrowthAbove1X128 = upper.feeGrowthOutside1X128;
                                            } else {
                                                feeGrowthAbove0X128 = feeGrowthGlobal0X128 - upper.feeGrowthOutside0X128;
                                                feeGrowthAbove1X128 = feeGrowthGlobal1X128 - upper.feeGrowthOutside1X128;
                                            }
                                            feeGrowthInside0X128 = feeGrowthGlobal0X128 - feeGrowthBelow0X128 - feeGrowthAbove0X128;
                                            feeGrowthInside1X128 = feeGrowthGlobal1X128 - feeGrowthBelow1X128 - feeGrowthAbove1X128;
                                        }
                                        /// @notice Updates a tick and returns true if the tick was flipped from initialized to uninitialized, or vice versa
                                        /// @param self The mapping containing all tick information for initialized ticks
                                        /// @param tick The tick that will be updated
                                        /// @param tickCurrent The current tick
                                        /// @param liquidityDelta A new amount of liquidity to be added (subtracted) when tick is crossed from left to right (right to left)
                                        /// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
                                        /// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
                                        /// @param secondsPerLiquidityCumulativeX128 The all-time seconds per max(1, liquidity) of the pool
                                        /// @param time The current block timestamp cast to a uint32
                                        /// @param upper true for updating a position's upper tick, or false for updating a position's lower tick
                                        /// @param maxLiquidity The maximum liquidity allocation for a single tick
                                        /// @return flipped Whether the tick was flipped from initialized to uninitialized, or vice versa
                                        function update(
                                            mapping(int24 => Tick.Info) storage self,
                                            int24 tick,
                                            int24 tickCurrent,
                                            int128 liquidityDelta,
                                            uint256 feeGrowthGlobal0X128,
                                            uint256 feeGrowthGlobal1X128,
                                            uint160 secondsPerLiquidityCumulativeX128,
                                            int56 tickCumulative,
                                            uint32 time,
                                            bool upper,
                                            uint128 maxLiquidity
                                        ) internal returns (bool flipped) {
                                            Tick.Info storage info = self[tick];
                                            uint128 liquidityGrossBefore = info.liquidityGross;
                                            uint128 liquidityGrossAfter = LiquidityMath.addDelta(liquidityGrossBefore, liquidityDelta);
                                            require(liquidityGrossAfter <= maxLiquidity, 'LO');
                                            flipped = (liquidityGrossAfter == 0) != (liquidityGrossBefore == 0);
                                            if (liquidityGrossBefore == 0) {
                                                // by convention, we assume that all growth before a tick was initialized happened _below_ the tick
                                                if (tick <= tickCurrent) {
                                                    info.feeGrowthOutside0X128 = feeGrowthGlobal0X128;
                                                    info.feeGrowthOutside1X128 = feeGrowthGlobal1X128;
                                                    info.secondsPerLiquidityOutsideX128 = secondsPerLiquidityCumulativeX128;
                                                    info.tickCumulativeOutside = tickCumulative;
                                                    info.secondsOutside = time;
                                                }
                                                info.initialized = true;
                                            }
                                            info.liquidityGross = liquidityGrossAfter;
                                            // when the lower (upper) tick is crossed left to right (right to left), liquidity must be added (removed)
                                            info.liquidityNet = upper
                                                ? int256(info.liquidityNet).sub(liquidityDelta).toInt128()
                                                : int256(info.liquidityNet).add(liquidityDelta).toInt128();
                                        }
                                        /// @notice Clears tick data
                                        /// @param self The mapping containing all initialized tick information for initialized ticks
                                        /// @param tick The tick that will be cleared
                                        function clear(mapping(int24 => Tick.Info) storage self, int24 tick) internal {
                                            delete self[tick];
                                        }
                                        /// @notice Transitions to next tick as needed by price movement
                                        /// @param self The mapping containing all tick information for initialized ticks
                                        /// @param tick The destination tick of the transition
                                        /// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
                                        /// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
                                        /// @param secondsPerLiquidityCumulativeX128 The current seconds per liquidity
                                        /// @param time The current block.timestamp
                                        /// @return liquidityNet The amount of liquidity added (subtracted) when tick is crossed from left to right (right to left)
                                        function cross(
                                            mapping(int24 => Tick.Info) storage self,
                                            int24 tick,
                                            uint256 feeGrowthGlobal0X128,
                                            uint256 feeGrowthGlobal1X128,
                                            uint160 secondsPerLiquidityCumulativeX128,
                                            int56 tickCumulative,
                                            uint32 time
                                        ) internal returns (int128 liquidityNet) {
                                            Tick.Info storage info = self[tick];
                                            info.feeGrowthOutside0X128 = feeGrowthGlobal0X128 - info.feeGrowthOutside0X128;
                                            info.feeGrowthOutside1X128 = feeGrowthGlobal1X128 - info.feeGrowthOutside1X128;
                                            info.secondsPerLiquidityOutsideX128 = secondsPerLiquidityCumulativeX128 - info.secondsPerLiquidityOutsideX128;
                                            info.tickCumulativeOutside = tickCumulative - info.tickCumulativeOutside;
                                            info.secondsOutside = time - info.secondsOutside;
                                            liquidityNet = info.liquidityNet;
                                        }
                                    }
                                    // SPDX-License-Identifier: BUSL-1.1
                                    pragma solidity >=0.5.0;
                                    import './BitMath.sol';
                                    /// @title Packed tick initialized state library
                                    /// @notice Stores a packed mapping of tick index to its initialized state
                                    /// @dev The mapping uses int16 for keys since ticks are represented as int24 and there are 256 (2^8) values per word.
                                    library TickBitmap {
                                        /// @notice Computes the position in the mapping where the initialized bit for a tick lives
                                        /// @param tick The tick for which to compute the position
                                        /// @return wordPos The key in the mapping containing the word in which the bit is stored
                                        /// @return bitPos The bit position in the word where the flag is stored
                                        function position(int24 tick) private pure returns (int16 wordPos, uint8 bitPos) {
                                            wordPos = int16(tick >> 8);
                                            bitPos = uint8(tick % 256);
                                        }
                                        /// @notice Flips the initialized state for a given tick from false to true, or vice versa
                                        /// @param self The mapping in which to flip the tick
                                        /// @param tick The tick to flip
                                        /// @param tickSpacing The spacing between usable ticks
                                        function flipTick(
                                            mapping(int16 => uint256) storage self,
                                            int24 tick,
                                            int24 tickSpacing
                                        ) internal {
                                            require(tick % tickSpacing == 0); // ensure that the tick is spaced
                                            (int16 wordPos, uint8 bitPos) = position(tick / tickSpacing);
                                            uint256 mask = 1 << bitPos;
                                            self[wordPos] ^= mask;
                                        }
                                        /// @notice Returns the next initialized tick contained in the same word (or adjacent word) as the tick that is either
                                        /// to the left (less than or equal to) or right (greater than) of the given tick
                                        /// @param self The mapping in which to compute the next initialized tick
                                        /// @param tick The starting tick
                                        /// @param tickSpacing The spacing between usable ticks
                                        /// @param lte Whether to search for the next initialized tick to the left (less than or equal to the starting tick)
                                        /// @return next The next initialized or uninitialized tick up to 256 ticks away from the current tick
                                        /// @return initialized Whether the next tick is initialized, as the function only searches within up to 256 ticks
                                        function nextInitializedTickWithinOneWord(
                                            mapping(int16 => uint256) storage self,
                                            int24 tick,
                                            int24 tickSpacing,
                                            bool lte
                                        ) internal view returns (int24 next, bool initialized) {
                                            int24 compressed = tick / tickSpacing;
                                            if (tick < 0 && tick % tickSpacing != 0) compressed--; // round towards negative infinity
                                            if (lte) {
                                                (int16 wordPos, uint8 bitPos) = position(compressed);
                                                // all the 1s at or to the right of the current bitPos
                                                uint256 mask = (1 << bitPos) - 1 + (1 << bitPos);
                                                uint256 masked = self[wordPos] & mask;
                                                // if there are no initialized ticks to the right of or at the current tick, return rightmost in the word
                                                initialized = masked != 0;
                                                // overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick
                                                next = initialized
                                                    ? (compressed - int24(bitPos - BitMath.mostSignificantBit(masked))) * tickSpacing
                                                    : (compressed - int24(bitPos)) * tickSpacing;
                                            } else {
                                                // start from the word of the next tick, since the current tick state doesn't matter
                                                (int16 wordPos, uint8 bitPos) = position(compressed + 1);
                                                // all the 1s at or to the left of the bitPos
                                                uint256 mask = ~((1 << bitPos) - 1);
                                                uint256 masked = self[wordPos] & mask;
                                                // if there are no initialized ticks to the left of the current tick, return leftmost in the word
                                                initialized = masked != 0;
                                                // overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick
                                                next = initialized
                                                    ? (compressed + 1 + int24(BitMath.leastSignificantBit(masked) - bitPos)) * tickSpacing
                                                    : (compressed + 1 + int24(type(uint8).max - bitPos)) * tickSpacing;
                                            }
                                        }
                                    }
                                    // SPDX-License-Identifier: BUSL-1.1
                                    pragma solidity >=0.5.0;
                                    import './FullMath.sol';
                                    import './FixedPoint128.sol';
                                    import './LiquidityMath.sol';
                                    /// @title Position
                                    /// @notice Positions represent an owner address' liquidity between a lower and upper tick boundary
                                    /// @dev Positions store additional state for tracking fees owed to the position
                                    library Position {
                                        // info stored for each user's position
                                        struct Info {
                                            // the amount of liquidity owned by this position
                                            uint128 liquidity;
                                            // fee growth per unit of liquidity as of the last update to liquidity or fees owed
                                            uint256 feeGrowthInside0LastX128;
                                            uint256 feeGrowthInside1LastX128;
                                            // the fees owed to the position owner in token0/token1
                                            uint128 tokensOwed0;
                                            uint128 tokensOwed1;
                                        }
                                        /// @notice Returns the Info struct of a position, given an owner and position boundaries
                                        /// @param self The mapping containing all user positions
                                        /// @param owner The address of the position owner
                                        /// @param tickLower The lower tick boundary of the position
                                        /// @param tickUpper The upper tick boundary of the position
                                        /// @return position The position info struct of the given owners' position
                                        function get(
                                            mapping(bytes32 => Info) storage self,
                                            address owner,
                                            int24 tickLower,
                                            int24 tickUpper
                                        ) internal view returns (Position.Info storage position) {
                                            position = self[keccak256(abi.encodePacked(owner, tickLower, tickUpper))];
                                        }
                                        /// @notice Credits accumulated fees to a user's position
                                        /// @param self The individual position to update
                                        /// @param liquidityDelta The change in pool liquidity as a result of the position update
                                        /// @param feeGrowthInside0X128 The all-time fee growth in token0, per unit of liquidity, inside the position's tick boundaries
                                        /// @param feeGrowthInside1X128 The all-time fee growth in token1, per unit of liquidity, inside the position's tick boundaries
                                        function update(
                                            Info storage self,
                                            int128 liquidityDelta,
                                            uint256 feeGrowthInside0X128,
                                            uint256 feeGrowthInside1X128
                                        ) internal {
                                            Info memory _self = self;
                                            uint128 liquidityNext;
                                            if (liquidityDelta == 0) {
                                                require(_self.liquidity > 0, 'NP'); // disallow pokes for 0 liquidity positions
                                                liquidityNext = _self.liquidity;
                                            } else {
                                                liquidityNext = LiquidityMath.addDelta(_self.liquidity, liquidityDelta);
                                            }
                                            // calculate accumulated fees
                                            uint128 tokensOwed0 =
                                                uint128(
                                                    FullMath.mulDiv(
                                                        feeGrowthInside0X128 - _self.feeGrowthInside0LastX128,
                                                        _self.liquidity,
                                                        FixedPoint128.Q128
                                                    )
                                                );
                                            uint128 tokensOwed1 =
                                                uint128(
                                                    FullMath.mulDiv(
                                                        feeGrowthInside1X128 - _self.feeGrowthInside1LastX128,
                                                        _self.liquidity,
                                                        FixedPoint128.Q128
                                                    )
                                                );
                                            // update the position
                                            if (liquidityDelta != 0) self.liquidity = liquidityNext;
                                            self.feeGrowthInside0LastX128 = feeGrowthInside0X128;
                                            self.feeGrowthInside1LastX128 = feeGrowthInside1X128;
                                            if (tokensOwed0 > 0 || tokensOwed1 > 0) {
                                                // overflow is acceptable, have to withdraw before you hit type(uint128).max fees
                                                self.tokensOwed0 += tokensOwed0;
                                                self.tokensOwed1 += tokensOwed1;
                                            }
                                        }
                                    }
                                    // SPDX-License-Identifier: BUSL-1.1
                                    pragma solidity >=0.5.0;
                                    /// @title Oracle
                                    /// @notice Provides price and liquidity data useful for a wide variety of system designs
                                    /// @dev Instances of stored oracle data, "observations", are collected in the oracle array
                                    /// Every pool is initialized with an oracle array length of 1. Anyone can pay the SSTOREs to increase the
                                    /// maximum length of the oracle array. New slots will be added when the array is fully populated.
                                    /// Observations are overwritten when the full length of the oracle array is populated.
                                    /// The most recent observation is available, independent of the length of the oracle array, by passing 0 to observe()
                                    library Oracle {
                                        struct Observation {
                                            // the block timestamp of the observation
                                            uint32 blockTimestamp;
                                            // the tick accumulator, i.e. tick * time elapsed since the pool was first initialized
                                            int56 tickCumulative;
                                            // the seconds per liquidity, i.e. seconds elapsed / max(1, liquidity) since the pool was first initialized
                                            uint160 secondsPerLiquidityCumulativeX128;
                                            // whether or not the observation is initialized
                                            bool initialized;
                                        }
                                        /// @notice Transforms a previous observation into a new observation, given the passage of time and the current tick and liquidity values
                                        /// @dev blockTimestamp _must_ be chronologically equal to or greater than last.blockTimestamp, safe for 0 or 1 overflows
                                        /// @param last The specified observation to be transformed
                                        /// @param blockTimestamp The timestamp of the new observation
                                        /// @param tick The active tick at the time of the new observation
                                        /// @param liquidity The total in-range liquidity at the time of the new observation
                                        /// @return Observation The newly populated observation
                                        function transform(
                                            Observation memory last,
                                            uint32 blockTimestamp,
                                            int24 tick,
                                            uint128 liquidity
                                        ) private pure returns (Observation memory) {
                                            uint32 delta = blockTimestamp - last.blockTimestamp;
                                            return
                                                Observation({
                                                    blockTimestamp: blockTimestamp,
                                                    tickCumulative: last.tickCumulative + int56(tick) * delta,
                                                    secondsPerLiquidityCumulativeX128: last.secondsPerLiquidityCumulativeX128 +
                                                        ((uint160(delta) << 128) / (liquidity > 0 ? liquidity : 1)),
                                                    initialized: true
                                                });
                                        }
                                        /// @notice Initialize the oracle array by writing the first slot. Called once for the lifecycle of the observations array
                                        /// @param self The stored oracle array
                                        /// @param time The time of the oracle initialization, via block.timestamp truncated to uint32
                                        /// @return cardinality The number of populated elements in the oracle array
                                        /// @return cardinalityNext The new length of the oracle array, independent of population
                                        function initialize(Observation[65535] storage self, uint32 time)
                                            internal
                                            returns (uint16 cardinality, uint16 cardinalityNext)
                                        {
                                            self[0] = Observation({
                                                blockTimestamp: time,
                                                tickCumulative: 0,
                                                secondsPerLiquidityCumulativeX128: 0,
                                                initialized: true
                                            });
                                            return (1, 1);
                                        }
                                        /// @notice Writes an oracle observation to the array
                                        /// @dev Writable at most once per block. Index represents the most recently written element. cardinality and index must be tracked externally.
                                        /// If the index is at the end of the allowable array length (according to cardinality), and the next cardinality
                                        /// is greater than the current one, cardinality may be increased. This restriction is created to preserve ordering.
                                        /// @param self The stored oracle array
                                        /// @param index The index of the observation that was most recently written to the observations array
                                        /// @param blockTimestamp The timestamp of the new observation
                                        /// @param tick The active tick at the time of the new observation
                                        /// @param liquidity The total in-range liquidity at the time of the new observation
                                        /// @param cardinality The number of populated elements in the oracle array
                                        /// @param cardinalityNext The new length of the oracle array, independent of population
                                        /// @return indexUpdated The new index of the most recently written element in the oracle array
                                        /// @return cardinalityUpdated The new cardinality of the oracle array
                                        function write(
                                            Observation[65535] storage self,
                                            uint16 index,
                                            uint32 blockTimestamp,
                                            int24 tick,
                                            uint128 liquidity,
                                            uint16 cardinality,
                                            uint16 cardinalityNext
                                        ) internal returns (uint16 indexUpdated, uint16 cardinalityUpdated) {
                                            Observation memory last = self[index];
                                            // early return if we've already written an observation this block
                                            if (last.blockTimestamp == blockTimestamp) return (index, cardinality);
                                            // if the conditions are right, we can bump the cardinality
                                            if (cardinalityNext > cardinality && index == (cardinality - 1)) {
                                                cardinalityUpdated = cardinalityNext;
                                            } else {
                                                cardinalityUpdated = cardinality;
                                            }
                                            indexUpdated = (index + 1) % cardinalityUpdated;
                                            self[indexUpdated] = transform(last, blockTimestamp, tick, liquidity);
                                        }
                                        /// @notice Prepares the oracle array to store up to `next` observations
                                        /// @param self The stored oracle array
                                        /// @param current The current next cardinality of the oracle array
                                        /// @param next The proposed next cardinality which will be populated in the oracle array
                                        /// @return next The next cardinality which will be populated in the oracle array
                                        function grow(
                                            Observation[65535] storage self,
                                            uint16 current,
                                            uint16 next
                                        ) internal returns (uint16) {
                                            require(current > 0, 'I');
                                            // no-op if the passed next value isn't greater than the current next value
                                            if (next <= current) return current;
                                            // store in each slot to prevent fresh SSTOREs in swaps
                                            // this data will not be used because the initialized boolean is still false
                                            for (uint16 i = current; i < next; i++) self[i].blockTimestamp = 1;
                                            return next;
                                        }
                                        /// @notice comparator for 32-bit timestamps
                                        /// @dev safe for 0 or 1 overflows, a and b _must_ be chronologically before or equal to time
                                        /// @param time A timestamp truncated to 32 bits
                                        /// @param a A comparison timestamp from which to determine the relative position of `time`
                                        /// @param b From which to determine the relative position of `time`
                                        /// @return bool Whether `a` is chronologically <= `b`
                                        function lte(
                                            uint32 time,
                                            uint32 a,
                                            uint32 b
                                        ) private pure returns (bool) {
                                            // if there hasn't been overflow, no need to adjust
                                            if (a <= time && b <= time) return a <= b;
                                            uint256 aAdjusted = a > time ? a : a + 2**32;
                                            uint256 bAdjusted = b > time ? b : b + 2**32;
                                            return aAdjusted <= bAdjusted;
                                        }
                                        /// @notice Fetches the observations beforeOrAt and atOrAfter a target, i.e. where [beforeOrAt, atOrAfter] is satisfied.
                                        /// The result may be the same observation, or adjacent observations.
                                        /// @dev The answer must be contained in the array, used when the target is located within the stored observation
                                        /// boundaries: older than the most recent observation and younger, or the same age as, the oldest observation
                                        /// @param self The stored oracle array
                                        /// @param time The current block.timestamp
                                        /// @param target The timestamp at which the reserved observation should be for
                                        /// @param index The index of the observation that was most recently written to the observations array
                                        /// @param cardinality The number of populated elements in the oracle array
                                        /// @return beforeOrAt The observation recorded before, or at, the target
                                        /// @return atOrAfter The observation recorded at, or after, the target
                                        function binarySearch(
                                            Observation[65535] storage self,
                                            uint32 time,
                                            uint32 target,
                                            uint16 index,
                                            uint16 cardinality
                                        ) private view returns (Observation memory beforeOrAt, Observation memory atOrAfter) {
                                            uint256 l = (index + 1) % cardinality; // oldest observation
                                            uint256 r = l + cardinality - 1; // newest observation
                                            uint256 i;
                                            while (true) {
                                                i = (l + r) / 2;
                                                beforeOrAt = self[i % cardinality];
                                                // we've landed on an uninitialized tick, keep searching higher (more recently)
                                                if (!beforeOrAt.initialized) {
                                                    l = i + 1;
                                                    continue;
                                                }
                                                atOrAfter = self[(i + 1) % cardinality];
                                                bool targetAtOrAfter = lte(time, beforeOrAt.blockTimestamp, target);
                                                // check if we've found the answer!
                                                if (targetAtOrAfter && lte(time, target, atOrAfter.blockTimestamp)) break;
                                                if (!targetAtOrAfter) r = i - 1;
                                                else l = i + 1;
                                            }
                                        }
                                        /// @notice Fetches the observations beforeOrAt and atOrAfter a given target, i.e. where [beforeOrAt, atOrAfter] is satisfied
                                        /// @dev Assumes there is at least 1 initialized observation.
                                        /// Used by observeSingle() to compute the counterfactual accumulator values as of a given block timestamp.
                                        /// @param self The stored oracle array
                                        /// @param time The current block.timestamp
                                        /// @param target The timestamp at which the reserved observation should be for
                                        /// @param tick The active tick at the time of the returned or simulated observation
                                        /// @param index The index of the observation that was most recently written to the observations array
                                        /// @param liquidity The total pool liquidity at the time of the call
                                        /// @param cardinality The number of populated elements in the oracle array
                                        /// @return beforeOrAt The observation which occurred at, or before, the given timestamp
                                        /// @return atOrAfter The observation which occurred at, or after, the given timestamp
                                        function getSurroundingObservations(
                                            Observation[65535] storage self,
                                            uint32 time,
                                            uint32 target,
                                            int24 tick,
                                            uint16 index,
                                            uint128 liquidity,
                                            uint16 cardinality
                                        ) private view returns (Observation memory beforeOrAt, Observation memory atOrAfter) {
                                            // optimistically set before to the newest observation
                                            beforeOrAt = self[index];
                                            // if the target is chronologically at or after the newest observation, we can early return
                                            if (lte(time, beforeOrAt.blockTimestamp, target)) {
                                                if (beforeOrAt.blockTimestamp == target) {
                                                    // if newest observation equals target, we're in the same block, so we can ignore atOrAfter
                                                    return (beforeOrAt, atOrAfter);
                                                } else {
                                                    // otherwise, we need to transform
                                                    return (beforeOrAt, transform(beforeOrAt, target, tick, liquidity));
                                                }
                                            }
                                            // now, set before to the oldest observation
                                            beforeOrAt = self[(index + 1) % cardinality];
                                            if (!beforeOrAt.initialized) beforeOrAt = self[0];
                                            // ensure that the target is chronologically at or after the oldest observation
                                            require(lte(time, beforeOrAt.blockTimestamp, target), 'OLD');
                                            // if we've reached this point, we have to binary search
                                            return binarySearch(self, time, target, index, cardinality);
                                        }
                                        /// @dev Reverts if an observation at or before the desired observation timestamp does not exist.
                                        /// 0 may be passed as `secondsAgo' to return the current cumulative values.
                                        /// If called with a timestamp falling between two observations, returns the counterfactual accumulator values
                                        /// at exactly the timestamp between the two observations.
                                        /// @param self The stored oracle array
                                        /// @param time The current block timestamp
                                        /// @param secondsAgo The amount of time to look back, in seconds, at which point to return an observation
                                        /// @param tick The current tick
                                        /// @param index The index of the observation that was most recently written to the observations array
                                        /// @param liquidity The current in-range pool liquidity
                                        /// @param cardinality The number of populated elements in the oracle array
                                        /// @return tickCumulative The tick * time elapsed since the pool was first initialized, as of `secondsAgo`
                                        /// @return secondsPerLiquidityCumulativeX128 The time elapsed / max(1, liquidity) since the pool was first initialized, as of `secondsAgo`
                                        function observeSingle(
                                            Observation[65535] storage self,
                                            uint32 time,
                                            uint32 secondsAgo,
                                            int24 tick,
                                            uint16 index,
                                            uint128 liquidity,
                                            uint16 cardinality
                                        ) internal view returns (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) {
                                            if (secondsAgo == 0) {
                                                Observation memory last = self[index];
                                                if (last.blockTimestamp != time) last = transform(last, time, tick, liquidity);
                                                return (last.tickCumulative, last.secondsPerLiquidityCumulativeX128);
                                            }
                                            uint32 target = time - secondsAgo;
                                            (Observation memory beforeOrAt, Observation memory atOrAfter) =
                                                getSurroundingObservations(self, time, target, tick, index, liquidity, cardinality);
                                            if (target == beforeOrAt.blockTimestamp) {
                                                // we're at the left boundary
                                                return (beforeOrAt.tickCumulative, beforeOrAt.secondsPerLiquidityCumulativeX128);
                                            } else if (target == atOrAfter.blockTimestamp) {
                                                // we're at the right boundary
                                                return (atOrAfter.tickCumulative, atOrAfter.secondsPerLiquidityCumulativeX128);
                                            } else {
                                                // we're in the middle
                                                uint32 observationTimeDelta = atOrAfter.blockTimestamp - beforeOrAt.blockTimestamp;
                                                uint32 targetDelta = target - beforeOrAt.blockTimestamp;
                                                return (
                                                    beforeOrAt.tickCumulative +
                                                        ((atOrAfter.tickCumulative - beforeOrAt.tickCumulative) / observationTimeDelta) *
                                                        targetDelta,
                                                    beforeOrAt.secondsPerLiquidityCumulativeX128 +
                                                        uint160(
                                                            (uint256(
                                                                atOrAfter.secondsPerLiquidityCumulativeX128 - beforeOrAt.secondsPerLiquidityCumulativeX128
                                                            ) * targetDelta) / observationTimeDelta
                                                        )
                                                );
                                            }
                                        }
                                        /// @notice Returns the accumulator values as of each time seconds ago from the given time in the array of `secondsAgos`
                                        /// @dev Reverts if `secondsAgos` > oldest observation
                                        /// @param self The stored oracle array
                                        /// @param time The current block.timestamp
                                        /// @param secondsAgos Each amount of time to look back, in seconds, at which point to return an observation
                                        /// @param tick The current tick
                                        /// @param index The index of the observation that was most recently written to the observations array
                                        /// @param liquidity The current in-range pool liquidity
                                        /// @param cardinality The number of populated elements in the oracle array
                                        /// @return tickCumulatives The tick * time elapsed since the pool was first initialized, as of each `secondsAgo`
                                        /// @return secondsPerLiquidityCumulativeX128s The cumulative seconds / max(1, liquidity) since the pool was first initialized, as of each `secondsAgo`
                                        function observe(
                                            Observation[65535] storage self,
                                            uint32 time,
                                            uint32[] memory secondsAgos,
                                            int24 tick,
                                            uint16 index,
                                            uint128 liquidity,
                                            uint16 cardinality
                                        ) internal view returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s) {
                                            require(cardinality > 0, 'I');
                                            tickCumulatives = new int56[](secondsAgos.length);
                                            secondsPerLiquidityCumulativeX128s = new uint160[](secondsAgos.length);
                                            for (uint256 i = 0; i < secondsAgos.length; i++) {
                                                (tickCumulatives[i], secondsPerLiquidityCumulativeX128s[i]) = observeSingle(
                                                    self,
                                                    time,
                                                    secondsAgos[i],
                                                    tick,
                                                    index,
                                                    liquidity,
                                                    cardinality
                                                );
                                            }
                                        }
                                    }
                                    // SPDX-License-Identifier: MIT
                                    pragma solidity >=0.4.0;
                                    /// @title Contains 512-bit math functions
                                    /// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
                                    /// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
                                    library FullMath {
                                        /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                                        /// @param a The multiplicand
                                        /// @param b The multiplier
                                        /// @param denominator The divisor
                                        /// @return result The 256-bit result
                                        /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
                                        function mulDiv(
                                            uint256 a,
                                            uint256 b,
                                            uint256 denominator
                                        ) internal pure returns (uint256 result) {
                                            // 512-bit multiply [prod1 prod0] = a * b
                                            // Compute the product mod 2**256 and mod 2**256 - 1
                                            // then use the Chinese Remainder Theorem to reconstruct
                                            // the 512 bit result. The result is stored in two 256
                                            // variables such that product = prod1 * 2**256 + prod0
                                            uint256 prod0; // Least significant 256 bits of the product
                                            uint256 prod1; // Most significant 256 bits of the product
                                            assembly {
                                                let mm := mulmod(a, b, not(0))
                                                prod0 := mul(a, b)
                                                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                                            }
                                            // Handle non-overflow cases, 256 by 256 division
                                            if (prod1 == 0) {
                                                require(denominator > 0);
                                                assembly {
                                                    result := div(prod0, denominator)
                                                }
                                                return result;
                                            }
                                            // Make sure the result is less than 2**256.
                                            // Also prevents denominator == 0
                                            require(denominator > prod1);
                                            ///////////////////////////////////////////////
                                            // 512 by 256 division.
                                            ///////////////////////////////////////////////
                                            // Make division exact by subtracting the remainder from [prod1 prod0]
                                            // Compute remainder using mulmod
                                            uint256 remainder;
                                            assembly {
                                                remainder := mulmod(a, b, denominator)
                                            }
                                            // Subtract 256 bit number from 512 bit number
                                            assembly {
                                                prod1 := sub(prod1, gt(remainder, prod0))
                                                prod0 := sub(prod0, remainder)
                                            }
                                            // Factor powers of two out of denominator
                                            // Compute largest power of two divisor of denominator.
                                            // Always >= 1.
                                            uint256 twos = -denominator & denominator;
                                            // Divide denominator by power of two
                                            assembly {
                                                denominator := div(denominator, twos)
                                            }
                                            // Divide [prod1 prod0] by the factors of two
                                            assembly {
                                                prod0 := div(prod0, twos)
                                            }
                                            // Shift in bits from prod1 into prod0. For this we need
                                            // to flip `twos` such that it is 2**256 / twos.
                                            // If twos is zero, then it becomes one
                                            assembly {
                                                twos := add(div(sub(0, twos), twos), 1)
                                            }
                                            prod0 |= prod1 * twos;
                                            // Invert denominator mod 2**256
                                            // Now that denominator is an odd number, it has an inverse
                                            // modulo 2**256 such that denominator * inv = 1 mod 2**256.
                                            // Compute the inverse by starting with a seed that is correct
                                            // correct for four bits. That is, denominator * inv = 1 mod 2**4
                                            uint256 inv = (3 * denominator) ^ 2;
                                            // Now use Newton-Raphson iteration to improve the precision.
                                            // Thanks to Hensel's lifting lemma, this also works in modular
                                            // arithmetic, doubling the correct bits in each step.
                                            inv *= 2 - denominator * inv; // inverse mod 2**8
                                            inv *= 2 - denominator * inv; // inverse mod 2**16
                                            inv *= 2 - denominator * inv; // inverse mod 2**32
                                            inv *= 2 - denominator * inv; // inverse mod 2**64
                                            inv *= 2 - denominator * inv; // inverse mod 2**128
                                            inv *= 2 - denominator * inv; // inverse mod 2**256
                                            // Because the division is now exact we can divide by multiplying
                                            // with the modular inverse of denominator. This will give us the
                                            // correct result modulo 2**256. Since the precoditions guarantee
                                            // that the outcome is less than 2**256, this is the final result.
                                            // We don't need to compute the high bits of the result and prod1
                                            // is no longer required.
                                            result = prod0 * inv;
                                            return result;
                                        }
                                        /// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                                        /// @param a The multiplicand
                                        /// @param b The multiplier
                                        /// @param denominator The divisor
                                        /// @return result The 256-bit result
                                        function mulDivRoundingUp(
                                            uint256 a,
                                            uint256 b,
                                            uint256 denominator
                                        ) internal pure returns (uint256 result) {
                                            result = mulDiv(a, b, denominator);
                                            if (mulmod(a, b, denominator) > 0) {
                                                require(result < type(uint256).max);
                                                result++;
                                            }
                                        }
                                    }
                                    // SPDX-License-Identifier: GPL-2.0-or-later
                                    pragma solidity >=0.4.0;
                                    /// @title FixedPoint128
                                    /// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format)
                                    library FixedPoint128 {
                                        uint256 internal constant Q128 = 0x100000000000000000000000000000000;
                                    }
                                    // SPDX-License-Identifier: GPL-2.0-or-later
                                    pragma solidity >=0.6.0;
                                    import '../interfaces/IERC20Minimal.sol';
                                    /// @title TransferHelper
                                    /// @notice Contains helper methods for interacting with ERC20 tokens that do not consistently return true/false
                                    library TransferHelper {
                                        /// @notice Transfers tokens from msg.sender to a recipient
                                        /// @dev Calls transfer on token contract, errors with TF if transfer fails
                                        /// @param token The contract address of the token which will be transferred
                                        /// @param to The recipient of the transfer
                                        /// @param value The value of the transfer
                                        function safeTransfer(
                                            address token,
                                            address to,
                                            uint256 value
                                        ) internal {
                                            (bool success, bytes memory data) =
                                                token.call(abi.encodeWithSelector(IERC20Minimal.transfer.selector, to, value));
                                            require(success && (data.length == 0 || abi.decode(data, (bool))), 'TF');
                                        }
                                    }
                                    // SPDX-License-Identifier: GPL-2.0-or-later
                                    pragma solidity >=0.5.0;
                                    /// @title Math library for computing sqrt prices from ticks and vice versa
                                    /// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports
                                    /// prices between 2**-128 and 2**128
                                    library TickMath {
                                        /// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128
                                        int24 internal constant MIN_TICK = -887272;
                                        /// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128
                                        int24 internal constant MAX_TICK = -MIN_TICK;
                                        /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK)
                                        uint160 internal constant MIN_SQRT_RATIO = 4295128739;
                                        /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK)
                                        uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342;
                                        /// @notice Calculates sqrt(1.0001^tick) * 2^96
                                        /// @dev Throws if |tick| > max tick
                                        /// @param tick The input tick for the above formula
                                        /// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0)
                                        /// at the given tick
                                        function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) {
                                            uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick));
                                            require(absTick <= uint256(MAX_TICK), 'T');
                                            uint256 ratio = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000;
                                            if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128;
                                            if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128;
                                            if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128;
                                            if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128;
                                            if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128;
                                            if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128;
                                            if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128;
                                            if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128;
                                            if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128;
                                            if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128;
                                            if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128;
                                            if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128;
                                            if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128;
                                            if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128;
                                            if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128;
                                            if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128;
                                            if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128;
                                            if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128;
                                            if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128;
                                            if (tick > 0) ratio = type(uint256).max / ratio;
                                            // this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96.
                                            // we then downcast because we know the result always fits within 160 bits due to our tick input constraint
                                            // we round up in the division so getTickAtSqrtRatio of the output price is always consistent
                                            sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1));
                                        }
                                        /// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio
                                        /// @dev Throws in case sqrtPriceX96 < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may
                                        /// ever return.
                                        /// @param sqrtPriceX96 The sqrt ratio for which to compute the tick as a Q64.96
                                        /// @return tick The greatest tick for which the ratio is less than or equal to the input ratio
                                        function getTickAtSqrtRatio(uint160 sqrtPriceX96) internal pure returns (int24 tick) {
                                            // second inequality must be < because the price can never reach the price at the max tick
                                            require(sqrtPriceX96 >= MIN_SQRT_RATIO && sqrtPriceX96 < MAX_SQRT_RATIO, 'R');
                                            uint256 ratio = uint256(sqrtPriceX96) << 32;
                                            uint256 r = ratio;
                                            uint256 msb = 0;
                                            assembly {
                                                let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
                                                msb := or(msb, f)
                                                r := shr(f, r)
                                            }
                                            assembly {
                                                let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF))
                                                msb := or(msb, f)
                                                r := shr(f, r)
                                            }
                                            assembly {
                                                let f := shl(5, gt(r, 0xFFFFFFFF))
                                                msb := or(msb, f)
                                                r := shr(f, r)
                                            }
                                            assembly {
                                                let f := shl(4, gt(r, 0xFFFF))
                                                msb := or(msb, f)
                                                r := shr(f, r)
                                            }
                                            assembly {
                                                let f := shl(3, gt(r, 0xFF))
                                                msb := or(msb, f)
                                                r := shr(f, r)
                                            }
                                            assembly {
                                                let f := shl(2, gt(r, 0xF))
                                                msb := or(msb, f)
                                                r := shr(f, r)
                                            }
                                            assembly {
                                                let f := shl(1, gt(r, 0x3))
                                                msb := or(msb, f)
                                                r := shr(f, r)
                                            }
                                            assembly {
                                                let f := gt(r, 0x1)
                                                msb := or(msb, f)
                                            }
                                            if (msb >= 128) r = ratio >> (msb - 127);
                                            else r = ratio << (127 - msb);
                                            int256 log_2 = (int256(msb) - 128) << 64;
                                            assembly {
                                                r := shr(127, mul(r, r))
                                                let f := shr(128, r)
                                                log_2 := or(log_2, shl(63, f))
                                                r := shr(f, r)
                                            }
                                            assembly {
                                                r := shr(127, mul(r, r))
                                                let f := shr(128, r)
                                                log_2 := or(log_2, shl(62, f))
                                                r := shr(f, r)
                                            }
                                            assembly {
                                                r := shr(127, mul(r, r))
                                                let f := shr(128, r)
                                                log_2 := or(log_2, shl(61, f))
                                                r := shr(f, r)
                                            }
                                            assembly {
                                                r := shr(127, mul(r, r))
                                                let f := shr(128, r)
                                                log_2 := or(log_2, shl(60, f))
                                                r := shr(f, r)
                                            }
                                            assembly {
                                                r := shr(127, mul(r, r))
                                                let f := shr(128, r)
                                                log_2 := or(log_2, shl(59, f))
                                                r := shr(f, r)
                                            }
                                            assembly {
                                                r := shr(127, mul(r, r))
                                                let f := shr(128, r)
                                                log_2 := or(log_2, shl(58, f))
                                                r := shr(f, r)
                                            }
                                            assembly {
                                                r := shr(127, mul(r, r))
                                                let f := shr(128, r)
                                                log_2 := or(log_2, shl(57, f))
                                                r := shr(f, r)
                                            }
                                            assembly {
                                                r := shr(127, mul(r, r))
                                                let f := shr(128, r)
                                                log_2 := or(log_2, shl(56, f))
                                                r := shr(f, r)
                                            }
                                            assembly {
                                                r := shr(127, mul(r, r))
                                                let f := shr(128, r)
                                                log_2 := or(log_2, shl(55, f))
                                                r := shr(f, r)
                                            }
                                            assembly {
                                                r := shr(127, mul(r, r))
                                                let f := shr(128, r)
                                                log_2 := or(log_2, shl(54, f))
                                                r := shr(f, r)
                                            }
                                            assembly {
                                                r := shr(127, mul(r, r))
                                                let f := shr(128, r)
                                                log_2 := or(log_2, shl(53, f))
                                                r := shr(f, r)
                                            }
                                            assembly {
                                                r := shr(127, mul(r, r))
                                                let f := shr(128, r)
                                                log_2 := or(log_2, shl(52, f))
                                                r := shr(f, r)
                                            }
                                            assembly {
                                                r := shr(127, mul(r, r))
                                                let f := shr(128, r)
                                                log_2 := or(log_2, shl(51, f))
                                                r := shr(f, r)
                                            }
                                            assembly {
                                                r := shr(127, mul(r, r))
                                                let f := shr(128, r)
                                                log_2 := or(log_2, shl(50, f))
                                            }
                                            int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number
                                            int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128);
                                            int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128);
                                            tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow;
                                        }
                                    }
                                    // SPDX-License-Identifier: GPL-2.0-or-later
                                    pragma solidity >=0.5.0;
                                    /// @title Math library for liquidity
                                    library LiquidityMath {
                                        /// @notice Add a signed liquidity delta to liquidity and revert if it overflows or underflows
                                        /// @param x The liquidity before change
                                        /// @param y The delta by which liquidity should be changed
                                        /// @return z The liquidity delta
                                        function addDelta(uint128 x, int128 y) internal pure returns (uint128 z) {
                                            if (y < 0) {
                                                require((z = x - uint128(-y)) < x, 'LS');
                                            } else {
                                                require((z = x + uint128(y)) >= x, 'LA');
                                            }
                                        }
                                    }
                                    // SPDX-License-Identifier: BUSL-1.1
                                    pragma solidity >=0.5.0;
                                    import './LowGasSafeMath.sol';
                                    import './SafeCast.sol';
                                    import './FullMath.sol';
                                    import './UnsafeMath.sol';
                                    import './FixedPoint96.sol';
                                    /// @title Functions based on Q64.96 sqrt price and liquidity
                                    /// @notice Contains the math that uses square root of price as a Q64.96 and liquidity to compute deltas
                                    library SqrtPriceMath {
                                        using LowGasSafeMath for uint256;
                                        using SafeCast for uint256;
                                        /// @notice Gets the next sqrt price given a delta of token0
                                        /// @dev Always rounds up, because in the exact output case (increasing price) we need to move the price at least
                                        /// far enough to get the desired output amount, and in the exact input case (decreasing price) we need to move the
                                        /// price less in order to not send too much output.
                                        /// The most precise formula for this is liquidity * sqrtPX96 / (liquidity +- amount * sqrtPX96),
                                        /// if this is impossible because of overflow, we calculate liquidity / (liquidity / sqrtPX96 +- amount).
                                        /// @param sqrtPX96 The starting price, i.e. before accounting for the token0 delta
                                        /// @param liquidity The amount of usable liquidity
                                        /// @param amount How much of token0 to add or remove from virtual reserves
                                        /// @param add Whether to add or remove the amount of token0
                                        /// @return The price after adding or removing amount, depending on add
                                        function getNextSqrtPriceFromAmount0RoundingUp(
                                            uint160 sqrtPX96,
                                            uint128 liquidity,
                                            uint256 amount,
                                            bool add
                                        ) internal pure returns (uint160) {
                                            // we short circuit amount == 0 because the result is otherwise not guaranteed to equal the input price
                                            if (amount == 0) return sqrtPX96;
                                            uint256 numerator1 = uint256(liquidity) << FixedPoint96.RESOLUTION;
                                            if (add) {
                                                uint256 product;
                                                if ((product = amount * sqrtPX96) / amount == sqrtPX96) {
                                                    uint256 denominator = numerator1 + product;
                                                    if (denominator >= numerator1)
                                                        // always fits in 160 bits
                                                        return uint160(FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator));
                                                }
                                                return uint160(UnsafeMath.divRoundingUp(numerator1, (numerator1 / sqrtPX96).add(amount)));
                                            } else {
                                                uint256 product;
                                                // if the product overflows, we know the denominator underflows
                                                // in addition, we must check that the denominator does not underflow
                                                require((product = amount * sqrtPX96) / amount == sqrtPX96 && numerator1 > product);
                                                uint256 denominator = numerator1 - product;
                                                return FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator).toUint160();
                                            }
                                        }
                                        /// @notice Gets the next sqrt price given a delta of token1
                                        /// @dev Always rounds down, because in the exact output case (decreasing price) we need to move the price at least
                                        /// far enough to get the desired output amount, and in the exact input case (increasing price) we need to move the
                                        /// price less in order to not send too much output.
                                        /// The formula we compute is within <1 wei of the lossless version: sqrtPX96 +- amount / liquidity
                                        /// @param sqrtPX96 The starting price, i.e., before accounting for the token1 delta
                                        /// @param liquidity The amount of usable liquidity
                                        /// @param amount How much of token1 to add, or remove, from virtual reserves
                                        /// @param add Whether to add, or remove, the amount of token1
                                        /// @return The price after adding or removing `amount`
                                        function getNextSqrtPriceFromAmount1RoundingDown(
                                            uint160 sqrtPX96,
                                            uint128 liquidity,
                                            uint256 amount,
                                            bool add
                                        ) internal pure returns (uint160) {
                                            // if we're adding (subtracting), rounding down requires rounding the quotient down (up)
                                            // in both cases, avoid a mulDiv for most inputs
                                            if (add) {
                                                uint256 quotient =
                                                    (
                                                        amount <= type(uint160).max
                                                            ? (amount << FixedPoint96.RESOLUTION) / liquidity
                                                            : FullMath.mulDiv(amount, FixedPoint96.Q96, liquidity)
                                                    );
                                                return uint256(sqrtPX96).add(quotient).toUint160();
                                            } else {
                                                uint256 quotient =
                                                    (
                                                        amount <= type(uint160).max
                                                            ? UnsafeMath.divRoundingUp(amount << FixedPoint96.RESOLUTION, liquidity)
                                                            : FullMath.mulDivRoundingUp(amount, FixedPoint96.Q96, liquidity)
                                                    );
                                                require(sqrtPX96 > quotient);
                                                // always fits 160 bits
                                                return uint160(sqrtPX96 - quotient);
                                            }
                                        }
                                        /// @notice Gets the next sqrt price given an input amount of token0 or token1
                                        /// @dev Throws if price or liquidity are 0, or if the next price is out of bounds
                                        /// @param sqrtPX96 The starting price, i.e., before accounting for the input amount
                                        /// @param liquidity The amount of usable liquidity
                                        /// @param amountIn How much of token0, or token1, is being swapped in
                                        /// @param zeroForOne Whether the amount in is token0 or token1
                                        /// @return sqrtQX96 The price after adding the input amount to token0 or token1
                                        function getNextSqrtPriceFromInput(
                                            uint160 sqrtPX96,
                                            uint128 liquidity,
                                            uint256 amountIn,
                                            bool zeroForOne
                                        ) internal pure returns (uint160 sqrtQX96) {
                                            require(sqrtPX96 > 0);
                                            require(liquidity > 0);
                                            // round to make sure that we don't pass the target price
                                            return
                                                zeroForOne
                                                    ? getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountIn, true)
                                                    : getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountIn, true);
                                        }
                                        /// @notice Gets the next sqrt price given an output amount of token0 or token1
                                        /// @dev Throws if price or liquidity are 0 or the next price is out of bounds
                                        /// @param sqrtPX96 The starting price before accounting for the output amount
                                        /// @param liquidity The amount of usable liquidity
                                        /// @param amountOut How much of token0, or token1, is being swapped out
                                        /// @param zeroForOne Whether the amount out is token0 or token1
                                        /// @return sqrtQX96 The price after removing the output amount of token0 or token1
                                        function getNextSqrtPriceFromOutput(
                                            uint160 sqrtPX96,
                                            uint128 liquidity,
                                            uint256 amountOut,
                                            bool zeroForOne
                                        ) internal pure returns (uint160 sqrtQX96) {
                                            require(sqrtPX96 > 0);
                                            require(liquidity > 0);
                                            // round to make sure that we pass the target price
                                            return
                                                zeroForOne
                                                    ? getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountOut, false)
                                                    : getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountOut, false);
                                        }
                                        /// @notice Gets the amount0 delta between two prices
                                        /// @dev Calculates liquidity / sqrt(lower) - liquidity / sqrt(upper),
                                        /// i.e. liquidity * (sqrt(upper) - sqrt(lower)) / (sqrt(upper) * sqrt(lower))
                                        /// @param sqrtRatioAX96 A sqrt price
                                        /// @param sqrtRatioBX96 Another sqrt price
                                        /// @param liquidity The amount of usable liquidity
                                        /// @param roundUp Whether to round the amount up or down
                                        /// @return amount0 Amount of token0 required to cover a position of size liquidity between the two passed prices
                                        function getAmount0Delta(
                                            uint160 sqrtRatioAX96,
                                            uint160 sqrtRatioBX96,
                                            uint128 liquidity,
                                            bool roundUp
                                        ) internal pure returns (uint256 amount0) {
                                            if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
                                            uint256 numerator1 = uint256(liquidity) << FixedPoint96.RESOLUTION;
                                            uint256 numerator2 = sqrtRatioBX96 - sqrtRatioAX96;
                                            require(sqrtRatioAX96 > 0);
                                            return
                                                roundUp
                                                    ? UnsafeMath.divRoundingUp(
                                                        FullMath.mulDivRoundingUp(numerator1, numerator2, sqrtRatioBX96),
                                                        sqrtRatioAX96
                                                    )
                                                    : FullMath.mulDiv(numerator1, numerator2, sqrtRatioBX96) / sqrtRatioAX96;
                                        }
                                        /// @notice Gets the amount1 delta between two prices
                                        /// @dev Calculates liquidity * (sqrt(upper) - sqrt(lower))
                                        /// @param sqrtRatioAX96 A sqrt price
                                        /// @param sqrtRatioBX96 Another sqrt price
                                        /// @param liquidity The amount of usable liquidity
                                        /// @param roundUp Whether to round the amount up, or down
                                        /// @return amount1 Amount of token1 required to cover a position of size liquidity between the two passed prices
                                        function getAmount1Delta(
                                            uint160 sqrtRatioAX96,
                                            uint160 sqrtRatioBX96,
                                            uint128 liquidity,
                                            bool roundUp
                                        ) internal pure returns (uint256 amount1) {
                                            if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
                                            return
                                                roundUp
                                                    ? FullMath.mulDivRoundingUp(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96)
                                                    : FullMath.mulDiv(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96);
                                        }
                                        /// @notice Helper that gets signed token0 delta
                                        /// @param sqrtRatioAX96 A sqrt price
                                        /// @param sqrtRatioBX96 Another sqrt price
                                        /// @param liquidity The change in liquidity for which to compute the amount0 delta
                                        /// @return amount0 Amount of token0 corresponding to the passed liquidityDelta between the two prices
                                        function getAmount0Delta(
                                            uint160 sqrtRatioAX96,
                                            uint160 sqrtRatioBX96,
                                            int128 liquidity
                                        ) internal pure returns (int256 amount0) {
                                            return
                                                liquidity < 0
                                                    ? -getAmount0Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(-liquidity), false).toInt256()
                                                    : getAmount0Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(liquidity), true).toInt256();
                                        }
                                        /// @notice Helper that gets signed token1 delta
                                        /// @param sqrtRatioAX96 A sqrt price
                                        /// @param sqrtRatioBX96 Another sqrt price
                                        /// @param liquidity The change in liquidity for which to compute the amount1 delta
                                        /// @return amount1 Amount of token1 corresponding to the passed liquidityDelta between the two prices
                                        function getAmount1Delta(
                                            uint160 sqrtRatioAX96,
                                            uint160 sqrtRatioBX96,
                                            int128 liquidity
                                        ) internal pure returns (int256 amount1) {
                                            return
                                                liquidity < 0
                                                    ? -getAmount1Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(-liquidity), false).toInt256()
                                                    : getAmount1Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(liquidity), true).toInt256();
                                        }
                                    }
                                    // SPDX-License-Identifier: BUSL-1.1
                                    pragma solidity >=0.5.0;
                                    import './FullMath.sol';
                                    import './SqrtPriceMath.sol';
                                    /// @title Computes the result of a swap within ticks
                                    /// @notice Contains methods for computing the result of a swap within a single tick price range, i.e., a single tick.
                                    library SwapMath {
                                        /// @notice Computes the result of swapping some amount in, or amount out, given the parameters of the swap
                                        /// @dev The fee, plus the amount in, will never exceed the amount remaining if the swap's `amountSpecified` is positive
                                        /// @param sqrtRatioCurrentX96 The current sqrt price of the pool
                                        /// @param sqrtRatioTargetX96 The price that cannot be exceeded, from which the direction of the swap is inferred
                                        /// @param liquidity The usable liquidity
                                        /// @param amountRemaining How much input or output amount is remaining to be swapped in/out
                                        /// @param feePips The fee taken from the input amount, expressed in hundredths of a bip
                                        /// @return sqrtRatioNextX96 The price after swapping the amount in/out, not to exceed the price target
                                        /// @return amountIn The amount to be swapped in, of either token0 or token1, based on the direction of the swap
                                        /// @return amountOut The amount to be received, of either token0 or token1, based on the direction of the swap
                                        /// @return feeAmount The amount of input that will be taken as a fee
                                        function computeSwapStep(
                                            uint160 sqrtRatioCurrentX96,
                                            uint160 sqrtRatioTargetX96,
                                            uint128 liquidity,
                                            int256 amountRemaining,
                                            uint24 feePips
                                        )
                                            internal
                                            pure
                                            returns (
                                                uint160 sqrtRatioNextX96,
                                                uint256 amountIn,
                                                uint256 amountOut,
                                                uint256 feeAmount
                                            )
                                        {
                                            bool zeroForOne = sqrtRatioCurrentX96 >= sqrtRatioTargetX96;
                                            bool exactIn = amountRemaining >= 0;
                                            if (exactIn) {
                                                uint256 amountRemainingLessFee = FullMath.mulDiv(uint256(amountRemaining), 1e6 - feePips, 1e6);
                                                amountIn = zeroForOne
                                                    ? SqrtPriceMath.getAmount0Delta(sqrtRatioTargetX96, sqrtRatioCurrentX96, liquidity, true)
                                                    : SqrtPriceMath.getAmount1Delta(sqrtRatioCurrentX96, sqrtRatioTargetX96, liquidity, true);
                                                if (amountRemainingLessFee >= amountIn) sqrtRatioNextX96 = sqrtRatioTargetX96;
                                                else
                                                    sqrtRatioNextX96 = SqrtPriceMath.getNextSqrtPriceFromInput(
                                                        sqrtRatioCurrentX96,
                                                        liquidity,
                                                        amountRemainingLessFee,
                                                        zeroForOne
                                                    );
                                            } else {
                                                amountOut = zeroForOne
                                                    ? SqrtPriceMath.getAmount1Delta(sqrtRatioTargetX96, sqrtRatioCurrentX96, liquidity, false)
                                                    : SqrtPriceMath.getAmount0Delta(sqrtRatioCurrentX96, sqrtRatioTargetX96, liquidity, false);
                                                if (uint256(-amountRemaining) >= amountOut) sqrtRatioNextX96 = sqrtRatioTargetX96;
                                                else
                                                    sqrtRatioNextX96 = SqrtPriceMath.getNextSqrtPriceFromOutput(
                                                        sqrtRatioCurrentX96,
                                                        liquidity,
                                                        uint256(-amountRemaining),
                                                        zeroForOne
                                                    );
                                            }
                                            bool max = sqrtRatioTargetX96 == sqrtRatioNextX96;
                                            // get the input/output amounts
                                            if (zeroForOne) {
                                                amountIn = max && exactIn
                                                    ? amountIn
                                                    : SqrtPriceMath.getAmount0Delta(sqrtRatioNextX96, sqrtRatioCurrentX96, liquidity, true);
                                                amountOut = max && !exactIn
                                                    ? amountOut
                                                    : SqrtPriceMath.getAmount1Delta(sqrtRatioNextX96, sqrtRatioCurrentX96, liquidity, false);
                                            } else {
                                                amountIn = max && exactIn
                                                    ? amountIn
                                                    : SqrtPriceMath.getAmount1Delta(sqrtRatioCurrentX96, sqrtRatioNextX96, liquidity, true);
                                                amountOut = max && !exactIn
                                                    ? amountOut
                                                    : SqrtPriceMath.getAmount0Delta(sqrtRatioCurrentX96, sqrtRatioNextX96, liquidity, false);
                                            }
                                            // cap the output amount to not exceed the remaining output amount
                                            if (!exactIn && amountOut > uint256(-amountRemaining)) {
                                                amountOut = uint256(-amountRemaining);
                                            }
                                            if (exactIn && sqrtRatioNextX96 != sqrtRatioTargetX96) {
                                                // we didn't reach the target, so take the remainder of the maximum input as fee
                                                feeAmount = uint256(amountRemaining) - amountIn;
                                            } else {
                                                feeAmount = FullMath.mulDivRoundingUp(amountIn, feePips, 1e6 - feePips);
                                            }
                                        }
                                    }
                                    // SPDX-License-Identifier: GPL-2.0-or-later
                                    pragma solidity >=0.5.0;
                                    /// @title An interface for a contract that is capable of deploying Uniswap V3 Pools
                                    /// @notice A contract that constructs a pool must implement this to pass arguments to the pool
                                    /// @dev This is used to avoid having constructor arguments in the pool contract, which results in the init code hash
                                    /// of the pool being constant allowing the CREATE2 address of the pool to be cheaply computed on-chain
                                    interface IUniswapV3PoolDeployer {
                                        /// @notice Get the parameters to be used in constructing the pool, set transiently during pool creation.
                                        /// @dev Called by the pool constructor to fetch the parameters of the pool
                                        /// Returns factory The factory address
                                        /// Returns token0 The first token of the pool by address sort order
                                        /// Returns token1 The second token of the pool by address sort order
                                        /// Returns fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
                                        /// Returns tickSpacing The minimum number of ticks between initialized ticks
                                        function parameters()
                                            external
                                            view
                                            returns (
                                                address factory,
                                                address token0,
                                                address token1,
                                                uint24 fee,
                                                int24 tickSpacing
                                            );
                                    }
                                    // SPDX-License-Identifier: GPL-2.0-or-later
                                    pragma solidity >=0.5.0;
                                    /// @title The interface for the Uniswap V3 Factory
                                    /// @notice The Uniswap V3 Factory facilitates creation of Uniswap V3 pools and control over the protocol fees
                                    interface IUniswapV3Factory {
                                        /// @notice Emitted when the owner of the factory is changed
                                        /// @param oldOwner The owner before the owner was changed
                                        /// @param newOwner The owner after the owner was changed
                                        event OwnerChanged(address indexed oldOwner, address indexed newOwner);
                                        /// @notice Emitted when a pool is created
                                        /// @param token0 The first token of the pool by address sort order
                                        /// @param token1 The second token of the pool by address sort order
                                        /// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
                                        /// @param tickSpacing The minimum number of ticks between initialized ticks
                                        /// @param pool The address of the created pool
                                        event PoolCreated(
                                            address indexed token0,
                                            address indexed token1,
                                            uint24 indexed fee,
                                            int24 tickSpacing,
                                            address pool
                                        );
                                        /// @notice Emitted when a new fee amount is enabled for pool creation via the factory
                                        /// @param fee The enabled fee, denominated in hundredths of a bip
                                        /// @param tickSpacing The minimum number of ticks between initialized ticks for pools created with the given fee
                                        event FeeAmountEnabled(uint24 indexed fee, int24 indexed tickSpacing);
                                        /// @notice Returns the current owner of the factory
                                        /// @dev Can be changed by the current owner via setOwner
                                        /// @return The address of the factory owner
                                        function owner() external view returns (address);
                                        /// @notice Returns the tick spacing for a given fee amount, if enabled, or 0 if not enabled
                                        /// @dev A fee amount can never be removed, so this value should be hard coded or cached in the calling context
                                        /// @param fee The enabled fee, denominated in hundredths of a bip. Returns 0 in case of unenabled fee
                                        /// @return The tick spacing
                                        function feeAmountTickSpacing(uint24 fee) external view returns (int24);
                                        /// @notice Returns the pool address for a given pair of tokens and a fee, or address 0 if it does not exist
                                        /// @dev tokenA and tokenB may be passed in either token0/token1 or token1/token0 order
                                        /// @param tokenA The contract address of either token0 or token1
                                        /// @param tokenB The contract address of the other token
                                        /// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
                                        /// @return pool The pool address
                                        function getPool(
                                            address tokenA,
                                            address tokenB,
                                            uint24 fee
                                        ) external view returns (address pool);
                                        /// @notice Creates a pool for the given two tokens and fee
                                        /// @param tokenA One of the two tokens in the desired pool
                                        /// @param tokenB The other of the two tokens in the desired pool
                                        /// @param fee The desired fee for the pool
                                        /// @dev tokenA and tokenB may be passed in either order: token0/token1 or token1/token0. tickSpacing is retrieved
                                        /// from the fee. The call will revert if the pool already exists, the fee is invalid, or the token arguments
                                        /// are invalid.
                                        /// @return pool The address of the newly created pool
                                        function createPool(
                                            address tokenA,
                                            address tokenB,
                                            uint24 fee
                                        ) external returns (address pool);
                                        /// @notice Updates the owner of the factory
                                        /// @dev Must be called by the current owner
                                        /// @param _owner The new owner of the factory
                                        function setOwner(address _owner) external;
                                        /// @notice Enables a fee amount with the given tickSpacing
                                        /// @dev Fee amounts may never be removed once enabled
                                        /// @param fee The fee amount to enable, denominated in hundredths of a bip (i.e. 1e-6)
                                        /// @param tickSpacing The spacing between ticks to be enforced for all pools created with the given fee amount
                                        function enableFeeAmount(uint24 fee, int24 tickSpacing) external;
                                    }
                                    // SPDX-License-Identifier: GPL-2.0-or-later
                                    pragma solidity >=0.5.0;
                                    /// @title Minimal ERC20 interface for Uniswap
                                    /// @notice Contains a subset of the full ERC20 interface that is used in Uniswap V3
                                    interface IERC20Minimal {
                                        /// @notice Returns the balance of a token
                                        /// @param account The account for which to look up the number of tokens it has, i.e. its balance
                                        /// @return The number of tokens held by the account
                                        function balanceOf(address account) external view returns (uint256);
                                        /// @notice Transfers the amount of token from the `msg.sender` to the recipient
                                        /// @param recipient The account that will receive the amount transferred
                                        /// @param amount The number of tokens to send from the sender to the recipient
                                        /// @return Returns true for a successful transfer, false for an unsuccessful transfer
                                        function transfer(address recipient, uint256 amount) external returns (bool);
                                        /// @notice Returns the current allowance given to a spender by an owner
                                        /// @param owner The account of the token owner
                                        /// @param spender The account of the token spender
                                        /// @return The current allowance granted by `owner` to `spender`
                                        function allowance(address owner, address spender) external view returns (uint256);
                                        /// @notice Sets the allowance of a spender from the `msg.sender` to the value `amount`
                                        /// @param spender The account which will be allowed to spend a given amount of the owners tokens
                                        /// @param amount The amount of tokens allowed to be used by `spender`
                                        /// @return Returns true for a successful approval, false for unsuccessful
                                        function approve(address spender, uint256 amount) external returns (bool);
                                        /// @notice Transfers `amount` tokens from `sender` to `recipient` up to the allowance given to the `msg.sender`
                                        /// @param sender The account from which the transfer will be initiated
                                        /// @param recipient The recipient of the transfer
                                        /// @param amount The amount of the transfer
                                        /// @return Returns true for a successful transfer, false for unsuccessful
                                        function transferFrom(
                                            address sender,
                                            address recipient,
                                            uint256 amount
                                        ) external returns (bool);
                                        /// @notice Event emitted when tokens are transferred from one address to another, either via `#transfer` or `#transferFrom`.
                                        /// @param from The account from which the tokens were sent, i.e. the balance decreased
                                        /// @param to The account to which the tokens were sent, i.e. the balance increased
                                        /// @param value The amount of tokens that were transferred
                                        event Transfer(address indexed from, address indexed to, uint256 value);
                                        /// @notice Event emitted when the approval amount for the spender of a given owner's tokens changes.
                                        /// @param owner The account that approved spending of its tokens
                                        /// @param spender The account for which the spending allowance was modified
                                        /// @param value The new allowance from the owner to the spender
                                        event Approval(address indexed owner, address indexed spender, uint256 value);
                                    }
                                    // SPDX-License-Identifier: GPL-2.0-or-later
                                    pragma solidity >=0.5.0;
                                    /// @title Callback for IUniswapV3PoolActions#mint
                                    /// @notice Any contract that calls IUniswapV3PoolActions#mint must implement this interface
                                    interface IUniswapV3MintCallback {
                                        /// @notice Called to `msg.sender` after minting liquidity to a position from IUniswapV3Pool#mint.
                                        /// @dev In the implementation you must pay the pool tokens owed for the minted liquidity.
                                        /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
                                        /// @param amount0Owed The amount of token0 due to the pool for the minted liquidity
                                        /// @param amount1Owed The amount of token1 due to the pool for the minted liquidity
                                        /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#mint call
                                        function uniswapV3MintCallback(
                                            uint256 amount0Owed,
                                            uint256 amount1Owed,
                                            bytes calldata data
                                        ) external;
                                    }
                                    // SPDX-License-Identifier: GPL-2.0-or-later
                                    pragma solidity >=0.5.0;
                                    /// @title Callback for IUniswapV3PoolActions#swap
                                    /// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface
                                    interface IUniswapV3SwapCallback {
                                        /// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap.
                                        /// @dev In the implementation you must pay the pool tokens owed for the swap.
                                        /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
                                        /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
                                        /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
                                        /// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
                                        /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
                                        /// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
                                        /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call
                                        function uniswapV3SwapCallback(
                                            int256 amount0Delta,
                                            int256 amount1Delta,
                                            bytes calldata data
                                        ) external;
                                    }
                                    // SPDX-License-Identifier: GPL-2.0-or-later
                                    pragma solidity >=0.5.0;
                                    /// @title Callback for IUniswapV3PoolActions#flash
                                    /// @notice Any contract that calls IUniswapV3PoolActions#flash must implement this interface
                                    interface IUniswapV3FlashCallback {
                                        /// @notice Called to `msg.sender` after transferring to the recipient from IUniswapV3Pool#flash.
                                        /// @dev In the implementation you must repay the pool the tokens sent by flash plus the computed fee amounts.
                                        /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
                                        /// @param fee0 The fee amount in token0 due to the pool by the end of the flash
                                        /// @param fee1 The fee amount in token1 due to the pool by the end of the flash
                                        /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#flash call
                                        function uniswapV3FlashCallback(
                                            uint256 fee0,
                                            uint256 fee1,
                                            bytes calldata data
                                        ) external;
                                    }
                                    // SPDX-License-Identifier: GPL-2.0-or-later
                                    pragma solidity >=0.5.0;
                                    /// @title Pool state that never changes
                                    /// @notice These parameters are fixed for a pool forever, i.e., the methods will always return the same values
                                    interface IUniswapV3PoolImmutables {
                                        /// @notice The contract that deployed the pool, which must adhere to the IUniswapV3Factory interface
                                        /// @return The contract address
                                        function factory() external view returns (address);
                                        /// @notice The first of the two tokens of the pool, sorted by address
                                        /// @return The token contract address
                                        function token0() external view returns (address);
                                        /// @notice The second of the two tokens of the pool, sorted by address
                                        /// @return The token contract address
                                        function token1() external view returns (address);
                                        /// @notice The pool's fee in hundredths of a bip, i.e. 1e-6
                                        /// @return The fee
                                        function fee() external view returns (uint24);
                                        /// @notice The pool tick spacing
                                        /// @dev Ticks can only be used at multiples of this value, minimum of 1 and always positive
                                        /// e.g.: a tickSpacing of 3 means ticks can be initialized every 3rd tick, i.e., ..., -6, -3, 0, 3, 6, ...
                                        /// This value is an int24 to avoid casting even though it is always positive.
                                        /// @return The tick spacing
                                        function tickSpacing() external view returns (int24);
                                        /// @notice The maximum amount of position liquidity that can use any tick in the range
                                        /// @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and
                                        /// also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool
                                        /// @return The max amount of liquidity per tick
                                        function maxLiquidityPerTick() external view returns (uint128);
                                    }
                                    // SPDX-License-Identifier: GPL-2.0-or-later
                                    pragma solidity >=0.5.0;
                                    /// @title Pool state that can change
                                    /// @notice These methods compose the pool's state, and can change with any frequency including multiple times
                                    /// per transaction
                                    interface IUniswapV3PoolState {
                                        /// @notice The 0th storage slot in the pool stores many values, and is exposed as a single method to save gas
                                        /// when accessed externally.
                                        /// @return sqrtPriceX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value
                                        /// tick The current tick of the pool, i.e. according to the last tick transition that was run.
                                        /// This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(sqrtPriceX96) if the price is on a tick
                                        /// boundary.
                                        /// observationIndex The index of the last oracle observation that was written,
                                        /// observationCardinality The current maximum number of observations stored in the pool,
                                        /// observationCardinalityNext The next maximum number of observations, to be updated when the observation.
                                        /// feeProtocol The protocol fee for both tokens of the pool.
                                        /// Encoded as two 4 bit values, where the protocol fee of token1 is shifted 4 bits and the protocol fee of token0
                                        /// is the lower 4 bits. Used as the denominator of a fraction of the swap fee, e.g. 4 means 1/4th of the swap fee.
                                        /// unlocked Whether the pool is currently locked to reentrancy
                                        function slot0()
                                            external
                                            view
                                            returns (
                                                uint160 sqrtPriceX96,
                                                int24 tick,
                                                uint16 observationIndex,
                                                uint16 observationCardinality,
                                                uint16 observationCardinalityNext,
                                                uint8 feeProtocol,
                                                bool unlocked
                                            );
                                        /// @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool
                                        /// @dev This value can overflow the uint256
                                        function feeGrowthGlobal0X128() external view returns (uint256);
                                        /// @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool
                                        /// @dev This value can overflow the uint256
                                        function feeGrowthGlobal1X128() external view returns (uint256);
                                        /// @notice The amounts of token0 and token1 that are owed to the protocol
                                        /// @dev Protocol fees will never exceed uint128 max in either token
                                        function protocolFees() external view returns (uint128 token0, uint128 token1);
                                        /// @notice The currently in range liquidity available to the pool
                                        /// @dev This value has no relationship to the total liquidity across all ticks
                                        function liquidity() external view returns (uint128);
                                        /// @notice Look up information about a specific tick in the pool
                                        /// @param tick The tick to look up
                                        /// @return liquidityGross the total amount of position liquidity that uses the pool either as tick lower or
                                        /// tick upper,
                                        /// liquidityNet how much liquidity changes when the pool price crosses the tick,
                                        /// feeGrowthOutside0X128 the fee growth on the other side of the tick from the current tick in token0,
                                        /// feeGrowthOutside1X128 the fee growth on the other side of the tick from the current tick in token1,
                                        /// tickCumulativeOutside the cumulative tick value on the other side of the tick from the current tick
                                        /// secondsPerLiquidityOutsideX128 the seconds spent per liquidity on the other side of the tick from the current tick,
                                        /// secondsOutside the seconds spent on the other side of the tick from the current tick,
                                        /// initialized Set to true if the tick is initialized, i.e. liquidityGross is greater than 0, otherwise equal to false.
                                        /// Outside values can only be used if the tick is initialized, i.e. if liquidityGross is greater than 0.
                                        /// In addition, these values are only relative and must be used only in comparison to previous snapshots for
                                        /// a specific position.
                                        function ticks(int24 tick)
                                            external
                                            view
                                            returns (
                                                uint128 liquidityGross,
                                                int128 liquidityNet,
                                                uint256 feeGrowthOutside0X128,
                                                uint256 feeGrowthOutside1X128,
                                                int56 tickCumulativeOutside,
                                                uint160 secondsPerLiquidityOutsideX128,
                                                uint32 secondsOutside,
                                                bool initialized
                                            );
                                        /// @notice Returns 256 packed tick initialized boolean values. See TickBitmap for more information
                                        function tickBitmap(int16 wordPosition) external view returns (uint256);
                                        /// @notice Returns the information about a position by the position's key
                                        /// @param key The position's key is a hash of a preimage composed by the owner, tickLower and tickUpper
                                        /// @return _liquidity The amount of liquidity in the position,
                                        /// Returns feeGrowthInside0LastX128 fee growth of token0 inside the tick range as of the last mint/burn/poke,
                                        /// Returns feeGrowthInside1LastX128 fee growth of token1 inside the tick range as of the last mint/burn/poke,
                                        /// Returns tokensOwed0 the computed amount of token0 owed to the position as of the last mint/burn/poke,
                                        /// Returns tokensOwed1 the computed amount of token1 owed to the position as of the last mint/burn/poke
                                        function positions(bytes32 key)
                                            external
                                            view
                                            returns (
                                                uint128 _liquidity,
                                                uint256 feeGrowthInside0LastX128,
                                                uint256 feeGrowthInside1LastX128,
                                                uint128 tokensOwed0,
                                                uint128 tokensOwed1
                                            );
                                        /// @notice Returns data about a specific observation index
                                        /// @param index The element of the observations array to fetch
                                        /// @dev You most likely want to use #observe() instead of this method to get an observation as of some amount of time
                                        /// ago, rather than at a specific index in the array.
                                        /// @return blockTimestamp The timestamp of the observation,
                                        /// Returns tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the observation timestamp,
                                        /// Returns secondsPerLiquidityCumulativeX128 the seconds per in range liquidity for the life of the pool as of the observation timestamp,
                                        /// Returns initialized whether the observation has been initialized and the values are safe to use
                                        function observations(uint256 index)
                                            external
                                            view
                                            returns (
                                                uint32 blockTimestamp,
                                                int56 tickCumulative,
                                                uint160 secondsPerLiquidityCumulativeX128,
                                                bool initialized
                                            );
                                    }
                                    // SPDX-License-Identifier: GPL-2.0-or-later
                                    pragma solidity >=0.5.0;
                                    /// @title Pool state that is not stored
                                    /// @notice Contains view functions to provide information about the pool that is computed rather than stored on the
                                    /// blockchain. The functions here may have variable gas costs.
                                    interface IUniswapV3PoolDerivedState {
                                        /// @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp
                                        /// @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing
                                        /// the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick,
                                        /// you must call it with secondsAgos = [3600, 0].
                                        /// @dev The time weighted average tick represents the geometric time weighted average price of the pool, in
                                        /// log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio.
                                        /// @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned
                                        /// @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp
                                        /// @return secondsPerLiquidityCumulativeX128s Cumulative seconds per liquidity-in-range value as of each `secondsAgos` from the current block
                                        /// timestamp
                                        function observe(uint32[] calldata secondsAgos)
                                            external
                                            view
                                            returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s);
                                        /// @notice Returns a snapshot of the tick cumulative, seconds per liquidity and seconds inside a tick range
                                        /// @dev Snapshots must only be compared to other snapshots, taken over a period for which a position existed.
                                        /// I.e., snapshots cannot be compared if a position is not held for the entire period between when the first
                                        /// snapshot is taken and the second snapshot is taken.
                                        /// @param tickLower The lower tick of the range
                                        /// @param tickUpper The upper tick of the range
                                        /// @return tickCumulativeInside The snapshot of the tick accumulator for the range
                                        /// @return secondsPerLiquidityInsideX128 The snapshot of seconds per liquidity for the range
                                        /// @return secondsInside The snapshot of seconds per liquidity for the range
                                        function snapshotCumulativesInside(int24 tickLower, int24 tickUpper)
                                            external
                                            view
                                            returns (
                                                int56 tickCumulativeInside,
                                                uint160 secondsPerLiquidityInsideX128,
                                                uint32 secondsInside
                                            );
                                    }
                                    // SPDX-License-Identifier: GPL-2.0-or-later
                                    pragma solidity >=0.5.0;
                                    /// @title Permissionless pool actions
                                    /// @notice Contains pool methods that can be called by anyone
                                    interface IUniswapV3PoolActions {
                                        /// @notice Sets the initial price for the pool
                                        /// @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value
                                        /// @param sqrtPriceX96 the initial sqrt price of the pool as a Q64.96
                                        function initialize(uint160 sqrtPriceX96) external;
                                        /// @notice Adds liquidity for the given recipient/tickLower/tickUpper position
                                        /// @dev The caller of this method receives a callback in the form of IUniswapV3MintCallback#uniswapV3MintCallback
                                        /// in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends
                                        /// on tickLower, tickUpper, the amount of liquidity, and the current price.
                                        /// @param recipient The address for which the liquidity will be created
                                        /// @param tickLower The lower tick of the position in which to add liquidity
                                        /// @param tickUpper The upper tick of the position in which to add liquidity
                                        /// @param amount The amount of liquidity to mint
                                        /// @param data Any data that should be passed through to the callback
                                        /// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback
                                        /// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback
                                        function mint(
                                            address recipient,
                                            int24 tickLower,
                                            int24 tickUpper,
                                            uint128 amount,
                                            bytes calldata data
                                        ) external returns (uint256 amount0, uint256 amount1);
                                        /// @notice Collects tokens owed to a position
                                        /// @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity.
                                        /// Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or
                                        /// amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the
                                        /// actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity.
                                        /// @param recipient The address which should receive the fees collected
                                        /// @param tickLower The lower tick of the position for which to collect fees
                                        /// @param tickUpper The upper tick of the position for which to collect fees
                                        /// @param amount0Requested How much token0 should be withdrawn from the fees owed
                                        /// @param amount1Requested How much token1 should be withdrawn from the fees owed
                                        /// @return amount0 The amount of fees collected in token0
                                        /// @return amount1 The amount of fees collected in token1
                                        function collect(
                                            address recipient,
                                            int24 tickLower,
                                            int24 tickUpper,
                                            uint128 amount0Requested,
                                            uint128 amount1Requested
                                        ) external returns (uint128 amount0, uint128 amount1);
                                        /// @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position
                                        /// @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0
                                        /// @dev Fees must be collected separately via a call to #collect
                                        /// @param tickLower The lower tick of the position for which to burn liquidity
                                        /// @param tickUpper The upper tick of the position for which to burn liquidity
                                        /// @param amount How much liquidity to burn
                                        /// @return amount0 The amount of token0 sent to the recipient
                                        /// @return amount1 The amount of token1 sent to the recipient
                                        function burn(
                                            int24 tickLower,
                                            int24 tickUpper,
                                            uint128 amount
                                        ) external returns (uint256 amount0, uint256 amount1);
                                        /// @notice Swap token0 for token1, or token1 for token0
                                        /// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback
                                        /// @param recipient The address to receive the output of the swap
                                        /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0
                                        /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative)
                                        /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this
                                        /// value after the swap. If one for zero, the price cannot be greater than this value after the swap
                                        /// @param data Any data to be passed through to the callback
                                        /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive
                                        /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive
                                        function swap(
                                            address recipient,
                                            bool zeroForOne,
                                            int256 amountSpecified,
                                            uint160 sqrtPriceLimitX96,
                                            bytes calldata data
                                        ) external returns (int256 amount0, int256 amount1);
                                        /// @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback
                                        /// @dev The caller of this method receives a callback in the form of IUniswapV3FlashCallback#uniswapV3FlashCallback
                                        /// @dev Can be used to donate underlying tokens pro-rata to currently in-range liquidity providers by calling
                                        /// with 0 amount{0,1} and sending the donation amount(s) from the callback
                                        /// @param recipient The address which will receive the token0 and token1 amounts
                                        /// @param amount0 The amount of token0 to send
                                        /// @param amount1 The amount of token1 to send
                                        /// @param data Any data to be passed through to the callback
                                        function flash(
                                            address recipient,
                                            uint256 amount0,
                                            uint256 amount1,
                                            bytes calldata data
                                        ) external;
                                        /// @notice Increase the maximum number of price and liquidity observations that this pool will store
                                        /// @dev This method is no-op if the pool already has an observationCardinalityNext greater than or equal to
                                        /// the input observationCardinalityNext.
                                        /// @param observationCardinalityNext The desired minimum number of observations for the pool to store
                                        function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external;
                                    }
                                    // SPDX-License-Identifier: GPL-2.0-or-later
                                    pragma solidity >=0.5.0;
                                    /// @title Permissioned pool actions
                                    /// @notice Contains pool methods that may only be called by the factory owner
                                    interface IUniswapV3PoolOwnerActions {
                                        /// @notice Set the denominator of the protocol's % share of the fees
                                        /// @param feeProtocol0 new protocol fee for token0 of the pool
                                        /// @param feeProtocol1 new protocol fee for token1 of the pool
                                        function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external;
                                        /// @notice Collect the protocol fee accrued to the pool
                                        /// @param recipient The address to which collected protocol fees should be sent
                                        /// @param amount0Requested The maximum amount of token0 to send, can be 0 to collect fees in only token1
                                        /// @param amount1Requested The maximum amount of token1 to send, can be 0 to collect fees in only token0
                                        /// @return amount0 The protocol fee collected in token0
                                        /// @return amount1 The protocol fee collected in token1
                                        function collectProtocol(
                                            address recipient,
                                            uint128 amount0Requested,
                                            uint128 amount1Requested
                                        ) external returns (uint128 amount0, uint128 amount1);
                                    }
                                    // SPDX-License-Identifier: GPL-2.0-or-later
                                    pragma solidity >=0.5.0;
                                    /// @title Events emitted by a pool
                                    /// @notice Contains all events emitted by the pool
                                    interface IUniswapV3PoolEvents {
                                        /// @notice Emitted exactly once by a pool when #initialize is first called on the pool
                                        /// @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize
                                        /// @param sqrtPriceX96 The initial sqrt price of the pool, as a Q64.96
                                        /// @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool
                                        event Initialize(uint160 sqrtPriceX96, int24 tick);
                                        /// @notice Emitted when liquidity is minted for a given position
                                        /// @param sender The address that minted the liquidity
                                        /// @param owner The owner of the position and recipient of any minted liquidity
                                        /// @param tickLower The lower tick of the position
                                        /// @param tickUpper The upper tick of the position
                                        /// @param amount The amount of liquidity minted to the position range
                                        /// @param amount0 How much token0 was required for the minted liquidity
                                        /// @param amount1 How much token1 was required for the minted liquidity
                                        event Mint(
                                            address sender,
                                            address indexed owner,
                                            int24 indexed tickLower,
                                            int24 indexed tickUpper,
                                            uint128 amount,
                                            uint256 amount0,
                                            uint256 amount1
                                        );
                                        /// @notice Emitted when fees are collected by the owner of a position
                                        /// @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees
                                        /// @param owner The owner of the position for which fees are collected
                                        /// @param tickLower The lower tick of the position
                                        /// @param tickUpper The upper tick of the position
                                        /// @param amount0 The amount of token0 fees collected
                                        /// @param amount1 The amount of token1 fees collected
                                        event Collect(
                                            address indexed owner,
                                            address recipient,
                                            int24 indexed tickLower,
                                            int24 indexed tickUpper,
                                            uint128 amount0,
                                            uint128 amount1
                                        );
                                        /// @notice Emitted when a position's liquidity is removed
                                        /// @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect
                                        /// @param owner The owner of the position for which liquidity is removed
                                        /// @param tickLower The lower tick of the position
                                        /// @param tickUpper The upper tick of the position
                                        /// @param amount The amount of liquidity to remove
                                        /// @param amount0 The amount of token0 withdrawn
                                        /// @param amount1 The amount of token1 withdrawn
                                        event Burn(
                                            address indexed owner,
                                            int24 indexed tickLower,
                                            int24 indexed tickUpper,
                                            uint128 amount,
                                            uint256 amount0,
                                            uint256 amount1
                                        );
                                        /// @notice Emitted by the pool for any swaps between token0 and token1
                                        /// @param sender The address that initiated the swap call, and that received the callback
                                        /// @param recipient The address that received the output of the swap
                                        /// @param amount0 The delta of the token0 balance of the pool
                                        /// @param amount1 The delta of the token1 balance of the pool
                                        /// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96
                                        /// @param liquidity The liquidity of the pool after the swap
                                        /// @param tick The log base 1.0001 of price of the pool after the swap
                                        event Swap(
                                            address indexed sender,
                                            address indexed recipient,
                                            int256 amount0,
                                            int256 amount1,
                                            uint160 sqrtPriceX96,
                                            uint128 liquidity,
                                            int24 tick
                                        );
                                        /// @notice Emitted by the pool for any flashes of token0/token1
                                        /// @param sender The address that initiated the swap call, and that received the callback
                                        /// @param recipient The address that received the tokens from flash
                                        /// @param amount0 The amount of token0 that was flashed
                                        /// @param amount1 The amount of token1 that was flashed
                                        /// @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee
                                        /// @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee
                                        event Flash(
                                            address indexed sender,
                                            address indexed recipient,
                                            uint256 amount0,
                                            uint256 amount1,
                                            uint256 paid0,
                                            uint256 paid1
                                        );
                                        /// @notice Emitted by the pool for increases to the number of observations that can be stored
                                        /// @dev observationCardinalityNext is not the observation cardinality until an observation is written at the index
                                        /// just before a mint/swap/burn.
                                        /// @param observationCardinalityNextOld The previous value of the next observation cardinality
                                        /// @param observationCardinalityNextNew The updated value of the next observation cardinality
                                        event IncreaseObservationCardinalityNext(
                                            uint16 observationCardinalityNextOld,
                                            uint16 observationCardinalityNextNew
                                        );
                                        /// @notice Emitted when the protocol fee is changed by the pool
                                        /// @param feeProtocol0Old The previous value of the token0 protocol fee
                                        /// @param feeProtocol1Old The previous value of the token1 protocol fee
                                        /// @param feeProtocol0New The updated value of the token0 protocol fee
                                        /// @param feeProtocol1New The updated value of the token1 protocol fee
                                        event SetFeeProtocol(uint8 feeProtocol0Old, uint8 feeProtocol1Old, uint8 feeProtocol0New, uint8 feeProtocol1New);
                                        /// @notice Emitted when the collected protocol fees are withdrawn by the factory owner
                                        /// @param sender The address that collects the protocol fees
                                        /// @param recipient The address that receives the collected protocol fees
                                        /// @param amount0 The amount of token0 protocol fees that is withdrawn
                                        /// @param amount0 The amount of token1 protocol fees that is withdrawn
                                        event CollectProtocol(address indexed sender, address indexed recipient, uint128 amount0, uint128 amount1);
                                    }
                                    // SPDX-License-Identifier: GPL-2.0-or-later
                                    pragma solidity >=0.5.0;
                                    /// @title BitMath
                                    /// @dev This library provides functionality for computing bit properties of an unsigned integer
                                    library BitMath {
                                        /// @notice Returns the index of the most significant bit of the number,
                                        ///     where the least significant bit is at index 0 and the most significant bit is at index 255
                                        /// @dev The function satisfies the property:
                                        ///     x >= 2**mostSignificantBit(x) and x < 2**(mostSignificantBit(x)+1)
                                        /// @param x the value for which to compute the most significant bit, must be greater than 0
                                        /// @return r the index of the most significant bit
                                        function mostSignificantBit(uint256 x) internal pure returns (uint8 r) {
                                            require(x > 0);
                                            if (x >= 0x100000000000000000000000000000000) {
                                                x >>= 128;
                                                r += 128;
                                            }
                                            if (x >= 0x10000000000000000) {
                                                x >>= 64;
                                                r += 64;
                                            }
                                            if (x >= 0x100000000) {
                                                x >>= 32;
                                                r += 32;
                                            }
                                            if (x >= 0x10000) {
                                                x >>= 16;
                                                r += 16;
                                            }
                                            if (x >= 0x100) {
                                                x >>= 8;
                                                r += 8;
                                            }
                                            if (x >= 0x10) {
                                                x >>= 4;
                                                r += 4;
                                            }
                                            if (x >= 0x4) {
                                                x >>= 2;
                                                r += 2;
                                            }
                                            if (x >= 0x2) r += 1;
                                        }
                                        /// @notice Returns the index of the least significant bit of the number,
                                        ///     where the least significant bit is at index 0 and the most significant bit is at index 255
                                        /// @dev The function satisfies the property:
                                        ///     (x & 2**leastSignificantBit(x)) != 0 and (x & (2**(leastSignificantBit(x)) - 1)) == 0)
                                        /// @param x the value for which to compute the least significant bit, must be greater than 0
                                        /// @return r the index of the least significant bit
                                        function leastSignificantBit(uint256 x) internal pure returns (uint8 r) {
                                            require(x > 0);
                                            r = 255;
                                            if (x & type(uint128).max > 0) {
                                                r -= 128;
                                            } else {
                                                x >>= 128;
                                            }
                                            if (x & type(uint64).max > 0) {
                                                r -= 64;
                                            } else {
                                                x >>= 64;
                                            }
                                            if (x & type(uint32).max > 0) {
                                                r -= 32;
                                            } else {
                                                x >>= 32;
                                            }
                                            if (x & type(uint16).max > 0) {
                                                r -= 16;
                                            } else {
                                                x >>= 16;
                                            }
                                            if (x & type(uint8).max > 0) {
                                                r -= 8;
                                            } else {
                                                x >>= 8;
                                            }
                                            if (x & 0xf > 0) {
                                                r -= 4;
                                            } else {
                                                x >>= 4;
                                            }
                                            if (x & 0x3 > 0) {
                                                r -= 2;
                                            } else {
                                                x >>= 2;
                                            }
                                            if (x & 0x1 > 0) r -= 1;
                                        }
                                    }
                                    // SPDX-License-Identifier: GPL-2.0-or-later
                                    pragma solidity >=0.5.0;
                                    /// @title Math functions that do not check inputs or outputs
                                    /// @notice Contains methods that perform common math functions but do not do any overflow or underflow checks
                                    library UnsafeMath {
                                        /// @notice Returns ceil(x / y)
                                        /// @dev division by 0 has unspecified behavior, and must be checked externally
                                        /// @param x The dividend
                                        /// @param y The divisor
                                        /// @return z The quotient, ceil(x / y)
                                        function divRoundingUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                            assembly {
                                                z := add(div(x, y), gt(mod(x, y), 0))
                                            }
                                        }
                                    }
                                    // SPDX-License-Identifier: GPL-2.0-or-later
                                    pragma solidity >=0.4.0;
                                    /// @title FixedPoint96
                                    /// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format)
                                    /// @dev Used in SqrtPriceMath.sol
                                    library FixedPoint96 {
                                        uint8 internal constant RESOLUTION = 96;
                                        uint256 internal constant Q96 = 0x1000000000000000000000000;
                                    }
                                    

                                    File 5 of 10: UniswapV2Pair
                                    // File: contracts/interfaces/IUniswapV2Pair.sol
                                    
                                    pragma solidity >=0.5.0;
                                    
                                    interface IUniswapV2Pair {
                                        event Approval(address indexed owner, address indexed spender, uint value);
                                        event Transfer(address indexed from, address indexed to, uint value);
                                    
                                        function name() external pure returns (string memory);
                                        function symbol() external pure returns (string memory);
                                        function decimals() external pure returns (uint8);
                                        function totalSupply() external view returns (uint);
                                        function balanceOf(address owner) external view returns (uint);
                                        function allowance(address owner, address spender) external view returns (uint);
                                    
                                        function approve(address spender, uint value) external returns (bool);
                                        function transfer(address to, uint value) external returns (bool);
                                        function transferFrom(address from, address to, uint value) external returns (bool);
                                    
                                        function DOMAIN_SEPARATOR() external view returns (bytes32);
                                        function PERMIT_TYPEHASH() external pure returns (bytes32);
                                        function nonces(address owner) external view returns (uint);
                                    
                                        function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
                                    
                                        event Mint(address indexed sender, uint amount0, uint amount1);
                                        event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
                                        event Swap(
                                            address indexed sender,
                                            uint amount0In,
                                            uint amount1In,
                                            uint amount0Out,
                                            uint amount1Out,
                                            address indexed to
                                        );
                                        event Sync(uint112 reserve0, uint112 reserve1);
                                    
                                        function MINIMUM_LIQUIDITY() external pure returns (uint);
                                        function factory() external view returns (address);
                                        function token0() external view returns (address);
                                        function token1() external view returns (address);
                                        function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
                                        function price0CumulativeLast() external view returns (uint);
                                        function price1CumulativeLast() external view returns (uint);
                                        function kLast() external view returns (uint);
                                    
                                        function mint(address to) external returns (uint liquidity);
                                        function burn(address to) external returns (uint amount0, uint amount1);
                                        function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
                                        function skim(address to) external;
                                        function sync() external;
                                    
                                        function initialize(address, address) external;
                                    }
                                    
                                    // File: contracts/interfaces/IUniswapV2ERC20.sol
                                    
                                    pragma solidity >=0.5.0;
                                    
                                    interface IUniswapV2ERC20 {
                                        event Approval(address indexed owner, address indexed spender, uint value);
                                        event Transfer(address indexed from, address indexed to, uint value);
                                    
                                        function name() external pure returns (string memory);
                                        function symbol() external pure returns (string memory);
                                        function decimals() external pure returns (uint8);
                                        function totalSupply() external view returns (uint);
                                        function balanceOf(address owner) external view returns (uint);
                                        function allowance(address owner, address spender) external view returns (uint);
                                    
                                        function approve(address spender, uint value) external returns (bool);
                                        function transfer(address to, uint value) external returns (bool);
                                        function transferFrom(address from, address to, uint value) external returns (bool);
                                    
                                        function DOMAIN_SEPARATOR() external view returns (bytes32);
                                        function PERMIT_TYPEHASH() external pure returns (bytes32);
                                        function nonces(address owner) external view returns (uint);
                                    
                                        function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
                                    }
                                    
                                    // File: contracts/libraries/SafeMath.sol
                                    
                                    pragma solidity =0.5.16;
                                    
                                    // a library for performing overflow-safe math, courtesy of DappHub (https://github.com/dapphub/ds-math)
                                    
                                    library SafeMath {
                                        function add(uint x, uint y) internal pure returns (uint z) {
                                            require((z = x + y) >= x, 'ds-math-add-overflow');
                                        }
                                    
                                        function sub(uint x, uint y) internal pure returns (uint z) {
                                            require((z = x - y) <= x, 'ds-math-sub-underflow');
                                        }
                                    
                                        function mul(uint x, uint y) internal pure returns (uint z) {
                                            require(y == 0 || (z = x * y) / y == x, 'ds-math-mul-overflow');
                                        }
                                    }
                                    
                                    // File: contracts/UniswapV2ERC20.sol
                                    
                                    pragma solidity =0.5.16;
                                    
                                    
                                    
                                    contract UniswapV2ERC20 is IUniswapV2ERC20 {
                                        using SafeMath for uint;
                                    
                                        string public constant name = 'Uniswap V2';
                                        string public constant symbol = 'UNI-V2';
                                        uint8 public constant decimals = 18;
                                        uint  public totalSupply;
                                        mapping(address => uint) public balanceOf;
                                        mapping(address => mapping(address => uint)) public allowance;
                                    
                                        bytes32 public DOMAIN_SEPARATOR;
                                        // keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
                                        bytes32 public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;
                                        mapping(address => uint) public nonces;
                                    
                                        event Approval(address indexed owner, address indexed spender, uint value);
                                        event Transfer(address indexed from, address indexed to, uint value);
                                    
                                        constructor() public {
                                            uint chainId;
                                            assembly {
                                                chainId := chainid
                                            }
                                            DOMAIN_SEPARATOR = keccak256(
                                                abi.encode(
                                                    keccak256('EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)'),
                                                    keccak256(bytes(name)),
                                                    keccak256(bytes('1')),
                                                    chainId,
                                                    address(this)
                                                )
                                            );
                                        }
                                    
                                        function _mint(address to, uint value) internal {
                                            totalSupply = totalSupply.add(value);
                                            balanceOf[to] = balanceOf[to].add(value);
                                            emit Transfer(address(0), to, value);
                                        }
                                    
                                        function _burn(address from, uint value) internal {
                                            balanceOf[from] = balanceOf[from].sub(value);
                                            totalSupply = totalSupply.sub(value);
                                            emit Transfer(from, address(0), value);
                                        }
                                    
                                        function _approve(address owner, address spender, uint value) private {
                                            allowance[owner][spender] = value;
                                            emit Approval(owner, spender, value);
                                        }
                                    
                                        function _transfer(address from, address to, uint value) private {
                                            balanceOf[from] = balanceOf[from].sub(value);
                                            balanceOf[to] = balanceOf[to].add(value);
                                            emit Transfer(from, to, value);
                                        }
                                    
                                        function approve(address spender, uint value) external returns (bool) {
                                            _approve(msg.sender, spender, value);
                                            return true;
                                        }
                                    
                                        function transfer(address to, uint value) external returns (bool) {
                                            _transfer(msg.sender, to, value);
                                            return true;
                                        }
                                    
                                        function transferFrom(address from, address to, uint value) external returns (bool) {
                                            if (allowance[from][msg.sender] != uint(-1)) {
                                                allowance[from][msg.sender] = allowance[from][msg.sender].sub(value);
                                            }
                                            _transfer(from, to, value);
                                            return true;
                                        }
                                    
                                        function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external {
                                            require(deadline >= block.timestamp, 'UniswapV2: EXPIRED');
                                            bytes32 digest = keccak256(
                                                abi.encodePacked(
                                                    '\x19\x01',
                                                    DOMAIN_SEPARATOR,
                                                    keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[owner]++, deadline))
                                                )
                                            );
                                            address recoveredAddress = ecrecover(digest, v, r, s);
                                            require(recoveredAddress != address(0) && recoveredAddress == owner, 'UniswapV2: INVALID_SIGNATURE');
                                            _approve(owner, spender, value);
                                        }
                                    }
                                    
                                    // File: contracts/libraries/Math.sol
                                    
                                    pragma solidity =0.5.16;
                                    
                                    // a library for performing various math operations
                                    
                                    library Math {
                                        function min(uint x, uint y) internal pure returns (uint z) {
                                            z = x < y ? x : y;
                                        }
                                    
                                        // babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method)
                                        function sqrt(uint y) internal pure returns (uint z) {
                                            if (y > 3) {
                                                z = y;
                                                uint x = y / 2 + 1;
                                                while (x < z) {
                                                    z = x;
                                                    x = (y / x + x) / 2;
                                                }
                                            } else if (y != 0) {
                                                z = 1;
                                            }
                                        }
                                    }
                                    
                                    // File: contracts/libraries/UQ112x112.sol
                                    
                                    pragma solidity =0.5.16;
                                    
                                    // a library for handling binary fixed point numbers (https://en.wikipedia.org/wiki/Q_(number_format))
                                    
                                    // range: [0, 2**112 - 1]
                                    // resolution: 1 / 2**112
                                    
                                    library UQ112x112 {
                                        uint224 constant Q112 = 2**112;
                                    
                                        // encode a uint112 as a UQ112x112
                                        function encode(uint112 y) internal pure returns (uint224 z) {
                                            z = uint224(y) * Q112; // never overflows
                                        }
                                    
                                        // divide a UQ112x112 by a uint112, returning a UQ112x112
                                        function uqdiv(uint224 x, uint112 y) internal pure returns (uint224 z) {
                                            z = x / uint224(y);
                                        }
                                    }
                                    
                                    // File: contracts/interfaces/IERC20.sol
                                    
                                    pragma solidity >=0.5.0;
                                    
                                    interface IERC20 {
                                        event Approval(address indexed owner, address indexed spender, uint value);
                                        event Transfer(address indexed from, address indexed to, uint value);
                                    
                                        function name() external view returns (string memory);
                                        function symbol() external view returns (string memory);
                                        function decimals() external view returns (uint8);
                                        function totalSupply() external view returns (uint);
                                        function balanceOf(address owner) external view returns (uint);
                                        function allowance(address owner, address spender) external view returns (uint);
                                    
                                        function approve(address spender, uint value) external returns (bool);
                                        function transfer(address to, uint value) external returns (bool);
                                        function transferFrom(address from, address to, uint value) external returns (bool);
                                    }
                                    
                                    // File: contracts/interfaces/IUniswapV2Factory.sol
                                    
                                    pragma solidity >=0.5.0;
                                    
                                    interface IUniswapV2Factory {
                                        event PairCreated(address indexed token0, address indexed token1, address pair, uint);
                                    
                                        function feeTo() external view returns (address);
                                        function feeToSetter() external view returns (address);
                                    
                                        function getPair(address tokenA, address tokenB) external view returns (address pair);
                                        function allPairs(uint) external view returns (address pair);
                                        function allPairsLength() external view returns (uint);
                                    
                                        function createPair(address tokenA, address tokenB) external returns (address pair);
                                    
                                        function setFeeTo(address) external;
                                        function setFeeToSetter(address) external;
                                    }
                                    
                                    // File: contracts/interfaces/IUniswapV2Callee.sol
                                    
                                    pragma solidity >=0.5.0;
                                    
                                    interface IUniswapV2Callee {
                                        function uniswapV2Call(address sender, uint amount0, uint amount1, bytes calldata data) external;
                                    }
                                    
                                    // File: contracts/UniswapV2Pair.sol
                                    
                                    pragma solidity =0.5.16;
                                    
                                    
                                    
                                    
                                    
                                    
                                    
                                    
                                    contract UniswapV2Pair is IUniswapV2Pair, UniswapV2ERC20 {
                                        using SafeMath  for uint;
                                        using UQ112x112 for uint224;
                                    
                                        uint public constant MINIMUM_LIQUIDITY = 10**3;
                                        bytes4 private constant SELECTOR = bytes4(keccak256(bytes('transfer(address,uint256)')));
                                    
                                        address public factory;
                                        address public token0;
                                        address public token1;
                                    
                                        uint112 private reserve0;           // uses single storage slot, accessible via getReserves
                                        uint112 private reserve1;           // uses single storage slot, accessible via getReserves
                                        uint32  private blockTimestampLast; // uses single storage slot, accessible via getReserves
                                    
                                        uint public price0CumulativeLast;
                                        uint public price1CumulativeLast;
                                        uint public kLast; // reserve0 * reserve1, as of immediately after the most recent liquidity event
                                    
                                        uint private unlocked = 1;
                                        modifier lock() {
                                            require(unlocked == 1, 'UniswapV2: LOCKED');
                                            unlocked = 0;
                                            _;
                                            unlocked = 1;
                                        }
                                    
                                        function getReserves() public view returns (uint112 _reserve0, uint112 _reserve1, uint32 _blockTimestampLast) {
                                            _reserve0 = reserve0;
                                            _reserve1 = reserve1;
                                            _blockTimestampLast = blockTimestampLast;
                                        }
                                    
                                        function _safeTransfer(address token, address to, uint value) private {
                                            (bool success, bytes memory data) = token.call(abi.encodeWithSelector(SELECTOR, to, value));
                                            require(success && (data.length == 0 || abi.decode(data, (bool))), 'UniswapV2: TRANSFER_FAILED');
                                        }
                                    
                                        event Mint(address indexed sender, uint amount0, uint amount1);
                                        event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
                                        event Swap(
                                            address indexed sender,
                                            uint amount0In,
                                            uint amount1In,
                                            uint amount0Out,
                                            uint amount1Out,
                                            address indexed to
                                        );
                                        event Sync(uint112 reserve0, uint112 reserve1);
                                    
                                        constructor() public {
                                            factory = msg.sender;
                                        }
                                    
                                        // called once by the factory at time of deployment
                                        function initialize(address _token0, address _token1) external {
                                            require(msg.sender == factory, 'UniswapV2: FORBIDDEN'); // sufficient check
                                            token0 = _token0;
                                            token1 = _token1;
                                        }
                                    
                                        // update reserves and, on the first call per block, price accumulators
                                        function _update(uint balance0, uint balance1, uint112 _reserve0, uint112 _reserve1) private {
                                            require(balance0 <= uint112(-1) && balance1 <= uint112(-1), 'UniswapV2: OVERFLOW');
                                            uint32 blockTimestamp = uint32(block.timestamp % 2**32);
                                            uint32 timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired
                                            if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) {
                                                // * never overflows, and + overflow is desired
                                                price0CumulativeLast += uint(UQ112x112.encode(_reserve1).uqdiv(_reserve0)) * timeElapsed;
                                                price1CumulativeLast += uint(UQ112x112.encode(_reserve0).uqdiv(_reserve1)) * timeElapsed;
                                            }
                                            reserve0 = uint112(balance0);
                                            reserve1 = uint112(balance1);
                                            blockTimestampLast = blockTimestamp;
                                            emit Sync(reserve0, reserve1);
                                        }
                                    
                                        // if fee is on, mint liquidity equivalent to 1/6th of the growth in sqrt(k)
                                        function _mintFee(uint112 _reserve0, uint112 _reserve1) private returns (bool feeOn) {
                                            address feeTo = IUniswapV2Factory(factory).feeTo();
                                            feeOn = feeTo != address(0);
                                            uint _kLast = kLast; // gas savings
                                            if (feeOn) {
                                                if (_kLast != 0) {
                                                    uint rootK = Math.sqrt(uint(_reserve0).mul(_reserve1));
                                                    uint rootKLast = Math.sqrt(_kLast);
                                                    if (rootK > rootKLast) {
                                                        uint numerator = totalSupply.mul(rootK.sub(rootKLast));
                                                        uint denominator = rootK.mul(5).add(rootKLast);
                                                        uint liquidity = numerator / denominator;
                                                        if (liquidity > 0) _mint(feeTo, liquidity);
                                                    }
                                                }
                                            } else if (_kLast != 0) {
                                                kLast = 0;
                                            }
                                        }
                                    
                                        // this low-level function should be called from a contract which performs important safety checks
                                        function mint(address to) external lock returns (uint liquidity) {
                                            (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
                                            uint balance0 = IERC20(token0).balanceOf(address(this));
                                            uint balance1 = IERC20(token1).balanceOf(address(this));
                                            uint amount0 = balance0.sub(_reserve0);
                                            uint amount1 = balance1.sub(_reserve1);
                                    
                                            bool feeOn = _mintFee(_reserve0, _reserve1);
                                            uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
                                            if (_totalSupply == 0) {
                                                liquidity = Math.sqrt(amount0.mul(amount1)).sub(MINIMUM_LIQUIDITY);
                                               _mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY tokens
                                            } else {
                                                liquidity = Math.min(amount0.mul(_totalSupply) / _reserve0, amount1.mul(_totalSupply) / _reserve1);
                                            }
                                            require(liquidity > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_MINTED');
                                            _mint(to, liquidity);
                                    
                                            _update(balance0, balance1, _reserve0, _reserve1);
                                            if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
                                            emit Mint(msg.sender, amount0, amount1);
                                        }
                                    
                                        // this low-level function should be called from a contract which performs important safety checks
                                        function burn(address to) external lock returns (uint amount0, uint amount1) {
                                            (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
                                            address _token0 = token0;                                // gas savings
                                            address _token1 = token1;                                // gas savings
                                            uint balance0 = IERC20(_token0).balanceOf(address(this));
                                            uint balance1 = IERC20(_token1).balanceOf(address(this));
                                            uint liquidity = balanceOf[address(this)];
                                    
                                            bool feeOn = _mintFee(_reserve0, _reserve1);
                                            uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
                                            amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata distribution
                                            amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata distribution
                                            require(amount0 > 0 && amount1 > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_BURNED');
                                            _burn(address(this), liquidity);
                                            _safeTransfer(_token0, to, amount0);
                                            _safeTransfer(_token1, to, amount1);
                                            balance0 = IERC20(_token0).balanceOf(address(this));
                                            balance1 = IERC20(_token1).balanceOf(address(this));
                                    
                                            _update(balance0, balance1, _reserve0, _reserve1);
                                            if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
                                            emit Burn(msg.sender, amount0, amount1, to);
                                        }
                                    
                                        // this low-level function should be called from a contract which performs important safety checks
                                        function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external lock {
                                            require(amount0Out > 0 || amount1Out > 0, 'UniswapV2: INSUFFICIENT_OUTPUT_AMOUNT');
                                            (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
                                            require(amount0Out < _reserve0 && amount1Out < _reserve1, 'UniswapV2: INSUFFICIENT_LIQUIDITY');
                                    
                                            uint balance0;
                                            uint balance1;
                                            { // scope for _token{0,1}, avoids stack too deep errors
                                            address _token0 = token0;
                                            address _token1 = token1;
                                            require(to != _token0 && to != _token1, 'UniswapV2: INVALID_TO');
                                            if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens
                                            if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens
                                            if (data.length > 0) IUniswapV2Callee(to).uniswapV2Call(msg.sender, amount0Out, amount1Out, data);
                                            balance0 = IERC20(_token0).balanceOf(address(this));
                                            balance1 = IERC20(_token1).balanceOf(address(this));
                                            }
                                            uint amount0In = balance0 > _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0;
                                            uint amount1In = balance1 > _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0;
                                            require(amount0In > 0 || amount1In > 0, 'UniswapV2: INSUFFICIENT_INPUT_AMOUNT');
                                            { // scope for reserve{0,1}Adjusted, avoids stack too deep errors
                                            uint balance0Adjusted = balance0.mul(1000).sub(amount0In.mul(3));
                                            uint balance1Adjusted = balance1.mul(1000).sub(amount1In.mul(3));
                                            require(balance0Adjusted.mul(balance1Adjusted) >= uint(_reserve0).mul(_reserve1).mul(1000**2), 'UniswapV2: K');
                                            }
                                    
                                            _update(balance0, balance1, _reserve0, _reserve1);
                                            emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to);
                                        }
                                    
                                        // force balances to match reserves
                                        function skim(address to) external lock {
                                            address _token0 = token0; // gas savings
                                            address _token1 = token1; // gas savings
                                            _safeTransfer(_token0, to, IERC20(_token0).balanceOf(address(this)).sub(reserve0));
                                            _safeTransfer(_token1, to, IERC20(_token1).balanceOf(address(this)).sub(reserve1));
                                        }
                                    
                                        // force reserves to match balances
                                        function sync() external lock {
                                            _update(IERC20(token0).balanceOf(address(this)), IERC20(token1).balanceOf(address(this)), reserve0, reserve1);
                                        }
                                    }

                                    File 6 of 10: WETH9
                                    // Copyright (C) 2015, 2016, 2017 Dapphub
                                    
                                    // This program is free software: you can redistribute it and/or modify
                                    // it under the terms of the GNU General Public License as published by
                                    // the Free Software Foundation, either version 3 of the License, or
                                    // (at your option) any later version.
                                    
                                    // This program is distributed in the hope that it will be useful,
                                    // but WITHOUT ANY WARRANTY; without even the implied warranty of
                                    // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
                                    // GNU General Public License for more details.
                                    
                                    // You should have received a copy of the GNU General Public License
                                    // along with this program.  If not, see <http://www.gnu.org/licenses/>.
                                    
                                    pragma solidity ^0.4.18;
                                    
                                    contract WETH9 {
                                        string public name     = "Wrapped Ether";
                                        string public symbol   = "WETH";
                                        uint8  public decimals = 18;
                                    
                                        event  Approval(address indexed src, address indexed guy, uint wad);
                                        event  Transfer(address indexed src, address indexed dst, uint wad);
                                        event  Deposit(address indexed dst, uint wad);
                                        event  Withdrawal(address indexed src, uint wad);
                                    
                                        mapping (address => uint)                       public  balanceOf;
                                        mapping (address => mapping (address => uint))  public  allowance;
                                    
                                        function() public payable {
                                            deposit();
                                        }
                                        function deposit() public payable {
                                            balanceOf[msg.sender] += msg.value;
                                            Deposit(msg.sender, msg.value);
                                        }
                                        function withdraw(uint wad) public {
                                            require(balanceOf[msg.sender] >= wad);
                                            balanceOf[msg.sender] -= wad;
                                            msg.sender.transfer(wad);
                                            Withdrawal(msg.sender, wad);
                                        }
                                    
                                        function totalSupply() public view returns (uint) {
                                            return this.balance;
                                        }
                                    
                                        function approve(address guy, uint wad) public returns (bool) {
                                            allowance[msg.sender][guy] = wad;
                                            Approval(msg.sender, guy, wad);
                                            return true;
                                        }
                                    
                                        function transfer(address dst, uint wad) public returns (bool) {
                                            return transferFrom(msg.sender, dst, wad);
                                        }
                                    
                                        function transferFrom(address src, address dst, uint wad)
                                            public
                                            returns (bool)
                                        {
                                            require(balanceOf[src] >= wad);
                                    
                                            if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) {
                                                require(allowance[src][msg.sender] >= wad);
                                                allowance[src][msg.sender] -= wad;
                                            }
                                    
                                            balanceOf[src] -= wad;
                                            balanceOf[dst] += wad;
                                    
                                            Transfer(src, dst, wad);
                                    
                                            return true;
                                        }
                                    }
                                    
                                    
                                    /*
                                                        GNU GENERAL PUBLIC LICENSE
                                                           Version 3, 29 June 2007
                                    
                                     Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
                                     Everyone is permitted to copy and distribute verbatim copies
                                     of this license document, but changing it is not allowed.
                                    
                                                                Preamble
                                    
                                      The GNU General Public License is a free, copyleft license for
                                    software and other kinds of works.
                                    
                                      The licenses for most software and other practical works are designed
                                    to take away your freedom to share and change the works.  By contrast,
                                    the GNU General Public License is intended to guarantee your freedom to
                                    share and change all versions of a program--to make sure it remains free
                                    software for all its users.  We, the Free Software Foundation, use the
                                    GNU General Public License for most of our software; it applies also to
                                    any other work released this way by its authors.  You can apply it to
                                    your programs, too.
                                    
                                      When we speak of free software, we are referring to freedom, not
                                    price.  Our General Public Licenses are designed to make sure that you
                                    have the freedom to distribute copies of free software (and charge for
                                    them if you wish), that you receive source code or can get it if you
                                    want it, that you can change the software or use pieces of it in new
                                    free programs, and that you know you can do these things.
                                    
                                      To protect your rights, we need to prevent others from denying you
                                    these rights or asking you to surrender the rights.  Therefore, you have
                                    certain responsibilities if you distribute copies of the software, or if
                                    you modify it: responsibilities to respect the freedom of others.
                                    
                                      For example, if you distribute copies of such a program, whether
                                    gratis or for a fee, you must pass on to the recipients the same
                                    freedoms that you received.  You must make sure that they, too, receive
                                    or can get the source code.  And you must show them these terms so they
                                    know their rights.
                                    
                                      Developers that use the GNU GPL protect your rights with two steps:
                                    (1) assert copyright on the software, and (2) offer you this License
                                    giving you legal permission to copy, distribute and/or modify it.
                                    
                                      For the developers' and authors' protection, the GPL clearly explains
                                    that there is no warranty for this free software.  For both users' and
                                    authors' sake, the GPL requires that modified versions be marked as
                                    changed, so that their problems will not be attributed erroneously to
                                    authors of previous versions.
                                    
                                      Some devices are designed to deny users access to install or run
                                    modified versions of the software inside them, although the manufacturer
                                    can do so.  This is fundamentally incompatible with the aim of
                                    protecting users' freedom to change the software.  The systematic
                                    pattern of such abuse occurs in the area of products for individuals to
                                    use, which is precisely where it is most unacceptable.  Therefore, we
                                    have designed this version of the GPL to prohibit the practice for those
                                    products.  If such problems arise substantially in other domains, we
                                    stand ready to extend this provision to those domains in future versions
                                    of the GPL, as needed to protect the freedom of users.
                                    
                                      Finally, every program is threatened constantly by software patents.
                                    States should not allow patents to restrict development and use of
                                    software on general-purpose computers, but in those that do, we wish to
                                    avoid the special danger that patents applied to a free program could
                                    make it effectively proprietary.  To prevent this, the GPL assures that
                                    patents cannot be used to render the program non-free.
                                    
                                      The precise terms and conditions for copying, distribution and
                                    modification follow.
                                    
                                                           TERMS AND CONDITIONS
                                    
                                      0. Definitions.
                                    
                                      "This License" refers to version 3 of the GNU General Public License.
                                    
                                      "Copyright" also means copyright-like laws that apply to other kinds of
                                    works, such as semiconductor masks.
                                    
                                      "The Program" refers to any copyrightable work licensed under this
                                    License.  Each licensee is addressed as "you".  "Licensees" and
                                    "recipients" may be individuals or organizations.
                                    
                                      To "modify" a work means to copy from or adapt all or part of the work
                                    in a fashion requiring copyright permission, other than the making of an
                                    exact copy.  The resulting work is called a "modified version" of the
                                    earlier work or a work "based on" the earlier work.
                                    
                                      A "covered work" means either the unmodified Program or a work based
                                    on the Program.
                                    
                                      To "propagate" a work means to do anything with it that, without
                                    permission, would make you directly or secondarily liable for
                                    infringement under applicable copyright law, except executing it on a
                                    computer or modifying a private copy.  Propagation includes copying,
                                    distribution (with or without modification), making available to the
                                    public, and in some countries other activities as well.
                                    
                                      To "convey" a work means any kind of propagation that enables other
                                    parties to make or receive copies.  Mere interaction with a user through
                                    a computer network, with no transfer of a copy, is not conveying.
                                    
                                      An interactive user interface displays "Appropriate Legal Notices"
                                    to the extent that it includes a convenient and prominently visible
                                    feature that (1) displays an appropriate copyright notice, and (2)
                                    tells the user that there is no warranty for the work (except to the
                                    extent that warranties are provided), that licensees may convey the
                                    work under this License, and how to view a copy of this License.  If
                                    the interface presents a list of user commands or options, such as a
                                    menu, a prominent item in the list meets this criterion.
                                    
                                      1. Source Code.
                                    
                                      The "source code" for a work means the preferred form of the work
                                    for making modifications to it.  "Object code" means any non-source
                                    form of a work.
                                    
                                      A "Standard Interface" means an interface that either is an official
                                    standard defined by a recognized standards body, or, in the case of
                                    interfaces specified for a particular programming language, one that
                                    is widely used among developers working in that language.
                                    
                                      The "System Libraries" of an executable work include anything, other
                                    than the work as a whole, that (a) is included in the normal form of
                                    packaging a Major Component, but which is not part of that Major
                                    Component, and (b) serves only to enable use of the work with that
                                    Major Component, or to implement a Standard Interface for which an
                                    implementation is available to the public in source code form.  A
                                    "Major Component", in this context, means a major essential component
                                    (kernel, window system, and so on) of the specific operating system
                                    (if any) on which the executable work runs, or a compiler used to
                                    produce the work, or an object code interpreter used to run it.
                                    
                                      The "Corresponding Source" for a work in object code form means all
                                    the source code needed to generate, install, and (for an executable
                                    work) run the object code and to modify the work, including scripts to
                                    control those activities.  However, it does not include the work's
                                    System Libraries, or general-purpose tools or generally available free
                                    programs which are used unmodified in performing those activities but
                                    which are not part of the work.  For example, Corresponding Source
                                    includes interface definition files associated with source files for
                                    the work, and the source code for shared libraries and dynamically
                                    linked subprograms that the work is specifically designed to require,
                                    such as by intimate data communication or control flow between those
                                    subprograms and other parts of the work.
                                    
                                      The Corresponding Source need not include anything that users
                                    can regenerate automatically from other parts of the Corresponding
                                    Source.
                                    
                                      The Corresponding Source for a work in source code form is that
                                    same work.
                                    
                                      2. Basic Permissions.
                                    
                                      All rights granted under this License are granted for the term of
                                    copyright on the Program, and are irrevocable provided the stated
                                    conditions are met.  This License explicitly affirms your unlimited
                                    permission to run the unmodified Program.  The output from running a
                                    covered work is covered by this License only if the output, given its
                                    content, constitutes a covered work.  This License acknowledges your
                                    rights of fair use or other equivalent, as provided by copyright law.
                                    
                                      You may make, run and propagate covered works that you do not
                                    convey, without conditions so long as your license otherwise remains
                                    in force.  You may convey covered works to others for the sole purpose
                                    of having them make modifications exclusively for you, or provide you
                                    with facilities for running those works, provided that you comply with
                                    the terms of this License in conveying all material for which you do
                                    not control copyright.  Those thus making or running the covered works
                                    for you must do so exclusively on your behalf, under your direction
                                    and control, on terms that prohibit them from making any copies of
                                    your copyrighted material outside their relationship with you.
                                    
                                      Conveying under any other circumstances is permitted solely under
                                    the conditions stated below.  Sublicensing is not allowed; section 10
                                    makes it unnecessary.
                                    
                                      3. Protecting Users' Legal Rights From Anti-Circumvention Law.
                                    
                                      No covered work shall be deemed part of an effective technological
                                    measure under any applicable law fulfilling obligations under article
                                    11 of the WIPO copyright treaty adopted on 20 December 1996, or
                                    similar laws prohibiting or restricting circumvention of such
                                    measures.
                                    
                                      When you convey a covered work, you waive any legal power to forbid
                                    circumvention of technological measures to the extent such circumvention
                                    is effected by exercising rights under this License with respect to
                                    the covered work, and you disclaim any intention to limit operation or
                                    modification of the work as a means of enforcing, against the work's
                                    users, your or third parties' legal rights to forbid circumvention of
                                    technological measures.
                                    
                                      4. Conveying Verbatim Copies.
                                    
                                      You may convey verbatim copies of the Program's source code as you
                                    receive it, in any medium, provided that you conspicuously and
                                    appropriately publish on each copy an appropriate copyright notice;
                                    keep intact all notices stating that this License and any
                                    non-permissive terms added in accord with section 7 apply to the code;
                                    keep intact all notices of the absence of any warranty; and give all
                                    recipients a copy of this License along with the Program.
                                    
                                      You may charge any price or no price for each copy that you convey,
                                    and you may offer support or warranty protection for a fee.
                                    
                                      5. Conveying Modified Source Versions.
                                    
                                      You may convey a work based on the Program, or the modifications to
                                    produce it from the Program, in the form of source code under the
                                    terms of section 4, provided that you also meet all of these conditions:
                                    
                                        a) The work must carry prominent notices stating that you modified
                                        it, and giving a relevant date.
                                    
                                        b) The work must carry prominent notices stating that it is
                                        released under this License and any conditions added under section
                                        7.  This requirement modifies the requirement in section 4 to
                                        "keep intact all notices".
                                    
                                        c) You must license the entire work, as a whole, under this
                                        License to anyone who comes into possession of a copy.  This
                                        License will therefore apply, along with any applicable section 7
                                        additional terms, to the whole of the work, and all its parts,
                                        regardless of how they are packaged.  This License gives no
                                        permission to license the work in any other way, but it does not
                                        invalidate such permission if you have separately received it.
                                    
                                        d) If the work has interactive user interfaces, each must display
                                        Appropriate Legal Notices; however, if the Program has interactive
                                        interfaces that do not display Appropriate Legal Notices, your
                                        work need not make them do so.
                                    
                                      A compilation of a covered work with other separate and independent
                                    works, which are not by their nature extensions of the covered work,
                                    and which are not combined with it such as to form a larger program,
                                    in or on a volume of a storage or distribution medium, is called an
                                    "aggregate" if the compilation and its resulting copyright are not
                                    used to limit the access or legal rights of the compilation's users
                                    beyond what the individual works permit.  Inclusion of a covered work
                                    in an aggregate does not cause this License to apply to the other
                                    parts of the aggregate.
                                    
                                      6. Conveying Non-Source Forms.
                                    
                                      You may convey a covered work in object code form under the terms
                                    of sections 4 and 5, provided that you also convey the
                                    machine-readable Corresponding Source under the terms of this License,
                                    in one of these ways:
                                    
                                        a) Convey the object code in, or embodied in, a physical product
                                        (including a physical distribution medium), accompanied by the
                                        Corresponding Source fixed on a durable physical medium
                                        customarily used for software interchange.
                                    
                                        b) Convey the object code in, or embodied in, a physical product
                                        (including a physical distribution medium), accompanied by a
                                        written offer, valid for at least three years and valid for as
                                        long as you offer spare parts or customer support for that product
                                        model, to give anyone who possesses the object code either (1) a
                                        copy of the Corresponding Source for all the software in the
                                        product that is covered by this License, on a durable physical
                                        medium customarily used for software interchange, for a price no
                                        more than your reasonable cost of physically performing this
                                        conveying of source, or (2) access to copy the
                                        Corresponding Source from a network server at no charge.
                                    
                                        c) Convey individual copies of the object code with a copy of the
                                        written offer to provide the Corresponding Source.  This
                                        alternative is allowed only occasionally and noncommercially, and
                                        only if you received the object code with such an offer, in accord
                                        with subsection 6b.
                                    
                                        d) Convey the object code by offering access from a designated
                                        place (gratis or for a charge), and offer equivalent access to the
                                        Corresponding Source in the same way through the same place at no
                                        further charge.  You need not require recipients to copy the
                                        Corresponding Source along with the object code.  If the place to
                                        copy the object code is a network server, the Corresponding Source
                                        may be on a different server (operated by you or a third party)
                                        that supports equivalent copying facilities, provided you maintain
                                        clear directions next to the object code saying where to find the
                                        Corresponding Source.  Regardless of what server hosts the
                                        Corresponding Source, you remain obligated to ensure that it is
                                        available for as long as needed to satisfy these requirements.
                                    
                                        e) Convey the object code using peer-to-peer transmission, provided
                                        you inform other peers where the object code and Corresponding
                                        Source of the work are being offered to the general public at no
                                        charge under subsection 6d.
                                    
                                      A separable portion of the object code, whose source code is excluded
                                    from the Corresponding Source as a System Library, need not be
                                    included in conveying the object code work.
                                    
                                      A "User Product" is either (1) a "consumer product", which means any
                                    tangible personal property which is normally used for personal, family,
                                    or household purposes, or (2) anything designed or sold for incorporation
                                    into a dwelling.  In determining whether a product is a consumer product,
                                    doubtful cases shall be resolved in favor of coverage.  For a particular
                                    product received by a particular user, "normally used" refers to a
                                    typical or common use of that class of product, regardless of the status
                                    of the particular user or of the way in which the particular user
                                    actually uses, or expects or is expected to use, the product.  A product
                                    is a consumer product regardless of whether the product has substantial
                                    commercial, industrial or non-consumer uses, unless such uses represent
                                    the only significant mode of use of the product.
                                    
                                      "Installation Information" for a User Product means any methods,
                                    procedures, authorization keys, or other information required to install
                                    and execute modified versions of a covered work in that User Product from
                                    a modified version of its Corresponding Source.  The information must
                                    suffice to ensure that the continued functioning of the modified object
                                    code is in no case prevented or interfered with solely because
                                    modification has been made.
                                    
                                      If you convey an object code work under this section in, or with, or
                                    specifically for use in, a User Product, and the conveying occurs as
                                    part of a transaction in which the right of possession and use of the
                                    User Product is transferred to the recipient in perpetuity or for a
                                    fixed term (regardless of how the transaction is characterized), the
                                    Corresponding Source conveyed under this section must be accompanied
                                    by the Installation Information.  But this requirement does not apply
                                    if neither you nor any third party retains the ability to install
                                    modified object code on the User Product (for example, the work has
                                    been installed in ROM).
                                    
                                      The requirement to provide Installation Information does not include a
                                    requirement to continue to provide support service, warranty, or updates
                                    for a work that has been modified or installed by the recipient, or for
                                    the User Product in which it has been modified or installed.  Access to a
                                    network may be denied when the modification itself materially and
                                    adversely affects the operation of the network or violates the rules and
                                    protocols for communication across the network.
                                    
                                      Corresponding Source conveyed, and Installation Information provided,
                                    in accord with this section must be in a format that is publicly
                                    documented (and with an implementation available to the public in
                                    source code form), and must require no special password or key for
                                    unpacking, reading or copying.
                                    
                                      7. Additional Terms.
                                    
                                      "Additional permissions" are terms that supplement the terms of this
                                    License by making exceptions from one or more of its conditions.
                                    Additional permissions that are applicable to the entire Program shall
                                    be treated as though they were included in this License, to the extent
                                    that they are valid under applicable law.  If additional permissions
                                    apply only to part of the Program, that part may be used separately
                                    under those permissions, but the entire Program remains governed by
                                    this License without regard to the additional permissions.
                                    
                                      When you convey a copy of a covered work, you may at your option
                                    remove any additional permissions from that copy, or from any part of
                                    it.  (Additional permissions may be written to require their own
                                    removal in certain cases when you modify the work.)  You may place
                                    additional permissions on material, added by you to a covered work,
                                    for which you have or can give appropriate copyright permission.
                                    
                                      Notwithstanding any other provision of this License, for material you
                                    add to a covered work, you may (if authorized by the copyright holders of
                                    that material) supplement the terms of this License with terms:
                                    
                                        a) Disclaiming warranty or limiting liability differently from the
                                        terms of sections 15 and 16 of this License; or
                                    
                                        b) Requiring preservation of specified reasonable legal notices or
                                        author attributions in that material or in the Appropriate Legal
                                        Notices displayed by works containing it; or
                                    
                                        c) Prohibiting misrepresentation of the origin of that material, or
                                        requiring that modified versions of such material be marked in
                                        reasonable ways as different from the original version; or
                                    
                                        d) Limiting the use for publicity purposes of names of licensors or
                                        authors of the material; or
                                    
                                        e) Declining to grant rights under trademark law for use of some
                                        trade names, trademarks, or service marks; or
                                    
                                        f) Requiring indemnification of licensors and authors of that
                                        material by anyone who conveys the material (or modified versions of
                                        it) with contractual assumptions of liability to the recipient, for
                                        any liability that these contractual assumptions directly impose on
                                        those licensors and authors.
                                    
                                      All other non-permissive additional terms are considered "further
                                    restrictions" within the meaning of section 10.  If the Program as you
                                    received it, or any part of it, contains a notice stating that it is
                                    governed by this License along with a term that is a further
                                    restriction, you may remove that term.  If a license document contains
                                    a further restriction but permits relicensing or conveying under this
                                    License, you may add to a covered work material governed by the terms
                                    of that license document, provided that the further restriction does
                                    not survive such relicensing or conveying.
                                    
                                      If you add terms to a covered work in accord with this section, you
                                    must place, in the relevant source files, a statement of the
                                    additional terms that apply to those files, or a notice indicating
                                    where to find the applicable terms.
                                    
                                      Additional terms, permissive or non-permissive, may be stated in the
                                    form of a separately written license, or stated as exceptions;
                                    the above requirements apply either way.
                                    
                                      8. Termination.
                                    
                                      You may not propagate or modify a covered work except as expressly
                                    provided under this License.  Any attempt otherwise to propagate or
                                    modify it is void, and will automatically terminate your rights under
                                    this License (including any patent licenses granted under the third
                                    paragraph of section 11).
                                    
                                      However, if you cease all violation of this License, then your
                                    license from a particular copyright holder is reinstated (a)
                                    provisionally, unless and until the copyright holder explicitly and
                                    finally terminates your license, and (b) permanently, if the copyright
                                    holder fails to notify you of the violation by some reasonable means
                                    prior to 60 days after the cessation.
                                    
                                      Moreover, your license from a particular copyright holder is
                                    reinstated permanently if the copyright holder notifies you of the
                                    violation by some reasonable means, this is the first time you have
                                    received notice of violation of this License (for any work) from that
                                    copyright holder, and you cure the violation prior to 30 days after
                                    your receipt of the notice.
                                    
                                      Termination of your rights under this section does not terminate the
                                    licenses of parties who have received copies or rights from you under
                                    this License.  If your rights have been terminated and not permanently
                                    reinstated, you do not qualify to receive new licenses for the same
                                    material under section 10.
                                    
                                      9. Acceptance Not Required for Having Copies.
                                    
                                      You are not required to accept this License in order to receive or
                                    run a copy of the Program.  Ancillary propagation of a covered work
                                    occurring solely as a consequence of using peer-to-peer transmission
                                    to receive a copy likewise does not require acceptance.  However,
                                    nothing other than this License grants you permission to propagate or
                                    modify any covered work.  These actions infringe copyright if you do
                                    not accept this License.  Therefore, by modifying or propagating a
                                    covered work, you indicate your acceptance of this License to do so.
                                    
                                      10. Automatic Licensing of Downstream Recipients.
                                    
                                      Each time you convey a covered work, the recipient automatically
                                    receives a license from the original licensors, to run, modify and
                                    propagate that work, subject to this License.  You are not responsible
                                    for enforcing compliance by third parties with this License.
                                    
                                      An "entity transaction" is a transaction transferring control of an
                                    organization, or substantially all assets of one, or subdividing an
                                    organization, or merging organizations.  If propagation of a covered
                                    work results from an entity transaction, each party to that
                                    transaction who receives a copy of the work also receives whatever
                                    licenses to the work the party's predecessor in interest had or could
                                    give under the previous paragraph, plus a right to possession of the
                                    Corresponding Source of the work from the predecessor in interest, if
                                    the predecessor has it or can get it with reasonable efforts.
                                    
                                      You may not impose any further restrictions on the exercise of the
                                    rights granted or affirmed under this License.  For example, you may
                                    not impose a license fee, royalty, or other charge for exercise of
                                    rights granted under this License, and you may not initiate litigation
                                    (including a cross-claim or counterclaim in a lawsuit) alleging that
                                    any patent claim is infringed by making, using, selling, offering for
                                    sale, or importing the Program or any portion of it.
                                    
                                      11. Patents.
                                    
                                      A "contributor" is a copyright holder who authorizes use under this
                                    License of the Program or a work on which the Program is based.  The
                                    work thus licensed is called the contributor's "contributor version".
                                    
                                      A contributor's "essential patent claims" are all patent claims
                                    owned or controlled by the contributor, whether already acquired or
                                    hereafter acquired, that would be infringed by some manner, permitted
                                    by this License, of making, using, or selling its contributor version,
                                    but do not include claims that would be infringed only as a
                                    consequence of further modification of the contributor version.  For
                                    purposes of this definition, "control" includes the right to grant
                                    patent sublicenses in a manner consistent with the requirements of
                                    this License.
                                    
                                      Each contributor grants you a non-exclusive, worldwide, royalty-free
                                    patent license under the contributor's essential patent claims, to
                                    make, use, sell, offer for sale, import and otherwise run, modify and
                                    propagate the contents of its contributor version.
                                    
                                      In the following three paragraphs, a "patent license" is any express
                                    agreement or commitment, however denominated, not to enforce a patent
                                    (such as an express permission to practice a patent or covenant not to
                                    sue for patent infringement).  To "grant" such a patent license to a
                                    party means to make such an agreement or commitment not to enforce a
                                    patent against the party.
                                    
                                      If you convey a covered work, knowingly relying on a patent license,
                                    and the Corresponding Source of the work is not available for anyone
                                    to copy, free of charge and under the terms of this License, through a
                                    publicly available network server or other readily accessible means,
                                    then you must either (1) cause the Corresponding Source to be so
                                    available, or (2) arrange to deprive yourself of the benefit of the
                                    patent license for this particular work, or (3) arrange, in a manner
                                    consistent with the requirements of this License, to extend the patent
                                    license to downstream recipients.  "Knowingly relying" means you have
                                    actual knowledge that, but for the patent license, your conveying the
                                    covered work in a country, or your recipient's use of the covered work
                                    in a country, would infringe one or more identifiable patents in that
                                    country that you have reason to believe are valid.
                                    
                                      If, pursuant to or in connection with a single transaction or
                                    arrangement, you convey, or propagate by procuring conveyance of, a
                                    covered work, and grant a patent license to some of the parties
                                    receiving the covered work authorizing them to use, propagate, modify
                                    or convey a specific copy of the covered work, then the patent license
                                    you grant is automatically extended to all recipients of the covered
                                    work and works based on it.
                                    
                                      A patent license is "discriminatory" if it does not include within
                                    the scope of its coverage, prohibits the exercise of, or is
                                    conditioned on the non-exercise of one or more of the rights that are
                                    specifically granted under this License.  You may not convey a covered
                                    work if you are a party to an arrangement with a third party that is
                                    in the business of distributing software, under which you make payment
                                    to the third party based on the extent of your activity of conveying
                                    the work, and under which the third party grants, to any of the
                                    parties who would receive the covered work from you, a discriminatory
                                    patent license (a) in connection with copies of the covered work
                                    conveyed by you (or copies made from those copies), or (b) primarily
                                    for and in connection with specific products or compilations that
                                    contain the covered work, unless you entered into that arrangement,
                                    or that patent license was granted, prior to 28 March 2007.
                                    
                                      Nothing in this License shall be construed as excluding or limiting
                                    any implied license or other defenses to infringement that may
                                    otherwise be available to you under applicable patent law.
                                    
                                      12. No Surrender of Others' Freedom.
                                    
                                      If conditions are imposed on you (whether by court order, agreement or
                                    otherwise) that contradict the conditions of this License, they do not
                                    excuse you from the conditions of this License.  If you cannot convey a
                                    covered work so as to satisfy simultaneously your obligations under this
                                    License and any other pertinent obligations, then as a consequence you may
                                    not convey it at all.  For example, if you agree to terms that obligate you
                                    to collect a royalty for further conveying from those to whom you convey
                                    the Program, the only way you could satisfy both those terms and this
                                    License would be to refrain entirely from conveying the Program.
                                    
                                      13. Use with the GNU Affero General Public License.
                                    
                                      Notwithstanding any other provision of this License, you have
                                    permission to link or combine any covered work with a work licensed
                                    under version 3 of the GNU Affero General Public License into a single
                                    combined work, and to convey the resulting work.  The terms of this
                                    License will continue to apply to the part which is the covered work,
                                    but the special requirements of the GNU Affero General Public License,
                                    section 13, concerning interaction through a network will apply to the
                                    combination as such.
                                    
                                      14. Revised Versions of this License.
                                    
                                      The Free Software Foundation may publish revised and/or new versions of
                                    the GNU General Public License from time to time.  Such new versions will
                                    be similar in spirit to the present version, but may differ in detail to
                                    address new problems or concerns.
                                    
                                      Each version is given a distinguishing version number.  If the
                                    Program specifies that a certain numbered version of the GNU General
                                    Public License "or any later version" applies to it, you have the
                                    option of following the terms and conditions either of that numbered
                                    version or of any later version published by the Free Software
                                    Foundation.  If the Program does not specify a version number of the
                                    GNU General Public License, you may choose any version ever published
                                    by the Free Software Foundation.
                                    
                                      If the Program specifies that a proxy can decide which future
                                    versions of the GNU General Public License can be used, that proxy's
                                    public statement of acceptance of a version permanently authorizes you
                                    to choose that version for the Program.
                                    
                                      Later license versions may give you additional or different
                                    permissions.  However, no additional obligations are imposed on any
                                    author or copyright holder as a result of your choosing to follow a
                                    later version.
                                    
                                      15. Disclaimer of Warranty.
                                    
                                      THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
                                    APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
                                    HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
                                    OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
                                    THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
                                    PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
                                    IS WITH YOU.  SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
                                    ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
                                    
                                      16. Limitation of Liability.
                                    
                                      IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
                                    WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
                                    THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
                                    GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
                                    USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
                                    DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
                                    PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
                                    EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
                                    SUCH DAMAGES.
                                    
                                      17. Interpretation of Sections 15 and 16.
                                    
                                      If the disclaimer of warranty and limitation of liability provided
                                    above cannot be given local legal effect according to their terms,
                                    reviewing courts shall apply local law that most closely approximates
                                    an absolute waiver of all civil liability in connection with the
                                    Program, unless a warranty or assumption of liability accompanies a
                                    copy of the Program in return for a fee.
                                    
                                                         END OF TERMS AND CONDITIONS
                                    
                                                How to Apply These Terms to Your New Programs
                                    
                                      If you develop a new program, and you want it to be of the greatest
                                    possible use to the public, the best way to achieve this is to make it
                                    free software which everyone can redistribute and change under these terms.
                                    
                                      To do so, attach the following notices to the program.  It is safest
                                    to attach them to the start of each source file to most effectively
                                    state the exclusion of warranty; and each file should have at least
                                    the "copyright" line and a pointer to where the full notice is found.
                                    
                                        <one line to give the program's name and a brief idea of what it does.>
                                        Copyright (C) <year>  <name of author>
                                    
                                        This program is free software: you can redistribute it and/or modify
                                        it under the terms of the GNU General Public License as published by
                                        the Free Software Foundation, either version 3 of the License, or
                                        (at your option) any later version.
                                    
                                        This program is distributed in the hope that it will be useful,
                                        but WITHOUT ANY WARRANTY; without even the implied warranty of
                                        MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
                                        GNU General Public License for more details.
                                    
                                        You should have received a copy of the GNU General Public License
                                        along with this program.  If not, see <http://www.gnu.org/licenses/>.
                                    
                                    Also add information on how to contact you by electronic and paper mail.
                                    
                                      If the program does terminal interaction, make it output a short
                                    notice like this when it starts in an interactive mode:
                                    
                                        <program>  Copyright (C) <year>  <name of author>
                                        This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
                                        This is free software, and you are welcome to redistribute it
                                        under certain conditions; type `show c' for details.
                                    
                                    The hypothetical commands `show w' and `show c' should show the appropriate
                                    parts of the General Public License.  Of course, your program's commands
                                    might be different; for a GUI interface, you would use an "about box".
                                    
                                      You should also get your employer (if you work as a programmer) or school,
                                    if any, to sign a "copyright disclaimer" for the program, if necessary.
                                    For more information on this, and how to apply and follow the GNU GPL, see
                                    <http://www.gnu.org/licenses/>.
                                    
                                      The GNU General Public License does not permit incorporating your program
                                    into proprietary programs.  If your program is a subroutine library, you
                                    may consider it more useful to permit linking proprietary applications with
                                    the library.  If this is what you want to do, use the GNU Lesser General
                                    Public License instead of this License.  But first, please read
                                    <http://www.gnu.org/philosophy/why-not-lgpl.html>.
                                    
                                    */

                                    File 7 of 10: MOG
                                    // SPDX-License-Identifier: MIT
                                    // This coin Mogs all other coins
                                    // https://twitter.com/mogcoineth
                                    // https://t.me/+h6dzUnTQgyI5MWQx
                                    
                                    pragma solidity 0.8.18;
                                    
                                    interface ERC20 {
                                        function totalSupply() external view returns (uint256);
                                        function decimals() external view returns (uint8);
                                        function symbol() external view returns (string memory);
                                        function name() external view returns (string memory);
                                        function getOwner() external view returns (address);
                                        function balanceOf(address account) external view returns (uint256);
                                        function transfer(address recipient, uint256 amount) external returns (bool);
                                        function allowance(address _owner, address spender) external view returns (uint256);
                                        function approve(address spender, uint256 amount) external returns (bool);
                                        function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
                                        event Transfer(address indexed from, address indexed to, uint256 value);
                                        event Approval(address indexed owner, address indexed spender, uint256 value);
                                    }
                                    
                                    
                                    
                                    abstract contract Context {
                                        
                                        function _msgSender() internal view virtual returns (address payable) {
                                            return payable(msg.sender);
                                        }
                                    
                                        function _msgData() internal view virtual returns (bytes memory) {
                                            this;
                                            return msg.data;
                                        }
                                    }
                                    
                                    contract Ownable is Context {
                                        address public _owner;
                                    
                                        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                                    
                                        constructor () {
                                            address msgSender = _msgSender();
                                            _owner = msgSender;
                                            authorizations[_owner] = true;
                                            emit OwnershipTransferred(address(0), msgSender);
                                        }
                                        mapping (address => bool) internal authorizations;
                                    
                                        function owner() public view returns (address) {
                                            return _owner;
                                        }
                                    
                                        modifier onlyOwner() {
                                            require(_owner == _msgSender(), "Ownable: caller is not the owner");
                                            _;
                                        }
                                    
                                        function renounceOwnership() public virtual onlyOwner {
                                            emit OwnershipTransferred(_owner, address(0));
                                            _owner = address(0);
                                        }
                                    
                                        function transferOwnership(address newOwner) public virtual onlyOwner {
                                            require(newOwner != address(0), "Ownable: new owner is the zero address");
                                            emit OwnershipTransferred(_owner, newOwner);
                                            _owner = newOwner;
                                        }
                                    }
                                    
                                    interface IDEXFactory {
                                        function createPair(address tokenA, address tokenB) external returns (address pair);
                                    }
                                    
                                    interface IDEXRouter {
                                        function factory() external pure returns (address);
                                        function WETH() external pure returns (address);
                                    
                                        function addLiquidity(
                                            address tokenA,
                                            address tokenB,
                                            uint amountADesired,
                                            uint amountBDesired,
                                            uint amountAMin,
                                            uint amountBMin,
                                            address to,
                                            uint deadline
                                        ) external returns (uint amountA, uint amountB, uint liquidity);
                                    
                                        function addLiquidityETH(
                                            address token,
                                            uint amountTokenDesired,
                                            uint amountTokenMin,
                                            uint amountETHMin,
                                            address to,
                                            uint deadline
                                        ) external payable returns (uint amountToken, uint amountETH, uint liquidity);
                                    
                                        function swapExactTokensForTokensSupportingFeeOnTransferTokens(
                                            uint amountIn,
                                            uint amountOutMin,
                                            address[] calldata path,
                                            address to,
                                            uint deadline
                                        ) external;
                                    
                                        function swapExactETHForTokensSupportingFeeOnTransferTokens(
                                            uint amountOutMin,
                                            address[] calldata path,
                                            address to,
                                            uint deadline
                                        ) external payable;
                                    
                                        function swapExactTokensForETHSupportingFeeOnTransferTokens(
                                            uint amountIn,
                                            uint amountOutMin,
                                            address[] calldata path,
                                            address to,
                                            uint deadline
                                        ) external;
                                    }
                                    
                                    interface InterfaceLP {
                                        function sync() external;
                                    }
                                    
                                    
                                    library SafeMath {
                                        function add(uint256 a, uint256 b) internal pure returns (uint256) {
                                            uint256 c = a + b;
                                            require(c >= a, "SafeMath: addition overflow");
                                    
                                            return c;
                                        }
                                        function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                                            return sub(a, b, "SafeMath: subtraction overflow");
                                        }
                                        function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                                            require(b <= a, errorMessage);
                                            uint256 c = a - b;
                                    
                                            return c;
                                        }
                                        function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                                            if (a == 0) {
                                                return 0;
                                            }
                                    
                                            uint256 c = a * b;
                                            require(c / a == b, "SafeMath: multiplication overflow");
                                    
                                            return c;
                                        }
                                        function div(uint256 a, uint256 b) internal pure returns (uint256) {
                                            return div(a, b, "SafeMath: division by zero");
                                        }
                                        function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                                            require(b > 0, errorMessage);
                                            uint256 c = a / b;
                                            return c;
                                        }
                                    }
                                    
                                    contract MOG is Ownable, ERC20 {
                                        using SafeMath for uint256;
                                    
                                        address WETH;
                                        address constant DEAD = 0x000000000000000000000000000000000000dEaD;
                                        address constant ZERO = 0x0000000000000000000000000000000000000000;
                                        
                                    
                                        string constant _name = "Mog Coin";
                                        string constant _symbol = "Mog";
                                        uint8 constant _decimals = 18; 
                                    
                                    
                                        event AutoLiquify(uint256 amountETH, uint256 amountTokens);
                                        event EditTax(uint8 Buy, uint8 Sell, uint8 Transfer);
                                        event user_exemptfromfees(address Wallet, bool Exempt);
                                        event user_TxExempt(address Wallet, bool Exempt);
                                        event ClearStuck(uint256 amount);
                                        event ClearToken(address TokenAddressCleared, uint256 Amount);
                                        event set_Receivers(address marketingFeeReceiver, address buybackFeeReceiver,address burnFeeReceiver,address devFeeReceiver);
                                        event set_MaxWallet(uint256 maxWallet);
                                        event set_MaxTX(uint256 maxTX);
                                        event set_SwapBack(uint256 Amount, bool Enabled);
                                      
                                        uint256 _totalSupply =  420690000000000 * 10**_decimals; 
                                    
                                        uint256 public _maxTxAmount = _totalSupply.mul(1).div(100);
                                        uint256 public _maxWalletToken = _totalSupply.mul(1).div(100);
                                    
                                        mapping (address => uint256) _balances;
                                        mapping (address => mapping (address => uint256)) _allowances;  
                                        mapping (address => bool) isexemptfromfees;
                                        mapping (address => bool) isexemptfrommaxTX;
                                    
                                        uint256 private liquidityFee    = 2;
                                        uint256 private marketingFee    = 0;
                                        uint256 private devFee          = 0;
                                        uint256 private buybackFee      = 0; 
                                        uint256 private burnFee         = 2;
                                        uint256 public totalFee         = buybackFee + marketingFee + liquidityFee + devFee + burnFee;
                                        uint256 private feeDenominator  = 100;
                                    
                                        uint256 sellpercent = 100;
                                        uint256 buypercent = 100;
                                        uint256 transferpercent = 100;
                                    
                                        address private autoLiquidityReceiver;
                                        address private marketingFeeReceiver;
                                        address private devFeeReceiver;
                                        address private buybackFeeReceiver;
                                        address private burnFeeReceiver;
                                    
                                        uint256 setRatio = 30;
                                        uint256 setRatioDenominator = 100;
                                        
                                    
                                        IDEXRouter public router;
                                        InterfaceLP private pairContract;
                                        address public pair;
                                        
                                        bool public TradingOpen = false; 
                                    
                                       
                                        bool public swapEnabled = true;
                                        uint256 public swapThreshold = _totalSupply * 7 / 1000; 
                                        bool inSwap;
                                        modifier swapping() { inSwap = true; _; inSwap = false; }
                                        
                                        constructor () {
                                            router = IDEXRouter(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D);
                                            WETH = router.WETH();
                                            pair = IDEXFactory(router.factory()).createPair(WETH, address(this));
                                            pairContract = InterfaceLP(pair);
                                           
                                            
                                            _allowances[address(this)][address(router)] = type(uint256).max;
                                    
                                            isexemptfromfees[msg.sender] = true;            
                                            isexemptfrommaxTX[msg.sender] = true;
                                            isexemptfrommaxTX[pair] = true;
                                            isexemptfrommaxTX[marketingFeeReceiver] = true;
                                            isexemptfrommaxTX[address(this)] = true;
                                            
                                            autoLiquidityReceiver = msg.sender;
                                            marketingFeeReceiver = msg.sender;
                                            devFeeReceiver = msg.sender;
                                            buybackFeeReceiver = msg.sender;
                                            burnFeeReceiver = DEAD; 
                                    
                                            _balances[msg.sender] = _totalSupply;
                                            emit Transfer(address(0), msg.sender, _totalSupply);
                                    
                                        }
                                    
                                        receive() external payable { }
                                    
                                        function totalSupply() external view override returns (uint256) { return _totalSupply; }
                                        function decimals() external pure override returns (uint8) { return _decimals; }
                                        function symbol() external pure override returns (string memory) { return _symbol; }
                                        function name() external pure override returns (string memory) { return _name; }
                                        function getOwner() external view override returns (address) {return owner();}
                                        function balanceOf(address account) public view override returns (uint256) { return _balances[account]; }
                                        function allowance(address holder, address spender) external view override returns (uint256) { return _allowances[holder][spender]; }
                                    
                                        function approve(address spender, uint256 amount) public override returns (bool) {
                                            _allowances[msg.sender][spender] = amount;
                                            emit Approval(msg.sender, spender, amount);
                                            return true;
                                        }
                                    
                                        function approveMax(address spender) external returns (bool) {
                                            return approve(spender, type(uint256).max);
                                        }
                                    
                                        function transfer(address recipient, uint256 amount) external override returns (bool) {
                                            return _transferFrom(msg.sender, recipient, amount);
                                        }
                                    
                                        function transferFrom(address sender, address recipient, uint256 amount) external override returns (bool) {
                                            if(_allowances[sender][msg.sender] != type(uint256).max){
                                                _allowances[sender][msg.sender] = _allowances[sender][msg.sender].sub(amount, "Insufficient Allowance");
                                            }
                                    
                                            return _transferFrom(sender, recipient, amount);
                                        }
                                    
                                            function maxWalletRule(uint256 maxWallPercent) external onlyOwner {
                                             require(maxWallPercent >= 1); 
                                            _maxWalletToken = (_totalSupply * maxWallPercent ) / 1000;
                                            emit set_MaxWallet(_maxWalletToken);
                                                    
                                        }
                                    
                                          function removeLimits () external onlyOwner {
                                                _maxTxAmount = _totalSupply;
                                                _maxWalletToken = _totalSupply;
                                        }
                                    
                                          
                                        function _transferFrom(address sender, address recipient, uint256 amount) internal returns (bool) {
                                            if(inSwap){ return _basicTransfer(sender, recipient, amount); }
                                    
                                            if(!authorizations[sender] && !authorizations[recipient]){
                                                require(TradingOpen,"Trading not open yet");
                                            
                                              }
                                            
                                                   
                                            if (!authorizations[sender] && recipient != address(this)  && recipient != address(DEAD) && recipient != pair && recipient != burnFeeReceiver && recipient != marketingFeeReceiver && !isexemptfrommaxTX[recipient]){
                                                uint256 heldTokens = balanceOf(recipient);
                                                require((heldTokens + amount) <= _maxWalletToken,"Total Holding is currently limited, you can not buy that much.");}
                                    
                                            checkTxLimit(sender, amount);  
                                    
                                            if(shouldSwapBack()){ swapBack(); }
                                            _balances[sender] = _balances[sender].sub(amount, "Insufficient Balance");
                                    
                                            uint256 amountReceived = (isexemptfromfees[sender] || isexemptfromfees[recipient]) ? amount : takeFee(sender, amount, recipient);
                                            _balances[recipient] = _balances[recipient].add(amountReceived);
                                    
                                            emit Transfer(sender, recipient, amountReceived);
                                            return true;
                                        }
                                     
                                        function _basicTransfer(address sender, address recipient, uint256 amount) internal returns (bool) {
                                            _balances[sender] = _balances[sender].sub(amount, "Insufficient Balance");
                                            _balances[recipient] = _balances[recipient].add(amount);
                                            emit Transfer(sender, recipient, amount);
                                            return true;
                                        }
                                    
                                        function checkTxLimit(address sender, uint256 amount) internal view {
                                            require(amount <= _maxTxAmount || isexemptfrommaxTX[sender], "TX Limit Exceeded");
                                        }
                                    
                                        function shouldTakeFee(address sender) internal view returns (bool) {
                                            return !isexemptfromfees[sender];
                                        }
                                    
                                        function takeFee(address sender, uint256 amount, address recipient) internal returns (uint256) {
                                            
                                            uint256 percent = transferpercent;
                                            if(recipient == pair) {
                                                percent = sellpercent;
                                            } else if(sender == pair) {
                                                percent = buypercent;
                                            }
                                    
                                            uint256 feeAmount = amount.mul(totalFee).mul(percent).div(feeDenominator * 100);
                                            uint256 burnTokens = feeAmount.mul(burnFee).div(totalFee);
                                            uint256 contractTokens = feeAmount.sub(burnTokens);
                                            _balances[address(this)] = _balances[address(this)].add(contractTokens);
                                            _balances[burnFeeReceiver] = _balances[burnFeeReceiver].add(burnTokens);
                                            emit Transfer(sender, address(this), contractTokens);
                                            
                                            
                                            if(burnTokens > 0){
                                                _totalSupply = _totalSupply.sub(burnTokens);
                                                emit Transfer(sender, ZERO, burnTokens);  
                                            
                                            }
                                    
                                            return amount.sub(feeAmount);
                                        }
                                    
                                        function shouldSwapBack() internal view returns (bool) {
                                            return msg.sender != pair
                                            && !inSwap
                                            && swapEnabled
                                            && _balances[address(this)] >= swapThreshold;
                                        }
                                    
                                      
                                         function manualSend() external { 
                                                 payable(autoLiquidityReceiver).transfer(address(this).balance);
                                                
                                        }
                                    
                                       function clearStuckToken(address tokenAddress, uint256 tokens) external returns (bool success) {
                                                 if(tokens == 0){
                                                tokens = ERC20(tokenAddress).balanceOf(address(this));
                                            }
                                            emit ClearToken(tokenAddress, tokens);
                                            return ERC20(tokenAddress).transfer(autoLiquidityReceiver, tokens);
                                        }
                                    
                                        function setStructure(uint256 _percentonbuy, uint256 _percentonsell, uint256 _wallettransfer) external onlyOwner {
                                            sellpercent = _percentonsell;
                                            buypercent = _percentonbuy;
                                            transferpercent = _wallettransfer;    
                                              
                                        }
                                           
                                        function startTrading() public onlyOwner {
                                            TradingOpen = true;
                                            buypercent = 1400;
                                            sellpercent = 800;
                                            transferpercent = 1000;
                                                                  
                                        }
                                    
                                          function reduceFee() public onlyOwner {
                                           
                                            buypercent = 100;
                                            sellpercent = 100;
                                            transferpercent = 100;
                                                                  
                                        }
                                    
                                                 
                                        function swapBack() internal swapping {
                                            uint256 dynamicLiquidityFee = checkRatio(setRatio, setRatioDenominator) ? 0 : liquidityFee;
                                            uint256 amountToLiquify = swapThreshold.mul(dynamicLiquidityFee).div(totalFee).div(2);
                                            uint256 amountToSwap = swapThreshold.sub(amountToLiquify);
                                    
                                            address[] memory path = new address[](2);
                                            path[0] = address(this);
                                            path[1] = WETH;
                                    
                                            uint256 balanceBefore = address(this).balance;
                                    
                                            router.swapExactTokensForETHSupportingFeeOnTransferTokens(
                                                amountToSwap,
                                                0,
                                                path,
                                                address(this),
                                                block.timestamp
                                            );
                                    
                                            uint256 amountETH = address(this).balance.sub(balanceBefore);
                                    
                                            uint256 totalETHFee = totalFee.sub(dynamicLiquidityFee.div(2));
                                            
                                            uint256 amountETHLiquidity = amountETH.mul(dynamicLiquidityFee).div(totalETHFee).div(2);
                                            uint256 amountETHMarketing = amountETH.mul(marketingFee).div(totalETHFee);
                                            uint256 amountETHbuyback = amountETH.mul(buybackFee).div(totalETHFee);
                                            uint256 amountETHdev = amountETH.mul(devFee).div(totalETHFee);
                                    
                                            (bool tmpSuccess,) = payable(marketingFeeReceiver).call{value: amountETHMarketing}("");
                                            (tmpSuccess,) = payable(devFeeReceiver).call{value: amountETHdev}("");
                                            (tmpSuccess,) = payable(buybackFeeReceiver).call{value: amountETHbuyback}("");
                                            
                                            tmpSuccess = false;
                                    
                                            if(amountToLiquify > 0){
                                                router.addLiquidityETH{value: amountETHLiquidity}(
                                                    address(this),
                                                    amountToLiquify,
                                                    0,
                                                    0,
                                                    autoLiquidityReceiver,
                                                    block.timestamp
                                                );
                                                emit AutoLiquify(amountETHLiquidity, amountToLiquify);
                                            }
                                        }
                                        
                                      
                                        function set_fees() internal {
                                          
                                            emit EditTax( uint8(totalFee.mul(buypercent).div(100)),
                                                uint8(totalFee.mul(sellpercent).div(100)),
                                                uint8(totalFee.mul(transferpercent).div(100))
                                                );
                                        }
                                        
                                        function setParameters(uint256 _liquidityFee, uint256 _buybackFee, uint256 _marketingFee, uint256 _devFee, uint256 _burnFee, uint256 _feeDenominator) external onlyOwner {
                                            liquidityFee = _liquidityFee;
                                            buybackFee = _buybackFee;
                                            marketingFee = _marketingFee;
                                            devFee = _devFee;
                                            burnFee = _burnFee;
                                            totalFee = _liquidityFee.add(_buybackFee).add(_marketingFee).add(_devFee).add(_burnFee);
                                            feeDenominator = _feeDenominator;
                                            require(totalFee < feeDenominator / 2, "Fees can not be more than 50%"); 
                                            set_fees();
                                        }
                                    
                                       
                                        function setWallets(address _autoLiquidityReceiver, address _marketingFeeReceiver, address _devFeeReceiver, address _burnFeeReceiver, address _buybackFeeReceiver) external onlyOwner {
                                            autoLiquidityReceiver = _autoLiquidityReceiver;
                                            marketingFeeReceiver = _marketingFeeReceiver;
                                            devFeeReceiver = _devFeeReceiver;
                                            burnFeeReceiver = _burnFeeReceiver;
                                            buybackFeeReceiver = _buybackFeeReceiver;
                                    
                                            emit set_Receivers(marketingFeeReceiver, buybackFeeReceiver, burnFeeReceiver, devFeeReceiver);
                                        }
                                    
                                        function setSwapBackSettings(bool _enabled, uint256 _amount) external onlyOwner {
                                            swapEnabled = _enabled;
                                            swapThreshold = _amount;
                                            emit set_SwapBack(swapThreshold, swapEnabled);
                                        }
                                    
                                        function checkRatio(uint256 ratio, uint256 accuracy) public view returns (bool) {
                                            return showBacking(accuracy) > ratio;
                                        }
                                    
                                        function showBacking(uint256 accuracy) public view returns (uint256) {
                                            return accuracy.mul(balanceOf(pair).mul(2)).div(showSupply());
                                        }
                                        
                                        function showSupply() public view returns (uint256) {
                                            return _totalSupply.sub(balanceOf(DEAD)).sub(balanceOf(ZERO));
                                        }
                                    
                                    
                                    }

                                    File 8 of 10: AggregationRouterV6
                                    /*
                                                                                               ,▄▓▓██▌   ,╓▄▄▓▓▓▓▓▓▓▓▄▄▄,,
                                                                                            ,▓██▓███▓▄▓███▓╬╬╬╬╬╬╬╬╬╬╬╬╬▓███▓▄,
                                                                                      ▄█   ▓██╬╣███████╬▓▀╬╬▓▓▓████████████▓█████▄,
                                                                                     ▓██▌ ▓██╬╣██████╬▓▌  ██████████████████████▌╙╙▀ⁿ
                                                                                    ▐████████╬▓████▓▓█╨ ▄ ╟█████████▓▓╬╬╬╬╬▓▓█████▓▄
                                                                      └▀▓▓▄╓        ╟█▓╣█████▓██████▀ ╓█▌ ███████▓▓▓▓▓╬╬╬╬╬╬╬╬╬╬╬╬▓██▓▄
                                                                         └▀████▓▄╥  ▐██╬╬██████████╙ Æ▀─ ▓███▀╚╠╬╩▀▀███████▓▓╬╬╬╬╬╬╬╬╬██▄
                                                                            └▀██▓▀▀█████▓╬▓██████▀     ▄█████▒╠"      └╙▓██████▓╬╬╬╬╬╬╬╬██▄
                                                                               └▀██▄,└╙▀▀████▌└╙    ^"▀╙╙╙"╙██      @▄    ╙▀███████╬╬╬╬╬╬╬██µ
                                                                                  └▀██▓▄, ██▌       ╒       ╙█▓     ]▓█▓╔    ▀███████▓╬╬╬╬╬▓█▌
                                                                                      ▀█████       ▓         ╟█▌    ]╠██▓░▒╓   ▀████████╬╬╬╬╣█▌
                                                                                      ▐████      ╓█▀█▌      ,██▌    ╚Å███▓▒▒╠╓  ╙█████████╬╬╬╣█▌
                                                                                      └████     ▓█░░▓█      ▀▀▀    φ▒╫████▒▒▒▒╠╓  █████████▓╬╬▓█µ
                                                                                       ╘███µ ▌▄█▓▄▓▀`     ,▀    ,╔╠░▓██████▌╠▒▒▒φ  ██████████╬╬██
                                                                                       ▐████µ╙▓▀`     ,▀╙,╔╔φφφ╠░▄▓███████▌░▓╙▒▒▒╠ └██╬███████╬▓█⌐
                                                                                       ╫██ ▓▌         ▌φ▒▒░▓██████████████▌▒░▓╚▒▒▒╠ ▓██╬▓██████╣█▌
                                                                                       ██▌           ▌╔▒▒▄████████████████▒▒▒░▌╠▒▒▒≥▐██▓╬╬███████▌
                                                                                       ██▌      ,╓φ╠▓«▒▒▓████▀  ▀█████████▌▒▒▒╟░▒▒▒▒▐███╬╬╣████▓█▌
                                                                                      ▐██      ╠▒▄▓▓███▓████└     ▀████████▌▒▒░▌╚▒▒▒▐███▓╬╬████ ╙▌
                                                                                      ███  )  ╠▒░░░▒░╬████▀        └████████░▒▒░╬∩▒▒▓████╬╬╣███
                                                                                     ▓██    ╠╠▒▒▐█▀▀▌`░╫██           ███████▒▒▒▒░▒▒½█████╬╬╣███
                                                                                    ███ ,█▄ ╠▒▒▒╫▌,▄▀,▒╫██           ╟██████▒▒▒░╣⌠▒▓█████╬╬╣██▌
                                                                                   ╘██µ ██` ╠▒▒░██╬φ╠▄▓██`            ██████░░▌φ╠░▓█████▓╬╬▓██
                                                                                    ╟██  .φ╠▒░▄█▀░░▄██▀└              █████▌▒╣φ▒░▓██████╬╬╣██
                                                                                     ▀██▄▄▄╓▄███████▀                ▐█████░▓φ▒▄███████▓╬╣██
                                                                                       ╙▀▀▀██▀└                      ████▓▄▀φ▄▓████████╬▓█▀
                                                                                                                    ▓███╬╩╔╣██████████▓██└
                                                                                                                  ╓████▀▄▓████████▀████▀
                                                                                                                ,▓███████████████─]██╙
                                                                                                             ,▄▓██████████████▀└  ╙
                                                                                                        ,╓▄▓███████████████▀╙
                                                                                                 `"▀▀▀████████▀▀▀▀`▄███▀▀└
                                                                                                                  └└
                                                        11\\   11\\                     11\\             11\\   11\\            11\\                                       11\\
                                                      1111 |  \\__|                    11 |            111\\  11 |           11 |                                      11 |
                                                      \\_11 |  11\\ 1111111\\   1111111\\ 1111111\\        1111\\ 11 | 111111\\ 111111\\   11\\  11\\  11\\  111111\\   111111\\  11 |  11\\
                                                        11 |  11 |11  __11\\ 11  _____|11  __11\\       11 11\\11 |11  __11\\\\_11  _|  11 | 11 | 11 |11  __11\\ 11  __11\\ 11 | 11  |
                                                        11 |  11 |11 |  11 |11 /      11 |  11 |      11 \\1111 |11111111 | 11 |    11 | 11 | 11 |11 /  11 |11 |  \\__|111111  /
                                                        11 |  11 |11 |  11 |11 |      11 |  11 |      11 |\\111 |11   ____| 11 |11\\ 11 | 11 | 11 |11 |  11 |11 |      11  _11<
                                                      111111\\ 11 |11 |  11 |\\1111111\\ 11 |  11 |      11 | \\11 |\\1111111\\  \\1111  |\\11111\\1111  |\\111111  |11 |      11 | \\11\\
                                                      \\______|\\__|\\__|  \\__| \\_______|\\__|  \\__|      \\__|  \\__| \\_______|  \\____/  \\_____\\____/  \\______/ \\__|      \\__|  \\__|
                                                                   111111\\                                                               11\\     11\\
                                                                  11  __11\\                                                              11 |    \\__|
                                                                  11 /  11 | 111111\\   111111\\   111111\\   111111\\   111111\\   111111\\ 111111\\   11\\  111111\\  1111111\\
                                                                  11111111 |11  __11\\ 11  __11\\ 11  __11\\ 11  __11\\ 11  __11\\  \\____11\\\\_11  _|  11 |11  __11\\ 11  __11\\
                                                                  11  __11 |11 /  11 |11 /  11 |11 |  \\__|11111111 |11 /  11 | 1111111 | 11 |    11 |11 /  11 |11 |  11 |
                                                                  11 |  11 |11 |  11 |11 |  11 |11 |      11   ____|11 |  11 |11  __11 | 11 |11\\ 11 |11 |  11 |11 |  11 |
                                                                  11 |  11 |\\1111111 |\\1111111 |11 |      \\1111111\\ \\1111111 |\\1111111 | \\1111  |11 |\\111111  |11 |  11 |
                                                                  \\__|  \\__| \\____11 | \\____11 |\\__|       \\_______| \\____11 | \\_______|  \\____/ \\__| \\______/ \\__|  \\__|
                                                                            11\\   11 |11\\   11 |                    11\\   11 |
                                                                            \\111111  |\\111111  |                    \\111111  |
                                                                             \\______/  \\______/                      \\______/
                                                                                    1111111\\                        11\\
                                                                                    11  __11\\                       11 |
                                                                                    11 |  11 | 111111\\  11\\   11\\ 111111\\    111111\\   111111\\
                                                                                    1111111  |11  __11\\ 11 |  11 |\\_11  _|  11  __11\\ 11  __11\\
                                                                                    11  __11< 11 /  11 |11 |  11 |  11 |    11111111 |11 |  \\__|
                                                                                    11 |  11 |11 |  11 |11 |  11 |  11 |11\\ 11   ____|11 |
                                                                                    11 |  11 |\\111111  |\\111111  |  \\1111  |\\1111111\\ 11 |
                                                                                    \\__|  \\__| \\______/  \\______/    \\____/  \\_______|\\__|
                                    */
                                    // SPDX-License-Identifier: MIT
                                    // File @1inch/limit-order-protocol-contract/contracts/libraries/MakerTraitsLib.sol@v4.0.0-prerelease-19
                                    pragma solidity 0.8.23;
                                    type MakerTraits is uint256;
                                    /**
                                     * @title MakerTraitsLib
                                     * @notice A library to manage and check MakerTraits, which are used to encode the maker's preferences for an order in a single uint256.
                                     * @dev
                                     * The MakerTraits type is a uint256 and different parts of the number are used to encode different traits.
                                     * High bits are used for flags
                                     * 255 bit `NO_PARTIAL_FILLS_FLAG`          - if set, the order does not allow partial fills
                                     * 254 bit `ALLOW_MULTIPLE_FILLS_FLAG`      - if set, the order permits multiple fills
                                     * 253 bit                                  - unused
                                     * 252 bit `PRE_INTERACTION_CALL_FLAG`      - if set, the order requires pre-interaction call
                                     * 251 bit `POST_INTERACTION_CALL_FLAG`     - if set, the order requires post-interaction call
                                     * 250 bit `NEED_CHECK_EPOCH_MANAGER_FLAG`  - if set, the order requires to check the epoch manager
                                     * 249 bit `HAS_EXTENSION_FLAG`             - if set, the order has extension(s)
                                     * 248 bit `USE_PERMIT2_FLAG`               - if set, the order uses permit2
                                     * 247 bit `UNWRAP_WETH_FLAG`               - if set, the order requires to unwrap WETH
                                     * Low 200 bits are used for allowed sender, expiration, nonceOrEpoch, and series
                                     * uint80 last 10 bytes of allowed sender address (0 if any)
                                     * uint40 expiration timestamp (0 if none)
                                     * uint40 nonce or epoch
                                     * uint40 series
                                     */
                                    library MakerTraitsLib {
                                        // Low 200 bits are used for allowed sender, expiration, nonceOrEpoch, and series
                                        uint256 private constant _ALLOWED_SENDER_MASK = type(uint80).max;
                                        uint256 private constant _EXPIRATION_OFFSET = 80;
                                        uint256 private constant _EXPIRATION_MASK = type(uint40).max;
                                        uint256 private constant _NONCE_OR_EPOCH_OFFSET = 120;
                                        uint256 private constant _NONCE_OR_EPOCH_MASK = type(uint40).max;
                                        uint256 private constant _SERIES_OFFSET = 160;
                                        uint256 private constant _SERIES_MASK = type(uint40).max;
                                        uint256 private constant _NO_PARTIAL_FILLS_FLAG = 1 << 255;
                                        uint256 private constant _ALLOW_MULTIPLE_FILLS_FLAG = 1 << 254;
                                        uint256 private constant _PRE_INTERACTION_CALL_FLAG = 1 << 252;
                                        uint256 private constant _POST_INTERACTION_CALL_FLAG = 1 << 251;
                                        uint256 private constant _NEED_CHECK_EPOCH_MANAGER_FLAG = 1 << 250;
                                        uint256 private constant _HAS_EXTENSION_FLAG = 1 << 249;
                                        uint256 private constant _USE_PERMIT2_FLAG = 1 << 248;
                                        uint256 private constant _UNWRAP_WETH_FLAG = 1 << 247;
                                        /**
                                         * @notice Checks if the order has the extension flag set.
                                         * @dev If the `HAS_EXTENSION_FLAG` is set in the makerTraits, then the protocol expects that the order has extension(s).
                                         * @param makerTraits The traits of the maker.
                                         * @return result A boolean indicating whether the flag is set.
                                         */
                                        function hasExtension(MakerTraits makerTraits) internal pure returns (bool) {
                                            return (MakerTraits.unwrap(makerTraits) & _HAS_EXTENSION_FLAG) != 0;
                                        }
                                        /**
                                         * @notice Checks if the maker allows a specific taker to fill the order.
                                         * @param makerTraits The traits of the maker.
                                         * @param sender The address of the taker to be checked.
                                         * @return result A boolean indicating whether the taker is allowed.
                                         */
                                        function isAllowedSender(MakerTraits makerTraits, address sender) internal pure returns (bool) {
                                            uint160 allowedSender = uint160(MakerTraits.unwrap(makerTraits) & _ALLOWED_SENDER_MASK);
                                            return allowedSender == 0 || allowedSender == uint160(sender) & _ALLOWED_SENDER_MASK;
                                        }
                                        /**
                                         * @notice Checks if the order has expired.
                                         * @param makerTraits The traits of the maker.
                                         * @return result A boolean indicating whether the order has expired.
                                         */
                                        function isExpired(MakerTraits makerTraits) internal view returns (bool) {
                                            uint256 expiration = (MakerTraits.unwrap(makerTraits) >> _EXPIRATION_OFFSET) & _EXPIRATION_MASK;
                                            return expiration != 0 && expiration < block.timestamp;  // solhint-disable-line not-rely-on-time
                                        }
                                        /**
                                         * @notice Returns the nonce or epoch of the order.
                                         * @param makerTraits The traits of the maker.
                                         * @return result The nonce or epoch of the order.
                                         */
                                        function nonceOrEpoch(MakerTraits makerTraits) internal pure returns (uint256) {
                                            return (MakerTraits.unwrap(makerTraits) >> _NONCE_OR_EPOCH_OFFSET) & _NONCE_OR_EPOCH_MASK;
                                        }
                                        /**
                                         * @notice Returns the series of the order.
                                         * @param makerTraits The traits of the maker.
                                         * @return result The series of the order.
                                         */
                                        function series(MakerTraits makerTraits) internal pure returns (uint256) {
                                            return (MakerTraits.unwrap(makerTraits) >> _SERIES_OFFSET) & _SERIES_MASK;
                                        }
                                        /**
                                          * @notice Determines if the order allows partial fills.
                                          * @dev If the _NO_PARTIAL_FILLS_FLAG is not set in the makerTraits, then the order allows partial fills.
                                          * @param makerTraits The traits of the maker, determining their preferences for the order.
                                          * @return result A boolean indicating whether the maker allows partial fills.
                                          */
                                        function allowPartialFills(MakerTraits makerTraits) internal pure returns (bool) {
                                            return (MakerTraits.unwrap(makerTraits) & _NO_PARTIAL_FILLS_FLAG) == 0;
                                        }
                                        /**
                                         * @notice Checks if the maker needs pre-interaction call.
                                         * @param makerTraits The traits of the maker.
                                         * @return result A boolean indicating whether the maker needs a pre-interaction call.
                                         */
                                        function needPreInteractionCall(MakerTraits makerTraits) internal pure returns (bool) {
                                            return (MakerTraits.unwrap(makerTraits) & _PRE_INTERACTION_CALL_FLAG) != 0;
                                        }
                                        /**
                                         * @notice Checks if the maker needs post-interaction call.
                                         * @param makerTraits The traits of the maker.
                                         * @return result A boolean indicating whether the maker needs a post-interaction call.
                                         */
                                        function needPostInteractionCall(MakerTraits makerTraits) internal pure returns (bool) {
                                            return (MakerTraits.unwrap(makerTraits) & _POST_INTERACTION_CALL_FLAG) != 0;
                                        }
                                        /**
                                          * @notice Determines if the order allows multiple fills.
                                          * @dev If the _ALLOW_MULTIPLE_FILLS_FLAG is set in the makerTraits, then the maker allows multiple fills.
                                          * @param makerTraits The traits of the maker, determining their preferences for the order.
                                          * @return result A boolean indicating whether the maker allows multiple fills.
                                          */
                                        function allowMultipleFills(MakerTraits makerTraits) internal pure returns (bool) {
                                            return (MakerTraits.unwrap(makerTraits) & _ALLOW_MULTIPLE_FILLS_FLAG) != 0;
                                        }
                                        /**
                                          * @notice Determines if an order should use the bit invalidator or remaining amount validator.
                                          * @dev The bit invalidator can be used if the order does not allow partial or multiple fills.
                                          * @param makerTraits The traits of the maker, determining their preferences for the order.
                                          * @return result A boolean indicating whether the bit invalidator should be used.
                                          * True if the order requires the use of the bit invalidator.
                                          */
                                        function useBitInvalidator(MakerTraits makerTraits) internal pure returns (bool) {
                                            return !allowPartialFills(makerTraits) || !allowMultipleFills(makerTraits);
                                        }
                                        /**
                                         * @notice Checks if the maker needs to check the epoch.
                                         * @param makerTraits The traits of the maker.
                                         * @return result A boolean indicating whether the maker needs to check the epoch manager.
                                         */
                                        function needCheckEpochManager(MakerTraits makerTraits) internal pure returns (bool) {
                                            return (MakerTraits.unwrap(makerTraits) & _NEED_CHECK_EPOCH_MANAGER_FLAG) != 0;
                                        }
                                        /**
                                         * @notice Checks if the maker uses permit2.
                                         * @param makerTraits The traits of the maker.
                                         * @return result A boolean indicating whether the maker uses permit2.
                                         */
                                        function usePermit2(MakerTraits makerTraits) internal pure returns (bool) {
                                            return MakerTraits.unwrap(makerTraits) & _USE_PERMIT2_FLAG != 0;
                                        }
                                        /**
                                         * @notice Checks if the maker needs to unwraps WETH.
                                         * @param makerTraits The traits of the maker.
                                         * @return result A boolean indicating whether the maker needs to unwrap WETH.
                                         */
                                        function unwrapWeth(MakerTraits makerTraits) internal pure returns (bool) {
                                            return MakerTraits.unwrap(makerTraits) & _UNWRAP_WETH_FLAG != 0;
                                        }
                                    }
                                    // File @1inch/limit-order-protocol-contract/contracts/libraries/TakerTraitsLib.sol@v4.0.0-prerelease-19
                                    type TakerTraits is uint256;
                                    /**
                                     * @title TakerTraitsLib
                                     * @notice This library to manage and check TakerTraits, which are used to encode the taker's preferences for an order in a single uint256.
                                     * @dev The TakerTraits are structured as follows:
                                     * High bits are used for flags
                                     * 255 bit `_MAKER_AMOUNT_FLAG`           - If set, the taking amount is calculated based on making amount, otherwise making amount is calculated based on taking amount.
                                     * 254 bit `_UNWRAP_WETH_FLAG`            - If set, the WETH will be unwrapped into ETH before sending to taker.
                                     * 253 bit `_SKIP_ORDER_PERMIT_FLAG`      - If set, the order skips maker's permit execution.
                                     * 252 bit `_USE_PERMIT2_FLAG`            - If set, the order uses the permit2 function for authorization.
                                     * 251 bit `_ARGS_HAS_TARGET`             - If set, then first 20 bytes of args are treated as target address for maker’s funds transfer.
                                     * 224-247 bits `ARGS_EXTENSION_LENGTH`   - The length of the extension calldata in the args.
                                     * 200-223 bits `ARGS_INTERACTION_LENGTH` - The length of the interaction calldata in the args.
                                     * 0-184 bits                             - The threshold amount (the maximum amount a taker agrees to give in exchange for a making amount).
                                     */
                                    library TakerTraitsLib {
                                        uint256 private constant _MAKER_AMOUNT_FLAG = 1 << 255;
                                        uint256 private constant _UNWRAP_WETH_FLAG = 1 << 254;
                                        uint256 private constant _SKIP_ORDER_PERMIT_FLAG = 1 << 253;
                                        uint256 private constant _USE_PERMIT2_FLAG = 1 << 252;
                                        uint256 private constant _ARGS_HAS_TARGET = 1 << 251;
                                        uint256 private constant _ARGS_EXTENSION_LENGTH_OFFSET = 224;
                                        uint256 private constant _ARGS_EXTENSION_LENGTH_MASK = 0xffffff;
                                        uint256 private constant _ARGS_INTERACTION_LENGTH_OFFSET = 200;
                                        uint256 private constant _ARGS_INTERACTION_LENGTH_MASK = 0xffffff;
                                        uint256 private constant _AMOUNT_MASK = 0x000000000000000000ffffffffffffffffffffffffffffffffffffffffffffff;
                                        /**
                                         * @notice Checks if the args should contain target address.
                                         * @param takerTraits The traits of the taker.
                                         * @return result A boolean indicating whether the args should contain target address.
                                         */
                                        function argsHasTarget(TakerTraits takerTraits) internal pure returns (bool) {
                                            return (TakerTraits.unwrap(takerTraits) & _ARGS_HAS_TARGET) != 0;
                                        }
                                        /**
                                         * @notice Retrieves the length of the extension calldata from the takerTraits.
                                         * @param takerTraits The traits of the taker.
                                         * @return result The length of the extension calldata encoded in the takerTraits.
                                         */
                                        function argsExtensionLength(TakerTraits takerTraits) internal pure returns (uint256) {
                                            return (TakerTraits.unwrap(takerTraits) >> _ARGS_EXTENSION_LENGTH_OFFSET) & _ARGS_EXTENSION_LENGTH_MASK;
                                        }
                                        /**
                                         * @notice Retrieves the length of the interaction calldata from the takerTraits.
                                         * @param takerTraits The traits of the taker.
                                         * @return result The length of the interaction calldata encoded in the takerTraits.
                                         */
                                        function argsInteractionLength(TakerTraits takerTraits) internal pure returns (uint256) {
                                            return (TakerTraits.unwrap(takerTraits) >> _ARGS_INTERACTION_LENGTH_OFFSET) & _ARGS_INTERACTION_LENGTH_MASK;
                                        }
                                        /**
                                         * @notice Checks if the taking amount should be calculated based on making amount.
                                         * @param takerTraits The traits of the taker.
                                         * @return result A boolean indicating whether the taking amount should be calculated based on making amount.
                                         */
                                        function isMakingAmount(TakerTraits takerTraits) internal pure returns (bool) {
                                            return (TakerTraits.unwrap(takerTraits) & _MAKER_AMOUNT_FLAG) != 0;
                                        }
                                        /**
                                         * @notice Checks if the order should unwrap WETH and send ETH to taker.
                                         * @param takerTraits The traits of the taker.
                                         * @return result A boolean indicating whether the order should unwrap WETH.
                                         */
                                        function unwrapWeth(TakerTraits takerTraits) internal pure returns (bool) {
                                            return (TakerTraits.unwrap(takerTraits) & _UNWRAP_WETH_FLAG) != 0;
                                        }
                                        /**
                                         * @notice Checks if the order should skip maker's permit execution.
                                         * @param takerTraits The traits of the taker.
                                         * @return result A boolean indicating whether the order don't apply permit.
                                         */
                                        function skipMakerPermit(TakerTraits takerTraits) internal pure returns (bool) {
                                            return (TakerTraits.unwrap(takerTraits) & _SKIP_ORDER_PERMIT_FLAG) != 0;
                                        }
                                        /**
                                         * @notice Checks if the order uses the permit2 instead of permit.
                                         * @param takerTraits The traits of the taker.
                                         * @return result A boolean indicating whether the order uses the permit2.
                                         */
                                        function usePermit2(TakerTraits takerTraits) internal pure returns (bool) {
                                            return (TakerTraits.unwrap(takerTraits) & _USE_PERMIT2_FLAG) != 0;
                                        }
                                        /**
                                         * @notice Retrieves the threshold amount from the takerTraits.
                                         * The maximum amount a taker agrees to give in exchange for a making amount.
                                         * @param takerTraits The traits of the taker.
                                         * @return result The threshold amount encoded in the takerTraits.
                                         */
                                        function threshold(TakerTraits takerTraits) internal pure returns (uint256) {
                                            return TakerTraits.unwrap(takerTraits) & _AMOUNT_MASK;
                                        }
                                    }
                                    // File @1inch/solidity-utils/contracts/libraries/AddressLib.sol@v3.7.1
                                    type Address is uint256;
                                    /**
                                    * @dev Library for working with addresses encoded as uint256 values, which can include flags in the highest bits.
                                    */
                                    library AddressLib {
                                        uint256 private constant _LOW_160_BIT_MASK = (1 << 160) - 1;
                                        /**
                                        * @notice Returns the address representation of a uint256.
                                        * @param a The uint256 value to convert to an address.
                                        * @return The address representation of the provided uint256 value.
                                        */
                                        function get(Address a) internal pure returns (address) {
                                            return address(uint160(Address.unwrap(a) & _LOW_160_BIT_MASK));
                                        }
                                        /**
                                        * @notice Checks if a given flag is set for the provided address.
                                        * @param a The address to check for the flag.
                                        * @param flag The flag to check for in the provided address.
                                        * @return True if the provided flag is set in the address, false otherwise.
                                        */
                                        function getFlag(Address a, uint256 flag) internal pure returns (bool) {
                                            return (Address.unwrap(a) & flag) != 0;
                                        }
                                        /**
                                        * @notice Returns a uint32 value stored at a specific bit offset in the provided address.
                                        * @param a The address containing the uint32 value.
                                        * @param offset The bit offset at which the uint32 value is stored.
                                        * @return The uint32 value stored in the address at the specified bit offset.
                                        */
                                        function getUint32(Address a, uint256 offset) internal pure returns (uint32) {
                                            return uint32(Address.unwrap(a) >> offset);
                                        }
                                        /**
                                        * @notice Returns a uint64 value stored at a specific bit offset in the provided address.
                                        * @param a The address containing the uint64 value.
                                        * @param offset The bit offset at which the uint64 value is stored.
                                        * @return The uint64 value stored in the address at the specified bit offset.
                                        */
                                        function getUint64(Address a, uint256 offset) internal pure returns (uint64) {
                                            return uint64(Address.unwrap(a) >> offset);
                                        }
                                    }
                                    // File @1inch/limit-order-protocol-contract/contracts/interfaces/IOrderMixin.sol@v4.0.0-prerelease-19
                                    interface IOrderMixin {
                                        struct Order {
                                            uint256 salt;
                                            Address maker;
                                            Address receiver;
                                            Address makerAsset;
                                            Address takerAsset;
                                            uint256 makingAmount;
                                            uint256 takingAmount;
                                            MakerTraits makerTraits;
                                        }
                                        error InvalidatedOrder();
                                        error TakingAmountExceeded();
                                        error PrivateOrder();
                                        error BadSignature();
                                        error OrderExpired();
                                        error WrongSeriesNonce();
                                        error SwapWithZeroAmount();
                                        error PartialFillNotAllowed();
                                        error OrderIsNotSuitableForMassInvalidation();
                                        error EpochManagerAndBitInvalidatorsAreIncompatible();
                                        error ReentrancyDetected();
                                        error PredicateIsNotTrue();
                                        error TakingAmountTooHigh();
                                        error MakingAmountTooLow();
                                        error TransferFromMakerToTakerFailed();
                                        error TransferFromTakerToMakerFailed();
                                        error MismatchArraysLengths();
                                        error InvalidPermit2Transfer();
                                        error SimulationResults(bool success, bytes res);
                                        /**
                                         * @notice Emitted when order gets filled
                                         * @param orderHash Hash of the order
                                         * @param remainingAmount Amount of the maker asset that remains to be filled
                                         */
                                        event OrderFilled(
                                            bytes32 orderHash,
                                            uint256 remainingAmount
                                        );
                                        /**
                                         * @notice Emitted when order without `useBitInvalidator` gets cancelled
                                         * @param orderHash Hash of the order
                                         */
                                        event OrderCancelled(
                                            bytes32 orderHash
                                        );
                                        /**
                                         * @notice Emitted when order with `useBitInvalidator` gets cancelled
                                         * @param maker Maker address
                                         * @param slotIndex Slot index that was updated
                                         * @param slotValue New slot value
                                         */
                                        event BitInvalidatorUpdated(
                                            address indexed maker,
                                            uint256 slotIndex,
                                            uint256 slotValue
                                        );
                                        /**
                                         * @notice Returns bitmask for double-spend invalidators based on lowest byte of order.info and filled quotes
                                         * @param maker Maker address
                                         * @param slot Slot number to return bitmask for
                                         * @return result Each bit represents whether corresponding was already invalidated
                                         */
                                        function bitInvalidatorForOrder(address maker, uint256 slot) external view returns(uint256 result);
                                        /**
                                         * @notice Returns bitmask for double-spend invalidators based on lowest byte of order.info and filled quotes
                                         * @param orderHash Hash of the order
                                         * @return remaining Remaining amount of the order
                                         */
                                        function remainingInvalidatorForOrder(address maker, bytes32 orderHash) external view returns(uint256 remaining);
                                        /**
                                         * @notice Returns bitmask for double-spend invalidators based on lowest byte of order.info and filled quotes
                                         * @param orderHash Hash of the order
                                         * @return remainingRaw Inverse of the remaining amount of the order if order was filled at least once, otherwise 0
                                         */
                                        function rawRemainingInvalidatorForOrder(address maker, bytes32 orderHash) external view returns(uint256 remainingRaw);
                                        /**
                                         * @notice Cancels order's quote
                                         * @param makerTraits Order makerTraits
                                         * @param orderHash Hash of the order to cancel
                                         */
                                        function cancelOrder(MakerTraits makerTraits, bytes32 orderHash) external;
                                        /**
                                         * @notice Cancels orders' quotes
                                         * @param makerTraits Orders makerTraits
                                         * @param orderHashes Hashes of the orders to cancel
                                         */
                                        function cancelOrders(MakerTraits[] calldata makerTraits, bytes32[] calldata orderHashes) external;
                                        /**
                                         * @notice Cancels all quotes of the maker (works for bit-invalidating orders only)
                                         * @param makerTraits Order makerTraits
                                         * @param additionalMask Additional bitmask to invalidate orders
                                         */
                                        function bitsInvalidateForOrder(MakerTraits makerTraits, uint256 additionalMask) external;
                                        /**
                                         * @notice Returns order hash, hashed with limit order protocol contract EIP712
                                         * @param order Order
                                         * @return orderHash Hash of the order
                                         */
                                        function hashOrder(IOrderMixin.Order calldata order) external view returns(bytes32 orderHash);
                                        /**
                                         * @notice Delegates execution to custom implementation. Could be used to validate if `transferFrom` works properly
                                         * @dev The function always reverts and returns the simulation results in revert data.
                                         * @param target Addresses that will be delegated
                                         * @param data Data that will be passed to delegatee
                                         */
                                        function simulate(address target, bytes calldata data) external;
                                        /**
                                         * @notice Fills order's quote, fully or partially (whichever is possible).
                                         * @param order Order quote to fill
                                         * @param r R component of signature
                                         * @param vs VS component of signature
                                         * @param amount Taker amount to fill
                                         * @param takerTraits Specifies threshold as maximum allowed takingAmount when takingAmount is zero, otherwise specifies
                                         * minimum allowed makingAmount. The 2nd (0 based index) highest bit specifies whether taker wants to skip maker's permit.
                                         * @return makingAmount Actual amount transferred from maker to taker
                                         * @return takingAmount Actual amount transferred from taker to maker
                                         * @return orderHash Hash of the filled order
                                         */
                                        function fillOrder(
                                            Order calldata order,
                                            bytes32 r,
                                            bytes32 vs,
                                            uint256 amount,
                                            TakerTraits takerTraits
                                        ) external payable returns(uint256 makingAmount, uint256 takingAmount, bytes32 orderHash);
                                        /**
                                         * @notice Same as `fillOrder` but allows to specify arguments that are used by the taker.
                                         * @param order Order quote to fill
                                         * @param r R component of signature
                                         * @param vs VS component of signature
                                         * @param amount Taker amount to fill
                                         * @param takerTraits Specifies threshold as maximum allowed takingAmount when takingAmount is zero, otherwise specifies
                                         * minimum allowed makingAmount. The 2nd (0 based index) highest bit specifies whether taker wants to skip maker's permit.
                                         * @param args Arguments that are used by the taker (target, extension, interaction, permit)
                                         * @return makingAmount Actual amount transferred from maker to taker
                                         * @return takingAmount Actual amount transferred from taker to maker
                                         * @return orderHash Hash of the filled order
                                         */
                                        function fillOrderArgs(
                                            IOrderMixin.Order calldata order,
                                            bytes32 r,
                                            bytes32 vs,
                                            uint256 amount,
                                            TakerTraits takerTraits,
                                            bytes calldata args
                                        ) external payable returns(uint256 makingAmount, uint256 takingAmount, bytes32 orderHash);
                                        /**
                                         * @notice Same as `fillOrder` but uses contract-based signatures.
                                         * @param order Order quote to fill
                                         * @param signature Signature to confirm quote ownership
                                         * @param amount Taker amount to fill
                                         * @param takerTraits Specifies threshold as maximum allowed takingAmount when takingAmount is zero, otherwise specifies
                                         * minimum allowed makingAmount. The 2nd (0 based index) highest bit specifies whether taker wants to skip maker's permit.
                                         * @return makingAmount Actual amount transferred from maker to taker
                                         * @return takingAmount Actual amount transferred from taker to maker
                                         * @return orderHash Hash of the filled order
                                         * @dev See tests for examples
                                         */
                                        function fillContractOrder(
                                            Order calldata order,
                                            bytes calldata signature,
                                            uint256 amount,
                                            TakerTraits takerTraits
                                        ) external returns(uint256 makingAmount, uint256 takingAmount, bytes32 orderHash);
                                        /**
                                         * @notice Same as `fillContractOrder` but allows to specify arguments that are used by the taker.
                                         * @param order Order quote to fill
                                         * @param signature Signature to confirm quote ownership
                                         * @param amount Taker amount to fill
                                         * @param takerTraits Specifies threshold as maximum allowed takingAmount when takingAmount is zero, otherwise specifies
                                         * minimum allowed makingAmount. The 2nd (0 based index) highest bit specifies whether taker wants to skip maker's permit.
                                         * @param args Arguments that are used by the taker (target, extension, interaction, permit)
                                         * @return makingAmount Actual amount transferred from maker to taker
                                         * @return takingAmount Actual amount transferred from taker to maker
                                         * @return orderHash Hash of the filled order
                                         * @dev See tests for examples
                                         */
                                        function fillContractOrderArgs(
                                            Order calldata order,
                                            bytes calldata signature,
                                            uint256 amount,
                                            TakerTraits takerTraits,
                                            bytes calldata args
                                        ) external returns(uint256 makingAmount, uint256 takingAmount, bytes32 orderHash);
                                    }
                                    // File @1inch/limit-order-protocol-contract/contracts/interfaces/IAmountGetter.sol@v4.0.0-prerelease-19
                                    interface IAmountGetter {
                                        /**
                                         * @notice View method that gets called to determine the actual making amount
                                         * @param order Order being processed
                                         * @param extension Order extension data
                                         * @param orderHash Hash of the order being processed
                                         * @param taker Taker address
                                         * @param takingAmount Actual taking amount
                                         * @param remainingMakingAmount Order remaining making amount
                                         * @param extraData Extra data
                                         */
                                        function getMakingAmount(
                                            IOrderMixin.Order calldata order,
                                            bytes calldata extension,
                                            bytes32 orderHash,
                                            address taker,
                                            uint256 takingAmount,
                                            uint256 remainingMakingAmount,
                                            bytes calldata extraData
                                        ) external view returns (uint256);
                                        /**
                                         * @notice View method that gets called to determine the actual making amount
                                         * @param order Order being processed
                                         * @param extension Order extension data
                                         * @param orderHash Hash of the order being processed
                                         * @param taker Taker address
                                         * @param makingAmount Actual taking amount
                                         * @param remainingMakingAmount Order remaining making amount
                                         * @param extraData Extra data
                                         */
                                        function getTakingAmount(
                                            IOrderMixin.Order calldata order,
                                            bytes calldata extension,
                                            bytes32 orderHash,
                                            address taker,
                                            uint256 makingAmount,
                                            uint256 remainingMakingAmount,
                                            bytes calldata extraData
                                        ) external view returns (uint256);
                                    }
                                    // File @1inch/limit-order-protocol-contract/contracts/interfaces/IPostInteraction.sol@v4.0.0-prerelease-19
                                    interface IPostInteraction {
                                        /**
                                         * @notice Callback method that gets called after all fund transfers
                                         * @param order Order being processed
                                         * @param extension Order extension data
                                         * @param orderHash Hash of the order being processed
                                         * @param taker Taker address
                                         * @param makingAmount Actual making amount
                                         * @param takingAmount Actual taking amount
                                         * @param remainingMakingAmount Order remaining making amount
                                         * @param extraData Extra data
                                         */
                                        function postInteraction(
                                            IOrderMixin.Order calldata order,
                                            bytes calldata extension,
                                            bytes32 orderHash,
                                            address taker,
                                            uint256 makingAmount,
                                            uint256 takingAmount,
                                            uint256 remainingMakingAmount,
                                            bytes calldata extraData
                                        ) external;
                                    }
                                    // File @1inch/limit-order-protocol-contract/contracts/interfaces/IPreInteraction.sol@v4.0.0-prerelease-19
                                    interface IPreInteraction {
                                        /**
                                         * @notice Callback method that gets called before any funds transfers
                                         * @param order Order being processed
                                         * @param extension Order extension data
                                         * @param orderHash Hash of the order being processed
                                         * @param taker Taker address
                                         * @param makingAmount Actual making amount
                                         * @param takingAmount Actual taking amount
                                         * @param remainingMakingAmount Order remaining making amount
                                         * @param extraData Extra data
                                         */
                                        function preInteraction(
                                            IOrderMixin.Order calldata order,
                                            bytes calldata extension,
                                            bytes32 orderHash,
                                            address taker,
                                            uint256 makingAmount,
                                            uint256 takingAmount,
                                            uint256 remainingMakingAmount,
                                            bytes calldata extraData
                                        ) external;
                                    }
                                    // File @1inch/limit-order-protocol-contract/contracts/interfaces/ITakerInteraction.sol@v4.0.0-prerelease-19
                                    /**
                                     * @title Interface for interactor which acts after `maker -> taker` transfer but before `taker -> maker` transfer.
                                     * @notice The order filling steps are `preInteraction` =>` Transfer "maker -> taker"` => **`Interaction`** => `Transfer "taker -> maker"` => `postInteraction`
                                     */
                                    interface ITakerInteraction {
                                        /**
                                         * @dev This callback allows to interactively handle maker aseets to produce takers assets, doesn't supports ETH as taker assets
                                         * @notice Callback method that gets called after maker fund transfer but before taker fund transfer
                                         * @param order Order being processed
                                         * @param extension Order extension data
                                         * @param orderHash Hash of the order being processed
                                         * @param taker Taker address
                                         * @param makingAmount Actual making amount
                                         * @param takingAmount Actual taking amount
                                         * @param remainingMakingAmount Order remaining making amount
                                         * @param extraData Extra data
                                         */
                                        function takerInteraction(
                                            IOrderMixin.Order calldata order,
                                            bytes calldata extension,
                                            bytes32 orderHash,
                                            address taker,
                                            uint256 makingAmount,
                                            uint256 takingAmount,
                                            uint256 remainingMakingAmount,
                                            bytes calldata extraData
                                        ) external;
                                    }
                                    // File @1inch/limit-order-protocol-contract/contracts/libraries/OffsetsLib.sol@v4.0.0-prerelease-19
                                    type Offsets is uint256;
                                    /// @title OffsetsLib
                                    /// @dev A library for retrieving values by offsets from a concatenated calldata.
                                    library OffsetsLib {
                                        /// @dev Error to be thrown when the offset is out of bounds.
                                        error OffsetOutOfBounds();
                                        /**
                                         * @notice Retrieves the field value calldata corresponding to the provided field index from the concatenated calldata.
                                         * @dev
                                         * The function performs the following steps:
                                         * 1. Retrieve the start and end of the segment corresponding to the provided index from the offsets array.
                                         * 2. Get the value from segment using offset and length calculated based on the start and end of the segment.
                                         * 3. Throw `OffsetOutOfBounds` error if the length of the segment is greater than the length of the concatenated data.
                                         * @param offsets The offsets encoding the start and end of each segment within the concatenated calldata.
                                         * @param concat The concatenated calldata.
                                         * @param index The index of the segment to retrieve. The field index 0 corresponds to the lowest bytes of the offsets array.
                                         * @return result The calldata from a segment of the concatenated calldata corresponding to the provided index.
                                         */
                                        function get(Offsets offsets, bytes calldata concat, uint256 index) internal pure returns(bytes calldata result) {
                                            bytes4 exception = OffsetOutOfBounds.selector;
                                            assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
                                                let bitShift := shl(5, index)                                   // bitShift = index * 32
                                                let begin := and(0xffffffff, shr(bitShift, shl(32, offsets)))   // begin = offsets[ bitShift : bitShift + 32 ]
                                                let end := and(0xffffffff, shr(bitShift, offsets))              // end   = offsets[ bitShift + 32 : bitShift + 64 ]
                                                result.offset := add(concat.offset, begin)
                                                result.length := sub(end, begin)
                                                if gt(end, concat.length) {
                                                    mstore(0, exception)
                                                    revert(0, 4)
                                                }
                                            }
                                        }
                                    }
                                    // File @1inch/limit-order-protocol-contract/contracts/libraries/ExtensionLib.sol@v4.0.0-prerelease-19
                                    /**
                                     * @title ExtensionLib
                                     * @notice Library for retrieving extensions information for the IOrderMixin Interface.
                                     */
                                    library ExtensionLib {
                                        using AddressLib for Address;
                                        using OffsetsLib for Offsets;
                                        enum DynamicField {
                                            MakerAssetSuffix,
                                            TakerAssetSuffix,
                                            MakingAmountData,
                                            TakingAmountData,
                                            Predicate,
                                            MakerPermit,
                                            PreInteractionData,
                                            PostInteractionData,
                                            CustomData
                                        }
                                        /**
                                         * @notice Returns the MakerAssetSuffix from the provided extension calldata.
                                         * @param extension The calldata from which the MakerAssetSuffix is to be retrieved.
                                         * @return calldata Bytes representing the MakerAssetSuffix.
                                         */
                                        function makerAssetSuffix(bytes calldata extension) internal pure returns(bytes calldata) {
                                            return _get(extension, DynamicField.MakerAssetSuffix);
                                        }
                                        /**
                                         * @notice Returns the TakerAssetSuffix from the provided extension calldata.
                                         * @param extension The calldata from which the TakerAssetSuffix is to be retrieved.
                                         * @return calldata Bytes representing the TakerAssetSuffix.
                                         */
                                        function takerAssetSuffix(bytes calldata extension) internal pure returns(bytes calldata) {
                                            return _get(extension, DynamicField.TakerAssetSuffix);
                                        }
                                        /**
                                         * @notice Returns the MakingAmountData from the provided extension calldata.
                                         * @param extension The calldata from which the MakingAmountData is to be retrieved.
                                         * @return calldata Bytes representing the MakingAmountData.
                                         */
                                        function makingAmountData(bytes calldata extension) internal pure returns(bytes calldata) {
                                            return _get(extension, DynamicField.MakingAmountData);
                                        }
                                        /**
                                         * @notice Returns the TakingAmountData from the provided extension calldata.
                                         * @param extension The calldata from which the TakingAmountData is to be retrieved.
                                         * @return calldata Bytes representing the TakingAmountData.
                                         */
                                        function takingAmountData(bytes calldata extension) internal pure returns(bytes calldata) {
                                            return _get(extension, DynamicField.TakingAmountData);
                                        }
                                        /**
                                         * @notice Returns the order's predicate from the provided extension calldata.
                                         * @param extension The calldata from which the predicate is to be retrieved.
                                         * @return calldata Bytes representing the predicate.
                                         */
                                        function predicate(bytes calldata extension) internal pure returns(bytes calldata) {
                                            return _get(extension, DynamicField.Predicate);
                                        }
                                        /**
                                         * @notice Returns the maker's permit from the provided extension calldata.
                                         * @param extension The calldata from which the maker's permit is to be retrieved.
                                         * @return calldata Bytes representing the maker's permit.
                                         */
                                        function makerPermit(bytes calldata extension) internal pure returns(bytes calldata) {
                                            return _get(extension, DynamicField.MakerPermit);
                                        }
                                        /**
                                         * @notice Returns the pre-interaction from the provided extension calldata.
                                         * @param extension The calldata from which the pre-interaction is to be retrieved.
                                         * @return calldata Bytes representing the pre-interaction.
                                         */
                                        function preInteractionTargetAndData(bytes calldata extension) internal pure returns(bytes calldata) {
                                            return _get(extension, DynamicField.PreInteractionData);
                                        }
                                        /**
                                         * @notice Returns the post-interaction from the provided extension calldata.
                                         * @param extension The calldata from which the post-interaction is to be retrieved.
                                         * @return calldata Bytes representing the post-interaction.
                                         */
                                        function postInteractionTargetAndData(bytes calldata extension) internal pure returns(bytes calldata) {
                                            return _get(extension, DynamicField.PostInteractionData);
                                        }
                                        /**
                                         * @notice Returns extra suffix data from the provided extension calldata.
                                         * @param extension The calldata from which the extra suffix data is to be retrieved.
                                         * @return calldata Bytes representing the extra suffix data.
                                         */
                                        function customData(bytes calldata extension) internal pure returns(bytes calldata) {
                                            if (extension.length < 0x20) return msg.data[:0];
                                            uint256 offsets = uint256(bytes32(extension));
                                            unchecked {
                                                return extension[0x20 + (offsets >> 224):];
                                            }
                                        }
                                        /**
                                         * @notice Retrieves a specific field from the provided extension calldata.
                                         * @dev The first 32 bytes of an extension calldata contain offsets to the end of each field within the calldata.
                                         * @param extension The calldata from which the field is to be retrieved.
                                         * @param field The specific dynamic field to retrieve from the extension.
                                         * @return calldata Bytes representing the requested field.
                                         */
                                        function _get(bytes calldata extension, DynamicField field) private pure returns(bytes calldata) {
                                            if (extension.length < 0x20) return msg.data[:0];
                                            Offsets offsets;
                                            bytes calldata concat;
                                            assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
                                                offsets := calldataload(extension.offset)
                                                concat.offset := add(extension.offset, 0x20)
                                                concat.length := sub(extension.length, 0x20)
                                            }
                                            return offsets.get(concat, uint256(field));
                                        }
                                    }
                                    // File @1inch/limit-order-protocol-contract/contracts/libraries/AmountCalculatorLib.sol@v4.0.0-prerelease-19
                                    /// @title The helper library to calculate linearly taker amount from maker amount and vice versa.
                                    library AmountCalculatorLib {
                                        /// @notice Calculates maker amount
                                        /// @return Result Floored maker amount
                                        function getMakingAmount(uint256 orderMakerAmount, uint256 orderTakerAmount, uint256 swapTakerAmount) internal pure returns(uint256) {
                                            if ((swapTakerAmount | orderMakerAmount) >> 128 == 0) {
                                                unchecked {
                                                    return (swapTakerAmount * orderMakerAmount) / orderTakerAmount;
                                                }
                                            }
                                            return swapTakerAmount * orderMakerAmount / orderTakerAmount;
                                        }
                                        /// @notice Calculates taker amount
                                        /// @return Result Ceiled taker amount
                                        function getTakingAmount(uint256 orderMakerAmount, uint256 orderTakerAmount, uint256 swapMakerAmount) internal pure returns(uint256) {
                                            if ((swapMakerAmount | orderTakerAmount) >> 128 == 0) {
                                                unchecked {
                                                    return (swapMakerAmount * orderTakerAmount + orderMakerAmount - 1) / orderMakerAmount;
                                                }
                                            }
                                            return (swapMakerAmount * orderTakerAmount + orderMakerAmount - 1) / orderMakerAmount;
                                        }
                                    }
                                    // File @openzeppelin/contracts/interfaces/IERC1271.sol@v5.0.1
                                    // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1271.sol)
                                    /**
                                     * @dev Interface of the ERC1271 standard signature validation method for
                                     * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
                                     */
                                    interface IERC1271 {
                                        /**
                                         * @dev Should return whether the signature provided is valid for the provided data
                                         * @param hash      Hash of the data to be signed
                                         * @param signature Signature byte array associated with _data
                                         */
                                        function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
                                    }
                                    // File @1inch/solidity-utils/contracts/libraries/ECDSA.sol@v3.7.1
                                    library ECDSA {
                                        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
                                        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
                                        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
                                        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
                                        //
                                        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
                                        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
                                        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
                                        // these malleable signatures as well.
                                        uint256 private constant _S_BOUNDARY = 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0 + 1;
                                        uint256 private constant _COMPACT_S_MASK = 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff;
                                        uint256 private constant _COMPACT_V_SHIFT = 255;
                                        function recover(
                                            bytes32 hash,
                                            uint8 v,
                                            bytes32 r,
                                            bytes32 s
                                        ) internal view returns (address signer) {
                                            assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                                                if lt(s, _S_BOUNDARY) {
                                                    let ptr := mload(0x40)
                                                    mstore(ptr, hash)
                                                    mstore(add(ptr, 0x20), v)
                                                    mstore(add(ptr, 0x40), r)
                                                    mstore(add(ptr, 0x60), s)
                                                    mstore(0, 0)
                                                    pop(staticcall(gas(), 0x1, ptr, 0x80, 0, 0x20))
                                                    signer := mload(0)
                                                }
                                            }
                                        }
                                        function recover(
                                            bytes32 hash,
                                            bytes32 r,
                                            bytes32 vs
                                        ) internal view returns (address signer) {
                                            assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                                                let s := and(vs, _COMPACT_S_MASK)
                                                if lt(s, _S_BOUNDARY) {
                                                    let ptr := mload(0x40)
                                                    mstore(ptr, hash)
                                                    mstore(add(ptr, 0x20), add(27, shr(_COMPACT_V_SHIFT, vs)))
                                                    mstore(add(ptr, 0x40), r)
                                                    mstore(add(ptr, 0x60), s)
                                                    mstore(0, 0)
                                                    pop(staticcall(gas(), 0x1, ptr, 0x80, 0, 0x20))
                                                    signer := mload(0)
                                                }
                                            }
                                        }
                                        /// @dev WARNING!!!
                                        /// There is a known signature malleability issue with two representations of signatures!
                                        /// Even though this function is able to verify both standard 65-byte and compact 64-byte EIP-2098 signatures
                                        /// one should never use raw signatures for any kind of invalidation logic in their code.
                                        /// As the standard and compact representations are interchangeable any invalidation logic that relies on
                                        /// signature uniqueness will get rekt.
                                        /// More info: https://github.com/OpenZeppelin/openzeppelin-contracts/security/advisories/GHSA-4h98-2769-gh6h
                                        function recover(bytes32 hash, bytes calldata signature) internal view returns (address signer) {
                                            assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                                                let ptr := mload(0x40)
                                                // memory[ptr:ptr+0x80] = (hash, v, r, s)
                                                switch signature.length
                                                case 65 {
                                                    // memory[ptr+0x20:ptr+0x80] = (v, r, s)
                                                    mstore(add(ptr, 0x20), byte(0, calldataload(add(signature.offset, 0x40))))
                                                    calldatacopy(add(ptr, 0x40), signature.offset, 0x40)
                                                }
                                                case 64 {
                                                    // memory[ptr+0x20:ptr+0x80] = (v, r, s)
                                                    let vs := calldataload(add(signature.offset, 0x20))
                                                    mstore(add(ptr, 0x20), add(27, shr(_COMPACT_V_SHIFT, vs)))
                                                    calldatacopy(add(ptr, 0x40), signature.offset, 0x20)
                                                    mstore(add(ptr, 0x60), and(vs, _COMPACT_S_MASK))
                                                }
                                                default {
                                                    ptr := 0
                                                }
                                                if ptr {
                                                    if lt(mload(add(ptr, 0x60)), _S_BOUNDARY) {
                                                        // memory[ptr:ptr+0x20] = (hash)
                                                        mstore(ptr, hash)
                                                        mstore(0, 0)
                                                        pop(staticcall(gas(), 0x1, ptr, 0x80, 0, 0x20))
                                                        signer := mload(0)
                                                    }
                                                }
                                            }
                                        }
                                        function recoverOrIsValidSignature(
                                            address signer,
                                            bytes32 hash,
                                            bytes calldata signature
                                        ) internal view returns (bool success) {
                                            if (signer == address(0)) return false;
                                            if ((signature.length == 64 || signature.length == 65) && recover(hash, signature) == signer) {
                                                return true;
                                            }
                                            return isValidSignature(signer, hash, signature);
                                        }
                                        function recoverOrIsValidSignature(
                                            address signer,
                                            bytes32 hash,
                                            uint8 v,
                                            bytes32 r,
                                            bytes32 s
                                        ) internal view returns (bool success) {
                                            if (signer == address(0)) return false;
                                            if (recover(hash, v, r, s) == signer) {
                                                return true;
                                            }
                                            return isValidSignature(signer, hash, v, r, s);
                                        }
                                        function recoverOrIsValidSignature(
                                            address signer,
                                            bytes32 hash,
                                            bytes32 r,
                                            bytes32 vs
                                        ) internal view returns (bool success) {
                                            if (signer == address(0)) return false;
                                            if (recover(hash, r, vs) == signer) {
                                                return true;
                                            }
                                            return isValidSignature(signer, hash, r, vs);
                                        }
                                        function recoverOrIsValidSignature65(
                                            address signer,
                                            bytes32 hash,
                                            bytes32 r,
                                            bytes32 vs
                                        ) internal view returns (bool success) {
                                            if (signer == address(0)) return false;
                                            if (recover(hash, r, vs) == signer) {
                                                return true;
                                            }
                                            return isValidSignature65(signer, hash, r, vs);
                                        }
                                        function isValidSignature(
                                            address signer,
                                            bytes32 hash,
                                            bytes calldata signature
                                        ) internal view returns (bool success) {
                                            // (bool success, bytes memory data) = signer.staticcall(abi.encodeWithSelector(IERC1271.isValidSignature.selector, hash, signature));
                                            // return success && data.length >= 4 && abi.decode(data, (bytes4)) == IERC1271.isValidSignature.selector;
                                            bytes4 selector = IERC1271.isValidSignature.selector;
                                            assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                                                let ptr := mload(0x40)
                                                mstore(ptr, selector)
                                                mstore(add(ptr, 0x04), hash)
                                                mstore(add(ptr, 0x24), 0x40)
                                                mstore(add(ptr, 0x44), signature.length)
                                                calldatacopy(add(ptr, 0x64), signature.offset, signature.length)
                                                if staticcall(gas(), signer, ptr, add(0x64, signature.length), 0, 0x20) {
                                                    success := and(eq(selector, mload(0)), eq(returndatasize(), 0x20))
                                                }
                                            }
                                        }
                                        function isValidSignature(
                                            address signer,
                                            bytes32 hash,
                                            uint8 v,
                                            bytes32 r,
                                            bytes32 s
                                        ) internal view returns (bool success) {
                                            bytes4 selector = IERC1271.isValidSignature.selector;
                                            assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                                                let ptr := mload(0x40)
                                                mstore(ptr, selector)
                                                mstore(add(ptr, 0x04), hash)
                                                mstore(add(ptr, 0x24), 0x40)
                                                mstore(add(ptr, 0x44), 65)
                                                mstore(add(ptr, 0x64), r)
                                                mstore(add(ptr, 0x84), s)
                                                mstore8(add(ptr, 0xa4), v)
                                                if staticcall(gas(), signer, ptr, 0xa5, 0, 0x20) {
                                                    success := and(eq(selector, mload(0)), eq(returndatasize(), 0x20))
                                                }
                                            }
                                        }
                                        function isValidSignature(
                                            address signer,
                                            bytes32 hash,
                                            bytes32 r,
                                            bytes32 vs
                                        ) internal view returns (bool success) {
                                            // (bool success, bytes memory data) = signer.staticcall(abi.encodeWithSelector(IERC1271.isValidSignature.selector, hash, abi.encodePacked(r, vs)));
                                            // return success && data.length >= 4 && abi.decode(data, (bytes4)) == IERC1271.isValidSignature.selector;
                                            bytes4 selector = IERC1271.isValidSignature.selector;
                                            assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                                                let ptr := mload(0x40)
                                                mstore(ptr, selector)
                                                mstore(add(ptr, 0x04), hash)
                                                mstore(add(ptr, 0x24), 0x40)
                                                mstore(add(ptr, 0x44), 64)
                                                mstore(add(ptr, 0x64), r)
                                                mstore(add(ptr, 0x84), vs)
                                                if staticcall(gas(), signer, ptr, 0xa4, 0, 0x20) {
                                                    success := and(eq(selector, mload(0)), eq(returndatasize(), 0x20))
                                                }
                                            }
                                        }
                                        function isValidSignature65(
                                            address signer,
                                            bytes32 hash,
                                            bytes32 r,
                                            bytes32 vs
                                        ) internal view returns (bool success) {
                                            // (bool success, bytes memory data) = signer.staticcall(abi.encodeWithSelector(IERC1271.isValidSignature.selector, hash, abi.encodePacked(r, vs & ~uint256(1 << 255), uint8(vs >> 255))));
                                            // return success && data.length >= 4 && abi.decode(data, (bytes4)) == IERC1271.isValidSignature.selector;
                                            bytes4 selector = IERC1271.isValidSignature.selector;
                                            assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                                                let ptr := mload(0x40)
                                                mstore(ptr, selector)
                                                mstore(add(ptr, 0x04), hash)
                                                mstore(add(ptr, 0x24), 0x40)
                                                mstore(add(ptr, 0x44), 65)
                                                mstore(add(ptr, 0x64), r)
                                                mstore(add(ptr, 0x84), and(vs, _COMPACT_S_MASK))
                                                mstore8(add(ptr, 0xa4), add(27, shr(_COMPACT_V_SHIFT, vs)))
                                                if staticcall(gas(), signer, ptr, 0xa5, 0, 0x20) {
                                                    success := and(eq(selector, mload(0)), eq(returndatasize(), 0x20))
                                                }
                                            }
                                        }
                                        function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 res) {
                                            // 32 is the length in bytes of hash, enforced by the type signature above
                                            // return keccak256(abi.encodePacked("\\x19Ethereum Signed Message:\
                                    32", hash));
                                            assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                                                mstore(0, 0x19457468657265756d205369676e6564204d6573736167653a0a333200000000) // "\\x19Ethereum Signed Message:\
                                    32"
                                                mstore(28, hash)
                                                res := keccak256(0, 60)
                                            }
                                        }
                                        function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 res) {
                                            // return keccak256(abi.encodePacked("\\x19\\x01", domainSeparator, structHash));
                                            assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                                                let ptr := mload(0x40)
                                                mstore(ptr, 0x1901000000000000000000000000000000000000000000000000000000000000) // "\\x19\\x01"
                                                mstore(add(ptr, 0x02), domainSeparator)
                                                mstore(add(ptr, 0x22), structHash)
                                                res := keccak256(ptr, 66)
                                            }
                                        }
                                    }
                                    // File @1inch/limit-order-protocol-contract/contracts/OrderLib.sol@v4.0.0-prerelease-19
                                    /**
                                     * @title OrderLib
                                     * @dev The library provides common functionality for processing and manipulating limit orders.
                                     * It provides functionality to calculate and verify order hashes, calculate trade amounts, and validate
                                     * extension data associated with orders. The library also contains helper methods to get the receiver of
                                     * an order and call getter functions.
                                     */
                                     library OrderLib {
                                        using AddressLib for Address;
                                        using MakerTraitsLib for MakerTraits;
                                        using ExtensionLib for bytes;
                                        /// @dev Error to be thrown when the extension data of an order is missing.
                                        error MissingOrderExtension();
                                        /// @dev Error to be thrown when the order has an unexpected extension.
                                        error UnexpectedOrderExtension();
                                        /// @dev Error to be thrown when the order extension hash is invalid.
                                        error InvalidExtensionHash();
                                        /// @dev The typehash of the order struct.
                                        bytes32 constant internal _LIMIT_ORDER_TYPEHASH = keccak256(
                                            "Order("
                                                "uint256 salt,"
                                                "address maker,"
                                                "address receiver,"
                                                "address makerAsset,"
                                                "address takerAsset,"
                                                "uint256 makingAmount,"
                                                "uint256 takingAmount,"
                                                "uint256 makerTraits"
                                            ")"
                                        );
                                        uint256 constant internal _ORDER_STRUCT_SIZE = 0x100;
                                        uint256 constant internal _DATA_HASH_SIZE = 0x120;
                                        /**
                                          * @notice Calculates the hash of an order.
                                          * @param order The order to be hashed.
                                          * @param domainSeparator The domain separator to be used for the EIP-712 hashing.
                                          * @return result The keccak256 hash of the order data.
                                          */
                                        function hash(IOrderMixin.Order calldata order, bytes32 domainSeparator) internal pure returns(bytes32 result) {
                                            bytes32 typehash = _LIMIT_ORDER_TYPEHASH;
                                            assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                                                let ptr := mload(0x40)
                                                // keccak256(abi.encode(_LIMIT_ORDER_TYPEHASH, order));
                                                mstore(ptr, typehash)
                                                calldatacopy(add(ptr, 0x20), order, _ORDER_STRUCT_SIZE)
                                                result := keccak256(ptr, _DATA_HASH_SIZE)
                                            }
                                            result = ECDSA.toTypedDataHash(domainSeparator, result);
                                        }
                                        /**
                                          * @notice Returns the receiver address for an order.
                                          * @param order The order.
                                          * @return receiver The address of the receiver, either explicitly defined in the order or the maker's address if not specified.
                                          */
                                        function getReceiver(IOrderMixin.Order calldata order) internal pure returns(address /*receiver*/) {
                                            address receiver = order.receiver.get();
                                            return receiver != address(0) ? receiver : order.maker.get();
                                        }
                                        /**
                                          * @notice Calculates the making amount based on the requested taking amount.
                                          * @dev If getter is specified in the extension data, the getter is called to calculate the making amount,
                                          * otherwise the making amount is calculated linearly.
                                          * @param order The order.
                                          * @param extension The extension data associated with the order.
                                          * @param requestedTakingAmount The amount the taker wants to take.
                                          * @param remainingMakingAmount The remaining amount of the asset left to fill.
                                          * @param orderHash The hash of the order.
                                          * @return makingAmount The amount of the asset the maker receives.
                                          */
                                        function calculateMakingAmount(
                                            IOrderMixin.Order calldata order,
                                            bytes calldata extension,
                                            uint256 requestedTakingAmount,
                                            uint256 remainingMakingAmount,
                                            bytes32 orderHash
                                        ) internal view returns(uint256) {
                                            bytes calldata data = extension.makingAmountData();
                                            if (data.length == 0) {
                                                // Linear proportion
                                                return AmountCalculatorLib.getMakingAmount(order.makingAmount, order.takingAmount, requestedTakingAmount);
                                            }
                                            return IAmountGetter(address(bytes20(data))).getMakingAmount(
                                                order,
                                                extension,
                                                orderHash,
                                                msg.sender,
                                                requestedTakingAmount,
                                                remainingMakingAmount,
                                                data[20:]
                                            );
                                        }
                                        /**
                                          * @notice Calculates the taking amount based on the requested making amount.
                                          * @dev If getter is specified in the extension data, the getter is called to calculate the taking amount,
                                          * otherwise the taking amount is calculated linearly.
                                          * @param order The order.
                                          * @param extension The extension data associated with the order.
                                          * @param requestedMakingAmount The amount the maker wants to receive.
                                          * @param remainingMakingAmount The remaining amount of the asset left to be filled.
                                          * @param orderHash The hash of the order.
                                          * @return takingAmount The amount of the asset the taker takes.
                                          */
                                        function calculateTakingAmount(
                                            IOrderMixin.Order calldata order,
                                            bytes calldata extension,
                                            uint256 requestedMakingAmount,
                                            uint256 remainingMakingAmount,
                                            bytes32 orderHash
                                        ) internal view returns(uint256) {
                                            bytes calldata data = extension.takingAmountData();
                                            if (data.length == 0) {
                                                // Linear proportion
                                                return AmountCalculatorLib.getTakingAmount(order.makingAmount, order.takingAmount, requestedMakingAmount);
                                            }
                                            return IAmountGetter(address(bytes20(data))).getTakingAmount(
                                                order,
                                                extension,
                                                orderHash,
                                                msg.sender,
                                                requestedMakingAmount,
                                                remainingMakingAmount,
                                                data[20:]
                                            );
                                        }
                                        /**
                                          * @dev Validates the extension associated with an order.
                                          * @param order The order to validate against.
                                          * @param extension The extension associated with the order.
                                          * @return valid True if the extension is valid, false otherwise.
                                          * @return errorSelector The error selector if the extension is invalid, 0x00000000 otherwise.
                                          */
                                        function isValidExtension(IOrderMixin.Order calldata order, bytes calldata extension) internal pure returns(bool, bytes4) {
                                            if (order.makerTraits.hasExtension()) {
                                                if (extension.length == 0) return (false, MissingOrderExtension.selector);
                                                // Lowest 160 bits of the order salt must be equal to the lowest 160 bits of the extension hash
                                                if (uint256(keccak256(extension)) & type(uint160).max != order.salt & type(uint160).max) return (false, InvalidExtensionHash.selector);
                                            } else {
                                                if (extension.length > 0) return (false, UnexpectedOrderExtension.selector);
                                            }
                                            return (true, 0x00000000);
                                        }
                                    }
                                    // File @1inch/limit-order-protocol-contract/contracts/helpers/PredicateHelper.sol@v4.0.0-prerelease-19
                                    /// @title A helper contract for executing boolean functions on arbitrary target call results
                                    contract PredicateHelper {
                                        error ArbitraryStaticCallFailed();
                                        /// @notice Calls every target with corresponding data
                                        /// @return Result True if call to any target returned True. Otherwise, false
                                        function or(uint256 offsets, bytes calldata data) public view returns(bool) {
                                            uint256 previous;
                                            for (uint256 current; (current = uint32(offsets)) != 0; offsets >>= 32) {
                                                (bool success, uint256 res) = _staticcallForUint(address(this), data[previous:current]);
                                                if (success && res == 1) {
                                                    return true;
                                                }
                                                previous = current;
                                            }
                                            return false;
                                        }
                                        /// @notice Calls every target with corresponding data
                                        /// @return Result True if calls to all targets returned True. Otherwise, false
                                        function and(uint256 offsets, bytes calldata data) public view returns(bool) {
                                            uint256 previous;
                                            for (uint256 current; (current = uint32(offsets)) != 0; offsets >>= 32) {
                                                (bool success, uint256 res) = _staticcallForUint(address(this), data[previous:current]);
                                                if (!success || res != 1) {
                                                    return false;
                                                }
                                                previous = current;
                                            }
                                            return true;
                                        }
                                        /// @notice Calls target with specified data and tests if it's equal to 0
                                        /// @return Result True if call to target returns 0. Otherwise, false
                                        function not(bytes calldata data) public view returns(bool) {
                                            (bool success, uint256 res) = _staticcallForUint(address(this), data);
                                            return success && res == 0;
                                        }
                                        /// @notice Calls target with specified data and tests if it's equal to the value
                                        /// @param value Value to test
                                        /// @return Result True if call to target returns the same value as `value`. Otherwise, false
                                        function eq(uint256 value, bytes calldata data) public view returns(bool) {
                                            (bool success, uint256 res) = _staticcallForUint(address(this), data);
                                            return success && res == value;
                                        }
                                        /// @notice Calls target with specified data and tests if it's lower than value
                                        /// @param value Value to test
                                        /// @return Result True if call to target returns value which is lower than `value`. Otherwise, false
                                        function lt(uint256 value, bytes calldata data) public view returns(bool) {
                                            (bool success, uint256 res) = _staticcallForUint(address(this), data);
                                            return success && res < value;
                                        }
                                        /// @notice Calls target with specified data and tests if it's bigger than value
                                        /// @param value Value to test
                                        /// @return Result True if call to target returns value which is bigger than `value`. Otherwise, false
                                        function gt(uint256 value, bytes calldata data) public view returns(bool) {
                                            (bool success, uint256 res) = _staticcallForUint(address(this), data);
                                            return success && res > value;
                                        }
                                        /// @notice Performs an arbitrary call to target with data
                                        /// @return Result Bytes transmuted to uint256
                                        function arbitraryStaticCall(address target, bytes calldata data) public view returns(uint256) {
                                            (bool success, uint256 res) = _staticcallForUint(target, data);
                                            if (!success) revert ArbitraryStaticCallFailed();
                                            return res;
                                        }
                                        function _staticcallForUint(address target, bytes calldata data) internal view returns(bool success, uint256 res) {
                                            assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                                                let ptr := mload(0x40)
                                                calldatacopy(ptr, data.offset, data.length)
                                                success := staticcall(gas(), target, ptr, data.length, 0x0, 0x20)
                                                success := and(success, eq(returndatasize(), 32))
                                                if success {
                                                    res := mload(0)
                                                }
                                            }
                                        }
                                    }
                                    // File @1inch/limit-order-protocol-contract/contracts/helpers/SeriesEpochManager.sol@v4.0.0-prerelease-19
                                    /// @title A helper contract to manage nonce with the series
                                    contract SeriesEpochManager {
                                        error AdvanceEpochFailed();
                                        event EpochIncreased(address indexed maker, uint256 series, uint256 newEpoch);
                                        // {
                                        //    1: {
                                        //        '0x762f73Ad...842Ffa8': 0,
                                        //        '0xd20c41ee...32aaDe2': 1
                                        //    },
                                        //    2: {
                                        //        '0x762f73Ad...842Ffa8': 3,
                                        //        '0xd20c41ee...32aaDe2': 15
                                        //    },
                                        //    ...
                                        // }
                                        mapping(uint256 seriesId => uint256 epoch) private _epochs;
                                        /// @notice Returns nonce for `maker` and `series`
                                        function epoch(address maker, uint96 series) public view returns(uint256) {
                                            return _epochs[uint160(maker) | (uint256(series) << 160)];
                                        }
                                        /// @notice Advances nonce by one
                                        function increaseEpoch(uint96 series) external {
                                            advanceEpoch(series, 1);
                                        }
                                        /// @notice Advances nonce by specified amount
                                        function advanceEpoch(uint96 series, uint256 amount) public {
                                            if (amount == 0 || amount > 255) revert AdvanceEpochFailed();
                                            unchecked {
                                                uint256 key = uint160(msg.sender) | (uint256(series) << 160);
                                                uint256 newEpoch = _epochs[key] + amount;
                                                _epochs[key] = newEpoch;
                                                emit EpochIncreased(msg.sender, series, newEpoch);
                                            }
                                        }
                                        /// @notice Checks if `maker` has specified `makerEpoch` for `series`
                                        /// @return Result True if `maker` has specified epoch. Otherwise, false
                                        function epochEquals(address maker, uint256 series, uint256 makerEpoch) public view returns(bool) {
                                            return _epochs[uint160(maker) | (uint256(series) << 160)] == makerEpoch;
                                        }
                                    }
                                    // File @1inch/limit-order-protocol-contract/contracts/libraries/BitInvalidatorLib.sol@v4.0.0-prerelease-19
                                    /**
                                     * @title BitInvalidatorLib
                                     * @dev The library provides a mechanism to invalidate objects based on a bit invalidator.
                                     * The bit invalidator holds a mapping where each key represents a slot number and each value contains an integer.
                                     * Each bit of the integer represents whether the object with corresponding index is valid or has been invalidated (0 - valid, 1 - invalidated).
                                     * The nonce given to access or invalidate an entity's state follows this structure:
                                     * - bits [0..7] represent the object state index in the slot.
                                     * - bits [8..255] represent the slot number (mapping key).
                                     */
                                    library BitInvalidatorLib {
                                        /// @dev The error is thrown when an attempt is made to invalidate an already invalidated entity.
                                        error BitInvalidatedOrder();
                                        struct Data {
                                            mapping(uint256 slotIndex => uint256 slotData) _raw;
                                        }
                                        /**
                                         * @notice Retrieves the validity status of entities in a specific slot.
                                         * @dev Each bit in the returned value corresponds to the validity of an entity. 0 for valid, 1 for invalidated.
                                         * @param self The data structure.
                                         * @param nonce The nonce identifying the slot.
                                         * @return result The validity status of entities in the slot as a uint256.
                                         */
                                        function checkSlot(Data storage self, uint256 nonce) internal view returns(uint256) {
                                            uint256 invalidatorSlot = nonce >> 8;
                                            return self._raw[invalidatorSlot];
                                        }
                                        /**
                                         * @notice Checks the validity of a specific entity and invalidates it if valid.
                                         * @dev Throws an error if the entity has already been invalidated.
                                         * @param self The data structure.
                                         * @param nonce The nonce identifying the slot and the entity.
                                         */
                                        function checkAndInvalidate(Data storage self, uint256 nonce) internal {
                                            uint256 invalidatorSlot = nonce >> 8;
                                            uint256 invalidatorBit = 1 << (nonce & 0xff);
                                            uint256 invalidator = self._raw[invalidatorSlot];
                                            if (invalidator & invalidatorBit == invalidatorBit) revert BitInvalidatedOrder();
                                            self._raw[invalidatorSlot] = invalidator | invalidatorBit;
                                        }
                                        /**
                                         * @notice Invalidates multiple entities in a single slot.
                                         * @dev The entities to be invalidated are identified by setting their corresponding bits to 1 in a mask.
                                         * @param self The data structure.
                                         * @param nonce The nonce identifying the slot.
                                         * @param additionalMask A mask of bits to be invalidated.
                                         * @return result Resulting validity status of entities in the slot as a uint256.
                                         */
                                        function massInvalidate(Data storage self, uint256 nonce, uint256 additionalMask) internal returns(uint256 result) {
                                            uint256 invalidatorSlot = nonce >> 8;
                                            uint256 invalidatorBits = (1 << (nonce & 0xff)) | additionalMask;
                                            result = self._raw[invalidatorSlot] | invalidatorBits;
                                            self._raw[invalidatorSlot] = result;
                                        }
                                    }
                                    // File @1inch/limit-order-protocol-contract/contracts/libraries/Errors.sol@v4.0.0-prerelease-19
                                    library Errors {
                                        error InvalidMsgValue();
                                        error ETHTransferFailed();
                                    }
                                    // File @1inch/limit-order-protocol-contract/contracts/libraries/RemainingInvalidatorLib.sol@v4.0.0-prerelease-19
                                    type RemainingInvalidator is uint256;
                                    /**
                                     * @title RemainingInvalidatorLib
                                     * @notice The library provides a mechanism to invalidate order based on the remaining amount of the order.
                                     * @dev The remaining amount is used as a nonce to invalidate the order.
                                     * When order is created, the remaining invalidator is 0.
                                     * When order is filled, the remaining invalidator is the inverse of the remaining amount.
                                     */
                                    library RemainingInvalidatorLib {
                                        /// @dev The error is thrown when an attempt is made to invalidate an already invalidated entity.
                                        error RemainingInvalidatedOrder();
                                        /**
                                         * @notice Checks if an order is new based on the invalidator value.
                                         * @param invalidator The remaining invalidator of the order.
                                         * @return result Whether the order is new or not.
                                         */
                                        function isNewOrder(RemainingInvalidator invalidator) internal pure returns(bool) {
                                            return RemainingInvalidator.unwrap(invalidator) == 0;
                                        }
                                        /**
                                         * @notice Retrieves the remaining amount for an order.
                                         * @dev If the order is unknown, a RemainingInvalidatedOrder error is thrown.
                                         * @param invalidator The remaining invalidator for the order.
                                         * @return result The remaining amount for the order.
                                         */
                                        function remaining(RemainingInvalidator invalidator) internal pure returns(uint256) {
                                            uint256 value = RemainingInvalidator.unwrap(invalidator);
                                            if (value == 0) {
                                                revert RemainingInvalidatedOrder();
                                            }
                                            unchecked {
                                                return ~value;
                                            }
                                        }
                                        /**
                                         * @notice Calculates the remaining amount for an order.
                                         * @dev If the order is unknown, the order maker amount is returned.
                                         * @param invalidator The remaining invalidator for the order.
                                         * @param orderMakerAmount The amount to return if the order is new.
                                         * @return result The remaining amount for the order.
                                         */
                                        function remaining(RemainingInvalidator invalidator, uint256 orderMakerAmount) internal pure returns(uint256) {
                                            uint256 value = RemainingInvalidator.unwrap(invalidator);
                                            if (value == 0) {
                                                return orderMakerAmount;
                                            }
                                            unchecked {
                                                return ~value;
                                            }
                                        }
                                        /**
                                         * @notice Calculates the remaining invalidator of the order.
                                         * @param remainingMakingAmount The remaining making amount of the order.
                                         * @param makingAmount The making amount of the order.
                                         * @return result The remaining invalidator for the order.
                                         */
                                        function remains(uint256 remainingMakingAmount, uint256 makingAmount) internal pure returns(RemainingInvalidator) {
                                            unchecked {
                                                return RemainingInvalidator.wrap(~(remainingMakingAmount - makingAmount));
                                            }
                                        }
                                        /**
                                         * @notice Provides the remaining invalidator for a fully filled order.
                                         * @return result The remaining invalidator for a fully filled order.
                                         */
                                        function fullyFilled() internal pure returns(RemainingInvalidator) {
                                            return RemainingInvalidator.wrap(type(uint256).max);
                                        }
                                    }
                                    // File @openzeppelin/contracts/token/ERC20/IERC20.sol@v5.0.1
                                    // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
                                    /**
                                     * @dev Interface of the ERC20 standard as defined in the EIP.
                                     */
                                    interface IERC20 {
                                        /**
                                         * @dev Emitted when `value` tokens are moved from one account (`from`) to
                                         * another (`to`).
                                         *
                                         * Note that `value` may be zero.
                                         */
                                        event Transfer(address indexed from, address indexed to, uint256 value);
                                        /**
                                         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                                         * a call to {approve}. `value` is the new allowance.
                                         */
                                        event Approval(address indexed owner, address indexed spender, uint256 value);
                                        /**
                                         * @dev Returns the value of tokens in existence.
                                         */
                                        function totalSupply() external view returns (uint256);
                                        /**
                                         * @dev Returns the value of tokens owned by `account`.
                                         */
                                        function balanceOf(address account) external view returns (uint256);
                                        /**
                                         * @dev Moves a `value` amount of tokens from the caller's account to `to`.
                                         *
                                         * Returns a boolean value indicating whether the operation succeeded.
                                         *
                                         * Emits a {Transfer} event.
                                         */
                                        function transfer(address to, uint256 value) external returns (bool);
                                        /**
                                         * @dev Returns the remaining number of tokens that `spender` will be
                                         * allowed to spend on behalf of `owner` through {transferFrom}. This is
                                         * zero by default.
                                         *
                                         * This value changes when {approve} or {transferFrom} are called.
                                         */
                                        function allowance(address owner, address spender) external view returns (uint256);
                                        /**
                                         * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
                                         * caller's tokens.
                                         *
                                         * Returns a boolean value indicating whether the operation succeeded.
                                         *
                                         * IMPORTANT: Beware that changing an allowance with this method brings the risk
                                         * that someone may use both the old and the new allowance by unfortunate
                                         * transaction ordering. One possible solution to mitigate this race
                                         * condition is to first reduce the spender's allowance to 0 and set the
                                         * desired value afterwards:
                                         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                                         *
                                         * Emits an {Approval} event.
                                         */
                                        function approve(address spender, uint256 value) external returns (bool);
                                        /**
                                         * @dev Moves a `value` amount of tokens from `from` to `to` using the
                                         * allowance mechanism. `value` is then deducted from the caller's
                                         * allowance.
                                         *
                                         * Returns a boolean value indicating whether the operation succeeded.
                                         *
                                         * Emits a {Transfer} event.
                                         */
                                        function transferFrom(address from, address to, uint256 value) external returns (bool);
                                    }
                                    // File @1inch/solidity-utils/contracts/interfaces/IWETH.sol@v3.7.1
                                    interface IWETH is IERC20 {
                                        event Deposit(address indexed dst, uint256 wad);
                                        event Withdrawal(address indexed src, uint256 wad);
                                        function deposit() external payable;
                                        function withdraw(uint256 amount) external;
                                    }
                                    // File @1inch/solidity-utils/contracts/interfaces/IDaiLikePermit.sol@v3.7.1
                                    interface IDaiLikePermit {
                                        function permit(
                                            address holder,
                                            address spender,
                                            uint256 nonce,
                                            uint256 expiry,
                                            bool allowed,
                                            uint8 v,
                                            bytes32 r,
                                            bytes32 s
                                        ) external;
                                    }
                                    // File @1inch/solidity-utils/contracts/interfaces/IPermit2.sol@v3.7.1
                                    interface IPermit2 {
                                        struct PermitDetails {
                                            // ERC20 token address
                                            address token;
                                            // the maximum amount allowed to spend
                                            uint160 amount;
                                            // timestamp at which a spender's token allowances become invalid
                                            uint48 expiration;
                                            // an incrementing value indexed per owner,token,and spender for each signature
                                            uint48 nonce;
                                        }
                                        /// @notice The permit message signed for a single token allownce
                                        struct PermitSingle {
                                            // the permit data for a single token alownce
                                            PermitDetails details;
                                            // address permissioned on the allowed tokens
                                            address spender;
                                            // deadline on the permit signature
                                            uint256 sigDeadline;
                                        }
                                        /// @notice Packed allowance
                                        struct PackedAllowance {
                                            // amount allowed
                                            uint160 amount;
                                            // permission expiry
                                            uint48 expiration;
                                            // an incrementing value indexed per owner,token,and spender for each signature
                                            uint48 nonce;
                                        }
                                        function transferFrom(address user, address spender, uint160 amount, address token) external;
                                        function permit(address owner, PermitSingle memory permitSingle, bytes calldata signature) external;
                                        function allowance(address user, address token, address spender) external view returns (PackedAllowance memory);
                                    }
                                    // File @1inch/solidity-utils/contracts/libraries/RevertReasonForwarder.sol@v3.7.1
                                    /// @title Revert reason forwarder.
                                    library RevertReasonForwarder {
                                        /// @dev Forwards latest externall call revert.
                                        function reRevert() internal pure {
                                            // bubble up revert reason from latest external call
                                            assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                                                let ptr := mload(0x40)
                                                returndatacopy(ptr, 0, returndatasize())
                                                revert(ptr, returndatasize())
                                            }
                                        }
                                        /// @dev Returns latest external call revert reason.
                                        function reReason() internal pure returns (bytes memory reason) {
                                            assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                                                reason := mload(0x40)
                                                let length := returndatasize()
                                                mstore(reason, length)
                                                returndatacopy(add(reason, 0x20), 0, length)
                                                mstore(0x40, add(reason, add(0x20, length)))
                                            }
                                        }
                                    }
                                    // File @openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol@v5.0.1
                                    // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
                                    /**
                                     * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
                                     * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
                                     *
                                     * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
                                     * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
                                     * need to send a transaction, and thus is not required to hold Ether at all.
                                     *
                                     * ==== Security Considerations
                                     *
                                     * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
                                     * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
                                     * considered as an intention to spend the allowance in any specific way. The second is that because permits have
                                     * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
                                     * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
                                     * generally recommended is:
                                     *
                                     * ```solidity
                                     * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
                                     *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
                                     *     doThing(..., value);
                                     * }
                                     *
                                     * function doThing(..., uint256 value) public {
                                     *     token.safeTransferFrom(msg.sender, address(this), value);
                                     *     ...
                                     * }
                                     * ```
                                     *
                                     * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
                                     * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
                                     * {SafeERC20-safeTransferFrom}).
                                     *
                                     * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
                                     * contracts should have entry points that don't rely on permit.
                                     */
                                    interface IERC20Permit {
                                        /**
                                         * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
                                         * given ``owner``'s signed approval.
                                         *
                                         * IMPORTANT: The same issues {IERC20-approve} has related to transaction
                                         * ordering also apply here.
                                         *
                                         * Emits an {Approval} event.
                                         *
                                         * Requirements:
                                         *
                                         * - `spender` cannot be the zero address.
                                         * - `deadline` must be a timestamp in the future.
                                         * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
                                         * over the EIP712-formatted function arguments.
                                         * - the signature must use ``owner``'s current nonce (see {nonces}).
                                         *
                                         * For more information on the signature format, see the
                                         * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
                                         * section].
                                         *
                                         * CAUTION: See Security Considerations above.
                                         */
                                        function permit(
                                            address owner,
                                            address spender,
                                            uint256 value,
                                            uint256 deadline,
                                            uint8 v,
                                            bytes32 r,
                                            bytes32 s
                                        ) external;
                                        /**
                                         * @dev Returns the current nonce for `owner`. This value must be
                                         * included whenever a signature is generated for {permit}.
                                         *
                                         * Every successful call to {permit} increases ``owner``'s nonce by one. This
                                         * prevents a signature from being used multiple times.
                                         */
                                        function nonces(address owner) external view returns (uint256);
                                        /**
                                         * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
                                         */
                                        // solhint-disable-next-line func-name-mixedcase
                                        function DOMAIN_SEPARATOR() external view returns (bytes32);
                                    }
                                    // File @1inch/solidity-utils/contracts/libraries/SafeERC20.sol@v3.7.1
                                    /**
                                     * @title Implements efficient safe methods for ERC20 interface.
                                     * @notice Compared to the standard ERC20, this implementation offers several enhancements:
                                     * 1. more gas-efficient, providing significant savings in transaction costs.
                                     * 2. support for different permit implementations
                                     * 3. forceApprove functionality
                                     * 4. support for WETH deposit and withdraw
                                     */
                                    library SafeERC20 {
                                        error SafeTransferFailed();
                                        error SafeTransferFromFailed();
                                        error ForceApproveFailed();
                                        error SafeIncreaseAllowanceFailed();
                                        error SafeDecreaseAllowanceFailed();
                                        error SafePermitBadLength();
                                        error Permit2TransferAmountTooHigh();
                                        // Uniswap Permit2 address
                                        address private constant _PERMIT2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3;
                                        bytes4 private constant _PERMIT_LENGTH_ERROR = 0x68275857;  // SafePermitBadLength.selector
                                        uint256 private constant _RAW_CALL_GAS_LIMIT = 5000;
                                        /**
                                         * @notice Fetches the balance of a specific ERC20 token held by an account.
                                         * Consumes less gas then regular `ERC20.balanceOf`.
                                         * @dev Note that the implementation does not perform dirty bits cleaning, so it is the
                                         * responsibility of the caller to make sure that the higher 96 bits of the `account` parameter are clean.
                                         * @param token The IERC20 token contract for which the balance will be fetched.
                                         * @param account The address of the account whose token balance will be fetched.
                                         * @return tokenBalance The balance of the specified ERC20 token held by the account.
                                         */
                                        function safeBalanceOf(
                                            IERC20 token,
                                            address account
                                        ) internal view returns(uint256 tokenBalance) {
                                            bytes4 selector = IERC20.balanceOf.selector;
                                            assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                                                mstore(0x00, selector)
                                                mstore(0x04, account)
                                                let success := staticcall(gas(), token, 0x00, 0x24, 0x00, 0x20)
                                                tokenBalance := mload(0)
                                                if or(iszero(success), lt(returndatasize(), 0x20)) {
                                                    let ptr := mload(0x40)
                                                    returndatacopy(ptr, 0, returndatasize())
                                                    revert(ptr, returndatasize())
                                                }
                                            }
                                        }
                                        /**
                                         * @notice Attempts to safely transfer tokens from one address to another.
                                         * @dev If permit2 is true, uses the Permit2 standard; otherwise uses the standard ERC20 transferFrom.
                                         * Either requires `true` in return data, or requires target to be smart-contract and empty return data.
                                         * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
                                         * the caller to make sure that the higher 96 bits of the `from` and `to` parameters are clean.
                                         * @param token The IERC20 token contract from which the tokens will be transferred.
                                         * @param from The address from which the tokens will be transferred.
                                         * @param to The address to which the tokens will be transferred.
                                         * @param amount The amount of tokens to transfer.
                                         * @param permit2 If true, uses the Permit2 standard for the transfer; otherwise uses the standard ERC20 transferFrom.
                                         */
                                        function safeTransferFromUniversal(
                                            IERC20 token,
                                            address from,
                                            address to,
                                            uint256 amount,
                                            bool permit2
                                        ) internal {
                                            if (permit2) {
                                                safeTransferFromPermit2(token, from, to, amount);
                                            } else {
                                                safeTransferFrom(token, from, to, amount);
                                            }
                                        }
                                        /**
                                         * @notice Attempts to safely transfer tokens from one address to another using the ERC20 standard.
                                         * @dev Either requires `true` in return data, or requires target to be smart-contract and empty return data.
                                         * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
                                         * the caller to make sure that the higher 96 bits of the `from` and `to` parameters are clean.
                                         * @param token The IERC20 token contract from which the tokens will be transferred.
                                         * @param from The address from which the tokens will be transferred.
                                         * @param to The address to which the tokens will be transferred.
                                         * @param amount The amount of tokens to transfer.
                                         */
                                        function safeTransferFrom(
                                            IERC20 token,
                                            address from,
                                            address to,
                                            uint256 amount
                                        ) internal {
                                            bytes4 selector = token.transferFrom.selector;
                                            bool success;
                                            assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                                                let data := mload(0x40)
                                                mstore(data, selector)
                                                mstore(add(data, 0x04), from)
                                                mstore(add(data, 0x24), to)
                                                mstore(add(data, 0x44), amount)
                                                success := call(gas(), token, 0, data, 100, 0x0, 0x20)
                                                if success {
                                                    switch returndatasize()
                                                    case 0 {
                                                        success := gt(extcodesize(token), 0)
                                                    }
                                                    default {
                                                        success := and(gt(returndatasize(), 31), eq(mload(0), 1))
                                                    }
                                                }
                                            }
                                            if (!success) revert SafeTransferFromFailed();
                                        }
                                        /**
                                         * @notice Attempts to safely transfer tokens from one address to another using the Permit2 standard.
                                         * @dev Either requires `true` in return data, or requires target to be smart-contract and empty return data.
                                         * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
                                         * the caller to make sure that the higher 96 bits of the `from` and `to` parameters are clean.
                                         * @param token The IERC20 token contract from which the tokens will be transferred.
                                         * @param from The address from which the tokens will be transferred.
                                         * @param to The address to which the tokens will be transferred.
                                         * @param amount The amount of tokens to transfer.
                                         */
                                        function safeTransferFromPermit2(
                                            IERC20 token,
                                            address from,
                                            address to,
                                            uint256 amount
                                        ) internal {
                                            if (amount > type(uint160).max) revert Permit2TransferAmountTooHigh();
                                            bytes4 selector = IPermit2.transferFrom.selector;
                                            bool success;
                                            assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                                                let data := mload(0x40)
                                                mstore(data, selector)
                                                mstore(add(data, 0x04), from)
                                                mstore(add(data, 0x24), to)
                                                mstore(add(data, 0x44), amount)
                                                mstore(add(data, 0x64), token)
                                                success := call(gas(), _PERMIT2, 0, data, 0x84, 0x0, 0x0)
                                                if success {
                                                    success := gt(extcodesize(_PERMIT2), 0)
                                                }
                                            }
                                            if (!success) revert SafeTransferFromFailed();
                                        }
                                        /**
                                         * @notice Attempts to safely transfer tokens to another address.
                                         * @dev Either requires `true` in return data, or requires target to be smart-contract and empty return data.
                                         * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
                                         * the caller to make sure that the higher 96 bits of the `to` parameter are clean.
                                         * @param token The IERC20 token contract from which the tokens will be transferred.
                                         * @param to The address to which the tokens will be transferred.
                                         * @param value The amount of tokens to transfer.
                                         */
                                        function safeTransfer(
                                            IERC20 token,
                                            address to,
                                            uint256 value
                                        ) internal {
                                            if (!_makeCall(token, token.transfer.selector, to, value)) {
                                                revert SafeTransferFailed();
                                            }
                                        }
                                        /**
                                         * @notice Attempts to approve a spender to spend a certain amount of tokens.
                                         * @dev If `approve(from, to, amount)` fails, it tries to set the allowance to zero, and retries the `approve` call.
                                         * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
                                         * the caller to make sure that the higher 96 bits of the `spender` parameter are clean.
                                         * @param token The IERC20 token contract on which the call will be made.
                                         * @param spender The address which will spend the funds.
                                         * @param value The amount of tokens to be spent.
                                         */
                                        function forceApprove(
                                            IERC20 token,
                                            address spender,
                                            uint256 value
                                        ) internal {
                                            if (!_makeCall(token, token.approve.selector, spender, value)) {
                                                if (
                                                    !_makeCall(token, token.approve.selector, spender, 0) ||
                                                    !_makeCall(token, token.approve.selector, spender, value)
                                                ) {
                                                    revert ForceApproveFailed();
                                                }
                                            }
                                        }
                                        /**
                                         * @notice Safely increases the allowance of a spender.
                                         * @dev Increases with safe math check. Checks if the increased allowance will overflow, if yes, then it reverts the transaction.
                                         * Then uses `forceApprove` to increase the allowance.
                                         * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
                                         * the caller to make sure that the higher 96 bits of the `spender` parameter are clean.
                                         * @param token The IERC20 token contract on which the call will be made.
                                         * @param spender The address which will spend the funds.
                                         * @param value The amount of tokens to increase the allowance by.
                                         */
                                        function safeIncreaseAllowance(
                                            IERC20 token,
                                            address spender,
                                            uint256 value
                                        ) internal {
                                            uint256 allowance = token.allowance(address(this), spender);
                                            if (value > type(uint256).max - allowance) revert SafeIncreaseAllowanceFailed();
                                            forceApprove(token, spender, allowance + value);
                                        }
                                        /**
                                         * @notice Safely decreases the allowance of a spender.
                                         * @dev Decreases with safe math check. Checks if the decreased allowance will underflow, if yes, then it reverts the transaction.
                                         * Then uses `forceApprove` to increase the allowance.
                                         * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
                                         * the caller to make sure that the higher 96 bits of the `spender` parameter are clean.
                                         * @param token The IERC20 token contract on which the call will be made.
                                         * @param spender The address which will spend the funds.
                                         * @param value The amount of tokens to decrease the allowance by.
                                         */
                                        function safeDecreaseAllowance(
                                            IERC20 token,
                                            address spender,
                                            uint256 value
                                        ) internal {
                                            uint256 allowance = token.allowance(address(this), spender);
                                            if (value > allowance) revert SafeDecreaseAllowanceFailed();
                                            forceApprove(token, spender, allowance - value);
                                        }
                                        /**
                                         * @notice Attempts to execute the `permit` function on the provided token with the sender and contract as parameters.
                                         * Permit type is determined automatically based on permit calldata (IERC20Permit, IDaiLikePermit, and IPermit2).
                                         * @dev Wraps `tryPermit` function and forwards revert reason if permit fails.
                                         * @param token The IERC20 token to execute the permit function on.
                                         * @param permit The permit data to be used in the function call.
                                         */
                                        function safePermit(IERC20 token, bytes calldata permit) internal {
                                            if (!tryPermit(token, msg.sender, address(this), permit)) RevertReasonForwarder.reRevert();
                                        }
                                        /**
                                         * @notice Attempts to execute the `permit` function on the provided token with custom owner and spender parameters.
                                         * Permit type is determined automatically based on permit calldata (IERC20Permit, IDaiLikePermit, and IPermit2).
                                         * @dev Wraps `tryPermit` function and forwards revert reason if permit fails.
                                         * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
                                         * the caller to make sure that the higher 96 bits of the `owner` and `spender` parameters are clean.
                                         * @param token The IERC20 token to execute the permit function on.
                                         * @param owner The owner of the tokens for which the permit is made.
                                         * @param spender The spender allowed to spend the tokens by the permit.
                                         * @param permit The permit data to be used in the function call.
                                         */
                                        function safePermit(IERC20 token, address owner, address spender, bytes calldata permit) internal {
                                            if (!tryPermit(token, owner, spender, permit)) RevertReasonForwarder.reRevert();
                                        }
                                        /**
                                         * @notice Attempts to execute the `permit` function on the provided token with the sender and contract as parameters.
                                         * @dev Invokes `tryPermit` with sender as owner and contract as spender.
                                         * @param token The IERC20 token to execute the permit function on.
                                         * @param permit The permit data to be used in the function call.
                                         * @return success Returns true if the permit function was successfully executed, false otherwise.
                                         */
                                        function tryPermit(IERC20 token, bytes calldata permit) internal returns(bool success) {
                                            return tryPermit(token, msg.sender, address(this), permit);
                                        }
                                        /**
                                         * @notice The function attempts to call the permit function on a given ERC20 token.
                                         * @dev The function is designed to support a variety of permit functions, namely: IERC20Permit, IDaiLikePermit, and IPermit2.
                                         * It accommodates both Compact and Full formats of these permit types.
                                         * Please note, it is expected that the `expiration` parameter for the compact Permit2 and the `deadline` parameter
                                         * for the compact Permit are to be incremented by one before invoking this function. This approach is motivated by
                                         * gas efficiency considerations; as the unlimited expiration period is likely to be the most common scenario, and
                                         * zeros are cheaper to pass in terms of gas cost. Thus, callers should increment the expiration or deadline by one
                                         * before invocation for optimized performance.
                                         * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
                                         * the caller to make sure that the higher 96 bits of the `owner` and `spender` parameters are clean.
                                         * @param token The address of the ERC20 token on which to call the permit function.
                                         * @param owner The owner of the tokens. This address should have signed the off-chain permit.
                                         * @param spender The address which will be approved for transfer of tokens.
                                         * @param permit The off-chain permit data, containing different fields depending on the type of permit function.
                                         * @return success A boolean indicating whether the permit call was successful.
                                         */
                                        function tryPermit(IERC20 token, address owner, address spender, bytes calldata permit) internal returns(bool success) {
                                            // load function selectors for different permit standards
                                            bytes4 permitSelector = IERC20Permit.permit.selector;
                                            bytes4 daiPermitSelector = IDaiLikePermit.permit.selector;
                                            bytes4 permit2Selector = IPermit2.permit.selector;
                                            assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                                                let ptr := mload(0x40)
                                                // Switch case for different permit lengths, indicating different permit standards
                                                switch permit.length
                                                // Compact IERC20Permit
                                                case 100 {
                                                    mstore(ptr, permitSelector)     // store selector
                                                    mstore(add(ptr, 0x04), owner)   // store owner
                                                    mstore(add(ptr, 0x24), spender) // store spender
                                                    // Compact IERC20Permit.permit(uint256 value, uint32 deadline, uint256 r, uint256 vs)
                                                    {  // stack too deep
                                                        let deadline := shr(224, calldataload(add(permit.offset, 0x20))) // loads permit.offset 0x20..0x23
                                                        let vs := calldataload(add(permit.offset, 0x44))                 // loads permit.offset 0x44..0x63
                                                        calldatacopy(add(ptr, 0x44), permit.offset, 0x20)            // store value     = copy permit.offset 0x00..0x19
                                                        mstore(add(ptr, 0x64), sub(deadline, 1))                     // store deadline  = deadline - 1
                                                        mstore(add(ptr, 0x84), add(27, shr(255, vs)))                // store v         = most significant bit of vs + 27 (27 or 28)
                                                        calldatacopy(add(ptr, 0xa4), add(permit.offset, 0x24), 0x20) // store r         = copy permit.offset 0x24..0x43
                                                        mstore(add(ptr, 0xc4), shr(1, shl(1, vs)))                   // store s         = vs without most significant bit
                                                    }
                                                    // IERC20Permit.permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s)
                                                    success := call(gas(), token, 0, ptr, 0xe4, 0, 0)
                                                }
                                                // Compact IDaiLikePermit
                                                case 72 {
                                                    mstore(ptr, daiPermitSelector)  // store selector
                                                    mstore(add(ptr, 0x04), owner)   // store owner
                                                    mstore(add(ptr, 0x24), spender) // store spender
                                                    // Compact IDaiLikePermit.permit(uint32 nonce, uint32 expiry, uint256 r, uint256 vs)
                                                    {  // stack too deep
                                                        let expiry := shr(224, calldataload(add(permit.offset, 0x04))) // loads permit.offset 0x04..0x07
                                                        let vs := calldataload(add(permit.offset, 0x28))               // loads permit.offset 0x28..0x47
                                                        mstore(add(ptr, 0x44), shr(224, calldataload(permit.offset))) // store nonce   = copy permit.offset 0x00..0x03
                                                        mstore(add(ptr, 0x64), sub(expiry, 1))                        // store expiry  = expiry - 1
                                                        mstore(add(ptr, 0x84), true)                                  // store allowed = true
                                                        mstore(add(ptr, 0xa4), add(27, shr(255, vs)))                 // store v       = most significant bit of vs + 27 (27 or 28)
                                                        calldatacopy(add(ptr, 0xc4), add(permit.offset, 0x08), 0x20)  // store r       = copy permit.offset 0x08..0x27
                                                        mstore(add(ptr, 0xe4), shr(1, shl(1, vs)))                    // store s       = vs without most significant bit
                                                    }
                                                    // IDaiLikePermit.permit(address holder, address spender, uint256 nonce, uint256 expiry, bool allowed, uint8 v, bytes32 r, bytes32 s)
                                                    success := call(gas(), token, 0, ptr, 0x104, 0, 0)
                                                }
                                                // IERC20Permit
                                                case 224 {
                                                    mstore(ptr, permitSelector)
                                                    calldatacopy(add(ptr, 0x04), permit.offset, permit.length) // copy permit calldata
                                                    // IERC20Permit.permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s)
                                                    success := call(gas(), token, 0, ptr, 0xe4, 0, 0)
                                                }
                                                // IDaiLikePermit
                                                case 256 {
                                                    mstore(ptr, daiPermitSelector)
                                                    calldatacopy(add(ptr, 0x04), permit.offset, permit.length) // copy permit calldata
                                                    // IDaiLikePermit.permit(address holder, address spender, uint256 nonce, uint256 expiry, bool allowed, uint8 v, bytes32 r, bytes32 s)
                                                    success := call(gas(), token, 0, ptr, 0x104, 0, 0)
                                                }
                                                // Compact IPermit2
                                                case 96 {
                                                    // Compact IPermit2.permit(uint160 amount, uint32 expiration, uint32 nonce, uint32 sigDeadline, uint256 r, uint256 vs)
                                                    mstore(ptr, permit2Selector)  // store selector
                                                    mstore(add(ptr, 0x04), owner) // store owner
                                                    mstore(add(ptr, 0x24), token) // store token
                                                    calldatacopy(add(ptr, 0x50), permit.offset, 0x14)             // store amount = copy permit.offset 0x00..0x13
                                                    // and(0xffffffffffff, ...) - conversion to uint48
                                                    mstore(add(ptr, 0x64), and(0xffffffffffff, sub(shr(224, calldataload(add(permit.offset, 0x14))), 1))) // store expiration = ((permit.offset 0x14..0x17 - 1) & 0xffffffffffff)
                                                    mstore(add(ptr, 0x84), shr(224, calldataload(add(permit.offset, 0x18)))) // store nonce = copy permit.offset 0x18..0x1b
                                                    mstore(add(ptr, 0xa4), spender)                               // store spender
                                                    // and(0xffffffffffff, ...) - conversion to uint48
                                                    mstore(add(ptr, 0xc4), and(0xffffffffffff, sub(shr(224, calldataload(add(permit.offset, 0x1c))), 1))) // store sigDeadline = ((permit.offset 0x1c..0x1f - 1) & 0xffffffffffff)
                                                    mstore(add(ptr, 0xe4), 0x100)                                 // store offset = 256
                                                    mstore(add(ptr, 0x104), 0x40)                                 // store length = 64
                                                    calldatacopy(add(ptr, 0x124), add(permit.offset, 0x20), 0x20) // store r      = copy permit.offset 0x20..0x3f
                                                    calldatacopy(add(ptr, 0x144), add(permit.offset, 0x40), 0x20) // store vs     = copy permit.offset 0x40..0x5f
                                                    // IPermit2.permit(address owner, PermitSingle calldata permitSingle, bytes calldata signature)
                                                    success := call(gas(), _PERMIT2, 0, ptr, 0x164, 0, 0)
                                                }
                                                // IPermit2
                                                case 352 {
                                                    mstore(ptr, permit2Selector)
                                                    calldatacopy(add(ptr, 0x04), permit.offset, permit.length) // copy permit calldata
                                                    // IPermit2.permit(address owner, PermitSingle calldata permitSingle, bytes calldata signature)
                                                    success := call(gas(), _PERMIT2, 0, ptr, 0x164, 0, 0)
                                                }
                                                // Unknown
                                                default {
                                                    mstore(ptr, _PERMIT_LENGTH_ERROR)
                                                    revert(ptr, 4)
                                                }
                                            }
                                        }
                                        /**
                                         * @dev Executes a low level call to a token contract, making it resistant to reversion and erroneous boolean returns.
                                         * @param token The IERC20 token contract on which the call will be made.
                                         * @param selector The function signature that is to be called on the token contract.
                                         * @param to The address to which the token amount will be transferred.
                                         * @param amount The token amount to be transferred.
                                         * @return success A boolean indicating if the call was successful. Returns 'true' on success and 'false' on failure.
                                         * In case of success but no returned data, validates that the contract code exists.
                                         * In case of returned data, ensures that it's a boolean `true`.
                                         */
                                        function _makeCall(
                                            IERC20 token,
                                            bytes4 selector,
                                            address to,
                                            uint256 amount
                                        ) private returns (bool success) {
                                            assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                                                let data := mload(0x40)
                                                mstore(data, selector)
                                                mstore(add(data, 0x04), to)
                                                mstore(add(data, 0x24), amount)
                                                success := call(gas(), token, 0, data, 0x44, 0x0, 0x20)
                                                if success {
                                                    switch returndatasize()
                                                    case 0 {
                                                        success := gt(extcodesize(token), 0)
                                                    }
                                                    default {
                                                        success := and(gt(returndatasize(), 31), eq(mload(0), 1))
                                                    }
                                                }
                                            }
                                        }
                                        /**
                                         * @notice Safely deposits a specified amount of Ether into the IWETH contract. Consumes less gas then regular `IWETH.deposit`.
                                         * @param weth The IWETH token contract.
                                         * @param amount The amount of Ether to deposit into the IWETH contract.
                                         */
                                        function safeDeposit(IWETH weth, uint256 amount) internal {
                                            if (amount > 0) {
                                                bytes4 selector = IWETH.deposit.selector;
                                                assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                                                    mstore(0, selector)
                                                    if iszero(call(gas(), weth, amount, 0, 4, 0, 0)) {
                                                        let ptr := mload(0x40)
                                                        returndatacopy(ptr, 0, returndatasize())
                                                        revert(ptr, returndatasize())
                                                    }
                                                }
                                            }
                                        }
                                        /**
                                         * @notice Safely withdraws a specified amount of wrapped Ether from the IWETH contract. Consumes less gas then regular `IWETH.withdraw`.
                                         * @dev Uses inline assembly to interact with the IWETH contract.
                                         * @param weth The IWETH token contract.
                                         * @param amount The amount of wrapped Ether to withdraw from the IWETH contract.
                                         */
                                        function safeWithdraw(IWETH weth, uint256 amount) internal {
                                            bytes4 selector = IWETH.withdraw.selector;
                                            assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
                                                mstore(0, selector)
                                                mstore(4, amount)
                                                if iszero(call(gas(), weth, 0, 0, 0x24, 0, 0)) {
                                                    let ptr := mload(0x40)
                                                    returndatacopy(ptr, 0, returndatasize())
                                                    revert(ptr, returndatasize())
                                                }
                                            }
                                        }
                                        /**
                                         * @notice Safely withdraws a specified amount of wrapped Ether from the IWETH contract to a specified recipient.
                                         * Consumes less gas then regular `IWETH.withdraw`.
                                         * @param weth The IWETH token contract.
                                         * @param amount The amount of wrapped Ether to withdraw from the IWETH contract.
                                         * @param to The recipient of the withdrawn Ether.
                                         */
                                        function safeWithdrawTo(IWETH weth, uint256 amount, address to) internal {
                                            safeWithdraw(weth, amount);
                                            if (to != address(this)) {
                                                assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
                                                    if iszero(call(_RAW_CALL_GAS_LIMIT, to, amount, 0, 0, 0, 0)) {
                                                        let ptr := mload(0x40)
                                                        returndatacopy(ptr, 0, returndatasize())
                                                        revert(ptr, returndatasize())
                                                    }
                                                }
                                            }
                                        }
                                    }
                                    // File @1inch/solidity-utils/contracts/EthReceiver.sol@v3.7.1
                                    abstract contract EthReceiver {
                                        error EthDepositRejected();
                                        receive() external payable {
                                            _receive();
                                        }
                                        function _receive() internal virtual {
                                            // solhint-disable-next-line avoid-tx-origin
                                            if (msg.sender == tx.origin) revert EthDepositRejected();
                                        }
                                    }
                                    // File @1inch/solidity-utils/contracts/OnlyWethReceiver.sol@v3.7.1
                                    abstract contract OnlyWethReceiver is EthReceiver {
                                        address private immutable _WETH; // solhint-disable-line var-name-mixedcase
                                        constructor(address weth) {
                                            _WETH = address(weth);
                                        }
                                        function _receive() internal virtual override {
                                            if (msg.sender != _WETH) revert EthDepositRejected();
                                        }
                                    }
                                    // File @1inch/solidity-utils/contracts/PermitAndCall.sol@v3.7.1
                                    abstract contract PermitAndCall {
                                        using SafeERC20 for IERC20;
                                        function permitAndCall(bytes calldata permit, bytes calldata action) external payable {
                                            IERC20(address(bytes20(permit))).tryPermit(permit[20:]);
                                            // solhint-disable-next-line no-inline-assembly
                                            assembly ("memory-safe") {
                                                let ptr := mload(0x40)
                                                calldatacopy(ptr, action.offset, action.length)
                                                let success := delegatecall(gas(), address(), ptr, action.length, 0, 0)
                                                returndatacopy(ptr, 0, returndatasize())
                                                switch success
                                                case 0 {
                                                    revert(ptr, returndatasize())
                                                }
                                                default {
                                                    return(ptr, returndatasize())
                                                }
                                            }
                                        }
                                    }
                                    // File @openzeppelin/contracts/interfaces/IERC5267.sol@v5.0.1
                                    // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)
                                    interface IERC5267 {
                                        /**
                                         * @dev MAY be emitted to signal that the domain could have changed.
                                         */
                                        event EIP712DomainChanged();
                                        /**
                                         * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
                                         * signature.
                                         */
                                        function eip712Domain()
                                            external
                                            view
                                            returns (
                                                bytes1 fields,
                                                string memory name,
                                                string memory version,
                                                uint256 chainId,
                                                address verifyingContract,
                                                bytes32 salt,
                                                uint256[] memory extensions
                                            );
                                    }
                                    // File @openzeppelin/contracts/utils/math/Math.sol@v5.0.1
                                    // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
                                    /**
                                     * @dev Standard math utilities missing in the Solidity language.
                                     */
                                    library Math {
                                        /**
                                         * @dev Muldiv operation overflow.
                                         */
                                        error MathOverflowedMulDiv();
                                        enum Rounding {
                                            Floor, // Toward negative infinity
                                            Ceil, // Toward positive infinity
                                            Trunc, // Toward zero
                                            Expand // Away from zero
                                        }
                                        /**
                                         * @dev Returns the addition of two unsigned integers, with an overflow flag.
                                         */
                                        function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                                            unchecked {
                                                uint256 c = a + b;
                                                if (c < a) return (false, 0);
                                                return (true, c);
                                            }
                                        }
                                        /**
                                         * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
                                         */
                                        function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                                            unchecked {
                                                if (b > a) return (false, 0);
                                                return (true, a - b);
                                            }
                                        }
                                        /**
                                         * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
                                         */
                                        function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                                            unchecked {
                                                // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                                                // benefit is lost if 'b' is also tested.
                                                // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                                                if (a == 0) return (true, 0);
                                                uint256 c = a * b;
                                                if (c / a != b) return (false, 0);
                                                return (true, c);
                                            }
                                        }
                                        /**
                                         * @dev Returns the division of two unsigned integers, with a division by zero flag.
                                         */
                                        function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                                            unchecked {
                                                if (b == 0) return (false, 0);
                                                return (true, a / b);
                                            }
                                        }
                                        /**
                                         * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
                                         */
                                        function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                                            unchecked {
                                                if (b == 0) return (false, 0);
                                                return (true, a % b);
                                            }
                                        }
                                        /**
                                         * @dev Returns the largest of two numbers.
                                         */
                                        function max(uint256 a, uint256 b) internal pure returns (uint256) {
                                            return a > b ? a : b;
                                        }
                                        /**
                                         * @dev Returns the smallest of two numbers.
                                         */
                                        function min(uint256 a, uint256 b) internal pure returns (uint256) {
                                            return a < b ? a : b;
                                        }
                                        /**
                                         * @dev Returns the average of two numbers. The result is rounded towards
                                         * zero.
                                         */
                                        function average(uint256 a, uint256 b) internal pure returns (uint256) {
                                            // (a + b) / 2 can overflow.
                                            return (a & b) + (a ^ b) / 2;
                                        }
                                        /**
                                         * @dev Returns the ceiling of the division of two numbers.
                                         *
                                         * This differs from standard division with `/` in that it rounds towards infinity instead
                                         * of rounding towards zero.
                                         */
                                        function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                                            if (b == 0) {
                                                // Guarantee the same behavior as in a regular Solidity division.
                                                return a / b;
                                            }
                                            // (a + b - 1) / b can overflow on addition, so we distribute.
                                            return a == 0 ? 0 : (a - 1) / b + 1;
                                        }
                                        /**
                                         * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
                                         * denominator == 0.
                                         * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
                                         * Uniswap Labs also under MIT license.
                                         */
                                        function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
                                            unchecked {
                                                // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                                                // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                                                // variables such that product = prod1 * 2^256 + prod0.
                                                uint256 prod0 = x * y; // Least significant 256 bits of the product
                                                uint256 prod1; // Most significant 256 bits of the product
                                                assembly {
                                                    let mm := mulmod(x, y, not(0))
                                                    prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                                                }
                                                // Handle non-overflow cases, 256 by 256 division.
                                                if (prod1 == 0) {
                                                    // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                                                    // The surrounding unchecked block does not change this fact.
                                                    // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                                                    return prod0 / denominator;
                                                }
                                                // Make sure the result is less than 2^256. Also prevents denominator == 0.
                                                if (denominator <= prod1) {
                                                    revert MathOverflowedMulDiv();
                                                }
                                                ///////////////////////////////////////////////
                                                // 512 by 256 division.
                                                ///////////////////////////////////////////////
                                                // Make division exact by subtracting the remainder from [prod1 prod0].
                                                uint256 remainder;
                                                assembly {
                                                    // Compute remainder using mulmod.
                                                    remainder := mulmod(x, y, denominator)
                                                    // Subtract 256 bit number from 512 bit number.
                                                    prod1 := sub(prod1, gt(remainder, prod0))
                                                    prod0 := sub(prod0, remainder)
                                                }
                                                // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
                                                // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
                                                uint256 twos = denominator & (0 - denominator);
                                                assembly {
                                                    // Divide denominator by twos.
                                                    denominator := div(denominator, twos)
                                                    // Divide [prod1 prod0] by twos.
                                                    prod0 := div(prod0, twos)
                                                    // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                                                    twos := add(div(sub(0, twos), twos), 1)
                                                }
                                                // Shift in bits from prod1 into prod0.
                                                prod0 |= prod1 * twos;
                                                // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                                                // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                                                // four bits. That is, denominator * inv = 1 mod 2^4.
                                                uint256 inverse = (3 * denominator) ^ 2;
                                                // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
                                                // works in modular arithmetic, doubling the correct bits in each step.
                                                inverse *= 2 - denominator * inverse; // inverse mod 2^8
                                                inverse *= 2 - denominator * inverse; // inverse mod 2^16
                                                inverse *= 2 - denominator * inverse; // inverse mod 2^32
                                                inverse *= 2 - denominator * inverse; // inverse mod 2^64
                                                inverse *= 2 - denominator * inverse; // inverse mod 2^128
                                                inverse *= 2 - denominator * inverse; // inverse mod 2^256
                                                // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                                                // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                                                // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                                                // is no longer required.
                                                result = prod0 * inverse;
                                                return result;
                                            }
                                        }
                                        /**
                                         * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
                                         */
                                        function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
                                            uint256 result = mulDiv(x, y, denominator);
                                            if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
                                                result += 1;
                                            }
                                            return result;
                                        }
                                        /**
                                         * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
                                         * towards zero.
                                         *
                                         * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
                                         */
                                        function sqrt(uint256 a) internal pure returns (uint256) {
                                            if (a == 0) {
                                                return 0;
                                            }
                                            // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                                            //
                                            // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                                            // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
                                            //
                                            // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
                                            // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
                                            // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
                                            //
                                            // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
                                            uint256 result = 1 << (log2(a) >> 1);
                                            // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                                            // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                                            // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                                            // into the expected uint128 result.
                                            unchecked {
                                                result = (result + a / result) >> 1;
                                                result = (result + a / result) >> 1;
                                                result = (result + a / result) >> 1;
                                                result = (result + a / result) >> 1;
                                                result = (result + a / result) >> 1;
                                                result = (result + a / result) >> 1;
                                                result = (result + a / result) >> 1;
                                                return min(result, a / result);
                                            }
                                        }
                                        /**
                                         * @notice Calculates sqrt(a), following the selected rounding direction.
                                         */
                                        function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                                            unchecked {
                                                uint256 result = sqrt(a);
                                                return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
                                            }
                                        }
                                        /**
                                         * @dev Return the log in base 2 of a positive value rounded towards zero.
                                         * Returns 0 if given 0.
                                         */
                                        function log2(uint256 value) internal pure returns (uint256) {
                                            uint256 result = 0;
                                            unchecked {
                                                if (value >> 128 > 0) {
                                                    value >>= 128;
                                                    result += 128;
                                                }
                                                if (value >> 64 > 0) {
                                                    value >>= 64;
                                                    result += 64;
                                                }
                                                if (value >> 32 > 0) {
                                                    value >>= 32;
                                                    result += 32;
                                                }
                                                if (value >> 16 > 0) {
                                                    value >>= 16;
                                                    result += 16;
                                                }
                                                if (value >> 8 > 0) {
                                                    value >>= 8;
                                                    result += 8;
                                                }
                                                if (value >> 4 > 0) {
                                                    value >>= 4;
                                                    result += 4;
                                                }
                                                if (value >> 2 > 0) {
                                                    value >>= 2;
                                                    result += 2;
                                                }
                                                if (value >> 1 > 0) {
                                                    result += 1;
                                                }
                                            }
                                            return result;
                                        }
                                        /**
                                         * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
                                         * Returns 0 if given 0.
                                         */
                                        function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
                                            unchecked {
                                                uint256 result = log2(value);
                                                return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
                                            }
                                        }
                                        /**
                                         * @dev Return the log in base 10 of a positive value rounded towards zero.
                                         * Returns 0 if given 0.
                                         */
                                        function log10(uint256 value) internal pure returns (uint256) {
                                            uint256 result = 0;
                                            unchecked {
                                                if (value >= 10 ** 64) {
                                                    value /= 10 ** 64;
                                                    result += 64;
                                                }
                                                if (value >= 10 ** 32) {
                                                    value /= 10 ** 32;
                                                    result += 32;
                                                }
                                                if (value >= 10 ** 16) {
                                                    value /= 10 ** 16;
                                                    result += 16;
                                                }
                                                if (value >= 10 ** 8) {
                                                    value /= 10 ** 8;
                                                    result += 8;
                                                }
                                                if (value >= 10 ** 4) {
                                                    value /= 10 ** 4;
                                                    result += 4;
                                                }
                                                if (value >= 10 ** 2) {
                                                    value /= 10 ** 2;
                                                    result += 2;
                                                }
                                                if (value >= 10 ** 1) {
                                                    result += 1;
                                                }
                                            }
                                            return result;
                                        }
                                        /**
                                         * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
                                         * Returns 0 if given 0.
                                         */
                                        function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
                                            unchecked {
                                                uint256 result = log10(value);
                                                return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
                                            }
                                        }
                                        /**
                                         * @dev Return the log in base 256 of a positive value rounded towards zero.
                                         * Returns 0 if given 0.
                                         *
                                         * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
                                         */
                                        function log256(uint256 value) internal pure returns (uint256) {
                                            uint256 result = 0;
                                            unchecked {
                                                if (value >> 128 > 0) {
                                                    value >>= 128;
                                                    result += 16;
                                                }
                                                if (value >> 64 > 0) {
                                                    value >>= 64;
                                                    result += 8;
                                                }
                                                if (value >> 32 > 0) {
                                                    value >>= 32;
                                                    result += 4;
                                                }
                                                if (value >> 16 > 0) {
                                                    value >>= 16;
                                                    result += 2;
                                                }
                                                if (value >> 8 > 0) {
                                                    result += 1;
                                                }
                                            }
                                            return result;
                                        }
                                        /**
                                         * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
                                         * Returns 0 if given 0.
                                         */
                                        function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
                                            unchecked {
                                                uint256 result = log256(value);
                                                return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
                                            }
                                        }
                                        /**
                                         * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
                                         */
                                        function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
                                            return uint8(rounding) % 2 == 1;
                                        }
                                    }
                                    // File @openzeppelin/contracts/utils/math/SignedMath.sol@v5.0.1
                                    // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
                                    /**
                                     * @dev Standard signed math utilities missing in the Solidity language.
                                     */
                                    library SignedMath {
                                        /**
                                         * @dev Returns the largest of two signed numbers.
                                         */
                                        function max(int256 a, int256 b) internal pure returns (int256) {
                                            return a > b ? a : b;
                                        }
                                        /**
                                         * @dev Returns the smallest of two signed numbers.
                                         */
                                        function min(int256 a, int256 b) internal pure returns (int256) {
                                            return a < b ? a : b;
                                        }
                                        /**
                                         * @dev Returns the average of two signed numbers without overflow.
                                         * The result is rounded towards zero.
                                         */
                                        function average(int256 a, int256 b) internal pure returns (int256) {
                                            // Formula from the book "Hacker's Delight"
                                            int256 x = (a & b) + ((a ^ b) >> 1);
                                            return x + (int256(uint256(x) >> 255) & (a ^ b));
                                        }
                                        /**
                                         * @dev Returns the absolute unsigned value of a signed value.
                                         */
                                        function abs(int256 n) internal pure returns (uint256) {
                                            unchecked {
                                                // must be unchecked in order to support `n = type(int256).min`
                                                return uint256(n >= 0 ? n : -n);
                                            }
                                        }
                                    }
                                    // File @openzeppelin/contracts/utils/Strings.sol@v5.0.1
                                    // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
                                    /**
                                     * @dev String operations.
                                     */
                                    library Strings {
                                        bytes16 private constant HEX_DIGITS = "0123456789abcdef";
                                        uint8 private constant ADDRESS_LENGTH = 20;
                                        /**
                                         * @dev The `value` string doesn't fit in the specified `length`.
                                         */
                                        error StringsInsufficientHexLength(uint256 value, uint256 length);
                                        /**
                                         * @dev Converts a `uint256` to its ASCII `string` decimal representation.
                                         */
                                        function toString(uint256 value) internal pure returns (string memory) {
                                            unchecked {
                                                uint256 length = Math.log10(value) + 1;
                                                string memory buffer = new string(length);
                                                uint256 ptr;
                                                /// @solidity memory-safe-assembly
                                                assembly {
                                                    ptr := add(buffer, add(32, length))
                                                }
                                                while (true) {
                                                    ptr--;
                                                    /// @solidity memory-safe-assembly
                                                    assembly {
                                                        mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                                                    }
                                                    value /= 10;
                                                    if (value == 0) break;
                                                }
                                                return buffer;
                                            }
                                        }
                                        /**
                                         * @dev Converts a `int256` to its ASCII `string` decimal representation.
                                         */
                                        function toStringSigned(int256 value) internal pure returns (string memory) {
                                            return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
                                        }
                                        /**
                                         * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
                                         */
                                        function toHexString(uint256 value) internal pure returns (string memory) {
                                            unchecked {
                                                return toHexString(value, Math.log256(value) + 1);
                                            }
                                        }
                                        /**
                                         * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
                                         */
                                        function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
                                            uint256 localValue = value;
                                            bytes memory buffer = new bytes(2 * length + 2);
                                            buffer[0] = "0";
                                            buffer[1] = "x";
                                            for (uint256 i = 2 * length + 1; i > 1; --i) {
                                                buffer[i] = HEX_DIGITS[localValue & 0xf];
                                                localValue >>= 4;
                                            }
                                            if (localValue != 0) {
                                                revert StringsInsufficientHexLength(value, length);
                                            }
                                            return string(buffer);
                                        }
                                        /**
                                         * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
                                         * representation.
                                         */
                                        function toHexString(address addr) internal pure returns (string memory) {
                                            return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
                                        }
                                        /**
                                         * @dev Returns true if the two strings are equal.
                                         */
                                        function equal(string memory a, string memory b) internal pure returns (bool) {
                                            return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
                                        }
                                    }
                                    // File @openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol@v5.0.1
                                    // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)
                                    /**
                                     * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
                                     *
                                     * The library provides methods for generating a hash of a message that conforms to the
                                     * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
                                     * specifications.
                                     */
                                    library MessageHashUtils {
                                        /**
                                         * @dev Returns the keccak256 digest of an EIP-191 signed data with version
                                         * `0x45` (`personal_sign` messages).
                                         *
                                         * The digest is calculated by prefixing a bytes32 `messageHash` with
                                         * `"\\x19Ethereum Signed Message:\
                                    32"` and hashing the result. It corresponds with the
                                         * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
                                         *
                                         * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
                                         * keccak256, although any bytes32 value can be safely used because the final digest will
                                         * be re-hashed.
                                         *
                                         * See {ECDSA-recover}.
                                         */
                                        function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                mstore(0x00, "\\x19Ethereum Signed Message:\
                                    32") // 32 is the bytes-length of messageHash
                                                mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
                                                digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
                                            }
                                        }
                                        /**
                                         * @dev Returns the keccak256 digest of an EIP-191 signed data with version
                                         * `0x45` (`personal_sign` messages).
                                         *
                                         * The digest is calculated by prefixing an arbitrary `message` with
                                         * `"\\x19Ethereum Signed Message:\
                                    " + len(message)` and hashing the result. It corresponds with the
                                         * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
                                         *
                                         * See {ECDSA-recover}.
                                         */
                                        function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
                                            return
                                                keccak256(bytes.concat("\\x19Ethereum Signed Message:\
                                    ", bytes(Strings.toString(message.length)), message));
                                        }
                                        /**
                                         * @dev Returns the keccak256 digest of an EIP-191 signed data with version
                                         * `0x00` (data with intended validator).
                                         *
                                         * The digest is calculated by prefixing an arbitrary `data` with `"\\x19\\x00"` and the intended
                                         * `validator` address. Then hashing the result.
                                         *
                                         * See {ECDSA-recover}.
                                         */
                                        function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
                                            return keccak256(abi.encodePacked(hex"19_00", validator, data));
                                        }
                                        /**
                                         * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
                                         *
                                         * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
                                         * `\\x19\\x01` and hashing the result. It corresponds to the hash signed by the
                                         * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
                                         *
                                         * See {ECDSA-recover}.
                                         */
                                        function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let ptr := mload(0x40)
                                                mstore(ptr, hex"19_01")
                                                mstore(add(ptr, 0x02), domainSeparator)
                                                mstore(add(ptr, 0x22), structHash)
                                                digest := keccak256(ptr, 0x42)
                                            }
                                        }
                                    }
                                    // File @openzeppelin/contracts/utils/StorageSlot.sol@v5.0.1
                                    // OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
                                    // This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
                                    /**
                                     * @dev Library for reading and writing primitive types to specific storage slots.
                                     *
                                     * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
                                     * This library helps with reading and writing to such slots without the need for inline assembly.
                                     *
                                     * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
                                     *
                                     * Example usage to set ERC1967 implementation slot:
                                     * ```solidity
                                     * contract ERC1967 {
                                     *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                                     *
                                     *     function _getImplementation() internal view returns (address) {
                                     *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
                                     *     }
                                     *
                                     *     function _setImplementation(address newImplementation) internal {
                                     *         require(newImplementation.code.length > 0);
                                     *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
                                     *     }
                                     * }
                                     * ```
                                     */
                                    library StorageSlot {
                                        struct AddressSlot {
                                            address value;
                                        }
                                        struct BooleanSlot {
                                            bool value;
                                        }
                                        struct Bytes32Slot {
                                            bytes32 value;
                                        }
                                        struct Uint256Slot {
                                            uint256 value;
                                        }
                                        struct StringSlot {
                                            string value;
                                        }
                                        struct BytesSlot {
                                            bytes value;
                                        }
                                        /**
                                         * @dev Returns an `AddressSlot` with member `value` located at `slot`.
                                         */
                                        function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                r.slot := slot
                                            }
                                        }
                                        /**
                                         * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
                                         */
                                        function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                r.slot := slot
                                            }
                                        }
                                        /**
                                         * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
                                         */
                                        function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                r.slot := slot
                                            }
                                        }
                                        /**
                                         * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
                                         */
                                        function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                r.slot := slot
                                            }
                                        }
                                        /**
                                         * @dev Returns an `StringSlot` with member `value` located at `slot`.
                                         */
                                        function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                r.slot := slot
                                            }
                                        }
                                        /**
                                         * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
                                         */
                                        function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                r.slot := store.slot
                                            }
                                        }
                                        /**
                                         * @dev Returns an `BytesSlot` with member `value` located at `slot`.
                                         */
                                        function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                r.slot := slot
                                            }
                                        }
                                        /**
                                         * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
                                         */
                                        function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                r.slot := store.slot
                                            }
                                        }
                                    }
                                    // File @openzeppelin/contracts/utils/ShortStrings.sol@v5.0.1
                                    // OpenZeppelin Contracts (last updated v5.0.0) (utils/ShortStrings.sol)
                                    // | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
                                    // | length  | 0x                                                              BB |
                                    type ShortString is bytes32;
                                    /**
                                     * @dev This library provides functions to convert short memory strings
                                     * into a `ShortString` type that can be used as an immutable variable.
                                     *
                                     * Strings of arbitrary length can be optimized using this library if
                                     * they are short enough (up to 31 bytes) by packing them with their
                                     * length (1 byte) in a single EVM word (32 bytes). Additionally, a
                                     * fallback mechanism can be used for every other case.
                                     *
                                     * Usage example:
                                     *
                                     * ```solidity
                                     * contract Named {
                                     *     using ShortStrings for *;
                                     *
                                     *     ShortString private immutable _name;
                                     *     string private _nameFallback;
                                     *
                                     *     constructor(string memory contractName) {
                                     *         _name = contractName.toShortStringWithFallback(_nameFallback);
                                     *     }
                                     *
                                     *     function name() external view returns (string memory) {
                                     *         return _name.toStringWithFallback(_nameFallback);
                                     *     }
                                     * }
                                     * ```
                                     */
                                    library ShortStrings {
                                        // Used as an identifier for strings longer than 31 bytes.
                                        bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
                                        error StringTooLong(string str);
                                        error InvalidShortString();
                                        /**
                                         * @dev Encode a string of at most 31 chars into a `ShortString`.
                                         *
                                         * This will trigger a `StringTooLong` error is the input string is too long.
                                         */
                                        function toShortString(string memory str) internal pure returns (ShortString) {
                                            bytes memory bstr = bytes(str);
                                            if (bstr.length > 31) {
                                                revert StringTooLong(str);
                                            }
                                            return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
                                        }
                                        /**
                                         * @dev Decode a `ShortString` back to a "normal" string.
                                         */
                                        function toString(ShortString sstr) internal pure returns (string memory) {
                                            uint256 len = byteLength(sstr);
                                            // using `new string(len)` would work locally but is not memory safe.
                                            string memory str = new string(32);
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                mstore(str, len)
                                                mstore(add(str, 0x20), sstr)
                                            }
                                            return str;
                                        }
                                        /**
                                         * @dev Return the length of a `ShortString`.
                                         */
                                        function byteLength(ShortString sstr) internal pure returns (uint256) {
                                            uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
                                            if (result > 31) {
                                                revert InvalidShortString();
                                            }
                                            return result;
                                        }
                                        /**
                                         * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
                                         */
                                        function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
                                            if (bytes(value).length < 32) {
                                                return toShortString(value);
                                            } else {
                                                StorageSlot.getStringSlot(store).value = value;
                                                return ShortString.wrap(FALLBACK_SENTINEL);
                                            }
                                        }
                                        /**
                                         * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
                                         */
                                        function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
                                            if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
                                                return toString(value);
                                            } else {
                                                return store;
                                            }
                                        }
                                        /**
                                         * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
                                         * {setWithFallback}.
                                         *
                                         * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
                                         * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
                                         */
                                        function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
                                            if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
                                                return byteLength(value);
                                            } else {
                                                return bytes(store).length;
                                            }
                                        }
                                    }
                                    // File @openzeppelin/contracts/utils/cryptography/EIP712.sol@v5.0.1
                                    // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol)
                                    /**
                                     * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
                                     *
                                     * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
                                     * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
                                     * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
                                     * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
                                     *
                                     * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
                                     * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
                                     * ({_hashTypedDataV4}).
                                     *
                                     * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
                                     * the chain id to protect against replay attacks on an eventual fork of the chain.
                                     *
                                     * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
                                     * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
                                     *
                                     * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
                                     * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
                                     * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
                                     *
                                     * @custom:oz-upgrades-unsafe-allow state-variable-immutable
                                     */
                                    abstract contract EIP712 is IERC5267 {
                                        using ShortStrings for *;
                                        bytes32 private constant TYPE_HASH =
                                            keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
                                        // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
                                        // invalidate the cached domain separator if the chain id changes.
                                        bytes32 private immutable _cachedDomainSeparator;
                                        uint256 private immutable _cachedChainId;
                                        address private immutable _cachedThis;
                                        bytes32 private immutable _hashedName;
                                        bytes32 private immutable _hashedVersion;
                                        ShortString private immutable _name;
                                        ShortString private immutable _version;
                                        string private _nameFallback;
                                        string private _versionFallback;
                                        /**
                                         * @dev Initializes the domain separator and parameter caches.
                                         *
                                         * The meaning of `name` and `version` is specified in
                                         * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
                                         *
                                         * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
                                         * - `version`: the current major version of the signing domain.
                                         *
                                         * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
                                         * contract upgrade].
                                         */
                                        constructor(string memory name, string memory version) {
                                            _name = name.toShortStringWithFallback(_nameFallback);
                                            _version = version.toShortStringWithFallback(_versionFallback);
                                            _hashedName = keccak256(bytes(name));
                                            _hashedVersion = keccak256(bytes(version));
                                            _cachedChainId = block.chainid;
                                            _cachedDomainSeparator = _buildDomainSeparator();
                                            _cachedThis = address(this);
                                        }
                                        /**
                                         * @dev Returns the domain separator for the current chain.
                                         */
                                        function _domainSeparatorV4() internal view returns (bytes32) {
                                            if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
                                                return _cachedDomainSeparator;
                                            } else {
                                                return _buildDomainSeparator();
                                            }
                                        }
                                        function _buildDomainSeparator() private view returns (bytes32) {
                                            return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
                                        }
                                        /**
                                         * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
                                         * function returns the hash of the fully encoded EIP712 message for this domain.
                                         *
                                         * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
                                         *
                                         * ```solidity
                                         * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
                                         *     keccak256("Mail(address to,string contents)"),
                                         *     mailTo,
                                         *     keccak256(bytes(mailContents))
                                         * )));
                                         * address signer = ECDSA.recover(digest, signature);
                                         * ```
                                         */
                                        function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
                                            return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
                                        }
                                        /**
                                         * @dev See {IERC-5267}.
                                         */
                                        function eip712Domain()
                                            public
                                            view
                                            virtual
                                            returns (
                                                bytes1 fields,
                                                string memory name,
                                                string memory version,
                                                uint256 chainId,
                                                address verifyingContract,
                                                bytes32 salt,
                                                uint256[] memory extensions
                                            )
                                        {
                                            return (
                                                hex"0f", // 01111
                                                _EIP712Name(),
                                                _EIP712Version(),
                                                block.chainid,
                                                address(this),
                                                bytes32(0),
                                                new uint256[](0)
                                            );
                                        }
                                        /**
                                         * @dev The name parameter for the EIP712 domain.
                                         *
                                         * NOTE: By default this function reads _name which is an immutable value.
                                         * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
                                         */
                                        // solhint-disable-next-line func-name-mixedcase
                                        function _EIP712Name() internal view returns (string memory) {
                                            return _name.toStringWithFallback(_nameFallback);
                                        }
                                        /**
                                         * @dev The version parameter for the EIP712 domain.
                                         *
                                         * NOTE: By default this function reads _version which is an immutable value.
                                         * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
                                         */
                                        // solhint-disable-next-line func-name-mixedcase
                                        function _EIP712Version() internal view returns (string memory) {
                                            return _version.toStringWithFallback(_versionFallback);
                                        }
                                    }
                                    // File @openzeppelin/contracts/utils/Context.sol@v5.0.1
                                    // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
                                    /**
                                     * @dev Provides information about the current execution context, including the
                                     * sender of the transaction and its data. While these are generally available
                                     * via msg.sender and msg.data, they should not be accessed in such a direct
                                     * manner, since when dealing with meta-transactions the account sending and
                                     * paying for execution may not be the actual sender (as far as an application
                                     * is concerned).
                                     *
                                     * This contract is only required for intermediate, library-like contracts.
                                     */
                                    abstract contract Context {
                                        function _msgSender() internal view virtual returns (address) {
                                            return msg.sender;
                                        }
                                        function _msgData() internal view virtual returns (bytes calldata) {
                                            return msg.data;
                                        }
                                        function _contextSuffixLength() internal view virtual returns (uint256) {
                                            return 0;
                                        }
                                    }
                                    // File @openzeppelin/contracts/utils/Pausable.sol@v5.0.1
                                    // OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol)
                                    /**
                                     * @dev Contract module which allows children to implement an emergency stop
                                     * mechanism that can be triggered by an authorized account.
                                     *
                                     * This module is used through inheritance. It will make available the
                                     * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
                                     * the functions of your contract. Note that they will not be pausable by
                                     * simply including this module, only once the modifiers are put in place.
                                     */
                                    abstract contract Pausable is Context {
                                        bool private _paused;
                                        /**
                                         * @dev Emitted when the pause is triggered by `account`.
                                         */
                                        event Paused(address account);
                                        /**
                                         * @dev Emitted when the pause is lifted by `account`.
                                         */
                                        event Unpaused(address account);
                                        /**
                                         * @dev The operation failed because the contract is paused.
                                         */
                                        error EnforcedPause();
                                        /**
                                         * @dev The operation failed because the contract is not paused.
                                         */
                                        error ExpectedPause();
                                        /**
                                         * @dev Initializes the contract in unpaused state.
                                         */
                                        constructor() {
                                            _paused = false;
                                        }
                                        /**
                                         * @dev Modifier to make a function callable only when the contract is not paused.
                                         *
                                         * Requirements:
                                         *
                                         * - The contract must not be paused.
                                         */
                                        modifier whenNotPaused() {
                                            _requireNotPaused();
                                            _;
                                        }
                                        /**
                                         * @dev Modifier to make a function callable only when the contract is paused.
                                         *
                                         * Requirements:
                                         *
                                         * - The contract must be paused.
                                         */
                                        modifier whenPaused() {
                                            _requirePaused();
                                            _;
                                        }
                                        /**
                                         * @dev Returns true if the contract is paused, and false otherwise.
                                         */
                                        function paused() public view virtual returns (bool) {
                                            return _paused;
                                        }
                                        /**
                                         * @dev Throws if the contract is paused.
                                         */
                                        function _requireNotPaused() internal view virtual {
                                            if (paused()) {
                                                revert EnforcedPause();
                                            }
                                        }
                                        /**
                                         * @dev Throws if the contract is not paused.
                                         */
                                        function _requirePaused() internal view virtual {
                                            if (!paused()) {
                                                revert ExpectedPause();
                                            }
                                        }
                                        /**
                                         * @dev Triggers stopped state.
                                         *
                                         * Requirements:
                                         *
                                         * - The contract must not be paused.
                                         */
                                        function _pause() internal virtual whenNotPaused {
                                            _paused = true;
                                            emit Paused(_msgSender());
                                        }
                                        /**
                                         * @dev Returns to normal state.
                                         *
                                         * Requirements:
                                         *
                                         * - The contract must be paused.
                                         */
                                        function _unpause() internal virtual whenPaused {
                                            _paused = false;
                                            emit Unpaused(_msgSender());
                                        }
                                    }
                                    // File @1inch/limit-order-protocol-contract/contracts/OrderMixin.sol@v4.0.0-prerelease-19
                                    /// @title Limit Order mixin
                                    abstract contract OrderMixin is IOrderMixin, EIP712, PredicateHelper, SeriesEpochManager, Pausable, OnlyWethReceiver, PermitAndCall {
                                        using SafeERC20 for IERC20;
                                        using SafeERC20 for IWETH;
                                        using OrderLib for IOrderMixin.Order;
                                        using ExtensionLib for bytes;
                                        using AddressLib for Address;
                                        using MakerTraitsLib for MakerTraits;
                                        using TakerTraitsLib for TakerTraits;
                                        using BitInvalidatorLib for BitInvalidatorLib.Data;
                                        using RemainingInvalidatorLib for RemainingInvalidator;
                                        IWETH private immutable _WETH;  // solhint-disable-line var-name-mixedcase
                                        mapping(address maker => BitInvalidatorLib.Data data) private _bitInvalidator;
                                        mapping(address maker => mapping(bytes32 orderHash => RemainingInvalidator remaining)) private _remainingInvalidator;
                                        constructor(IWETH weth) OnlyWethReceiver(address(weth)) {
                                            _WETH = weth;
                                        }
                                        /**
                                         * @notice See {IOrderMixin-bitInvalidatorForOrder}.
                                         */
                                        function bitInvalidatorForOrder(address maker, uint256 slot) external view returns(uint256 /* result */) {
                                            return _bitInvalidator[maker].checkSlot(slot);
                                        }
                                        /**
                                         * @notice See {IOrderMixin-remainingInvalidatorForOrder}.
                                         */
                                        function remainingInvalidatorForOrder(address maker, bytes32 orderHash) external view returns(uint256 /* remaining */) {
                                            return _remainingInvalidator[maker][orderHash].remaining();
                                        }
                                        /**
                                         * @notice See {IOrderMixin-rawRemainingInvalidatorForOrder}.
                                         */
                                        function rawRemainingInvalidatorForOrder(address maker, bytes32 orderHash) external view returns(uint256 /* remainingRaw */) {
                                            return RemainingInvalidator.unwrap(_remainingInvalidator[maker][orderHash]);
                                        }
                                        /**
                                         * @notice See {IOrderMixin-simulate}.
                                         */
                                        function simulate(address target, bytes calldata data) external {
                                            // solhint-disable-next-line avoid-low-level-calls
                                            (bool success, bytes memory result) = target.delegatecall(data);
                                            revert SimulationResults(success, result);
                                        }
                                        /**
                                         * @notice See {IOrderMixin-cancelOrder}.
                                         */
                                        function cancelOrder(MakerTraits makerTraits, bytes32 orderHash) public {
                                            if (makerTraits.useBitInvalidator()) {
                                                uint256 invalidator = _bitInvalidator[msg.sender].massInvalidate(makerTraits.nonceOrEpoch(), 0);
                                                emit BitInvalidatorUpdated(msg.sender, makerTraits.nonceOrEpoch() >> 8, invalidator);
                                            } else {
                                                _remainingInvalidator[msg.sender][orderHash] = RemainingInvalidatorLib.fullyFilled();
                                                emit OrderCancelled(orderHash);
                                            }
                                        }
                                        /**
                                         * @notice See {IOrderMixin-cancelOrders}.
                                         */
                                        function cancelOrders(MakerTraits[] calldata makerTraits, bytes32[] calldata orderHashes) external {
                                            if (makerTraits.length != orderHashes.length) revert MismatchArraysLengths();
                                            unchecked {
                                                for (uint256 i = 0; i < makerTraits.length; i++) {
                                                    cancelOrder(makerTraits[i], orderHashes[i]);
                                                }
                                            }
                                        }
                                        /**
                                         * @notice See {IOrderMixin-bitsInvalidateForOrder}.
                                         */
                                        function bitsInvalidateForOrder(MakerTraits makerTraits, uint256 additionalMask) external {
                                            if (!makerTraits.useBitInvalidator()) revert OrderIsNotSuitableForMassInvalidation();
                                            uint256 invalidator = _bitInvalidator[msg.sender].massInvalidate(makerTraits.nonceOrEpoch(), additionalMask);
                                            emit BitInvalidatorUpdated(msg.sender, makerTraits.nonceOrEpoch() >> 8, invalidator);
                                        }
                                         /**
                                         * @notice See {IOrderMixin-hashOrder}.
                                         */
                                        function hashOrder(IOrderMixin.Order calldata order) external view returns(bytes32) {
                                            return order.hash(_domainSeparatorV4());
                                        }
                                        /**
                                         * @notice See {IOrderMixin-checkPredicate}.
                                         */
                                        function checkPredicate(bytes calldata predicate) public view returns(bool) {
                                            (bool success, uint256 res) = _staticcallForUint(address(this), predicate);
                                            return success && res == 1;
                                        }
                                        /**
                                         * @notice See {IOrderMixin-fillOrder}.
                                         */
                                        function fillOrder(
                                            IOrderMixin.Order calldata order,
                                            bytes32 r,
                                            bytes32 vs,
                                            uint256 amount,
                                            TakerTraits takerTraits
                                        ) external payable returns(uint256 /* makingAmount */, uint256 /* takingAmount */, bytes32 /* orderHash */) {
                                            return _fillOrder(order, r, vs, amount, takerTraits, msg.sender, msg.data[:0], msg.data[:0]);
                                        }
                                        /**
                                         * @notice See {IOrderMixin-fillOrderArgs}.
                                         */
                                        function fillOrderArgs(
                                            IOrderMixin.Order calldata order,
                                            bytes32 r,
                                            bytes32 vs,
                                            uint256 amount,
                                            TakerTraits takerTraits,
                                            bytes calldata args
                                        ) external payable returns(uint256 /* makingAmount */, uint256 /* takingAmount */, bytes32 /* orderHash */) {
                                            (
                                                address target,
                                                bytes calldata extension,
                                                bytes calldata interaction
                                            ) = _parseArgs(takerTraits, args);
                                            return _fillOrder(order, r, vs, amount, takerTraits, target, extension, interaction);
                                        }
                                        function _fillOrder(
                                            IOrderMixin.Order calldata order,
                                            bytes32 r,
                                            bytes32 vs,
                                            uint256 amount,
                                            TakerTraits takerTraits,
                                            address target,
                                            bytes calldata extension,
                                            bytes calldata interaction
                                        ) private returns(uint256 makingAmount, uint256 takingAmount, bytes32 orderHash) {
                                            // Check signature and apply order/maker permit only on the first fill
                                            orderHash = order.hash(_domainSeparatorV4());
                                            uint256 remainingMakingAmount = _checkRemainingMakingAmount(order, orderHash);
                                            if (remainingMakingAmount == order.makingAmount) {
                                                address maker = order.maker.get();
                                                if (maker == address(0) || maker != ECDSA.recover(orderHash, r, vs)) revert BadSignature();
                                                if (!takerTraits.skipMakerPermit()) {
                                                    bytes calldata makerPermit = extension.makerPermit();
                                                    if (makerPermit.length >= 20) {
                                                        // proceed only if taker is willing to execute permit and its length is enough to store address
                                                        IERC20(address(bytes20(makerPermit))).tryPermit(maker, address(this), makerPermit[20:]);
                                                        if (!order.makerTraits.useBitInvalidator()) {
                                                            // Bit orders are not subjects for reentrancy, but we still need to check remaining-based orders for reentrancy
                                                            if (!_remainingInvalidator[order.maker.get()][orderHash].isNewOrder()) revert ReentrancyDetected();
                                                        }
                                                    }
                                                }
                                            }
                                            (makingAmount, takingAmount) = _fill(order, orderHash, remainingMakingAmount, amount, takerTraits, target, extension, interaction);
                                        }
                                        /**
                                         * @notice See {IOrderMixin-fillContractOrder}.
                                         */
                                        function fillContractOrder(
                                            IOrderMixin.Order calldata order,
                                            bytes calldata signature,
                                            uint256 amount,
                                            TakerTraits takerTraits
                                        ) external returns(uint256 /* makingAmount */, uint256 /* takingAmount */, bytes32 /* orderHash */) {
                                            return _fillContractOrder(order, signature, amount, takerTraits, msg.sender, msg.data[:0], msg.data[:0]);
                                        }
                                        /**
                                         * @notice See {IOrderMixin-fillContractOrderArgs}.
                                         */
                                        function fillContractOrderArgs(
                                            IOrderMixin.Order calldata order,
                                            bytes calldata signature,
                                            uint256 amount,
                                            TakerTraits takerTraits,
                                            bytes calldata args
                                        ) external returns(uint256 /* makingAmount */, uint256 /* takingAmount */, bytes32 /* orderHash */) {
                                            (
                                                address target,
                                                bytes calldata extension,
                                                bytes calldata interaction
                                            ) = _parseArgs(takerTraits, args);
                                            return _fillContractOrder(order, signature, amount, takerTraits, target, extension, interaction);
                                        }
                                        function _fillContractOrder(
                                            IOrderMixin.Order calldata order,
                                            bytes calldata signature,
                                            uint256 amount,
                                            TakerTraits takerTraits,
                                            address target,
                                            bytes calldata extension,
                                            bytes calldata interaction
                                        ) private returns(uint256 makingAmount, uint256 takingAmount, bytes32 orderHash) {
                                            // Check signature only on the first fill
                                            orderHash = order.hash(_domainSeparatorV4());
                                            uint256 remainingMakingAmount = _checkRemainingMakingAmount(order, orderHash);
                                            if (remainingMakingAmount == order.makingAmount) {
                                                if (!ECDSA.isValidSignature(order.maker.get(), orderHash, signature)) revert BadSignature();
                                            }
                                            (makingAmount, takingAmount) = _fill(order, orderHash, remainingMakingAmount, amount, takerTraits, target, extension, interaction);
                                        }
                                        /**
                                          * @notice Fills an order and transfers making amount to a specified target.
                                          * @dev If the target is zero assigns it the caller's address.
                                          * The function flow is as follows:
                                          * 1. Validate order
                                          * 2. Call maker pre-interaction
                                          * 3. Transfer maker asset to taker
                                          * 4. Call taker interaction
                                          * 5. Transfer taker asset to maker
                                          * 5. Call maker post-interaction
                                          * 6. Emit OrderFilled event
                                          * @param order The order details.
                                          * @param orderHash The hash of the order.
                                          * @param extension The extension calldata of the order.
                                          * @param remainingMakingAmount The remaining amount to be filled.
                                          * @param amount The order amount.
                                          * @param takerTraits The taker preferences for the order.
                                          * @param target The address to which the order is filled.
                                          * @param interaction The interaction calldata.
                                          * @return makingAmount The computed amount that the maker will get.
                                          * @return takingAmount The computed amount that the taker will send.
                                          */
                                        function _fill(
                                            IOrderMixin.Order calldata order,
                                            bytes32 orderHash,
                                            uint256 remainingMakingAmount,
                                            uint256 amount,
                                            TakerTraits takerTraits,
                                            address target,
                                            bytes calldata extension,
                                            bytes calldata interaction
                                        ) private whenNotPaused() returns(uint256 makingAmount, uint256 takingAmount) {
                                            // Validate order
                                            {
                                                (bool valid, bytes4 validationResult) = order.isValidExtension(extension);
                                                if (!valid) {
                                                    // solhint-disable-next-line no-inline-assembly
                                                    assembly ("memory-safe") {
                                                        mstore(0, validationResult)
                                                        revert(0, 4)
                                                    }
                                                }
                                            }
                                            if (!order.makerTraits.isAllowedSender(msg.sender)) revert PrivateOrder();
                                            if (order.makerTraits.isExpired()) revert OrderExpired();
                                            if (order.makerTraits.needCheckEpochManager()) {
                                                if (order.makerTraits.useBitInvalidator()) revert EpochManagerAndBitInvalidatorsAreIncompatible();
                                                if (!epochEquals(order.maker.get(), order.makerTraits.series(), order.makerTraits.nonceOrEpoch())) revert WrongSeriesNonce();
                                            }
                                            // Check if orders predicate allows filling
                                            if (extension.length > 0) {
                                                bytes calldata predicate = extension.predicate();
                                                if (predicate.length > 0) {
                                                    if (!checkPredicate(predicate)) revert PredicateIsNotTrue();
                                                }
                                            }
                                            // Compute maker and taker assets amount
                                            if (takerTraits.isMakingAmount()) {
                                                makingAmount = Math.min(amount, remainingMakingAmount);
                                                takingAmount = order.calculateTakingAmount(extension, makingAmount, remainingMakingAmount, orderHash);
                                                uint256 threshold = takerTraits.threshold();
                                                if (threshold > 0) {
                                                    // Check rate: takingAmount / makingAmount <= threshold / amount
                                                    if (amount == makingAmount) {  // Gas optimization, no SafeMath.mul()
                                                        if (takingAmount > threshold) revert TakingAmountTooHigh();
                                                    } else {
                                                        if (takingAmount * amount > threshold * makingAmount) revert TakingAmountTooHigh();
                                                    }
                                                }
                                            }
                                            else {
                                                takingAmount = amount;
                                                makingAmount = order.calculateMakingAmount(extension, takingAmount, remainingMakingAmount, orderHash);
                                                if (makingAmount > remainingMakingAmount) {
                                                    // Try to decrease taking amount because computed making amount exceeds remaining amount
                                                    makingAmount = remainingMakingAmount;
                                                    takingAmount = order.calculateTakingAmount(extension, makingAmount, remainingMakingAmount, orderHash);
                                                    if (takingAmount > amount) revert TakingAmountExceeded();
                                                }
                                                uint256 threshold = takerTraits.threshold();
                                                if (threshold > 0) {
                                                    // Check rate: makingAmount / takingAmount >= threshold / amount
                                                    if (amount == takingAmount) { // Gas optimization, no SafeMath.mul()
                                                        if (makingAmount < threshold) revert MakingAmountTooLow();
                                                    } else {
                                                        if (makingAmount * amount < threshold * takingAmount) revert MakingAmountTooLow();
                                                    }
                                                }
                                            }
                                            if (!order.makerTraits.allowPartialFills() && makingAmount != order.makingAmount) revert PartialFillNotAllowed();
                                            unchecked { if (makingAmount * takingAmount == 0) revert SwapWithZeroAmount(); }
                                            // Invalidate order depending on makerTraits
                                            if (order.makerTraits.useBitInvalidator()) {
                                                _bitInvalidator[order.maker.get()].checkAndInvalidate(order.makerTraits.nonceOrEpoch());
                                            } else {
                                                _remainingInvalidator[order.maker.get()][orderHash] = RemainingInvalidatorLib.remains(remainingMakingAmount, makingAmount);
                                            }
                                            // Pre interaction, where maker can prepare funds interactively
                                            if (order.makerTraits.needPreInteractionCall()) {
                                                bytes calldata data = extension.preInteractionTargetAndData();
                                                address listener = order.maker.get();
                                                if (data.length > 19) {
                                                    listener = address(bytes20(data));
                                                    data = data[20:];
                                                }
                                                IPreInteraction(listener).preInteraction(
                                                    order, extension, orderHash, msg.sender, makingAmount, takingAmount, remainingMakingAmount, data
                                                );
                                            }
                                            // Maker => Taker
                                            {
                                                bool needUnwrap = order.makerAsset.get() == address(_WETH) && takerTraits.unwrapWeth();
                                                address receiver = needUnwrap ? address(this) : target;
                                                if (order.makerTraits.usePermit2()) {
                                                    if (extension.makerAssetSuffix().length > 0) revert InvalidPermit2Transfer();
                                                    IERC20(order.makerAsset.get()).safeTransferFromPermit2(order.maker.get(), receiver, makingAmount);
                                                } else {
                                                    if (!_callTransferFromWithSuffix(
                                                        order.makerAsset.get(),
                                                        order.maker.get(),
                                                        receiver,
                                                        makingAmount,
                                                        extension.makerAssetSuffix()
                                                    )) revert TransferFromMakerToTakerFailed();
                                                }
                                                if (needUnwrap) {
                                                    _WETH.safeWithdrawTo(makingAmount, target);
                                                }
                                            }
                                            if (interaction.length > 19) {
                                                // proceed only if interaction length is enough to store address
                                                ITakerInteraction(address(bytes20(interaction))).takerInteraction(
                                                    order, extension, orderHash, msg.sender, makingAmount, takingAmount, remainingMakingAmount, interaction[20:]
                                                );
                                            }
                                            // Taker => Maker
                                            if (order.takerAsset.get() == address(_WETH) && msg.value > 0) {
                                                if (msg.value < takingAmount) revert Errors.InvalidMsgValue();
                                                if (msg.value > takingAmount) {
                                                    unchecked {
                                                        // solhint-disable-next-line avoid-low-level-calls
                                                        (bool success, ) = msg.sender.call{value: msg.value - takingAmount}("");
                                                        if (!success) revert Errors.ETHTransferFailed();
                                                    }
                                                }
                                                if (order.makerTraits.unwrapWeth()) {
                                                    // solhint-disable-next-line avoid-low-level-calls
                                                    (bool success, ) = order.getReceiver().call{value: takingAmount}("");
                                                    if (!success) revert Errors.ETHTransferFailed();
                                                } else {
                                                    _WETH.safeDeposit(takingAmount);
                                                    _WETH.safeTransfer(order.getReceiver(), takingAmount);
                                                }
                                            } else {
                                                if (msg.value != 0) revert Errors.InvalidMsgValue();
                                                bool needUnwrap = order.takerAsset.get() == address(_WETH) && order.makerTraits.unwrapWeth();
                                                address receiver = needUnwrap ? address(this) : order.getReceiver();
                                                if (takerTraits.usePermit2()) {
                                                    if (extension.takerAssetSuffix().length > 0) revert InvalidPermit2Transfer();
                                                    IERC20(order.takerAsset.get()).safeTransferFromPermit2(msg.sender, receiver, takingAmount);
                                                } else {
                                                    if (!_callTransferFromWithSuffix(
                                                        order.takerAsset.get(),
                                                        msg.sender,
                                                        receiver,
                                                        takingAmount,
                                                        extension.takerAssetSuffix()
                                                    )) revert TransferFromTakerToMakerFailed();
                                                }
                                                if (needUnwrap) {
                                                    _WETH.safeWithdrawTo(takingAmount, order.getReceiver());
                                                }
                                            }
                                            // Post interaction, where maker can handle funds interactively
                                            if (order.makerTraits.needPostInteractionCall()) {
                                                bytes calldata data = extension.postInteractionTargetAndData();
                                                address listener = order.maker.get();
                                                if (data.length > 19) {
                                                    listener = address(bytes20(data));
                                                    data = data[20:];
                                                }
                                                IPostInteraction(listener).postInteraction(
                                                    order, extension, orderHash, msg.sender, makingAmount, takingAmount, remainingMakingAmount, data
                                                );
                                            }
                                            emit OrderFilled(orderHash, remainingMakingAmount - makingAmount);
                                        }
                                        /**
                                          * @notice Processes the taker interaction arguments.
                                          * @param takerTraits The taker preferences for the order.
                                          * @param args The taker interaction arguments.
                                          * @return target The address to which the order is filled.
                                          * @return extension The extension calldata of the order.
                                          * @return interaction The interaction calldata.
                                          */
                                        function _parseArgs(TakerTraits takerTraits, bytes calldata args)
                                            private
                                            view
                                            returns(
                                                address target,
                                                bytes calldata extension,
                                                bytes calldata interaction
                                            )
                                        {
                                            if (takerTraits.argsHasTarget()) {
                                                target = address(bytes20(args));
                                                args = args[20:];
                                            } else {
                                                target = msg.sender;
                                            }
                                            uint256 extensionLength = takerTraits.argsExtensionLength();
                                            if (extensionLength > 0) {
                                                extension = args[:extensionLength];
                                                args = args[extensionLength:];
                                            } else {
                                                extension = msg.data[:0];
                                            }
                                            uint256 interactionLength = takerTraits.argsInteractionLength();
                                            if (interactionLength > 0) {
                                                interaction = args[:interactionLength];
                                            } else {
                                                interaction = msg.data[:0];
                                            }
                                        }
                                        /**
                                          * @notice Checks the remaining making amount for the order.
                                          * @dev If the order has been invalidated, the function will revert.
                                          * @param order The order to check.
                                          * @param orderHash The hash of the order.
                                          * @return remainingMakingAmount The remaining amount of the order.
                                          */
                                        function _checkRemainingMakingAmount(IOrderMixin.Order calldata order, bytes32 orderHash) private view returns(uint256 remainingMakingAmount) {
                                            if (order.makerTraits.useBitInvalidator()) {
                                                remainingMakingAmount = order.makingAmount;
                                            } else {
                                                remainingMakingAmount = _remainingInvalidator[order.maker.get()][orderHash].remaining(order.makingAmount);
                                            }
                                            if (remainingMakingAmount == 0) revert InvalidatedOrder();
                                        }
                                        /**
                                          * @notice Calls the transferFrom function with an arbitrary suffix.
                                          * @dev The suffix is appended to the end of the standard ERC20 transferFrom function parameters.
                                          * @param asset The token to be transferred.
                                          * @param from The address to transfer the token from.
                                          * @param to The address to transfer the token to.
                                          * @param amount The amount of the token to transfer.
                                          * @param suffix The suffix (additional data) to append to the end of the transferFrom call.
                                          * @return success A boolean indicating whether the transfer was successful.
                                          */
                                        function _callTransferFromWithSuffix(address asset, address from, address to, uint256 amount, bytes calldata suffix) private returns(bool success) {
                                            bytes4 selector = IERC20.transferFrom.selector;
                                            assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                                                let data := mload(0x40)
                                                mstore(data, selector)
                                                mstore(add(data, 0x04), from)
                                                mstore(add(data, 0x24), to)
                                                mstore(add(data, 0x44), amount)
                                                if suffix.length {
                                                    calldatacopy(add(data, 0x64), suffix.offset, suffix.length)
                                                }
                                                let status := call(gas(), asset, 0, data, add(0x64, suffix.length), 0x0, 0x20)
                                                success := and(status, or(iszero(returndatasize()), and(gt(returndatasize(), 31), eq(mload(0), 1))))
                                            }
                                        }
                                    }
                                    // File @1inch/solidity-utils/contracts/interfaces/IERC20MetadataUppercase.sol@v3.7.1
                                    interface IERC20MetadataUppercase {
                                        function NAME() external view returns (string memory); // solhint-disable-line func-name-mixedcase
                                        function SYMBOL() external view returns (string memory); // solhint-disable-line func-name-mixedcase
                                    }
                                    // File @1inch/solidity-utils/contracts/libraries/StringUtil.sol@v3.7.1
                                    /// @title Library with gas-efficient string operations
                                    library StringUtil {
                                        function toHex(uint256 value) internal pure returns (string memory) {
                                            return toHex(abi.encodePacked(value));
                                        }
                                        function toHex(address value) internal pure returns (string memory) {
                                            return toHex(abi.encodePacked(value));
                                        }
                                        /// @dev this is the assembly adaptation of highly optimized toHex16 code from Mikhail Vladimirov
                                        /// https://stackoverflow.com/a/69266989
                                        function toHex(bytes memory data) internal pure returns (string memory result) {
                                            assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                                                function _toHex16(input) -> output {
                                                    output := or(
                                                        and(input, 0xFFFFFFFFFFFFFFFF000000000000000000000000000000000000000000000000),
                                                        shr(64, and(input, 0x0000000000000000FFFFFFFFFFFFFFFF00000000000000000000000000000000))
                                                    )
                                                    output := or(
                                                        and(output, 0xFFFFFFFF000000000000000000000000FFFFFFFF000000000000000000000000),
                                                        shr(32, and(output, 0x00000000FFFFFFFF000000000000000000000000FFFFFFFF0000000000000000))
                                                    )
                                                    output := or(
                                                        and(output, 0xFFFF000000000000FFFF000000000000FFFF000000000000FFFF000000000000),
                                                        shr(16, and(output, 0x0000FFFF000000000000FFFF000000000000FFFF000000000000FFFF00000000))
                                                    )
                                                    output := or(
                                                        and(output, 0xFF000000FF000000FF000000FF000000FF000000FF000000FF000000FF000000),
                                                        shr(8, and(output, 0x00FF000000FF000000FF000000FF000000FF000000FF000000FF000000FF0000))
                                                    )
                                                    output := or(
                                                        shr(4, and(output, 0xF000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000)),
                                                        shr(8, and(output, 0x0F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F00))
                                                    )
                                                    output := add(
                                                        add(0x3030303030303030303030303030303030303030303030303030303030303030, output),
                                                        mul(
                                                            and(
                                                                shr(4, add(output, 0x0606060606060606060606060606060606060606060606060606060606060606)),
                                                                0x0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F
                                                            ),
                                                            7 // Change 7 to 39 for lower case output
                                                        )
                                                    )
                                                }
                                                result := mload(0x40)
                                                let length := mload(data)
                                                let resultLength := shl(1, length)
                                                let toPtr := add(result, 0x22) // 32 bytes for length + 2 bytes for '0x'
                                                mstore(0x40, add(toPtr, resultLength)) // move free memory pointer
                                                mstore(add(result, 2), 0x3078) // 0x3078 is right aligned so we write to `result + 2`
                                                // to store the last 2 bytes in the beginning of the string
                                                mstore(result, add(resultLength, 2)) // extra 2 bytes for '0x'
                                                for {
                                                    let fromPtr := add(data, 0x20)
                                                    let endPtr := add(fromPtr, length)
                                                } lt(fromPtr, endPtr) {
                                                    fromPtr := add(fromPtr, 0x20)
                                                } {
                                                    let rawData := mload(fromPtr)
                                                    let hexData := _toHex16(rawData)
                                                    mstore(toPtr, hexData)
                                                    toPtr := add(toPtr, 0x20)
                                                    hexData := _toHex16(shl(128, rawData))
                                                    mstore(toPtr, hexData)
                                                    toPtr := add(toPtr, 0x20)
                                                }
                                            }
                                        }
                                    }
                                    // File @openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol@v5.0.1
                                    // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)
                                    /**
                                     * @dev Interface for the optional metadata functions from the ERC20 standard.
                                     */
                                    interface IERC20Metadata is IERC20 {
                                        /**
                                         * @dev Returns the name of the token.
                                         */
                                        function name() external view returns (string memory);
                                        /**
                                         * @dev Returns the symbol of the token.
                                         */
                                        function symbol() external view returns (string memory);
                                        /**
                                         * @dev Returns the decimals places of the token.
                                         */
                                        function decimals() external view returns (uint8);
                                    }
                                    // File @1inch/solidity-utils/contracts/libraries/UniERC20.sol@v3.7.1
                                    /// @title Library, which allows usage of ETH as ERC20 and ERC20 itself. Uses SafeERC20 library for ERC20 interface.
                                    library UniERC20 {
                                        using SafeERC20 for IERC20;
                                        error InsufficientBalance();
                                        error ApproveCalledOnETH();
                                        error NotEnoughValue();
                                        error FromIsNotSender();
                                        error ToIsNotThis();
                                        error ETHTransferFailed();
                                        uint256 private constant _RAW_CALL_GAS_LIMIT = 5000;
                                        IERC20 private constant _ETH_ADDRESS = IERC20(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE);
                                        IERC20 private constant _ZERO_ADDRESS = IERC20(address(0));
                                        /// @dev Returns true if `token` is ETH.
                                        function isETH(IERC20 token) internal pure returns (bool) {
                                            return (token == _ZERO_ADDRESS || token == _ETH_ADDRESS);
                                        }
                                        /// @dev Returns `account` ERC20 `token` balance.
                                        function uniBalanceOf(IERC20 token, address account) internal view returns (uint256) {
                                            if (isETH(token)) {
                                                return account.balance;
                                            } else {
                                                return token.balanceOf(account);
                                            }
                                        }
                                        /// @dev `token` transfer `to` `amount`.
                                        /// Note that this function does nothing in case of zero amount.
                                        function uniTransfer(
                                            IERC20 token,
                                            address payable to,
                                            uint256 amount
                                        ) internal {
                                            if (amount > 0) {
                                                if (isETH(token)) {
                                                    if (address(this).balance < amount) revert InsufficientBalance();
                                                    // solhint-disable-next-line avoid-low-level-calls
                                                    (bool success, ) = to.call{value: amount, gas: _RAW_CALL_GAS_LIMIT}("");
                                                    if (!success) revert ETHTransferFailed();
                                                } else {
                                                    token.safeTransfer(to, amount);
                                                }
                                            }
                                        }
                                        /// @dev `token` transfer `from` `to` `amount`.
                                        /// Note that this function does nothing in case of zero amount.
                                        function uniTransferFrom(
                                            IERC20 token,
                                            address payable from,
                                            address to,
                                            uint256 amount
                                        ) internal {
                                            if (amount > 0) {
                                                if (isETH(token)) {
                                                    if (msg.value < amount) revert NotEnoughValue();
                                                    if (from != msg.sender) revert FromIsNotSender();
                                                    if (to != address(this)) revert ToIsNotThis();
                                                    if (msg.value > amount) {
                                                        // Return remainder if exist
                                                        unchecked {
                                                            // solhint-disable-next-line avoid-low-level-calls
                                                            (bool success, ) = from.call{value: msg.value - amount, gas: _RAW_CALL_GAS_LIMIT}("");
                                                            if (!success) revert ETHTransferFailed();
                                                        }
                                                    }
                                                } else {
                                                    token.safeTransferFrom(from, to, amount);
                                                }
                                            }
                                        }
                                        /// @dev Returns `token` symbol from ERC20 metadata.
                                        function uniSymbol(IERC20 token) internal view returns (string memory) {
                                            return _uniDecode(token, IERC20Metadata.symbol.selector, IERC20MetadataUppercase.SYMBOL.selector);
                                        }
                                        /// @dev Returns `token` name from ERC20 metadata.
                                        function uniName(IERC20 token) internal view returns (string memory) {
                                            return _uniDecode(token, IERC20Metadata.name.selector, IERC20MetadataUppercase.NAME.selector);
                                        }
                                        /// @dev Reverts if `token` is ETH, otherwise performs ERC20 forceApprove.
                                        function uniApprove(
                                            IERC20 token,
                                            address to,
                                            uint256 amount
                                        ) internal {
                                            if (isETH(token)) revert ApproveCalledOnETH();
                                            token.forceApprove(to, amount);
                                        }
                                        /// @dev 20K gas is provided to account for possible implementations of name/symbol
                                        /// (token implementation might be behind proxy or store the value in storage)
                                        function _uniDecode(
                                            IERC20 token,
                                            bytes4 lowerCaseSelector,
                                            bytes4 upperCaseSelector
                                        ) private view returns (string memory result) {
                                            if (isETH(token)) {
                                                return "ETH";
                                            }
                                            (bool success, bytes memory data) = address(token).staticcall{gas: 20000}(
                                                abi.encodeWithSelector(lowerCaseSelector)
                                            );
                                            if (!success) {
                                                (success, data) = address(token).staticcall{gas: 20000}(abi.encodeWithSelector(upperCaseSelector));
                                            }
                                            if (success && data.length >= 0x40) {
                                                (uint256 offset, uint256 len) = abi.decode(data, (uint256, uint256));
                                                /*
                                                    return data is padded up to 32 bytes with ABI encoder also sometimes
                                                    there is extra 32 bytes of zeros padded in the end:
                                                    https://github.com/ethereum/solidity/issues/10170
                                                    because of that we can't check for equality and instead check
                                                    that overall data length is greater or equal than string length + extra 64 bytes
                                                */
                                                if (offset == 0x20 && data.length >= 0x40 + len) {
                                                    assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                                                        result := add(data, 0x40)
                                                    }
                                                    return result;
                                                }
                                            }
                                            if (success && data.length == 32) {
                                                uint256 len = 0;
                                                while (len < data.length && data[len] >= 0x20 && data[len] <= 0x7E) {
                                                    unchecked {
                                                        len++;
                                                    }
                                                }
                                                if (len > 0) {
                                                    assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                                                        mstore(data, len)
                                                    }
                                                    return string(data);
                                                }
                                            }
                                            return StringUtil.toHex(address(token));
                                        }
                                    }
                                    // File @openzeppelin/contracts/access/Ownable.sol@v5.0.1
                                    // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
                                    /**
                                     * @dev Contract module which provides a basic access control mechanism, where
                                     * there is an account (an owner) that can be granted exclusive access to
                                     * specific functions.
                                     *
                                     * The initial owner is set to the address provided by the deployer. This can
                                     * later be changed with {transferOwnership}.
                                     *
                                     * This module is used through inheritance. It will make available the modifier
                                     * `onlyOwner`, which can be applied to your functions to restrict their use to
                                     * the owner.
                                     */
                                    abstract contract Ownable is Context {
                                        address private _owner;
                                        /**
                                         * @dev The caller account is not authorized to perform an operation.
                                         */
                                        error OwnableUnauthorizedAccount(address account);
                                        /**
                                         * @dev The owner is not a valid owner account. (eg. `address(0)`)
                                         */
                                        error OwnableInvalidOwner(address owner);
                                        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                                        /**
                                         * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
                                         */
                                        constructor(address initialOwner) {
                                            if (initialOwner == address(0)) {
                                                revert OwnableInvalidOwner(address(0));
                                            }
                                            _transferOwnership(initialOwner);
                                        }
                                        /**
                                         * @dev Throws if called by any account other than the owner.
                                         */
                                        modifier onlyOwner() {
                                            _checkOwner();
                                            _;
                                        }
                                        /**
                                         * @dev Returns the address of the current owner.
                                         */
                                        function owner() public view virtual returns (address) {
                                            return _owner;
                                        }
                                        /**
                                         * @dev Throws if the sender is not the owner.
                                         */
                                        function _checkOwner() internal view virtual {
                                            if (owner() != _msgSender()) {
                                                revert OwnableUnauthorizedAccount(_msgSender());
                                            }
                                        }
                                        /**
                                         * @dev Leaves the contract without owner. It will not be possible to call
                                         * `onlyOwner` functions. Can only be called by the current owner.
                                         *
                                         * NOTE: Renouncing ownership will leave the contract without an owner,
                                         * thereby disabling any functionality that is only available to the owner.
                                         */
                                        function renounceOwnership() public virtual onlyOwner {
                                            _transferOwnership(address(0));
                                        }
                                        /**
                                         * @dev Transfers ownership of the contract to a new account (`newOwner`).
                                         * Can only be called by the current owner.
                                         */
                                        function transferOwnership(address newOwner) public virtual onlyOwner {
                                            if (newOwner == address(0)) {
                                                revert OwnableInvalidOwner(address(0));
                                            }
                                            _transferOwnership(newOwner);
                                        }
                                        /**
                                         * @dev Transfers ownership of the contract to a new account (`newOwner`).
                                         * Internal function without access restriction.
                                         */
                                        function _transferOwnership(address newOwner) internal virtual {
                                            address oldOwner = _owner;
                                            _owner = newOwner;
                                            emit OwnershipTransferred(oldOwner, newOwner);
                                        }
                                    }
                                    // File contracts/helpers/RouterErrors.sol
                                    library RouterErrors {
                                        error ReturnAmountIsNotEnough(uint256 result, uint256 minReturn);
                                        error InvalidMsgValue();
                                        error ERC20TransferFailed();
                                        error Permit2TransferFromFailed();
                                        error ApproveFailed();
                                    }
                                    // File contracts/interfaces/IClipperExchange.sol
                                    /// @title Clipper interface subset used in swaps
                                    interface IClipperExchange {
                                        struct Signature {
                                            uint8 v;
                                            bytes32 r;
                                            bytes32 s;
                                        }
                                        function sellEthForToken(address outputToken, uint256 inputAmount, uint256 outputAmount, uint256 goodUntil, address destinationAddress, Signature calldata theSignature, bytes calldata auxiliaryData) external payable;
                                        function sellTokenForEth(address inputToken, uint256 inputAmount, uint256 outputAmount, uint256 goodUntil, address destinationAddress, Signature calldata theSignature, bytes calldata auxiliaryData) external;
                                        function swap(address inputToken, address outputToken, uint256 inputAmount, uint256 outputAmount, uint256 goodUntil, address destinationAddress, Signature calldata theSignature, bytes calldata auxiliaryData) external;
                                    }
                                    // File contracts/routers/ClipperRouter.sol
                                    /**
                                     * @title ClipperRouter
                                     * @notice Clipper router that allows to use `IClipperExchange` for swaps.
                                     */
                                    contract ClipperRouter is Pausable, EthReceiver {
                                        using SafeERC20 for IERC20;
                                        using SafeERC20 for IWETH;
                                        using AddressLib for Address;
                                        uint256 private constant _PERMIT2_FLAG = 1 << 255;
                                        uint256 private constant _SIGNATURE_S_MASK = 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff;
                                        uint256 private constant _SIGNATURE_V_SHIFT = 255;
                                        bytes5 private constant _INCH_TAG = "1INCH";
                                        uint256 private constant _INCH_TAG_LENGTH = 5;
                                        IERC20 private constant _ETH = IERC20(address(0));
                                        IWETH private immutable _WETH;  // solhint-disable-line var-name-mixedcase
                                        constructor(IWETH weth) {
                                            _WETH = weth;
                                        }
                                        /**
                                        * @notice Same as `clipperSwapTo` but uses `msg.sender` as recipient.
                                        * @param clipperExchange Clipper pool address.
                                        * @param srcToken Source token and flags.
                                        * @param dstToken Destination token.
                                        * @param inputAmount Amount of source tokens to swap.
                                        * @param outputAmount Amount of destination tokens to receive.
                                        * @param goodUntil Clipper parameter.
                                        * @param r Clipper order signature (r part).
                                        * @param vs Clipper order signature (vs part).
                                        * @return returnAmount Amount of destination tokens received.
                                        */
                                        function clipperSwap(
                                            IClipperExchange clipperExchange,
                                            Address srcToken,
                                            IERC20 dstToken,
                                            uint256 inputAmount,
                                            uint256 outputAmount,
                                            uint256 goodUntil,
                                            bytes32 r,
                                            bytes32 vs
                                        ) external payable returns(uint256 returnAmount) {
                                            return clipperSwapTo(clipperExchange, payable(msg.sender), srcToken, dstToken, inputAmount, outputAmount, goodUntil, r, vs);
                                        }
                                        /**
                                        * @notice Performs swap using Clipper exchange. Wraps and unwraps ETH if required.
                                        *         Sending non-zero `msg.value` for anything but ETH swaps is prohibited.
                                        * @param clipperExchange Clipper pool address.
                                        * @param recipient Address that will receive swap funds.
                                        * @param srcToken Source token and flags.
                                        * @param dstToken Destination token.
                                        * @param inputAmount Amount of source tokens to swap.
                                        * @param outputAmount Amount of destination tokens to receive.
                                        * @param goodUntil Clipper parameter.
                                        * @param r Clipper order signature (r part).
                                        * @param vs Clipper order signature (vs part).
                                        * @return returnAmount Amount of destination tokens received.
                                        */
                                        function clipperSwapTo(
                                            IClipperExchange clipperExchange,
                                            address payable recipient,
                                            Address srcToken,
                                            IERC20 dstToken,
                                            uint256 inputAmount,
                                            uint256 outputAmount,
                                            uint256 goodUntil,
                                            bytes32 r,
                                            bytes32 vs
                                        ) public payable whenNotPaused() returns(uint256 returnAmount) {
                                            IERC20 srcToken_ = IERC20(srcToken.get());
                                            if (srcToken_ == _ETH) {
                                                if (msg.value != inputAmount) revert RouterErrors.InvalidMsgValue();
                                            } else {
                                                if (msg.value != 0) revert RouterErrors.InvalidMsgValue();
                                                srcToken_.safeTransferFromUniversal(msg.sender, address(clipperExchange), inputAmount, srcToken.getFlag(_PERMIT2_FLAG));
                                            }
                                            if (srcToken_ == _ETH) {
                                                // clipperExchange.sellEthForToken{value: inputAmount}(address(dstToken), inputAmount, outputAmount, goodUntil, recipient, signature, _INCH_TAG);
                                                address clipper = address(clipperExchange);
                                                bytes4 selector = clipperExchange.sellEthForToken.selector;
                                                assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                                                    let ptr := mload(0x40)
                                                    mstore(ptr, selector)
                                                    mstore(add(ptr, 0x04), dstToken)
                                                    mstore(add(ptr, 0x24), inputAmount)
                                                    mstore(add(ptr, 0x44), outputAmount)
                                                    mstore(add(ptr, 0x64), goodUntil)
                                                    mstore(add(ptr, 0x84), recipient)
                                                    mstore(add(ptr, 0xa4), add(27, shr(_SIGNATURE_V_SHIFT, vs)))
                                                    mstore(add(ptr, 0xc4), r)
                                                    mstore(add(ptr, 0xe4), and(vs, _SIGNATURE_S_MASK))
                                                    mstore(add(ptr, 0x104), 0x120)
                                                    mstore(add(ptr, 0x124), _INCH_TAG_LENGTH)
                                                    mstore(add(ptr, 0x144), _INCH_TAG)
                                                    if iszero(call(gas(), clipper, inputAmount, ptr, 0x149, 0, 0)) {
                                                        returndatacopy(ptr, 0, returndatasize())
                                                        revert(ptr, returndatasize())
                                                    }
                                                }
                                            } else if (dstToken == _ETH) {
                                                // clipperExchange.sellTokenForEth(address(srcToken_), inputAmount, outputAmount, goodUntil, recipient, signature, _INCH_TAG);
                                                address clipper = address(clipperExchange);
                                                bytes4 selector = clipperExchange.sellTokenForEth.selector;
                                                assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                                                    let ptr := mload(0x40)
                                                    mstore(ptr, selector)
                                                    mstore(add(ptr, 0x04), srcToken_)
                                                    mstore(add(ptr, 0x24), inputAmount)
                                                    mstore(add(ptr, 0x44), outputAmount)
                                                    mstore(add(ptr, 0x64), goodUntil)
                                                    switch iszero(dstToken)
                                                    case 1 {
                                                        mstore(add(ptr, 0x84), recipient)
                                                    }
                                                    default {
                                                        mstore(add(ptr, 0x84), address())
                                                    }
                                                    mstore(add(ptr, 0xa4), add(27, shr(_SIGNATURE_V_SHIFT, vs)))
                                                    mstore(add(ptr, 0xc4), r)
                                                    mstore(add(ptr, 0xe4), and(vs, _SIGNATURE_S_MASK))
                                                    mstore(add(ptr, 0x104), 0x120)
                                                    mstore(add(ptr, 0x124), _INCH_TAG_LENGTH)
                                                    mstore(add(ptr, 0x144), _INCH_TAG)
                                                    if iszero(call(gas(), clipper, 0, ptr, 0x149, 0, 0)) {
                                                        returndatacopy(ptr, 0, returndatasize())
                                                        revert(ptr, returndatasize())
                                                    }
                                                }
                                            } else {
                                                // clipperExchange.swap(address(srcToken_), address(dstToken), inputAmount, outputAmount, goodUntil, recipient, signature, _INCH_TAG);
                                                address clipper = address(clipperExchange);
                                                bytes4 selector = clipperExchange.swap.selector;
                                                assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                                                    let ptr := mload(0x40)
                                                    mstore(ptr, selector)
                                                    mstore(add(ptr, 0x04), srcToken_)
                                                    mstore(add(ptr, 0x24), dstToken)
                                                    mstore(add(ptr, 0x44), inputAmount)
                                                    mstore(add(ptr, 0x64), outputAmount)
                                                    mstore(add(ptr, 0x84), goodUntil)
                                                    mstore(add(ptr, 0xa4), recipient)
                                                    mstore(add(ptr, 0xc4), add(27, shr(_SIGNATURE_V_SHIFT, vs)))
                                                    mstore(add(ptr, 0xe4), r)
                                                    mstore(add(ptr, 0x104), and(vs, _SIGNATURE_S_MASK))
                                                    mstore(add(ptr, 0x124), 0x140)
                                                    mstore(add(ptr, 0x144), _INCH_TAG_LENGTH)
                                                    mstore(add(ptr, 0x164), _INCH_TAG)
                                                    if iszero(call(gas(), clipper, 0, ptr, 0x169, 0, 0)) {
                                                        returndatacopy(ptr, 0, returndatasize())
                                                        revert(ptr, returndatasize())
                                                    }
                                                }
                                            }
                                            return outputAmount;
                                        }
                                    }
                                    // File contracts/interfaces/IAggregationExecutor.sol
                                    /// @title Interface for making arbitrary calls during swap
                                    interface IAggregationExecutor {
                                        /// @notice propagates information about original msg.sender and executes arbitrary data
                                        function execute(address msgSender) external payable returns(uint256);  // 0x4b64e492
                                    }
                                    // File contracts/routers/GenericRouter.sol
                                    /**
                                     * @title GenericRouter
                                     * @notice Router that allows to use `IAggregationExecutor` for swaps.
                                     */
                                    contract GenericRouter is Pausable, EthReceiver {
                                        using UniERC20 for IERC20;
                                        using SafeERC20 for IERC20;
                                        error ZeroMinReturn();
                                        uint256 private constant _PARTIAL_FILL = 1 << 0;
                                        uint256 private constant _REQUIRES_EXTRA_ETH = 1 << 1;
                                        uint256 private constant _USE_PERMIT2 = 1 << 2;
                                        struct SwapDescription {
                                            IERC20 srcToken;
                                            IERC20 dstToken;
                                            address payable srcReceiver;
                                            address payable dstReceiver;
                                            uint256 amount;
                                            uint256 minReturnAmount;
                                            uint256 flags;
                                        }
                                        /**
                                        * @notice Performs a swap, delegating all calls encoded in `data` to `executor`. See tests for usage examples.
                                        * @dev Router keeps 1 wei of every token on the contract balance for gas optimisations reasons.
                                        *      This affects first swap of every token by leaving 1 wei on the contract.
                                        * @param executor Aggregation executor that executes calls described in `data`.
                                        * @param desc Swap description.
                                        * @param data Encoded calls that `caller` should execute in between of swaps.
                                        * @return returnAmount Resulting token amount.
                                        * @return spentAmount Source token amount.
                                        */
                                        function swap(
                                            IAggregationExecutor executor,
                                            SwapDescription calldata desc,
                                            bytes calldata data
                                        )
                                            external
                                            payable
                                            whenNotPaused()
                                            returns (
                                                uint256 returnAmount,
                                                uint256 spentAmount
                                            )
                                        {
                                            if (desc.minReturnAmount == 0) revert ZeroMinReturn();
                                            IERC20 srcToken = desc.srcToken;
                                            IERC20 dstToken = desc.dstToken;
                                            bool srcETH = srcToken.isETH();
                                            if (desc.flags & _REQUIRES_EXTRA_ETH != 0) {
                                                if (msg.value <= (srcETH ? desc.amount : 0)) revert RouterErrors.InvalidMsgValue();
                                            } else {
                                                if (msg.value != (srcETH ? desc.amount : 0)) revert RouterErrors.InvalidMsgValue();
                                            }
                                            if (!srcETH) {
                                                srcToken.safeTransferFromUniversal(msg.sender, desc.srcReceiver, desc.amount, desc.flags & _USE_PERMIT2 != 0);
                                            }
                                            returnAmount = _execute(executor, msg.sender, desc.amount, data);
                                            spentAmount = desc.amount;
                                            if (desc.flags & _PARTIAL_FILL != 0) {
                                                uint256 unspentAmount = srcToken.uniBalanceOf(address(this));
                                                if (unspentAmount > 1) {
                                                    // we leave 1 wei on the router for gas optimisations reasons
                                                    unchecked { unspentAmount--; }
                                                    spentAmount -= unspentAmount;
                                                    srcToken.uniTransfer(payable(msg.sender), unspentAmount);
                                                }
                                                if (returnAmount * desc.amount < desc.minReturnAmount * spentAmount) revert RouterErrors.ReturnAmountIsNotEnough(returnAmount, desc.minReturnAmount * spentAmount / desc.amount);
                                            } else {
                                                if (returnAmount < desc.minReturnAmount) revert RouterErrors.ReturnAmountIsNotEnough(returnAmount, desc.minReturnAmount);
                                            }
                                            address payable dstReceiver = (desc.dstReceiver == address(0)) ? payable(msg.sender) : desc.dstReceiver;
                                            dstToken.uniTransfer(dstReceiver, returnAmount);
                                        }
                                        function _execute(
                                            IAggregationExecutor executor,
                                            address srcTokenOwner,
                                            uint256 inputAmount,
                                            bytes calldata data
                                        ) private returns(uint256 result) {
                                            bytes4 executeSelector = executor.execute.selector;
                                            assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
                                                let ptr := mload(0x40)
                                                mstore(ptr, executeSelector)
                                                mstore(add(ptr, 0x04), srcTokenOwner)
                                                calldatacopy(add(ptr, 0x24), data.offset, data.length)
                                                mstore(add(add(ptr, 0x24), data.length), inputAmount)
                                                if iszero(call(gas(), executor, callvalue(), ptr, add(0x44, data.length), 0, 0x20)) {
                                                    returndatacopy(ptr, 0, returndatasize())
                                                    revert(ptr, returndatasize())
                                                }
                                                result := mload(0)
                                            }
                                        }
                                    }
                                    // File contracts/interfaces/IUniswapV3Pool.sol
                                    interface IUniswapV3Pool {
                                        /// @notice Emitted by the pool for any swaps between token0 and token1
                                        /// @param sender The address that initiated the swap call, and that received the callback
                                        /// @param recipient The address that received the output of the swap
                                        /// @param amount0 The delta of the token0 balance of the pool
                                        /// @param amount1 The delta of the token1 balance of the pool
                                        /// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96
                                        /// @param liquidity The liquidity of the pool after the swap
                                        /// @param tick The log base 1.0001 of price of the pool after the swap
                                        event Swap(
                                            address indexed sender,
                                            address indexed recipient,
                                            int256 amount0,
                                            int256 amount1,
                                            uint160 sqrtPriceX96,
                                            uint128 liquidity,
                                            int24 tick
                                        );
                                        /// @notice Swap token0 for token1, or token1 for token0
                                        /// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback
                                        /// @param recipient The address to receive the output of the swap
                                        /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0
                                        /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative)
                                        /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this
                                        /// value after the swap. If one for zero, the price cannot be greater than this value after the swap
                                        /// @param data Any data to be passed through to the callback
                                        /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive
                                        /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive
                                        function swap(
                                            address recipient,
                                            bool zeroForOne,
                                            int256 amountSpecified,
                                            uint160 sqrtPriceLimitX96,
                                            bytes calldata data
                                        ) external returns (int256 amount0, int256 amount1);
                                        /// @notice The first of the two tokens of the pool, sorted by address
                                        /// @return The token contract address
                                        function token0() external view returns (address);
                                        /// @notice The second of the two tokens of the pool, sorted by address
                                        /// @return The token contract address
                                        function token1() external view returns (address);
                                        /// @notice The pool's fee in hundredths of a bip, i.e. 1e-6
                                        /// @return The fee
                                        function fee() external view returns (uint24);
                                    }
                                    // File contracts/interfaces/IUniswapV3SwapCallback.sol
                                    /// @title Callback for IUniswapV3PoolActions#swap
                                    /// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface
                                    interface IUniswapV3SwapCallback {
                                        /// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap.
                                        /// @dev In the implementation you must pay the pool tokens owed for the swap.
                                        /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
                                        /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
                                        /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
                                        /// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
                                        /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
                                        /// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
                                        /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call
                                        function uniswapV3SwapCallback(
                                            int256 amount0Delta,
                                            int256 amount1Delta,
                                            bytes calldata data
                                        ) external;
                                    }
                                    // File contracts/libs/ProtocolLib.sol
                                    library ProtocolLib {
                                        using AddressLib for Address;
                                        enum Protocol {
                                            UniswapV2,
                                            UniswapV3,
                                            Curve
                                        }
                                        uint256 private constant _PROTOCOL_OFFSET = 253;
                                        uint256 private constant _WETH_UNWRAP_FLAG = 1 << 252;
                                        uint256 private constant _WETH_NOT_WRAP_FLAG = 1 << 251;
                                        uint256 private constant _USE_PERMIT2_FLAG = 1 << 250;
                                        function protocol(Address self) internal pure returns(Protocol) {
                                            // there is no need to mask because protocol is stored in the highest 3 bits
                                            return Protocol((Address.unwrap(self) >> _PROTOCOL_OFFSET));
                                        }
                                        function shouldUnwrapWeth(Address self) internal pure returns(bool) {
                                            return self.getFlag(_WETH_UNWRAP_FLAG);
                                        }
                                        function shouldWrapWeth(Address self) internal pure returns(bool) {
                                            return !self.getFlag(_WETH_NOT_WRAP_FLAG);
                                        }
                                        function usePermit2(Address self) internal pure returns(bool) {
                                            return self.getFlag(_USE_PERMIT2_FLAG);
                                        }
                                        function addressForPreTransfer(Address self) internal view returns(address) {
                                            if (protocol(self) == Protocol.UniswapV2) {
                                                return self.get();
                                            }
                                            return address(this);
                                        }
                                    }
                                    // File contracts/routers/UnoswapRouter.sol
                                    /**
                                     * @title UnoswapRouter
                                     * @notice A router contract for executing token swaps on Unoswap-compatible decentralized exchanges: UniswapV3, UniswapV2, Curve.
                                     */
                                    contract UnoswapRouter is Pausable, EthReceiver, IUniswapV3SwapCallback {
                                        using SafeERC20 for IERC20;
                                        using SafeERC20 for IWETH;
                                        using AddressLib for Address;
                                        using ProtocolLib for Address;
                                        error BadPool();
                                        error BadCurveSwapSelector();
                                        /// @dev WETH address is network-specific and needs to be changed before deployment.
                                        /// It can not be moved to immutable as immutables are not supported in assembly
                                        address private constant _WETH = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
                                        address private constant _ETH = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
                                        address private constant _PERMIT2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3;
                                        bytes4 private constant _WETH_DEPOSIT_CALL_SELECTOR = 0xd0e30db0;
                                        bytes4 private constant _WETH_WITHDRAW_CALL_SELECTOR = 0x2e1a7d4d;
                                        uint256 private constant _ADDRESS_MASK = 0x000000000000000000000000ffffffffffffffffffffffffffffffffffffffff;
                                        uint256 private constant _SELECTORS = (
                                            (uint256(uint32(IUniswapV3Pool.token0.selector)) << 224) |
                                            (uint256(uint32(IUniswapV3Pool.token1.selector)) << 192) |
                                            (uint256(uint32(IUniswapV3Pool.fee.selector)) << 160) |
                                            (uint256(uint32(IERC20.transfer.selector)) << 128) |
                                            (uint256(uint32(IERC20.transferFrom.selector)) << 96) |
                                            (uint256(uint32(IPermit2.transferFrom.selector)) << 64)
                                        );
                                        uint256 private constant _TOKEN0_SELECTOR_OFFSET = 0;
                                        uint256 private constant _TOKEN1_SELECTOR_OFFSET = 4;
                                        uint256 private constant _FEE_SELECTOR_OFFSET = 8;
                                        uint256 private constant _TRANSFER_SELECTOR_OFFSET = 12;
                                        uint256 private constant _TRANSFER_FROM_SELECTOR_OFFSET = 16;
                                        uint256 private constant _PERMIT2_TRANSFER_FROM_SELECTOR_OFFSET = 20;
                                        bytes32 private constant _POOL_INIT_CODE_HASH = 0xe34f199b19b2b4f47f68442619d555527d244f78a3297ea89325f843f87b8b54;
                                        bytes32 private constant _FF_FACTORY = 0xff1F98431c8aD98523631AE4a59f267346ea31F9840000000000000000000000;
                                        // =====================================================================
                                        //                          Methods with 1 pool
                                        // =====================================================================
                                        /**
                                        * @notice Swaps `amount` of the specified `token` for another token using an Unoswap-compatible exchange's pool,
                                        *         with a minimum return specified by `minReturn`.
                                        * @param token The address of the token to be swapped.
                                        * @param amount The amount of tokens to be swapped.
                                        * @param minReturn The minimum amount of tokens to be received after the swap.
                                        * @param dex The address of the Unoswap-compatible exchange's pool.
                                        * @return returnAmount The actual amount of tokens received after the swap.
                                        */
                                        function unoswap(Address token, uint256 amount, uint256 minReturn, Address dex) external returns(uint256 returnAmount) {
                                            returnAmount = _unoswapTo(msg.sender, msg.sender, token, amount, minReturn, dex);
                                        }
                                        /**
                                        * @notice Swaps `amount` of the specified `token` for another token using an Unoswap-compatible exchange's pool,
                                        *         sending the resulting tokens to the `to` address, with a minimum return specified by `minReturn`.
                                        * @param to The address to receive the swapped tokens.
                                        * @param token The address of the token to be swapped.
                                        * @param amount The amount of tokens to be swapped.
                                        * @param minReturn The minimum amount of tokens to be received after the swap.
                                        * @param dex The address of the Unoswap-compatible exchange's pool.
                                        * @return returnAmount The actual amount of tokens received after the swap.
                                        */
                                        function unoswapTo(Address to, Address token, uint256 amount, uint256 minReturn, Address dex) external returns(uint256 returnAmount) {
                                            returnAmount = _unoswapTo(msg.sender, to.get(), token, amount, minReturn, dex);
                                        }
                                        /**
                                        * @notice Swaps ETH for another token using an Unoswap-compatible exchange's pool, with a minimum return specified by `minReturn`.
                                        *         The function is payable and requires the sender to attach ETH.
                                        *         It is necessary to check if it's cheaper to use _WETH_NOT_WRAP_FLAG in `dex` Address (for example: for Curve pools).
                                        * @param minReturn The minimum amount of tokens to be received after the swap.
                                        * @param dex The address of the Unoswap-compatible exchange's pool.
                                        * @return returnAmount The actual amount of tokens received after the swap.
                                        */
                                        function ethUnoswap(uint256 minReturn, Address dex) external payable returns(uint256 returnAmount) {
                                            if (dex.shouldWrapWeth()) {
                                                IWETH(_WETH).safeDeposit(msg.value);
                                            }
                                            returnAmount = _unoswapTo(address(this), msg.sender, Address.wrap(uint160(_WETH)), msg.value, minReturn, dex);
                                        }
                                        /**
                                        * @notice Swaps ETH for another token using an Unoswap-compatible exchange's pool, sending the resulting tokens to the `to` address,
                                        *         with a minimum return specified by `minReturn`. The function is payable and requires the sender to attach ETH.
                                        *         It is necessary to check if it's cheaper to use _WETH_NOT_WRAP_FLAG in `dex` Address (for example: for Curve pools).
                                        * @param to The address to receive the swapped tokens.
                                        * @param minReturn The minimum amount of tokens to be received after the swap.
                                        * @param dex The address of the Unoswap-compatible exchange's pool.
                                        * @return returnAmount The actual amount of tokens received after the swap.
                                        */
                                        function ethUnoswapTo(Address to, uint256 minReturn, Address dex) external payable returns(uint256 returnAmount) {
                                            if (dex.shouldWrapWeth()) {
                                                IWETH(_WETH).safeDeposit(msg.value);
                                            }
                                            returnAmount = _unoswapTo(address(this), to.get(), Address.wrap(uint160(_WETH)), msg.value, minReturn, dex);
                                        }
                                        function _unoswapTo(address from, address to, Address token, uint256 amount, uint256 minReturn, Address dex) private whenNotPaused() returns(uint256 returnAmount) {
                                            if (dex.shouldUnwrapWeth()) {
                                                returnAmount = _unoswap(from, address(this), token, amount, minReturn, dex);
                                                IWETH(_WETH).safeWithdrawTo(returnAmount, to);
                                            } else {
                                                returnAmount = _unoswap(from, to, token, amount, minReturn, dex);
                                            }
                                        }
                                        // =====================================================================
                                        //                    Methods with 2 sequential pools
                                        // =====================================================================
                                        /**
                                        * @notice Swaps `amount` of the specified `token` for another token using two Unoswap-compatible exchange pools (`dex` and `dex2`) sequentially,
                                        *         with a minimum return specified by `minReturn`.
                                        * @param token The address of the token to be swapped.
                                        * @param amount The amount of tokens to be swapped.
                                        * @param minReturn The minimum amount of tokens to be received after the swap.
                                        * @param dex The address of the first Unoswap-compatible exchange's pool.
                                        * @param dex2 The address of the second Unoswap-compatible exchange's pool.
                                        * @return returnAmount The actual amount of tokens received after the swap through both pools.
                                        */
                                        function unoswap2(Address token, uint256 amount, uint256 minReturn, Address dex, Address dex2) external returns(uint256 returnAmount) {
                                            returnAmount = _unoswapTo2(msg.sender, msg.sender, token, amount, minReturn, dex, dex2);
                                        }
                                        /**
                                        * @notice Swaps `amount` of the specified `token` for another token using two Unoswap-compatible exchange pools (`dex` and `dex2`) sequentially,
                                        *         sending the resulting tokens to the `to` address, with a minimum return specified by `minReturn`.
                                        * @param to The address to receive the swapped tokens.
                                        * @param token The address of the token to be swapped.
                                        * @param amount The amount of tokens to be swapped.
                                        * @param minReturn The minimum amount of tokens to be received after the swap.
                                        * @param dex The address of the first Unoswap-compatible exchange's pool.
                                        * @param dex2 The address of the second Unoswap-compatible exchange's pool.
                                        * @return returnAmount The actual amount of tokens received after the swap through both pools.
                                        */
                                        function unoswapTo2(Address to, Address token, uint256 amount, uint256 minReturn, Address dex, Address dex2) external returns(uint256 returnAmount) {
                                            returnAmount = _unoswapTo2(msg.sender, to.get(), token, amount, minReturn, dex, dex2);
                                        }
                                        /**
                                        * @notice Swaps ETH for another token using two Unoswap-compatible exchange pools (`dex` and `dex2`) sequentially,
                                        *         with a minimum return specified by `minReturn`. The function is payable and requires the sender to attach ETH.
                                        *         It is necessary to check if it's cheaper to use _WETH_NOT_WRAP_FLAG in `dex` Address (for example: for Curve pools).
                                        * @param minReturn The minimum amount of tokens to be received after the swap.
                                        * @param dex The address of the first Unoswap-compatible exchange's pool.
                                        * @param dex2 The address of the second Unoswap-compatible exchange's pool.
                                        * @return returnAmount The actual amount of tokens received after the swap through both pools.
                                        */
                                        function ethUnoswap2(uint256 minReturn, Address dex, Address dex2) external payable returns(uint256 returnAmount) {
                                            if (dex.shouldWrapWeth()) {
                                                IWETH(_WETH).safeDeposit(msg.value);
                                            }
                                            returnAmount = _unoswapTo2(address(this), msg.sender, Address.wrap(uint160(_WETH)), msg.value, minReturn, dex, dex2);
                                        }
                                        /**
                                        * @notice Swaps ETH for another token using two Unoswap-compatible exchange pools (`dex` and `dex2`) sequentially,
                                        *         sending the resulting tokens to the `to` address, with a minimum return specified by `minReturn`.
                                        *         The function is payable and requires the sender to attach ETH.
                                        *         It is necessary to check if it's cheaper to use _WETH_NOT_WRAP_FLAG in `dex` Address (for example: for Curve pools).
                                        * @param to The address to receive the swapped tokens.
                                        * @param minReturn The minimum amount of tokens to be received after the swap.
                                        * @param dex The address of the first Unoswap-compatible exchange's pool.
                                        * @param dex2 The address of the second Unoswap-compatible exchange's pool.
                                        * @return returnAmount The actual amount of tokens received after the swap through both pools.
                                        */
                                        function ethUnoswapTo2(Address to, uint256 minReturn, Address dex, Address dex2) external payable returns(uint256 returnAmount) {
                                            if (dex.shouldWrapWeth()) {
                                                IWETH(_WETH).safeDeposit(msg.value);
                                            }
                                            returnAmount = _unoswapTo2(address(this), to.get(), Address.wrap(uint160(_WETH)), msg.value, minReturn, dex, dex2);
                                        }
                                        function _unoswapTo2(address from, address to, Address token, uint256 amount, uint256 minReturn, Address dex, Address dex2) private whenNotPaused() returns(uint256 returnAmount) {
                                            address pool2 = dex2.addressForPreTransfer();
                                            address target = dex2.shouldUnwrapWeth() ? address(this) : to;
                                            returnAmount = _unoswap(from, pool2, token, amount, 0, dex);
                                            returnAmount = _unoswap(pool2, target, Address.wrap(0), returnAmount, minReturn, dex2);
                                            if (dex2.shouldUnwrapWeth()) {
                                                IWETH(_WETH).safeWithdrawTo(returnAmount, to);
                                            }
                                        }
                                        // =====================================================================
                                        //                    Methods with 3 sequential pools
                                        // =====================================================================
                                        /**
                                        * @notice Swaps `amount` of the specified `token` for another token using three Unoswap-compatible exchange pools
                                        *         (`dex`, `dex2`, and `dex3`) sequentially, with a minimum return specified by `minReturn`.
                                        * @param token The address of the token to be swapped.
                                        * @param amount The amount of tokens to be swapped.
                                        * @param minReturn The minimum amount of tokens to be received after the swap.
                                        * @param dex The address of the first Unoswap-compatible exchange's pool.
                                        * @param dex2 The address of the second Unoswap-compatible exchange's pool.
                                        * @param dex3 The address of the third Unoswap-compatible exchange's pool.
                                        * @return returnAmount The actual amount of tokens received after the swap through all three pools.
                                        */
                                        function unoswap3(Address token, uint256 amount, uint256 minReturn, Address dex, Address dex2, Address dex3) external returns(uint256 returnAmount) {
                                            returnAmount = _unoswapTo3(msg.sender, msg.sender, token, amount, minReturn, dex, dex2, dex3);
                                        }
                                        /**
                                        * @notice Swaps `amount` of the specified `token` for another token using three Unoswap-compatible exchange pools
                                        *         (`dex`, `dex2`, and `dex3`) sequentially, sending the resulting tokens to the `to` address, with a minimum return specified by `minReturn`.
                                        * @param to The address to receive the swapped tokens.
                                        * @param token The address of the token to be swapped.
                                        * @param amount The amount of tokens to be swapped.
                                        * @param minReturn The minimum amount of tokens to be received after the swap.
                                        * @param dex The address of the first Unoswap-compatible exchange's pool.
                                        * @param dex2 The address of the second Unoswap-compatible exchange's pool.
                                        * @param dex3 The address of the third Unoswap-compatible exchange's pool.
                                        * @return returnAmount The actual amount of tokens received after the swap through all three pools.
                                        */
                                        function unoswapTo3(Address to, Address token, uint256 amount, uint256 minReturn, Address dex, Address dex2, Address dex3) external returns(uint256 returnAmount) {
                                            returnAmount = _unoswapTo3(msg.sender, to.get(), token, amount, minReturn, dex, dex2, dex3);
                                        }
                                        /**
                                        * @notice Swaps ETH for another token using three Unoswap-compatible exchange pools (`dex`, `dex2`, and `dex3`) sequentially,
                                        *         with a minimum return specified by `minReturn`. The function is payable and requires the sender to attach ETH.
                                        *         It is necessary to check if it's cheaper to use _WETH_NOT_WRAP_FLAG in `dex` Address (for example: for Curve pools).
                                        * @param minReturn The minimum amount of tokens to be received after the swap.
                                        * @param dex The address of the first Unoswap-compatible exchange's pool.
                                        * @param dex2 The address of the second Unoswap-compatible exchange's pool.
                                        * @param dex3 The address of the third Unoswap-compatible exchange's pool.
                                        * @return returnAmount The actual amount of tokens received after the swap through all three pools.
                                        */
                                        function ethUnoswap3(uint256 minReturn, Address dex, Address dex2, Address dex3) external payable returns(uint256 returnAmount) {
                                            if (dex.shouldWrapWeth()) {
                                                IWETH(_WETH).safeDeposit(msg.value);
                                            }
                                            returnAmount = _unoswapTo3(address(this), msg.sender, Address.wrap(uint160(_WETH)), msg.value, minReturn, dex, dex2, dex3);
                                        }
                                        /**
                                        * @notice Swaps ETH for another token using three Unoswap-compatible exchange pools (`dex`, `dex2`, and `dex3`) sequentially,
                                        *         sending the resulting tokens to the `to` address, with a minimum return specified by `minReturn`.
                                        *         The function is payable and requires the sender to attach ETH.
                                        *         It is necessary to check if it's cheaper to use _WETH_NOT_WRAP_FLAG in `dex` Address (for example: for Curve pools).
                                        * @param to The address to receive the swapped tokens.
                                        * @param minReturn The minimum amount of tokens to be received after the swap.
                                        * @param dex The address of the first Unoswap-compatible exchange's pool.
                                        * @param dex2 The address of the second Unoswap-compatible exchange's pool.
                                        * @param dex3 The address of the third Unoswap-compatible exchange's pool.
                                        * @return returnAmount The actual amount of tokens received after the swap through all three pools.
                                        */
                                        function ethUnoswapTo3(Address to, uint256 minReturn, Address dex, Address dex2, Address dex3) external payable returns(uint256 returnAmount) {
                                            if (dex.shouldWrapWeth()) {
                                                IWETH(_WETH).safeDeposit(msg.value);
                                            }
                                            returnAmount = _unoswapTo3(address(this), to.get(), Address.wrap(uint160(_WETH)), msg.value, minReturn, dex, dex2, dex3);
                                        }
                                        function _unoswapTo3(address from, address to, Address token, uint256 amount, uint256 minReturn, Address dex, Address dex2, Address dex3) private whenNotPaused() returns(uint256 returnAmount) {
                                            address pool2 = dex2.addressForPreTransfer();
                                            address pool3 = dex3.addressForPreTransfer();
                                            address target = dex3.shouldUnwrapWeth() ? address(this) : to;
                                            returnAmount = _unoswap(from, pool2, token, amount, 0, dex);
                                            returnAmount = _unoswap(pool2, pool3, Address.wrap(0), returnAmount, 0, dex2);
                                            returnAmount = _unoswap(pool3, target, Address.wrap(0), returnAmount, minReturn, dex3);
                                            if (dex3.shouldUnwrapWeth()) {
                                                IWETH(_WETH).safeWithdrawTo(returnAmount, to);
                                            }
                                        }
                                        function _unoswap(
                                            address spender,
                                            address recipient,
                                            Address token,
                                            uint256 amount,
                                            uint256 minReturn,
                                            Address dex
                                        ) private returns(uint256 returnAmount) {
                                            ProtocolLib.Protocol protocol = dex.protocol();
                                            if (protocol == ProtocolLib.Protocol.UniswapV3) {
                                                returnAmount = _unoswapV3(spender, recipient, amount, minReturn, dex);
                                            } else if (protocol == ProtocolLib.Protocol.UniswapV2) {
                                                if (spender == address(this)) {
                                                    IERC20(token.get()).safeTransfer(dex.get(), amount);
                                                } else if (spender == msg.sender) {
                                                    IERC20(token.get()).safeTransferFromUniversal(msg.sender, dex.get(), amount, dex.usePermit2());
                                                }
                                                returnAmount = _unoswapV2(recipient, amount, minReturn, dex);
                                            } else if (protocol == ProtocolLib.Protocol.Curve) {
                                                if (spender == msg.sender && msg.value == 0) {
                                                    IERC20(token.get()).safeTransferFromUniversal(msg.sender, address(this), amount, dex.usePermit2());
                                                }
                                                returnAmount = _curfe(recipient, amount, minReturn, dex);
                                            }
                                        }
                                        uint256 private constant _UNISWAP_V2_ZERO_FOR_ONE_OFFSET = 247;
                                        uint256 private constant _UNISWAP_V2_ZERO_FOR_ONE_MASK = 0x01;
                                        uint256 private constant _UNISWAP_V2_NUMERATOR_OFFSET = 160;
                                        uint256 private constant _UNISWAP_V2_NUMERATOR_MASK = 0xffffffff;
                                        bytes4 private constant _UNISWAP_V2_PAIR_RESERVES_CALL_SELECTOR = 0x0902f1ac;
                                        bytes4 private constant _UNISWAP_V2_PAIR_SWAP_CALL_SELECTOR = 0x022c0d9f;
                                        uint256 private constant _UNISWAP_V2_DENOMINATOR = 1e9;
                                        uint256 private constant _UNISWAP_V2_DEFAULT_NUMERATOR = 997_000_000;
                                        error ReservesCallFailed();
                                        function _unoswapV2(
                                            address recipient,
                                            uint256 amount,
                                            uint256 minReturn,
                                            Address dex
                                        ) private returns(uint256 ret) {
                                            bytes4 returnAmountNotEnoughException = RouterErrors.ReturnAmountIsNotEnough.selector;
                                            bytes4 reservesCallFailedException = ReservesCallFailed.selector;
                                            assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
                                                let pool := and(dex, _ADDRESS_MASK)
                                                let zeroForOne := and(shr(_UNISWAP_V2_ZERO_FOR_ONE_OFFSET, dex), _UNISWAP_V2_ZERO_FOR_ONE_MASK)
                                                let numerator := and(shr(_UNISWAP_V2_NUMERATOR_OFFSET, dex), _UNISWAP_V2_NUMERATOR_MASK)
                                                if iszero(numerator) {
                                                    numerator := _UNISWAP_V2_DEFAULT_NUMERATOR
                                                }
                                                let ptr := mload(0x40)
                                                mstore(0, _UNISWAP_V2_PAIR_RESERVES_CALL_SELECTOR)
                                                if iszero(staticcall(gas(), pool, 0, 4, 0, 0x40)) {
                                                    returndatacopy(ptr, 0, returndatasize())
                                                    revert(ptr, returndatasize())
                                                }
                                                if sub(returndatasize(), 0x60) {
                                                    mstore(0, reservesCallFailedException)
                                                    revert(0, 4)
                                                }
                                                let reserve0 := mload(mul(0x20, iszero(zeroForOne)))
                                                let reserve1 := mload(mul(0x20, zeroForOne))
                                                // this will not overflow as reserve0, reserve1 and ret fit to 112 bit and numerator and _DENOMINATOR fit to 32 bit
                                                ret := mul(amount, numerator)
                                                ret := div(mul(ret, reserve1), add(ret, mul(reserve0, _UNISWAP_V2_DENOMINATOR)))
                                                if lt(ret, minReturn) {
                                                    mstore(ptr, returnAmountNotEnoughException)
                                                    mstore(add(ptr, 0x04), ret)
                                                    mstore(add(ptr, 0x24), minReturn)
                                                    revert(ptr, 0x44)
                                                }
                                                mstore(ptr, _UNISWAP_V2_PAIR_SWAP_CALL_SELECTOR)
                                                mstore(add(ptr, 0x04), mul(ret, iszero(zeroForOne)))
                                                mstore(add(ptr, 0x24), mul(ret, zeroForOne))
                                                mstore(add(ptr, 0x44), recipient)
                                                mstore(add(ptr, 0x64), 0x80)
                                                mstore(add(ptr, 0x84), 0)
                                                if iszero(call(gas(), pool, 0, ptr, 0xa4, 0, 0)) {
                                                    returndatacopy(ptr, 0, returndatasize())
                                                    revert(ptr, returndatasize())
                                                }
                                            }
                                        }
                                        /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK)
                                        uint160 private constant _UNISWAP_V3_MIN_SQRT_RATIO = 4295128739 + 1;
                                        /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK)
                                        uint160 private constant _UNISWAP_V3_MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342 - 1;
                                        uint256 private constant _UNISWAP_V3_ZERO_FOR_ONE_OFFSET = 247;
                                        uint256 private constant _UNISWAP_V3_ZERO_FOR_ONE_MASK = 0x01;
                                        function _unoswapV3(
                                            address spender,
                                            address recipient,
                                            uint256 amount,
                                            uint256 minReturn,
                                            Address dex
                                        ) private returns(uint256 ret) {
                                            bytes4 swapSelector = IUniswapV3Pool.swap.selector;
                                            bool usePermit2 = dex.usePermit2();
                                            assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
                                                let pool := and(dex, _ADDRESS_MASK)
                                                let zeroForOne := and(shr(_UNISWAP_V3_ZERO_FOR_ONE_OFFSET, dex), _UNISWAP_V3_ZERO_FOR_ONE_MASK)
                                                let ptr := mload(0x40)
                                                mstore(ptr, swapSelector)
                                                mstore(add(ptr, 0x04), recipient)
                                                mstore(add(ptr, 0x24), zeroForOne)
                                                mstore(add(ptr, 0x44), amount)
                                                switch zeroForOne
                                                case 1 {
                                                    mstore(add(ptr, 0x64), _UNISWAP_V3_MIN_SQRT_RATIO)
                                                }
                                                case 0 {
                                                    mstore(add(ptr, 0x64), _UNISWAP_V3_MAX_SQRT_RATIO)
                                                }
                                                mstore(add(ptr, 0x84), 0xa0)
                                                mstore(add(ptr, 0xa4), 0x40)
                                                mstore(add(ptr, 0xc4), spender)
                                                mstore(add(ptr, 0xe4), usePermit2)
                                                if iszero(call(gas(), pool, 0, ptr, 0x0104, 0, 0x40)) {
                                                    returndatacopy(ptr, 0, returndatasize())
                                                    revert(ptr, returndatasize())
                                                }
                                                ret := sub(0, mload(mul(0x20, zeroForOne)))
                                            }
                                            if (ret < minReturn) revert RouterErrors.ReturnAmountIsNotEnough(ret, minReturn);
                                        }
                                        uint256 private constant _CURVE_SWAP_SELECTOR_IDX_OFFSET = 184;
                                        uint256 private constant _CURVE_SWAP_SELECTOR_IDX_MASK = 0xff;
                                        uint256 private constant _CURVE_FROM_COINS_SELECTOR_OFFSET = 192;
                                        uint256 private constant _CURVE_FROM_COINS_SELECTOR_MASK = 0xff;
                                        uint256 private constant _CURVE_FROM_COINS_ARG_OFFSET = 200;
                                        uint256 private constant _CURVE_FROM_COINS_ARG_MASK = 0xff;
                                        uint256 private constant _CURVE_TO_COINS_SELECTOR_OFFSET = 208;
                                        uint256 private constant _CURVE_TO_COINS_SELECTOR_MASK = 0xff;
                                        uint256 private constant _CURVE_TO_COINS_ARG_OFFSET = 216;
                                        uint256 private constant _CURVE_TO_COINS_ARG_MASK = 0xff;
                                        uint256 private constant _CURVE_FROM_TOKEN_OFFSET = 224;
                                        uint256 private constant _CURVE_FROM_TOKEN_MASK = 0xff;
                                        uint256 private constant _CURVE_TO_TOKEN_OFFSET = 232;
                                        uint256 private constant _CURVE_TO_TOKEN_MASK = 0xff;
                                        uint256 private constant _CURVE_INPUT_WETH_DEPOSIT_OFFSET = 240;
                                        uint256 private constant _CURVE_INPUT_WETH_WITHDRAW_OFFSET = 241;
                                        uint256 private constant _CURVE_SWAP_USE_ETH_OFFSET = 242;
                                        uint256 private constant _CURVE_SWAP_HAS_ARG_USE_ETH_OFFSET = 243;
                                        uint256 private constant _CURVE_SWAP_HAS_ARG_DESTINATION_OFFSET = 244;
                                        uint256 private constant _CURVE_OUTPUT_WETH_DEPOSIT_OFFSET = 245;
                                        uint256 private constant _CURVE_OUTPUT_WETH_WITHDRAW_OFFSET = 246;
                                        uint256 private constant _CURVE_SWAP_USE_SECOND_OUTPUT_OFFSET = 247;
                                        uint256 private constant _CURVE_SWAP_HAS_ARG_CALLBACK_OFFSET = 249;
                                        // Curve Pool function selectors for different `coins` methods. For details, see contracts/interfaces/ICurvePool.sol
                                        bytes32 private constant _CURVE_COINS_SELECTORS = 0x87cb4f5723746eb8c6610657b739953eb9947eb0000000000000000000000000;
                                        // Curve Pool function selectors for different `exchange` methods. For details, see contracts/interfaces/ICurvePool.sol
                                        bytes32 private constant _CURVE_SWAP_SELECTORS_1 = 0x3df02124a6417ed6ddc1f59d44ee1986ed4ae2b8bf5ed0562f7865a837cab679;
                                        bytes32 private constant _CURVE_SWAP_SELECTORS_2 = 0x2a064e3c5b41b90865b2489ba64833a0e2ad025a394747c5cb7558f1ce7d6503;
                                        bytes32 private constant _CURVE_SWAP_SELECTORS_3 = 0xd2e2833add96994f000000000000000000000000000000000000000000000000;
                                        uint256 private constant _CURVE_MAX_SELECTOR_INDEX = 17;
                                        function _curfe(
                                            address recipient,
                                            uint256 amount,
                                            uint256 minReturn,
                                            Address dex
                                        ) private returns(uint256 ret) {
                                            bytes4 callbackSelector = this.curveSwapCallback.selector;
                                            assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
                                                function reRevert() {
                                                    let ptr := mload(0x40)
                                                    returndatacopy(ptr, 0, returndatasize())
                                                    revert(ptr, returndatasize())
                                                }
                                                function callReturnSize(status) -> rds {
                                                    if iszero(status) {
                                                        reRevert()
                                                    }
                                                    rds := returndatasize()
                                                }
                                                function tokenBalanceOf(tokenAddress, accountAddress) -> tokenBalance {
                                                    mstore(0, 0x70a0823100000000000000000000000000000000000000000000000000000000)
                                                    mstore(4, accountAddress)
                                                    if iszero(callReturnSize(staticcall(gas(), tokenAddress, 0, 0x24, 0, 0x20))) {
                                                        revert(0, 0)
                                                    }
                                                    tokenBalance := mload(0)
                                                }
                                                function asmApprove(token, to, value, mem) {
                                                    let selector := 0x095ea7b300000000000000000000000000000000000000000000000000000000 // IERC20.approve.selector
                                                    let exception := 0x3e3f8f7300000000000000000000000000000000000000000000000000000000 // error ApproveFailed()
                                                    if iszero(_asmCall(token, selector, to, value, mem)) {
                                                        if iszero(_asmCall(token, selector, to, 0, mem)) {
                                                            mstore(mem, exception)
                                                            revert(mem, 4)
                                                        }
                                                        if iszero(_asmCall(token, selector, to, value, mem)) {
                                                            mstore(mem, exception)
                                                            revert(mem, 4)
                                                        }
                                                    }
                                                }
                                                function _asmCall(token, selector, to, value, mem) -> done {
                                                    mstore(mem, selector)
                                                    mstore(add(mem, 0x04), to)
                                                    mstore(add(mem, 0x24), value)
                                                    let success := call(gas(), token, 0, mem, 0x44, 0x0, 0x20)
                                                    done := and(
                                                        success,
                                                        or(
                                                            iszero(returndatasize()),
                                                            and(gt(returndatasize(), 31), eq(mload(0), 1))
                                                        )
                                                    )
                                                }
                                                function curveCoins(pool, selectorOffset, index) -> coin {
                                                    mstore(0, _CURVE_COINS_SELECTORS)
                                                    mstore(add(selectorOffset, 4), index)
                                                    if iszero(staticcall(gas(), pool, selectorOffset, 0x24, 0, 0x20)) {
                                                        reRevert()
                                                    }
                                                    coin := mload(0)
                                                }
                                                let pool := and(dex, _ADDRESS_MASK)
                                                let useEth := and(shr(_CURVE_SWAP_USE_ETH_OFFSET, dex), 0x01)
                                                let hasCallback := and(shr(_CURVE_SWAP_HAS_ARG_CALLBACK_OFFSET, dex), 0x01)
                                                if and(shr(_CURVE_INPUT_WETH_DEPOSIT_OFFSET, dex), 0x01) {
                                                    // Deposit ETH to WETH
                                                    mstore(0, _WETH_DEPOSIT_CALL_SELECTOR)
                                                    if iszero(call(gas(), _WETH, amount, 0, 4, 0, 0)) {
                                                        reRevert()
                                                    }
                                                }
                                                if and(shr(_CURVE_INPUT_WETH_WITHDRAW_OFFSET, dex), 0x01) {
                                                    // Withdraw ETH from WETH
                                                    mstore(0, _WETH_WITHDRAW_CALL_SELECTOR)
                                                    mstore(4, amount)
                                                    if iszero(call(gas(), _WETH, 0, 0, 0x24, 0, 0)) {
                                                        reRevert()
                                                    }
                                                }
                                                let toToken
                                                {  // Stack too deep
                                                    let toSelectorOffset := and(shr(_CURVE_TO_COINS_SELECTOR_OFFSET, dex), _CURVE_TO_COINS_SELECTOR_MASK)
                                                    let toTokenIndex := and(shr(_CURVE_TO_COINS_ARG_OFFSET, dex), _CURVE_TO_COINS_ARG_MASK)
                                                    toToken := curveCoins(pool, toSelectorOffset, toTokenIndex)
                                                }
                                                let toTokenIsEth := or(eq(toToken, _ETH), eq(toToken, _WETH))
                                                // use approve when the callback is not used AND (raw ether is not used at all OR ether is used on the output)
                                                if and(iszero(hasCallback), or(iszero(useEth), toTokenIsEth)) {
                                                    let fromSelectorOffset := and(shr(_CURVE_FROM_COINS_SELECTOR_OFFSET, dex), _CURVE_FROM_COINS_SELECTOR_MASK)
                                                    let fromTokenIndex := and(shr(_CURVE_FROM_COINS_ARG_OFFSET, dex), _CURVE_FROM_COINS_ARG_MASK)
                                                    let fromToken := curveCoins(pool, fromSelectorOffset, fromTokenIndex)
                                                    if eq(fromToken, _ETH) {
                                                        fromToken := _WETH
                                                    }
                                                    asmApprove(fromToken, pool, amount, mload(0x40))
                                                }
                                                // Swap
                                                let ptr := mload(0x40)
                                                {  // stack too deep
                                                    let selectorIndex := and(shr(_CURVE_SWAP_SELECTOR_IDX_OFFSET, dex), _CURVE_SWAP_SELECTOR_IDX_MASK)
                                                    if gt(selectorIndex, _CURVE_MAX_SELECTOR_INDEX) {
                                                        mstore(0, 0xa231cb8200000000000000000000000000000000000000000000000000000000)  // BadCurveSwapSelector()
                                                        revert(0, 4)
                                                    }
                                                    mstore(ptr, _CURVE_SWAP_SELECTORS_1)
                                                    mstore(add(ptr, 0x20), _CURVE_SWAP_SELECTORS_2)
                                                    mstore(add(ptr, 0x40), _CURVE_SWAP_SELECTORS_3)
                                                    ptr := add(ptr, mul(selectorIndex, 4))
                                                }
                                                mstore(add(ptr, 0x04), and(shr(_CURVE_FROM_TOKEN_OFFSET, dex), _CURVE_FROM_TOKEN_MASK))
                                                mstore(add(ptr, 0x24), and(shr(_CURVE_TO_TOKEN_OFFSET, dex), _CURVE_TO_TOKEN_MASK))
                                                mstore(add(ptr, 0x44), amount)
                                                mstore(add(ptr, 0x64), minReturn)
                                                let offset := 0x84
                                                if and(shr(_CURVE_SWAP_HAS_ARG_USE_ETH_OFFSET, dex), 0x01) {
                                                    mstore(add(ptr, offset), useEth)
                                                    offset := add(offset, 0x20)
                                                }
                                                switch hasCallback
                                                case 1 {
                                                    mstore(add(ptr, offset), address())
                                                    mstore(add(ptr, add(offset, 0x20)), recipient)
                                                    mstore(add(ptr, add(offset, 0x40)), callbackSelector)
                                                    offset := add(offset, 0x60)
                                                }
                                                default {
                                                    if and(shr(_CURVE_SWAP_HAS_ARG_DESTINATION_OFFSET, dex), 0x01) {
                                                        mstore(add(ptr, offset), recipient)
                                                        offset := add(offset, 0x20)
                                                    }
                                                }
                                                // swap call
                                                // value is passed when useEth is set but toToken is not ETH
                                                switch callReturnSize(call(gas(), pool, mul(mul(amount, useEth), iszero(toTokenIsEth)), ptr, offset, 0, 0x40))
                                                case 0 {
                                                    // we expect that curve pools that do not return any value also do not have the recipient argument
                                                    switch and(useEth, toTokenIsEth)
                                                    case 1 {
                                                        ret := balance(address())
                                                    }
                                                    default {
                                                        ret := tokenBalanceOf(toToken, address())
                                                    }
                                                    ret := sub(ret, 1)  // keep 1 wei
                                                }
                                                default {
                                                    ret := mload(mul(0x20, and(shr(_CURVE_SWAP_USE_SECOND_OUTPUT_OFFSET, dex), 0x01)))
                                                }
                                                if iszero(and(shr(_CURVE_SWAP_HAS_ARG_DESTINATION_OFFSET, dex), 0x01)) {
                                                    if and(shr(_CURVE_OUTPUT_WETH_DEPOSIT_OFFSET, dex), 0x01) {
                                                        // Deposit ETH to WETH
                                                        mstore(0, _WETH_DEPOSIT_CALL_SELECTOR)
                                                        if iszero(call(gas(), _WETH, ret, 0, 4, 0, 0)) {
                                                            reRevert()
                                                        }
                                                    }
                                                    if and(shr(_CURVE_OUTPUT_WETH_WITHDRAW_OFFSET, dex), 0x01) {
                                                        // Withdraw ETH from WETH
                                                        mstore(0, _WETH_WITHDRAW_CALL_SELECTOR)
                                                        mstore(4, ret)
                                                        if iszero(call(gas(), _WETH, 0, 0, 0x24, 0, 0)) {
                                                            reRevert()
                                                        }
                                                    }
                                                    // Post transfer toToken if needed
                                                    if xor(recipient, address()) {
                                                        switch and(useEth, toTokenIsEth)
                                                        case 1 {
                                                            if iszero(call(gas(), recipient, ret, 0, 0, 0, 0)) {
                                                                reRevert()
                                                            }
                                                        }
                                                        default {
                                                            if eq(toToken, _ETH) {
                                                                toToken := _WETH
                                                            }
                                                            // toToken.transfer(recipient, ret)
                                                            if iszero(_asmCall(toToken, 0xa9059cbb00000000000000000000000000000000000000000000000000000000, recipient, ret, ptr)) {
                                                                mstore(ptr, 0xf27f64e400000000000000000000000000000000000000000000000000000000)  // error ERC20TransferFailed()
                                                                revert(ptr, 4)
                                                            }
                                                        }
                                                    }
                                                }
                                            }
                                            if (ret < minReturn) revert RouterErrors.ReturnAmountIsNotEnough(ret, minReturn);
                                        }
                                        /**
                                         * @notice Called by Curve pool during the swap operation initiated by `_curfe`.
                                         * @dev This function can be called by anyone assuming there are no tokens
                                         * stored on this contract between transactions.
                                         * @param inCoin Address of the token to be exchanged.
                                         * @param dx Amount of tokens to be exchanged.
                                         */
                                        function curveSwapCallback(
                                            address /* sender */,
                                            address /* receiver */,
                                            address inCoin,
                                            uint256 dx,
                                            uint256 /* dy */
                                        ) external {
                                            IERC20(inCoin).safeTransfer(msg.sender, dx);
                                        }
                                        /**
                                         * @notice See {IUniswapV3SwapCallback-uniswapV3SwapCallback}
                                         *         Called by UniswapV3 pool during the swap operation initiated by `_unoswapV3`.
                                         *         This callback function ensures the proper transfer of tokens based on the swap's
                                         *         configuration. It handles the transfer of tokens by either directly transferring
                                         *         the tokens from the payer to the recipient, or by using a secondary permit contract
                                         *         to transfer the tokens if required by the pool. It verifies the correct pool is
                                         *         calling the function and uses inline assembly for efficient execution and to access
                                         *         low-level EVM features.
                                         */
                                        function uniswapV3SwapCallback(
                                            int256 amount0Delta,
                                            int256 amount1Delta,
                                            bytes calldata /* data */
                                        ) external override {
                                            uint256 selectors = _SELECTORS;
                                            assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
                                                function reRevert() {
                                                    let ptr := mload(0x40)
                                                    returndatacopy(ptr, 0, returndatasize())
                                                    revert(ptr, returndatasize())
                                                }
                                                function safeERC20(target, value, mem, memLength, outLen) {
                                                    let status := call(gas(), target, value, mem, memLength, 0, outLen)
                                                    if iszero(status) {
                                                        reRevert()
                                                    }
                                                    let success := or(
                                                        iszero(returndatasize()),                       // empty return data
                                                        and(gt(returndatasize(), 31), eq(mload(0), 1))  // true in return data
                                                    )
                                                    if iszero(success) {
                                                        mstore(0, 0xf27f64e400000000000000000000000000000000000000000000000000000000)  // ERC20TransferFailed()
                                                        revert(0, 4)
                                                    }
                                                }
                                                let emptyPtr := mload(0x40)
                                                let resultPtr := add(emptyPtr, 0x15)  // 0x15 = _FF_FACTORY size
                                                mstore(emptyPtr, selectors)
                                                let amount
                                                let token
                                                switch sgt(amount0Delta, 0)
                                                case 1 {
                                                    if iszero(staticcall(gas(), caller(), add(emptyPtr, _TOKEN0_SELECTOR_OFFSET), 0x4, resultPtr, 0x20)) {
                                                        reRevert()
                                                    }
                                                    token := mload(resultPtr)
                                                    amount := amount0Delta
                                                }
                                                default {
                                                    if iszero(staticcall(gas(), caller(), add(emptyPtr, _TOKEN1_SELECTOR_OFFSET), 0x4, add(resultPtr, 0x20), 0x20)) {
                                                        reRevert()
                                                    }
                                                    token := mload(add(resultPtr, 0x20))
                                                    amount := amount1Delta
                                                }
                                                let payer := calldataload(0x84)
                                                let usePermit2 := calldataload(0xa4)
                                                switch eq(payer, address())
                                                case 1 {
                                                    // IERC20(token.get()).safeTransfer(msg.sender,amount)
                                                    mstore(add(emptyPtr, add(_TRANSFER_SELECTOR_OFFSET, 0x04)), caller())
                                                    mstore(add(emptyPtr, add(_TRANSFER_SELECTOR_OFFSET, 0x24)), amount)
                                                    safeERC20(token, 0, add(emptyPtr, _TRANSFER_SELECTOR_OFFSET), 0x44, 0x20)
                                                }
                                                default {
                                                    switch sgt(amount0Delta, 0)
                                                    case 1 {
                                                        if iszero(staticcall(gas(), caller(), add(emptyPtr, _TOKEN1_SELECTOR_OFFSET), 0x4, add(resultPtr, 0x20), 0x20)) {
                                                            reRevert()
                                                        }
                                                    }
                                                    default {
                                                        if iszero(staticcall(gas(), caller(), add(emptyPtr, _TOKEN0_SELECTOR_OFFSET), 0x4, resultPtr, 0x20)) {
                                                            reRevert()
                                                        }
                                                    }
                                                    if iszero(staticcall(gas(), caller(), add(emptyPtr, _FEE_SELECTOR_OFFSET), 0x4, add(resultPtr, 0x40), 0x20)) {
                                                        reRevert()
                                                    }
                                                    mstore(emptyPtr, _FF_FACTORY)
                                                    mstore(resultPtr, keccak256(resultPtr, 0x60)) // Compute the inner hash in-place
                                                    mstore(add(resultPtr, 0x20), _POOL_INIT_CODE_HASH)
                                                    let pool := and(keccak256(emptyPtr, 0x55), _ADDRESS_MASK)
                                                    if xor(pool, caller()) {
                                                        mstore(0, 0xb2c0272200000000000000000000000000000000000000000000000000000000)  // BadPool()
                                                        revert(0, 4)
                                                    }
                                                    switch usePermit2
                                                    case 1 {
                                                        // permit2.transferFrom(payer, msg.sender, amount, token);
                                                        mstore(emptyPtr, selectors)
                                                        emptyPtr := add(emptyPtr, _PERMIT2_TRANSFER_FROM_SELECTOR_OFFSET)
                                                        mstore(add(emptyPtr, 0x04), payer)
                                                        mstore(add(emptyPtr, 0x24), caller())
                                                        mstore(add(emptyPtr, 0x44), amount)
                                                        mstore(add(emptyPtr, 0x64), token)
                                                        let success := call(gas(), _PERMIT2, 0, emptyPtr, 0x84, 0, 0)
                                                        if success {
                                                            success := gt(extcodesize(_PERMIT2), 0)
                                                        }
                                                        if iszero(success) {
                                                            mstore(0, 0xc3f9d33200000000000000000000000000000000000000000000000000000000)  // Permit2TransferFromFailed()
                                                            revert(0, 4)
                                                        }
                                                    }
                                                    case 0 {
                                                        // IERC20(token.get()).safeTransferFrom(payer, msg.sender, amount);
                                                        mstore(emptyPtr, selectors)
                                                        emptyPtr := add(emptyPtr, _TRANSFER_FROM_SELECTOR_OFFSET)
                                                        mstore(add(emptyPtr, 0x04), payer)
                                                        mstore(add(emptyPtr, 0x24), caller())
                                                        mstore(add(emptyPtr, 0x44), amount)
                                                        safeERC20(token, 0, emptyPtr, 0x64, 0x20)
                                                    }
                                                }
                                            }
                                        }
                                    }
                                    // File contracts/AggregationRouterV6.sol
                                    /// @notice Main contract incorporates a number of routers to perform swaps and limit orders protocol to fill limit orders
                                    contract AggregationRouterV6 is EIP712("1inch Aggregation Router", "6"), Ownable, Pausable,
                                        ClipperRouter, GenericRouter, UnoswapRouter, PermitAndCall, OrderMixin
                                    {
                                        using UniERC20 for IERC20;
                                        error ZeroAddress();
                                        /**
                                         * @dev Sets the wrapped eth token and clipper exhange interface
                                         * Both values are immutable: they can only be set once during
                                         * construction.
                                         */
                                        constructor(IWETH weth)
                                            ClipperRouter(weth)
                                            OrderMixin(weth)
                                            Ownable(msg.sender)
                                        {
                                            if (address(weth) == address(0)) revert ZeroAddress();
                                        }
                                        /**
                                         * @notice Retrieves funds accidently sent directly to the contract address
                                         * @param token ERC20 token to retrieve
                                         * @param amount amount to retrieve
                                         */
                                        function rescueFunds(IERC20 token, uint256 amount) external onlyOwner {
                                            token.uniTransfer(payable(msg.sender), amount);
                                        }
                                        /**
                                         * @notice Pauses all the trading functionality in the contract.
                                         */
                                        function pause() external onlyOwner {
                                            _pause();
                                        }
                                        /**
                                         * @notice Unpauses all the trading functionality in the contract.
                                         */
                                        function unpause() external onlyOwner {
                                            _unpause();
                                        }
                                        function _receive() internal override(EthReceiver, OnlyWethReceiver) {
                                            EthReceiver._receive();
                                        }
                                    }
                                    

                                    File 9 of 10: FiatTokenV2_2
                                    /**
                                     * SPDX-License-Identifier: Apache-2.0
                                     *
                                     * Copyright (c) 2023, Circle Internet Financial, LLC.
                                     *
                                     * Licensed under the Apache License, Version 2.0 (the "License");
                                     * you may not use this file except in compliance with the License.
                                     * You may obtain a copy of the License at
                                     *
                                     * http://www.apache.org/licenses/LICENSE-2.0
                                     *
                                     * Unless required by applicable law or agreed to in writing, software
                                     * distributed under the License is distributed on an "AS IS" BASIS,
                                     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                                     * See the License for the specific language governing permissions and
                                     * limitations under the License.
                                     */
                                    pragma solidity 0.6.12;
                                    import { EIP712Domain } from "./EIP712Domain.sol"; // solhint-disable-line no-unused-import
                                    import { Blacklistable } from "../v1/Blacklistable.sol"; // solhint-disable-line no-unused-import
                                    import { FiatTokenV1 } from "../v1/FiatTokenV1.sol"; // solhint-disable-line no-unused-import
                                    import { FiatTokenV2 } from "./FiatTokenV2.sol"; // solhint-disable-line no-unused-import
                                    import { FiatTokenV2_1 } from "./FiatTokenV2_1.sol";
                                    import { EIP712 } from "../util/EIP712.sol";
                                    // solhint-disable func-name-mixedcase
                                    /**
                                     * @title FiatToken V2.2
                                     * @notice ERC20 Token backed by fiat reserves, version 2.2
                                     */
                                    contract FiatTokenV2_2 is FiatTokenV2_1 {
                                        /**
                                         * @notice Initialize v2.2
                                         * @param accountsToBlacklist   A list of accounts to migrate from the old blacklist
                                         * @param newSymbol             New token symbol
                                         * data structure to the new blacklist data structure.
                                         */
                                        function initializeV2_2(
                                            address[] calldata accountsToBlacklist,
                                            string calldata newSymbol
                                        ) external {
                                            // solhint-disable-next-line reason-string
                                            require(_initializedVersion == 2);
                                            // Update fiat token symbol
                                            symbol = newSymbol;
                                            // Add previously blacklisted accounts to the new blacklist data structure
                                            // and remove them from the old blacklist data structure.
                                            for (uint256 i = 0; i < accountsToBlacklist.length; i++) {
                                                require(
                                                    _deprecatedBlacklisted[accountsToBlacklist[i]],
                                                    "FiatTokenV2_2: Blacklisting previously unblacklisted account!"
                                                );
                                                _blacklist(accountsToBlacklist[i]);
                                                delete _deprecatedBlacklisted[accountsToBlacklist[i]];
                                            }
                                            _blacklist(address(this));
                                            delete _deprecatedBlacklisted[address(this)];
                                            _initializedVersion = 3;
                                        }
                                        /**
                                         * @dev Internal function to get the current chain id.
                                         * @return The current chain id.
                                         */
                                        function _chainId() internal virtual view returns (uint256) {
                                            uint256 chainId;
                                            assembly {
                                                chainId := chainid()
                                            }
                                            return chainId;
                                        }
                                        /**
                                         * @inheritdoc EIP712Domain
                                         */
                                        function _domainSeparator() internal override view returns (bytes32) {
                                            return EIP712.makeDomainSeparator(name, "2", _chainId());
                                        }
                                        /**
                                         * @notice Update allowance with a signed permit
                                         * @dev EOA wallet signatures should be packed in the order of r, s, v.
                                         * @param owner       Token owner's address (Authorizer)
                                         * @param spender     Spender's address
                                         * @param value       Amount of allowance
                                         * @param deadline    The time at which the signature expires (unix time), or max uint256 value to signal no expiration
                                         * @param signature   Signature bytes signed by an EOA wallet or a contract wallet
                                         */
                                        function permit(
                                            address owner,
                                            address spender,
                                            uint256 value,
                                            uint256 deadline,
                                            bytes memory signature
                                        ) external whenNotPaused {
                                            _permit(owner, spender, value, deadline, signature);
                                        }
                                        /**
                                         * @notice Execute a transfer with a signed authorization
                                         * @dev EOA wallet signatures should be packed in the order of r, s, v.
                                         * @param from          Payer's address (Authorizer)
                                         * @param to            Payee's address
                                         * @param value         Amount to be transferred
                                         * @param validAfter    The time after which this is valid (unix time)
                                         * @param validBefore   The time before which this is valid (unix time)
                                         * @param nonce         Unique nonce
                                         * @param signature     Signature bytes signed by an EOA wallet or a contract wallet
                                         */
                                        function transferWithAuthorization(
                                            address from,
                                            address to,
                                            uint256 value,
                                            uint256 validAfter,
                                            uint256 validBefore,
                                            bytes32 nonce,
                                            bytes memory signature
                                        ) external whenNotPaused notBlacklisted(from) notBlacklisted(to) {
                                            _transferWithAuthorization(
                                                from,
                                                to,
                                                value,
                                                validAfter,
                                                validBefore,
                                                nonce,
                                                signature
                                            );
                                        }
                                        /**
                                         * @notice Receive a transfer with a signed authorization from the payer
                                         * @dev This has an additional check to ensure that the payee's address
                                         * matches the caller of this function to prevent front-running attacks.
                                         * EOA wallet signatures should be packed in the order of r, s, v.
                                         * @param from          Payer's address (Authorizer)
                                         * @param to            Payee's address
                                         * @param value         Amount to be transferred
                                         * @param validAfter    The time after which this is valid (unix time)
                                         * @param validBefore   The time before which this is valid (unix time)
                                         * @param nonce         Unique nonce
                                         * @param signature     Signature bytes signed by an EOA wallet or a contract wallet
                                         */
                                        function receiveWithAuthorization(
                                            address from,
                                            address to,
                                            uint256 value,
                                            uint256 validAfter,
                                            uint256 validBefore,
                                            bytes32 nonce,
                                            bytes memory signature
                                        ) external whenNotPaused notBlacklisted(from) notBlacklisted(to) {
                                            _receiveWithAuthorization(
                                                from,
                                                to,
                                                value,
                                                validAfter,
                                                validBefore,
                                                nonce,
                                                signature
                                            );
                                        }
                                        /**
                                         * @notice Attempt to cancel an authorization
                                         * @dev Works only if the authorization is not yet used.
                                         * EOA wallet signatures should be packed in the order of r, s, v.
                                         * @param authorizer    Authorizer's address
                                         * @param nonce         Nonce of the authorization
                                         * @param signature     Signature bytes signed by an EOA wallet or a contract wallet
                                         */
                                        function cancelAuthorization(
                                            address authorizer,
                                            bytes32 nonce,
                                            bytes memory signature
                                        ) external whenNotPaused {
                                            _cancelAuthorization(authorizer, nonce, signature);
                                        }
                                        /**
                                         * @dev Helper method that sets the blacklist state of an account on balanceAndBlacklistStates.
                                         * If _shouldBlacklist is true, we apply a (1 << 255) bitmask with an OR operation on the
                                         * account's balanceAndBlacklistState. This flips the high bit for the account to 1,
                                         * indicating that the account is blacklisted.
                                         *
                                         * If _shouldBlacklist if false, we reset the account's balanceAndBlacklistStates to their
                                         * balances. This clears the high bit for the account, indicating that the account is unblacklisted.
                                         * @param _account         The address of the account.
                                         * @param _shouldBlacklist True if the account should be blacklisted, false if the account should be unblacklisted.
                                         */
                                        function _setBlacklistState(address _account, bool _shouldBlacklist)
                                            internal
                                            override
                                        {
                                            balanceAndBlacklistStates[_account] = _shouldBlacklist
                                                ? balanceAndBlacklistStates[_account] | (1 << 255)
                                                : _balanceOf(_account);
                                        }
                                        /**
                                         * @dev Helper method that sets the balance of an account on balanceAndBlacklistStates.
                                         * Since balances are stored in the last 255 bits of the balanceAndBlacklistStates value,
                                         * we need to ensure that the updated balance does not exceed (2^255 - 1).
                                         * Since blacklisted accounts' balances cannot be updated, the method will also
                                         * revert if the account is blacklisted
                                         * @param _account The address of the account.
                                         * @param _balance The new fiat token balance of the account (max: (2^255 - 1)).
                                         */
                                        function _setBalance(address _account, uint256 _balance) internal override {
                                            require(
                                                _balance <= ((1 << 255) - 1),
                                                "FiatTokenV2_2: Balance exceeds (2^255 - 1)"
                                            );
                                            require(
                                                !_isBlacklisted(_account),
                                                "FiatTokenV2_2: Account is blacklisted"
                                            );
                                            balanceAndBlacklistStates[_account] = _balance;
                                        }
                                        /**
                                         * @inheritdoc Blacklistable
                                         */
                                        function _isBlacklisted(address _account)
                                            internal
                                            override
                                            view
                                            returns (bool)
                                        {
                                            return balanceAndBlacklistStates[_account] >> 255 == 1;
                                        }
                                        /**
                                         * @dev Helper method to obtain the balance of an account. Since balances
                                         * are stored in the last 255 bits of the balanceAndBlacklistStates value,
                                         * we apply a ((1 << 255) - 1) bit bitmask with an AND operation on the
                                         * balanceAndBlacklistState to obtain the balance.
                                         * @param _account  The address of the account.
                                         * @return          The fiat token balance of the account.
                                         */
                                        function _balanceOf(address _account)
                                            internal
                                            override
                                            view
                                            returns (uint256)
                                        {
                                            return balanceAndBlacklistStates[_account] & ((1 << 255) - 1);
                                        }
                                        /**
                                         * @inheritdoc FiatTokenV1
                                         */
                                        function approve(address spender, uint256 value)
                                            external
                                            override
                                            whenNotPaused
                                            returns (bool)
                                        {
                                            _approve(msg.sender, spender, value);
                                            return true;
                                        }
                                        /**
                                         * @inheritdoc FiatTokenV2
                                         */
                                        function permit(
                                            address owner,
                                            address spender,
                                            uint256 value,
                                            uint256 deadline,
                                            uint8 v,
                                            bytes32 r,
                                            bytes32 s
                                        ) external override whenNotPaused {
                                            _permit(owner, spender, value, deadline, v, r, s);
                                        }
                                        /**
                                         * @inheritdoc FiatTokenV2
                                         */
                                        function increaseAllowance(address spender, uint256 increment)
                                            external
                                            override
                                            whenNotPaused
                                            returns (bool)
                                        {
                                            _increaseAllowance(msg.sender, spender, increment);
                                            return true;
                                        }
                                        /**
                                         * @inheritdoc FiatTokenV2
                                         */
                                        function decreaseAllowance(address spender, uint256 decrement)
                                            external
                                            override
                                            whenNotPaused
                                            returns (bool)
                                        {
                                            _decreaseAllowance(msg.sender, spender, decrement);
                                            return true;
                                        }
                                    }
                                    // SPDX-License-Identifier: MIT
                                    pragma solidity >=0.6.2 <0.8.0;
                                    /**
                                     * @dev Collection of functions related to the address type
                                     */
                                    library Address {
                                        /**
                                         * @dev Returns true if `account` is a contract.
                                         *
                                         * [IMPORTANT]
                                         * ====
                                         * It is unsafe to assume that an address for which this function returns
                                         * false is an externally-owned account (EOA) and not a contract.
                                         *
                                         * Among others, `isContract` will return false for the following
                                         * types of addresses:
                                         *
                                         *  - an externally-owned account
                                         *  - a contract in construction
                                         *  - an address where a contract will be created
                                         *  - an address where a contract lived, but was destroyed
                                         * ====
                                         */
                                        function isContract(address account) internal view returns (bool) {
                                            // This method relies on extcodesize, which returns 0 for contracts in
                                            // construction, since the code is only stored at the end of the
                                            // constructor execution.
                                            uint256 size;
                                            // solhint-disable-next-line no-inline-assembly
                                            assembly { size := extcodesize(account) }
                                            return size > 0;
                                        }
                                        /**
                                         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                                         * `recipient`, forwarding all available gas and reverting on errors.
                                         *
                                         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                                         * of certain opcodes, possibly making contracts go over the 2300 gas limit
                                         * imposed by `transfer`, making them unable to receive funds via
                                         * `transfer`. {sendValue} removes this limitation.
                                         *
                                         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                                         *
                                         * IMPORTANT: because control is transferred to `recipient`, care must be
                                         * taken to not create reentrancy vulnerabilities. Consider using
                                         * {ReentrancyGuard} or the
                                         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                                         */
                                        function sendValue(address payable recipient, uint256 amount) internal {
                                            require(address(this).balance >= amount, "Address: insufficient balance");
                                            // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
                                            (bool success, ) = recipient.call{ value: amount }("");
                                            require(success, "Address: unable to send value, recipient may have reverted");
                                        }
                                        /**
                                         * @dev Performs a Solidity function call using a low level `call`. A
                                         * plain`call` is an unsafe replacement for a function call: use this
                                         * function instead.
                                         *
                                         * If `target` reverts with a revert reason, it is bubbled up by this
                                         * function (like regular Solidity function calls).
                                         *
                                         * Returns the raw returned data. To convert to the expected return value,
                                         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                                         *
                                         * Requirements:
                                         *
                                         * - `target` must be a contract.
                                         * - calling `target` with `data` must not revert.
                                         *
                                         * _Available since v3.1._
                                         */
                                        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                                          return functionCall(target, data, "Address: low-level call failed");
                                        }
                                        /**
                                         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                                         * `errorMessage` as a fallback revert reason when `target` reverts.
                                         *
                                         * _Available since v3.1._
                                         */
                                        function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
                                            return functionCallWithValue(target, data, 0, errorMessage);
                                        }
                                        /**
                                         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                                         * but also transferring `value` wei to `target`.
                                         *
                                         * Requirements:
                                         *
                                         * - the calling contract must have an ETH balance of at least `value`.
                                         * - the called Solidity function must be `payable`.
                                         *
                                         * _Available since v3.1._
                                         */
                                        function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                                            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                                        }
                                        /**
                                         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                                         * with `errorMessage` as a fallback revert reason when `target` reverts.
                                         *
                                         * _Available since v3.1._
                                         */
                                        function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
                                            require(address(this).balance >= value, "Address: insufficient balance for call");
                                            require(isContract(target), "Address: call to non-contract");
                                            // solhint-disable-next-line avoid-low-level-calls
                                            (bool success, bytes memory returndata) = target.call{ value: value }(data);
                                            return _verifyCallResult(success, returndata, errorMessage);
                                        }
                                        /**
                                         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                                         * but performing a static call.
                                         *
                                         * _Available since v3.3._
                                         */
                                        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                                            return functionStaticCall(target, data, "Address: low-level static call failed");
                                        }
                                        /**
                                         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                                         * but performing a static call.
                                         *
                                         * _Available since v3.3._
                                         */
                                        function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
                                            require(isContract(target), "Address: static call to non-contract");
                                            // solhint-disable-next-line avoid-low-level-calls
                                            (bool success, bytes memory returndata) = target.staticcall(data);
                                            return _verifyCallResult(success, returndata, errorMessage);
                                        }
                                        /**
                                         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                                         * but performing a delegate call.
                                         *
                                         * _Available since v3.4._
                                         */
                                        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                                            return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                                        }
                                        /**
                                         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                                         * but performing a delegate call.
                                         *
                                         * _Available since v3.4._
                                         */
                                        function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
                                            require(isContract(target), "Address: delegate call to non-contract");
                                            // solhint-disable-next-line avoid-low-level-calls
                                            (bool success, bytes memory returndata) = target.delegatecall(data);
                                            return _verifyCallResult(success, returndata, errorMessage);
                                        }
                                        function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
                                            if (success) {
                                                return returndata;
                                            } else {
                                                // Look for revert reason and bubble it up if present
                                                if (returndata.length > 0) {
                                                    // The easiest way to bubble the revert reason is using memory via assembly
                                                    // solhint-disable-next-line no-inline-assembly
                                                    assembly {
                                                        let returndata_size := mload(returndata)
                                                        revert(add(32, returndata), returndata_size)
                                                    }
                                                } else {
                                                    revert(errorMessage);
                                                }
                                            }
                                        }
                                    }
                                    // SPDX-License-Identifier: MIT
                                    pragma solidity >=0.6.0 <0.8.0;
                                    import "./IERC20.sol";
                                    import "../../math/SafeMath.sol";
                                    import "../../utils/Address.sol";
                                    /**
                                     * @title SafeERC20
                                     * @dev Wrappers around ERC20 operations that throw on failure (when the token
                                     * contract returns false). Tokens that return no value (and instead revert or
                                     * throw on failure) are also supported, non-reverting calls are assumed to be
                                     * successful.
                                     * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
                                     * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
                                     */
                                    library SafeERC20 {
                                        using SafeMath for uint256;
                                        using Address for address;
                                        function safeTransfer(IERC20 token, address to, uint256 value) internal {
                                            _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
                                        }
                                        function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
                                            _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
                                        }
                                        /**
                                         * @dev Deprecated. This function has issues similar to the ones found in
                                         * {IERC20-approve}, and its usage is discouraged.
                                         *
                                         * Whenever possible, use {safeIncreaseAllowance} and
                                         * {safeDecreaseAllowance} instead.
                                         */
                                        function safeApprove(IERC20 token, address spender, uint256 value) internal {
                                            // safeApprove should only be called when setting an initial allowance,
                                            // or when resetting it to zero. To increase and decrease it, use
                                            // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                                            // solhint-disable-next-line max-line-length
                                            require((value == 0) || (token.allowance(address(this), spender) == 0),
                                                "SafeERC20: approve from non-zero to non-zero allowance"
                                            );
                                            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
                                        }
                                        function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
                                            uint256 newAllowance = token.allowance(address(this), spender).add(value);
                                            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                                        }
                                        function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
                                            uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
                                            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                                        }
                                        /**
                                         * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
                                         * on the return value: the return value is optional (but if data is returned, it must not be false).
                                         * @param token The token targeted by the call.
                                         * @param data The call data (encoded using abi.encode or one of its variants).
                                         */
                                        function _callOptionalReturn(IERC20 token, bytes memory data) private {
                                            // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                                            // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
                                            // the target address contains contract code and also asserts for success in the low-level call.
                                            bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                                            if (returndata.length > 0) { // Return data is optional
                                                // solhint-disable-next-line max-line-length
                                                require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                                            }
                                        }
                                    }
                                    // SPDX-License-Identifier: MIT
                                    pragma solidity >=0.6.0 <0.8.0;
                                    /**
                                     * @dev Interface of the ERC20 standard as defined in the EIP.
                                     */
                                    interface IERC20 {
                                        /**
                                         * @dev Returns the amount of tokens in existence.
                                         */
                                        function totalSupply() external view returns (uint256);
                                        /**
                                         * @dev Returns the amount of tokens owned by `account`.
                                         */
                                        function balanceOf(address account) external view returns (uint256);
                                        /**
                                         * @dev Moves `amount` tokens from the caller's account to `recipient`.
                                         *
                                         * Returns a boolean value indicating whether the operation succeeded.
                                         *
                                         * Emits a {Transfer} event.
                                         */
                                        function transfer(address recipient, uint256 amount) external returns (bool);
                                        /**
                                         * @dev Returns the remaining number of tokens that `spender` will be
                                         * allowed to spend on behalf of `owner` through {transferFrom}. This is
                                         * zero by default.
                                         *
                                         * This value changes when {approve} or {transferFrom} are called.
                                         */
                                        function allowance(address owner, address spender) external view returns (uint256);
                                        /**
                                         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                                         *
                                         * Returns a boolean value indicating whether the operation succeeded.
                                         *
                                         * IMPORTANT: Beware that changing an allowance with this method brings the risk
                                         * that someone may use both the old and the new allowance by unfortunate
                                         * transaction ordering. One possible solution to mitigate this race
                                         * condition is to first reduce the spender's allowance to 0 and set the
                                         * desired value afterwards:
                                         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                                         *
                                         * Emits an {Approval} event.
                                         */
                                        function approve(address spender, uint256 amount) external returns (bool);
                                        /**
                                         * @dev Moves `amount` tokens from `sender` to `recipient` using the
                                         * allowance mechanism. `amount` is then deducted from the caller's
                                         * allowance.
                                         *
                                         * Returns a boolean value indicating whether the operation succeeded.
                                         *
                                         * Emits a {Transfer} event.
                                         */
                                        function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
                                        /**
                                         * @dev Emitted when `value` tokens are moved from one account (`from`) to
                                         * another (`to`).
                                         *
                                         * Note that `value` may be zero.
                                         */
                                        event Transfer(address indexed from, address indexed to, uint256 value);
                                        /**
                                         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                                         * a call to {approve}. `value` is the new allowance.
                                         */
                                        event Approval(address indexed owner, address indexed spender, uint256 value);
                                    }
                                    // SPDX-License-Identifier: MIT
                                    pragma solidity >=0.6.0 <0.8.0;
                                    /**
                                     * @dev Wrappers over Solidity's arithmetic operations with added overflow
                                     * checks.
                                     *
                                     * Arithmetic operations in Solidity wrap on overflow. This can easily result
                                     * in bugs, because programmers usually assume that an overflow raises an
                                     * error, which is the standard behavior in high level programming languages.
                                     * `SafeMath` restores this intuition by reverting the transaction when an
                                     * operation overflows.
                                     *
                                     * Using this library instead of the unchecked operations eliminates an entire
                                     * class of bugs, so it's recommended to use it always.
                                     */
                                    library SafeMath {
                                        /**
                                         * @dev Returns the addition of two unsigned integers, with an overflow flag.
                                         *
                                         * _Available since v3.4._
                                         */
                                        function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                                            uint256 c = a + b;
                                            if (c < a) return (false, 0);
                                            return (true, c);
                                        }
                                        /**
                                         * @dev Returns the substraction of two unsigned integers, with an overflow flag.
                                         *
                                         * _Available since v3.4._
                                         */
                                        function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                                            if (b > a) return (false, 0);
                                            return (true, a - b);
                                        }
                                        /**
                                         * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
                                         *
                                         * _Available since v3.4._
                                         */
                                        function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                                            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                                            // benefit is lost if 'b' is also tested.
                                            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                                            if (a == 0) return (true, 0);
                                            uint256 c = a * b;
                                            if (c / a != b) return (false, 0);
                                            return (true, c);
                                        }
                                        /**
                                         * @dev Returns the division of two unsigned integers, with a division by zero flag.
                                         *
                                         * _Available since v3.4._
                                         */
                                        function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                                            if (b == 0) return (false, 0);
                                            return (true, a / b);
                                        }
                                        /**
                                         * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
                                         *
                                         * _Available since v3.4._
                                         */
                                        function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                                            if (b == 0) return (false, 0);
                                            return (true, a % b);
                                        }
                                        /**
                                         * @dev Returns the addition of two unsigned integers, reverting on
                                         * overflow.
                                         *
                                         * Counterpart to Solidity's `+` operator.
                                         *
                                         * Requirements:
                                         *
                                         * - Addition cannot overflow.
                                         */
                                        function add(uint256 a, uint256 b) internal pure returns (uint256) {
                                            uint256 c = a + b;
                                            require(c >= a, "SafeMath: addition overflow");
                                            return c;
                                        }
                                        /**
                                         * @dev Returns the subtraction of two unsigned integers, reverting on
                                         * overflow (when the result is negative).
                                         *
                                         * Counterpart to Solidity's `-` operator.
                                         *
                                         * Requirements:
                                         *
                                         * - Subtraction cannot overflow.
                                         */
                                        function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                                            require(b <= a, "SafeMath: subtraction overflow");
                                            return a - b;
                                        }
                                        /**
                                         * @dev Returns the multiplication of two unsigned integers, reverting on
                                         * overflow.
                                         *
                                         * Counterpart to Solidity's `*` operator.
                                         *
                                         * Requirements:
                                         *
                                         * - Multiplication cannot overflow.
                                         */
                                        function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                                            if (a == 0) return 0;
                                            uint256 c = a * b;
                                            require(c / a == b, "SafeMath: multiplication overflow");
                                            return c;
                                        }
                                        /**
                                         * @dev Returns the integer division of two unsigned integers, reverting on
                                         * division by zero. The result is rounded towards zero.
                                         *
                                         * Counterpart to Solidity's `/` operator. Note: this function uses a
                                         * `revert` opcode (which leaves remaining gas untouched) while Solidity
                                         * uses an invalid opcode to revert (consuming all remaining gas).
                                         *
                                         * Requirements:
                                         *
                                         * - The divisor cannot be zero.
                                         */
                                        function div(uint256 a, uint256 b) internal pure returns (uint256) {
                                            require(b > 0, "SafeMath: division by zero");
                                            return a / b;
                                        }
                                        /**
                                         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
                                         * reverting when dividing by zero.
                                         *
                                         * Counterpart to Solidity's `%` operator. This function uses a `revert`
                                         * opcode (which leaves remaining gas untouched) while Solidity uses an
                                         * invalid opcode to revert (consuming all remaining gas).
                                         *
                                         * Requirements:
                                         *
                                         * - The divisor cannot be zero.
                                         */
                                        function mod(uint256 a, uint256 b) internal pure returns (uint256) {
                                            require(b > 0, "SafeMath: modulo by zero");
                                            return a % b;
                                        }
                                        /**
                                         * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
                                         * overflow (when the result is negative).
                                         *
                                         * CAUTION: This function is deprecated because it requires allocating memory for the error
                                         * message unnecessarily. For custom revert reasons use {trySub}.
                                         *
                                         * Counterpart to Solidity's `-` operator.
                                         *
                                         * Requirements:
                                         *
                                         * - Subtraction cannot overflow.
                                         */
                                        function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                                            require(b <= a, errorMessage);
                                            return a - b;
                                        }
                                        /**
                                         * @dev Returns the integer division of two unsigned integers, reverting with custom message on
                                         * division by zero. The result is rounded towards zero.
                                         *
                                         * CAUTION: This function is deprecated because it requires allocating memory for the error
                                         * message unnecessarily. For custom revert reasons use {tryDiv}.
                                         *
                                         * Counterpart to Solidity's `/` operator. Note: this function uses a
                                         * `revert` opcode (which leaves remaining gas untouched) while Solidity
                                         * uses an invalid opcode to revert (consuming all remaining gas).
                                         *
                                         * Requirements:
                                         *
                                         * - The divisor cannot be zero.
                                         */
                                        function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                                            require(b > 0, errorMessage);
                                            return a / b;
                                        }
                                        /**
                                         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
                                         * reverting with custom message when dividing by zero.
                                         *
                                         * CAUTION: This function is deprecated because it requires allocating memory for the error
                                         * message unnecessarily. For custom revert reasons use {tryMod}.
                                         *
                                         * Counterpart to Solidity's `%` operator. This function uses a `revert`
                                         * opcode (which leaves remaining gas untouched) while Solidity uses an
                                         * invalid opcode to revert (consuming all remaining gas).
                                         *
                                         * Requirements:
                                         *
                                         * - The divisor cannot be zero.
                                         */
                                        function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                                            require(b > 0, errorMessage);
                                            return a % b;
                                        }
                                    }
                                    /**
                                     * SPDX-License-Identifier: Apache-2.0
                                     *
                                     * Copyright (c) 2023, Circle Internet Financial, LLC.
                                     *
                                     * Licensed under the Apache License, Version 2.0 (the "License");
                                     * you may not use this file except in compliance with the License.
                                     * You may obtain a copy of the License at
                                     *
                                     * http://www.apache.org/licenses/LICENSE-2.0
                                     *
                                     * Unless required by applicable law or agreed to in writing, software
                                     * distributed under the License is distributed on an "AS IS" BASIS,
                                     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                                     * See the License for the specific language governing permissions and
                                     * limitations under the License.
                                     */
                                    pragma solidity 0.6.12;
                                    import { FiatTokenV2 } from "./FiatTokenV2.sol";
                                    // solhint-disable func-name-mixedcase
                                    /**
                                     * @title FiatToken V2.1
                                     * @notice ERC20 Token backed by fiat reserves, version 2.1
                                     */
                                    contract FiatTokenV2_1 is FiatTokenV2 {
                                        /**
                                         * @notice Initialize v2.1
                                         * @param lostAndFound  The address to which the locked funds are sent
                                         */
                                        function initializeV2_1(address lostAndFound) external {
                                            // solhint-disable-next-line reason-string
                                            require(_initializedVersion == 1);
                                            uint256 lockedAmount = _balanceOf(address(this));
                                            if (lockedAmount > 0) {
                                                _transfer(address(this), lostAndFound, lockedAmount);
                                            }
                                            _blacklist(address(this));
                                            _initializedVersion = 2;
                                        }
                                        /**
                                         * @notice Version string for the EIP712 domain separator
                                         * @return Version string
                                         */
                                        function version() external pure returns (string memory) {
                                            return "2";
                                        }
                                    }
                                    /**
                                     * SPDX-License-Identifier: Apache-2.0
                                     *
                                     * Copyright (c) 2023, Circle Internet Financial, LLC.
                                     *
                                     * Licensed under the Apache License, Version 2.0 (the "License");
                                     * you may not use this file except in compliance with the License.
                                     * You may obtain a copy of the License at
                                     *
                                     * http://www.apache.org/licenses/LICENSE-2.0
                                     *
                                     * Unless required by applicable law or agreed to in writing, software
                                     * distributed under the License is distributed on an "AS IS" BASIS,
                                     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                                     * See the License for the specific language governing permissions and
                                     * limitations under the License.
                                     */
                                    pragma solidity 0.6.12;
                                    import { FiatTokenV1_1 } from "../v1.1/FiatTokenV1_1.sol";
                                    import { EIP712 } from "../util/EIP712.sol";
                                    import { EIP3009 } from "./EIP3009.sol";
                                    import { EIP2612 } from "./EIP2612.sol";
                                    /**
                                     * @title FiatToken V2
                                     * @notice ERC20 Token backed by fiat reserves, version 2
                                     */
                                    contract FiatTokenV2 is FiatTokenV1_1, EIP3009, EIP2612 {
                                        uint8 internal _initializedVersion;
                                        /**
                                         * @notice Initialize v2
                                         * @param newName   New token name
                                         */
                                        function initializeV2(string calldata newName) external {
                                            // solhint-disable-next-line reason-string
                                            require(initialized && _initializedVersion == 0);
                                            name = newName;
                                            _DEPRECATED_CACHED_DOMAIN_SEPARATOR = EIP712.makeDomainSeparator(
                                                newName,
                                                "2"
                                            );
                                            _initializedVersion = 1;
                                        }
                                        /**
                                         * @notice Increase the allowance by a given increment
                                         * @param spender   Spender's address
                                         * @param increment Amount of increase in allowance
                                         * @return True if successful
                                         */
                                        function increaseAllowance(address spender, uint256 increment)
                                            external
                                            virtual
                                            whenNotPaused
                                            notBlacklisted(msg.sender)
                                            notBlacklisted(spender)
                                            returns (bool)
                                        {
                                            _increaseAllowance(msg.sender, spender, increment);
                                            return true;
                                        }
                                        /**
                                         * @notice Decrease the allowance by a given decrement
                                         * @param spender   Spender's address
                                         * @param decrement Amount of decrease in allowance
                                         * @return True if successful
                                         */
                                        function decreaseAllowance(address spender, uint256 decrement)
                                            external
                                            virtual
                                            whenNotPaused
                                            notBlacklisted(msg.sender)
                                            notBlacklisted(spender)
                                            returns (bool)
                                        {
                                            _decreaseAllowance(msg.sender, spender, decrement);
                                            return true;
                                        }
                                        /**
                                         * @notice Execute a transfer with a signed authorization
                                         * @param from          Payer's address (Authorizer)
                                         * @param to            Payee's address
                                         * @param value         Amount to be transferred
                                         * @param validAfter    The time after which this is valid (unix time)
                                         * @param validBefore   The time before which this is valid (unix time)
                                         * @param nonce         Unique nonce
                                         * @param v             v of the signature
                                         * @param r             r of the signature
                                         * @param s             s of the signature
                                         */
                                        function transferWithAuthorization(
                                            address from,
                                            address to,
                                            uint256 value,
                                            uint256 validAfter,
                                            uint256 validBefore,
                                            bytes32 nonce,
                                            uint8 v,
                                            bytes32 r,
                                            bytes32 s
                                        ) external whenNotPaused notBlacklisted(from) notBlacklisted(to) {
                                            _transferWithAuthorization(
                                                from,
                                                to,
                                                value,
                                                validAfter,
                                                validBefore,
                                                nonce,
                                                v,
                                                r,
                                                s
                                            );
                                        }
                                        /**
                                         * @notice Receive a transfer with a signed authorization from the payer
                                         * @dev This has an additional check to ensure that the payee's address
                                         * matches the caller of this function to prevent front-running attacks.
                                         * @param from          Payer's address (Authorizer)
                                         * @param to            Payee's address
                                         * @param value         Amount to be transferred
                                         * @param validAfter    The time after which this is valid (unix time)
                                         * @param validBefore   The time before which this is valid (unix time)
                                         * @param nonce         Unique nonce
                                         * @param v             v of the signature
                                         * @param r             r of the signature
                                         * @param s             s of the signature
                                         */
                                        function receiveWithAuthorization(
                                            address from,
                                            address to,
                                            uint256 value,
                                            uint256 validAfter,
                                            uint256 validBefore,
                                            bytes32 nonce,
                                            uint8 v,
                                            bytes32 r,
                                            bytes32 s
                                        ) external whenNotPaused notBlacklisted(from) notBlacklisted(to) {
                                            _receiveWithAuthorization(
                                                from,
                                                to,
                                                value,
                                                validAfter,
                                                validBefore,
                                                nonce,
                                                v,
                                                r,
                                                s
                                            );
                                        }
                                        /**
                                         * @notice Attempt to cancel an authorization
                                         * @dev Works only if the authorization is not yet used.
                                         * @param authorizer    Authorizer's address
                                         * @param nonce         Nonce of the authorization
                                         * @param v             v of the signature
                                         * @param r             r of the signature
                                         * @param s             s of the signature
                                         */
                                        function cancelAuthorization(
                                            address authorizer,
                                            bytes32 nonce,
                                            uint8 v,
                                            bytes32 r,
                                            bytes32 s
                                        ) external whenNotPaused {
                                            _cancelAuthorization(authorizer, nonce, v, r, s);
                                        }
                                        /**
                                         * @notice Update allowance with a signed permit
                                         * @param owner       Token owner's address (Authorizer)
                                         * @param spender     Spender's address
                                         * @param value       Amount of allowance
                                         * @param deadline    The time at which the signature expires (unix time), or max uint256 value to signal no expiration
                                         * @param v           v of the signature
                                         * @param r           r of the signature
                                         * @param s           s of the signature
                                         */
                                        function permit(
                                            address owner,
                                            address spender,
                                            uint256 value,
                                            uint256 deadline,
                                            uint8 v,
                                            bytes32 r,
                                            bytes32 s
                                        )
                                            external
                                            virtual
                                            whenNotPaused
                                            notBlacklisted(owner)
                                            notBlacklisted(spender)
                                        {
                                            _permit(owner, spender, value, deadline, v, r, s);
                                        }
                                        /**
                                         * @dev Internal function to increase the allowance by a given increment
                                         * @param owner     Token owner's address
                                         * @param spender   Spender's address
                                         * @param increment Amount of increase
                                         */
                                        function _increaseAllowance(
                                            address owner,
                                            address spender,
                                            uint256 increment
                                        ) internal override {
                                            _approve(owner, spender, allowed[owner][spender].add(increment));
                                        }
                                        /**
                                         * @dev Internal function to decrease the allowance by a given decrement
                                         * @param owner     Token owner's address
                                         * @param spender   Spender's address
                                         * @param decrement Amount of decrease
                                         */
                                        function _decreaseAllowance(
                                            address owner,
                                            address spender,
                                            uint256 decrement
                                        ) internal override {
                                            _approve(
                                                owner,
                                                spender,
                                                allowed[owner][spender].sub(
                                                    decrement,
                                                    "ERC20: decreased allowance below zero"
                                                )
                                            );
                                        }
                                    }
                                    /**
                                     * SPDX-License-Identifier: Apache-2.0
                                     *
                                     * Copyright (c) 2023, Circle Internet Financial, LLC.
                                     *
                                     * Licensed under the Apache License, Version 2.0 (the "License");
                                     * you may not use this file except in compliance with the License.
                                     * You may obtain a copy of the License at
                                     *
                                     * http://www.apache.org/licenses/LICENSE-2.0
                                     *
                                     * Unless required by applicable law or agreed to in writing, software
                                     * distributed under the License is distributed on an "AS IS" BASIS,
                                     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                                     * See the License for the specific language governing permissions and
                                     * limitations under the License.
                                     */
                                    pragma solidity 0.6.12;
                                    // solhint-disable func-name-mixedcase
                                    /**
                                     * @title EIP712 Domain
                                     */
                                    contract EIP712Domain {
                                        // was originally DOMAIN_SEPARATOR
                                        // but that has been moved to a method so we can override it in V2_2+
                                        bytes32 internal _DEPRECATED_CACHED_DOMAIN_SEPARATOR;
                                        /**
                                         * @notice Get the EIP712 Domain Separator.
                                         * @return The bytes32 EIP712 domain separator.
                                         */
                                        function DOMAIN_SEPARATOR() external view returns (bytes32) {
                                            return _domainSeparator();
                                        }
                                        /**
                                         * @dev Internal method to get the EIP712 Domain Separator.
                                         * @return The bytes32 EIP712 domain separator.
                                         */
                                        function _domainSeparator() internal virtual view returns (bytes32) {
                                            return _DEPRECATED_CACHED_DOMAIN_SEPARATOR;
                                        }
                                    }
                                    /**
                                     * SPDX-License-Identifier: Apache-2.0
                                     *
                                     * Copyright (c) 2023, Circle Internet Financial, LLC.
                                     *
                                     * Licensed under the Apache License, Version 2.0 (the "License");
                                     * you may not use this file except in compliance with the License.
                                     * You may obtain a copy of the License at
                                     *
                                     * http://www.apache.org/licenses/LICENSE-2.0
                                     *
                                     * Unless required by applicable law or agreed to in writing, software
                                     * distributed under the License is distributed on an "AS IS" BASIS,
                                     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                                     * See the License for the specific language governing permissions and
                                     * limitations under the License.
                                     */
                                    pragma solidity 0.6.12;
                                    import { AbstractFiatTokenV2 } from "./AbstractFiatTokenV2.sol";
                                    import { EIP712Domain } from "./EIP712Domain.sol";
                                    import { SignatureChecker } from "../util/SignatureChecker.sol";
                                    import { MessageHashUtils } from "../util/MessageHashUtils.sol";
                                    /**
                                     * @title EIP-3009
                                     * @notice Provide internal implementation for gas-abstracted transfers
                                     * @dev Contracts that inherit from this must wrap these with publicly
                                     * accessible functions, optionally adding modifiers where necessary
                                     */
                                    abstract contract EIP3009 is AbstractFiatTokenV2, EIP712Domain {
                                        // keccak256("TransferWithAuthorization(address from,address to,uint256 value,uint256 validAfter,uint256 validBefore,bytes32 nonce)")
                                        bytes32
                                            public constant TRANSFER_WITH_AUTHORIZATION_TYPEHASH = 0x7c7c6cdb67a18743f49ec6fa9b35f50d52ed05cbed4cc592e13b44501c1a2267;
                                        // keccak256("ReceiveWithAuthorization(address from,address to,uint256 value,uint256 validAfter,uint256 validBefore,bytes32 nonce)")
                                        bytes32
                                            public constant RECEIVE_WITH_AUTHORIZATION_TYPEHASH = 0xd099cc98ef71107a616c4f0f941f04c322d8e254fe26b3c6668db87aae413de8;
                                        // keccak256("CancelAuthorization(address authorizer,bytes32 nonce)")
                                        bytes32
                                            public constant CANCEL_AUTHORIZATION_TYPEHASH = 0x158b0a9edf7a828aad02f63cd515c68ef2f50ba807396f6d12842833a1597429;
                                        /**
                                         * @dev authorizer address => nonce => bool (true if nonce is used)
                                         */
                                        mapping(address => mapping(bytes32 => bool)) private _authorizationStates;
                                        event AuthorizationUsed(address indexed authorizer, bytes32 indexed nonce);
                                        event AuthorizationCanceled(
                                            address indexed authorizer,
                                            bytes32 indexed nonce
                                        );
                                        /**
                                         * @notice Returns the state of an authorization
                                         * @dev Nonces are randomly generated 32-byte data unique to the
                                         * authorizer's address
                                         * @param authorizer    Authorizer's address
                                         * @param nonce         Nonce of the authorization
                                         * @return True if the nonce is used
                                         */
                                        function authorizationState(address authorizer, bytes32 nonce)
                                            external
                                            view
                                            returns (bool)
                                        {
                                            return _authorizationStates[authorizer][nonce];
                                        }
                                        /**
                                         * @notice Execute a transfer with a signed authorization
                                         * @param from          Payer's address (Authorizer)
                                         * @param to            Payee's address
                                         * @param value         Amount to be transferred
                                         * @param validAfter    The time after which this is valid (unix time)
                                         * @param validBefore   The time before which this is valid (unix time)
                                         * @param nonce         Unique nonce
                                         * @param v             v of the signature
                                         * @param r             r of the signature
                                         * @param s             s of the signature
                                         */
                                        function _transferWithAuthorization(
                                            address from,
                                            address to,
                                            uint256 value,
                                            uint256 validAfter,
                                            uint256 validBefore,
                                            bytes32 nonce,
                                            uint8 v,
                                            bytes32 r,
                                            bytes32 s
                                        ) internal {
                                            _transferWithAuthorization(
                                                from,
                                                to,
                                                value,
                                                validAfter,
                                                validBefore,
                                                nonce,
                                                abi.encodePacked(r, s, v)
                                            );
                                        }
                                        /**
                                         * @notice Execute a transfer with a signed authorization
                                         * @dev EOA wallet signatures should be packed in the order of r, s, v.
                                         * @param from          Payer's address (Authorizer)
                                         * @param to            Payee's address
                                         * @param value         Amount to be transferred
                                         * @param validAfter    The time after which this is valid (unix time)
                                         * @param validBefore   The time before which this is valid (unix time)
                                         * @param nonce         Unique nonce
                                         * @param signature     Signature byte array produced by an EOA wallet or a contract wallet
                                         */
                                        function _transferWithAuthorization(
                                            address from,
                                            address to,
                                            uint256 value,
                                            uint256 validAfter,
                                            uint256 validBefore,
                                            bytes32 nonce,
                                            bytes memory signature
                                        ) internal {
                                            _requireValidAuthorization(from, nonce, validAfter, validBefore);
                                            _requireValidSignature(
                                                from,
                                                keccak256(
                                                    abi.encode(
                                                        TRANSFER_WITH_AUTHORIZATION_TYPEHASH,
                                                        from,
                                                        to,
                                                        value,
                                                        validAfter,
                                                        validBefore,
                                                        nonce
                                                    )
                                                ),
                                                signature
                                            );
                                            _markAuthorizationAsUsed(from, nonce);
                                            _transfer(from, to, value);
                                        }
                                        /**
                                         * @notice Receive a transfer with a signed authorization from the payer
                                         * @dev This has an additional check to ensure that the payee's address
                                         * matches the caller of this function to prevent front-running attacks.
                                         * @param from          Payer's address (Authorizer)
                                         * @param to            Payee's address
                                         * @param value         Amount to be transferred
                                         * @param validAfter    The time after which this is valid (unix time)
                                         * @param validBefore   The time before which this is valid (unix time)
                                         * @param nonce         Unique nonce
                                         * @param v             v of the signature
                                         * @param r             r of the signature
                                         * @param s             s of the signature
                                         */
                                        function _receiveWithAuthorization(
                                            address from,
                                            address to,
                                            uint256 value,
                                            uint256 validAfter,
                                            uint256 validBefore,
                                            bytes32 nonce,
                                            uint8 v,
                                            bytes32 r,
                                            bytes32 s
                                        ) internal {
                                            _receiveWithAuthorization(
                                                from,
                                                to,
                                                value,
                                                validAfter,
                                                validBefore,
                                                nonce,
                                                abi.encodePacked(r, s, v)
                                            );
                                        }
                                        /**
                                         * @notice Receive a transfer with a signed authorization from the payer
                                         * @dev This has an additional check to ensure that the payee's address
                                         * matches the caller of this function to prevent front-running attacks.
                                         * EOA wallet signatures should be packed in the order of r, s, v.
                                         * @param from          Payer's address (Authorizer)
                                         * @param to            Payee's address
                                         * @param value         Amount to be transferred
                                         * @param validAfter    The time after which this is valid (unix time)
                                         * @param validBefore   The time before which this is valid (unix time)
                                         * @param nonce         Unique nonce
                                         * @param signature     Signature byte array produced by an EOA wallet or a contract wallet
                                         */
                                        function _receiveWithAuthorization(
                                            address from,
                                            address to,
                                            uint256 value,
                                            uint256 validAfter,
                                            uint256 validBefore,
                                            bytes32 nonce,
                                            bytes memory signature
                                        ) internal {
                                            require(to == msg.sender, "FiatTokenV2: caller must be the payee");
                                            _requireValidAuthorization(from, nonce, validAfter, validBefore);
                                            _requireValidSignature(
                                                from,
                                                keccak256(
                                                    abi.encode(
                                                        RECEIVE_WITH_AUTHORIZATION_TYPEHASH,
                                                        from,
                                                        to,
                                                        value,
                                                        validAfter,
                                                        validBefore,
                                                        nonce
                                                    )
                                                ),
                                                signature
                                            );
                                            _markAuthorizationAsUsed(from, nonce);
                                            _transfer(from, to, value);
                                        }
                                        /**
                                         * @notice Attempt to cancel an authorization
                                         * @param authorizer    Authorizer's address
                                         * @param nonce         Nonce of the authorization
                                         * @param v             v of the signature
                                         * @param r             r of the signature
                                         * @param s             s of the signature
                                         */
                                        function _cancelAuthorization(
                                            address authorizer,
                                            bytes32 nonce,
                                            uint8 v,
                                            bytes32 r,
                                            bytes32 s
                                        ) internal {
                                            _cancelAuthorization(authorizer, nonce, abi.encodePacked(r, s, v));
                                        }
                                        /**
                                         * @notice Attempt to cancel an authorization
                                         * @dev EOA wallet signatures should be packed in the order of r, s, v.
                                         * @param authorizer    Authorizer's address
                                         * @param nonce         Nonce of the authorization
                                         * @param signature     Signature byte array produced by an EOA wallet or a contract wallet
                                         */
                                        function _cancelAuthorization(
                                            address authorizer,
                                            bytes32 nonce,
                                            bytes memory signature
                                        ) internal {
                                            _requireUnusedAuthorization(authorizer, nonce);
                                            _requireValidSignature(
                                                authorizer,
                                                keccak256(
                                                    abi.encode(CANCEL_AUTHORIZATION_TYPEHASH, authorizer, nonce)
                                                ),
                                                signature
                                            );
                                            _authorizationStates[authorizer][nonce] = true;
                                            emit AuthorizationCanceled(authorizer, nonce);
                                        }
                                        /**
                                         * @notice Validates that signature against input data struct
                                         * @param signer        Signer's address
                                         * @param dataHash      Hash of encoded data struct
                                         * @param signature     Signature byte array produced by an EOA wallet or a contract wallet
                                         */
                                        function _requireValidSignature(
                                            address signer,
                                            bytes32 dataHash,
                                            bytes memory signature
                                        ) private view {
                                            require(
                                                SignatureChecker.isValidSignatureNow(
                                                    signer,
                                                    MessageHashUtils.toTypedDataHash(_domainSeparator(), dataHash),
                                                    signature
                                                ),
                                                "FiatTokenV2: invalid signature"
                                            );
                                        }
                                        /**
                                         * @notice Check that an authorization is unused
                                         * @param authorizer    Authorizer's address
                                         * @param nonce         Nonce of the authorization
                                         */
                                        function _requireUnusedAuthorization(address authorizer, bytes32 nonce)
                                            private
                                            view
                                        {
                                            require(
                                                !_authorizationStates[authorizer][nonce],
                                                "FiatTokenV2: authorization is used or canceled"
                                            );
                                        }
                                        /**
                                         * @notice Check that authorization is valid
                                         * @param authorizer    Authorizer's address
                                         * @param nonce         Nonce of the authorization
                                         * @param validAfter    The time after which this is valid (unix time)
                                         * @param validBefore   The time before which this is valid (unix time)
                                         */
                                        function _requireValidAuthorization(
                                            address authorizer,
                                            bytes32 nonce,
                                            uint256 validAfter,
                                            uint256 validBefore
                                        ) private view {
                                            require(
                                                now > validAfter,
                                                "FiatTokenV2: authorization is not yet valid"
                                            );
                                            require(now < validBefore, "FiatTokenV2: authorization is expired");
                                            _requireUnusedAuthorization(authorizer, nonce);
                                        }
                                        /**
                                         * @notice Mark an authorization as used
                                         * @param authorizer    Authorizer's address
                                         * @param nonce         Nonce of the authorization
                                         */
                                        function _markAuthorizationAsUsed(address authorizer, bytes32 nonce)
                                            private
                                        {
                                            _authorizationStates[authorizer][nonce] = true;
                                            emit AuthorizationUsed(authorizer, nonce);
                                        }
                                    }
                                    /**
                                     * SPDX-License-Identifier: Apache-2.0
                                     *
                                     * Copyright (c) 2023, Circle Internet Financial, LLC.
                                     *
                                     * Licensed under the Apache License, Version 2.0 (the "License");
                                     * you may not use this file except in compliance with the License.
                                     * You may obtain a copy of the License at
                                     *
                                     * http://www.apache.org/licenses/LICENSE-2.0
                                     *
                                     * Unless required by applicable law or agreed to in writing, software
                                     * distributed under the License is distributed on an "AS IS" BASIS,
                                     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                                     * See the License for the specific language governing permissions and
                                     * limitations under the License.
                                     */
                                    pragma solidity 0.6.12;
                                    import { AbstractFiatTokenV2 } from "./AbstractFiatTokenV2.sol";
                                    import { EIP712Domain } from "./EIP712Domain.sol";
                                    import { MessageHashUtils } from "../util/MessageHashUtils.sol";
                                    import { SignatureChecker } from "../util/SignatureChecker.sol";
                                    /**
                                     * @title EIP-2612
                                     * @notice Provide internal implementation for gas-abstracted approvals
                                     */
                                    abstract contract EIP2612 is AbstractFiatTokenV2, EIP712Domain {
                                        // keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)")
                                        bytes32
                                            public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;
                                        mapping(address => uint256) private _permitNonces;
                                        /**
                                         * @notice Nonces for permit
                                         * @param owner Token owner's address (Authorizer)
                                         * @return Next nonce
                                         */
                                        function nonces(address owner) external view returns (uint256) {
                                            return _permitNonces[owner];
                                        }
                                        /**
                                         * @notice Verify a signed approval permit and execute if valid
                                         * @param owner     Token owner's address (Authorizer)
                                         * @param spender   Spender's address
                                         * @param value     Amount of allowance
                                         * @param deadline  The time at which the signature expires (unix time), or max uint256 value to signal no expiration
                                         * @param v         v of the signature
                                         * @param r         r of the signature
                                         * @param s         s of the signature
                                         */
                                        function _permit(
                                            address owner,
                                            address spender,
                                            uint256 value,
                                            uint256 deadline,
                                            uint8 v,
                                            bytes32 r,
                                            bytes32 s
                                        ) internal {
                                            _permit(owner, spender, value, deadline, abi.encodePacked(r, s, v));
                                        }
                                        /**
                                         * @notice Verify a signed approval permit and execute if valid
                                         * @dev EOA wallet signatures should be packed in the order of r, s, v.
                                         * @param owner      Token owner's address (Authorizer)
                                         * @param spender    Spender's address
                                         * @param value      Amount of allowance
                                         * @param deadline   The time at which the signature expires (unix time), or max uint256 value to signal no expiration
                                         * @param signature  Signature byte array signed by an EOA wallet or a contract wallet
                                         */
                                        function _permit(
                                            address owner,
                                            address spender,
                                            uint256 value,
                                            uint256 deadline,
                                            bytes memory signature
                                        ) internal {
                                            require(
                                                deadline == type(uint256).max || deadline >= now,
                                                "FiatTokenV2: permit is expired"
                                            );
                                            bytes32 typedDataHash = MessageHashUtils.toTypedDataHash(
                                                _domainSeparator(),
                                                keccak256(
                                                    abi.encode(
                                                        PERMIT_TYPEHASH,
                                                        owner,
                                                        spender,
                                                        value,
                                                        _permitNonces[owner]++,
                                                        deadline
                                                    )
                                                )
                                            );
                                            require(
                                                SignatureChecker.isValidSignatureNow(
                                                    owner,
                                                    typedDataHash,
                                                    signature
                                                ),
                                                "EIP2612: invalid signature"
                                            );
                                            _approve(owner, spender, value);
                                        }
                                    }
                                    /**
                                     * SPDX-License-Identifier: Apache-2.0
                                     *
                                     * Copyright (c) 2023, Circle Internet Financial, LLC.
                                     *
                                     * Licensed under the Apache License, Version 2.0 (the "License");
                                     * you may not use this file except in compliance with the License.
                                     * You may obtain a copy of the License at
                                     *
                                     * http://www.apache.org/licenses/LICENSE-2.0
                                     *
                                     * Unless required by applicable law or agreed to in writing, software
                                     * distributed under the License is distributed on an "AS IS" BASIS,
                                     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                                     * See the License for the specific language governing permissions and
                                     * limitations under the License.
                                     */
                                    pragma solidity 0.6.12;
                                    import { AbstractFiatTokenV1 } from "../v1/AbstractFiatTokenV1.sol";
                                    abstract contract AbstractFiatTokenV2 is AbstractFiatTokenV1 {
                                        function _increaseAllowance(
                                            address owner,
                                            address spender,
                                            uint256 increment
                                        ) internal virtual;
                                        function _decreaseAllowance(
                                            address owner,
                                            address spender,
                                            uint256 decrement
                                        ) internal virtual;
                                    }
                                    /**
                                     * SPDX-License-Identifier: MIT
                                     *
                                     * Copyright (c) 2016 Smart Contract Solutions, Inc.
                                     * Copyright (c) 2018-2020 CENTRE SECZ
                                     *
                                     * Permission is hereby granted, free of charge, to any person obtaining a copy
                                     * of this software and associated documentation files (the "Software"), to deal
                                     * in the Software without restriction, including without limitation the rights
                                     * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
                                     * copies of the Software, and to permit persons to whom the Software is
                                     * furnished to do so, subject to the following conditions:
                                     *
                                     * The above copyright notice and this permission notice shall be included in
                                     * copies or substantial portions of the Software.
                                     *
                                     * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
                                     * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
                                     * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
                                     * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
                                     * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
                                     * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
                                     * SOFTWARE.
                                     */
                                    pragma solidity 0.6.12;
                                    import { Ownable } from "./Ownable.sol";
                                    /**
                                     * @notice Base contract which allows children to implement an emergency stop
                                     * mechanism
                                     * @dev Forked from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/feb665136c0dae9912e08397c1a21c4af3651ef3/contracts/lifecycle/Pausable.sol
                                     * Modifications:
                                     * 1. Added pauser role, switched pause/unpause to be onlyPauser (6/14/2018)
                                     * 2. Removed whenNotPause/whenPaused from pause/unpause (6/14/2018)
                                     * 3. Removed whenPaused (6/14/2018)
                                     * 4. Switches ownable library to use ZeppelinOS (7/12/18)
                                     * 5. Remove constructor (7/13/18)
                                     * 6. Reformat, conform to Solidity 0.6 syntax and add error messages (5/13/20)
                                     * 7. Make public functions external (5/27/20)
                                     */
                                    contract Pausable is Ownable {
                                        event Pause();
                                        event Unpause();
                                        event PauserChanged(address indexed newAddress);
                                        address public pauser;
                                        bool public paused = false;
                                        /**
                                         * @dev Modifier to make a function callable only when the contract is not paused.
                                         */
                                        modifier whenNotPaused() {
                                            require(!paused, "Pausable: paused");
                                            _;
                                        }
                                        /**
                                         * @dev throws if called by any account other than the pauser
                                         */
                                        modifier onlyPauser() {
                                            require(msg.sender == pauser, "Pausable: caller is not the pauser");
                                            _;
                                        }
                                        /**
                                         * @dev called by the owner to pause, triggers stopped state
                                         */
                                        function pause() external onlyPauser {
                                            paused = true;
                                            emit Pause();
                                        }
                                        /**
                                         * @dev called by the owner to unpause, returns to normal state
                                         */
                                        function unpause() external onlyPauser {
                                            paused = false;
                                            emit Unpause();
                                        }
                                        /**
                                         * @notice Updates the pauser address.
                                         * @param _newPauser The address of the new pauser.
                                         */
                                        function updatePauser(address _newPauser) external onlyOwner {
                                            require(
                                                _newPauser != address(0),
                                                "Pausable: new pauser is the zero address"
                                            );
                                            pauser = _newPauser;
                                            emit PauserChanged(pauser);
                                        }
                                    }
                                    /**
                                     * SPDX-License-Identifier: MIT
                                     *
                                     * Copyright (c) 2018 zOS Global Limited.
                                     * Copyright (c) 2018-2020 CENTRE SECZ
                                     *
                                     * Permission is hereby granted, free of charge, to any person obtaining a copy
                                     * of this software and associated documentation files (the "Software"), to deal
                                     * in the Software without restriction, including without limitation the rights
                                     * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
                                     * copies of the Software, and to permit persons to whom the Software is
                                     * furnished to do so, subject to the following conditions:
                                     *
                                     * The above copyright notice and this permission notice shall be included in
                                     * copies or substantial portions of the Software.
                                     *
                                     * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
                                     * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
                                     * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
                                     * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
                                     * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
                                     * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
                                     * SOFTWARE.
                                     */
                                    pragma solidity 0.6.12;
                                    /**
                                     * @notice The Ownable contract has an owner address, and provides basic
                                     * authorization control functions
                                     * @dev Forked from https://github.com/OpenZeppelin/openzeppelin-labs/blob/3887ab77b8adafba4a26ace002f3a684c1a3388b/upgradeability_ownership/contracts/ownership/Ownable.sol
                                     * Modifications:
                                     * 1. Consolidate OwnableStorage into this contract (7/13/18)
                                     * 2. Reformat, conform to Solidity 0.6 syntax, and add error messages (5/13/20)
                                     * 3. Make public functions external (5/27/20)
                                     */
                                    contract Ownable {
                                        // Owner of the contract
                                        address private _owner;
                                        /**
                                         * @dev Event to show ownership has been transferred
                                         * @param previousOwner representing the address of the previous owner
                                         * @param newOwner representing the address of the new owner
                                         */
                                        event OwnershipTransferred(address previousOwner, address newOwner);
                                        /**
                                         * @dev The constructor sets the original owner of the contract to the sender account.
                                         */
                                        constructor() public {
                                            setOwner(msg.sender);
                                        }
                                        /**
                                         * @dev Tells the address of the owner
                                         * @return the address of the owner
                                         */
                                        function owner() external view returns (address) {
                                            return _owner;
                                        }
                                        /**
                                         * @dev Sets a new owner address
                                         */
                                        function setOwner(address newOwner) internal {
                                            _owner = newOwner;
                                        }
                                        /**
                                         * @dev Throws if called by any account other than the owner.
                                         */
                                        modifier onlyOwner() {
                                            require(msg.sender == _owner, "Ownable: caller is not the owner");
                                            _;
                                        }
                                        /**
                                         * @dev Allows the current owner to transfer control of the contract to a newOwner.
                                         * @param newOwner The address to transfer ownership to.
                                         */
                                        function transferOwnership(address newOwner) external onlyOwner {
                                            require(
                                                newOwner != address(0),
                                                "Ownable: new owner is the zero address"
                                            );
                                            emit OwnershipTransferred(_owner, newOwner);
                                            setOwner(newOwner);
                                        }
                                    }
                                    /**
                                     * SPDX-License-Identifier: Apache-2.0
                                     *
                                     * Copyright (c) 2023, Circle Internet Financial, LLC.
                                     *
                                     * Licensed under the Apache License, Version 2.0 (the "License");
                                     * you may not use this file except in compliance with the License.
                                     * You may obtain a copy of the License at
                                     *
                                     * http://www.apache.org/licenses/LICENSE-2.0
                                     *
                                     * Unless required by applicable law or agreed to in writing, software
                                     * distributed under the License is distributed on an "AS IS" BASIS,
                                     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                                     * See the License for the specific language governing permissions and
                                     * limitations under the License.
                                     */
                                    pragma solidity 0.6.12;
                                    import { SafeMath } from "@openzeppelin/contracts/math/SafeMath.sol";
                                    import { AbstractFiatTokenV1 } from "./AbstractFiatTokenV1.sol";
                                    import { Ownable } from "./Ownable.sol";
                                    import { Pausable } from "./Pausable.sol";
                                    import { Blacklistable } from "./Blacklistable.sol";
                                    /**
                                     * @title FiatToken
                                     * @dev ERC20 Token backed by fiat reserves
                                     */
                                    contract FiatTokenV1 is AbstractFiatTokenV1, Ownable, Pausable, Blacklistable {
                                        using SafeMath for uint256;
                                        string public name;
                                        string public symbol;
                                        uint8 public decimals;
                                        string public currency;
                                        address public masterMinter;
                                        bool internal initialized;
                                        /// @dev A mapping that stores the balance and blacklist states for a given address.
                                        /// The first bit defines whether the address is blacklisted (1 if blacklisted, 0 otherwise).
                                        /// The last 255 bits define the balance for the address.
                                        mapping(address => uint256) internal balanceAndBlacklistStates;
                                        mapping(address => mapping(address => uint256)) internal allowed;
                                        uint256 internal totalSupply_ = 0;
                                        mapping(address => bool) internal minters;
                                        mapping(address => uint256) internal minterAllowed;
                                        event Mint(address indexed minter, address indexed to, uint256 amount);
                                        event Burn(address indexed burner, uint256 amount);
                                        event MinterConfigured(address indexed minter, uint256 minterAllowedAmount);
                                        event MinterRemoved(address indexed oldMinter);
                                        event MasterMinterChanged(address indexed newMasterMinter);
                                        /**
                                         * @notice Initializes the fiat token contract.
                                         * @param tokenName       The name of the fiat token.
                                         * @param tokenSymbol     The symbol of the fiat token.
                                         * @param tokenCurrency   The fiat currency that the token represents.
                                         * @param tokenDecimals   The number of decimals that the token uses.
                                         * @param newMasterMinter The masterMinter address for the fiat token.
                                         * @param newPauser       The pauser address for the fiat token.
                                         * @param newBlacklister  The blacklister address for the fiat token.
                                         * @param newOwner        The owner of the fiat token.
                                         */
                                        function initialize(
                                            string memory tokenName,
                                            string memory tokenSymbol,
                                            string memory tokenCurrency,
                                            uint8 tokenDecimals,
                                            address newMasterMinter,
                                            address newPauser,
                                            address newBlacklister,
                                            address newOwner
                                        ) public {
                                            require(!initialized, "FiatToken: contract is already initialized");
                                            require(
                                                newMasterMinter != address(0),
                                                "FiatToken: new masterMinter is the zero address"
                                            );
                                            require(
                                                newPauser != address(0),
                                                "FiatToken: new pauser is the zero address"
                                            );
                                            require(
                                                newBlacklister != address(0),
                                                "FiatToken: new blacklister is the zero address"
                                            );
                                            require(
                                                newOwner != address(0),
                                                "FiatToken: new owner is the zero address"
                                            );
                                            name = tokenName;
                                            symbol = tokenSymbol;
                                            currency = tokenCurrency;
                                            decimals = tokenDecimals;
                                            masterMinter = newMasterMinter;
                                            pauser = newPauser;
                                            blacklister = newBlacklister;
                                            setOwner(newOwner);
                                            initialized = true;
                                        }
                                        /**
                                         * @dev Throws if called by any account other than a minter.
                                         */
                                        modifier onlyMinters() {
                                            require(minters[msg.sender], "FiatToken: caller is not a minter");
                                            _;
                                        }
                                        /**
                                         * @notice Mints fiat tokens to an address.
                                         * @param _to The address that will receive the minted tokens.
                                         * @param _amount The amount of tokens to mint. Must be less than or equal
                                         * to the minterAllowance of the caller.
                                         * @return True if the operation was successful.
                                         */
                                        function mint(address _to, uint256 _amount)
                                            external
                                            whenNotPaused
                                            onlyMinters
                                            notBlacklisted(msg.sender)
                                            notBlacklisted(_to)
                                            returns (bool)
                                        {
                                            require(_to != address(0), "FiatToken: mint to the zero address");
                                            require(_amount > 0, "FiatToken: mint amount not greater than 0");
                                            uint256 mintingAllowedAmount = minterAllowed[msg.sender];
                                            require(
                                                _amount <= mintingAllowedAmount,
                                                "FiatToken: mint amount exceeds minterAllowance"
                                            );
                                            totalSupply_ = totalSupply_.add(_amount);
                                            _setBalance(_to, _balanceOf(_to).add(_amount));
                                            minterAllowed[msg.sender] = mintingAllowedAmount.sub(_amount);
                                            emit Mint(msg.sender, _to, _amount);
                                            emit Transfer(address(0), _to, _amount);
                                            return true;
                                        }
                                        /**
                                         * @dev Throws if called by any account other than the masterMinter
                                         */
                                        modifier onlyMasterMinter() {
                                            require(
                                                msg.sender == masterMinter,
                                                "FiatToken: caller is not the masterMinter"
                                            );
                                            _;
                                        }
                                        /**
                                         * @notice Gets the minter allowance for an account.
                                         * @param minter The address to check.
                                         * @return The remaining minter allowance for the account.
                                         */
                                        function minterAllowance(address minter) external view returns (uint256) {
                                            return minterAllowed[minter];
                                        }
                                        /**
                                         * @notice Checks if an account is a minter.
                                         * @param account The address to check.
                                         * @return True if the account is a minter, false if the account is not a minter.
                                         */
                                        function isMinter(address account) external view returns (bool) {
                                            return minters[account];
                                        }
                                        /**
                                         * @notice Gets the remaining amount of fiat tokens a spender is allowed to transfer on
                                         * behalf of the token owner.
                                         * @param owner   The token owner's address.
                                         * @param spender The spender's address.
                                         * @return The remaining allowance.
                                         */
                                        function allowance(address owner, address spender)
                                            external
                                            override
                                            view
                                            returns (uint256)
                                        {
                                            return allowed[owner][spender];
                                        }
                                        /**
                                         * @notice Gets the totalSupply of the fiat token.
                                         * @return The totalSupply of the fiat token.
                                         */
                                        function totalSupply() external override view returns (uint256) {
                                            return totalSupply_;
                                        }
                                        /**
                                         * @notice Gets the fiat token balance of an account.
                                         * @param account  The address to check.
                                         * @return balance The fiat token balance of the account.
                                         */
                                        function balanceOf(address account)
                                            external
                                            override
                                            view
                                            returns (uint256)
                                        {
                                            return _balanceOf(account);
                                        }
                                        /**
                                         * @notice Sets a fiat token allowance for a spender to spend on behalf of the caller.
                                         * @param spender The spender's address.
                                         * @param value   The allowance amount.
                                         * @return True if the operation was successful.
                                         */
                                        function approve(address spender, uint256 value)
                                            external
                                            virtual
                                            override
                                            whenNotPaused
                                            notBlacklisted(msg.sender)
                                            notBlacklisted(spender)
                                            returns (bool)
                                        {
                                            _approve(msg.sender, spender, value);
                                            return true;
                                        }
                                        /**
                                         * @dev Internal function to set allowance.
                                         * @param owner     Token owner's address.
                                         * @param spender   Spender's address.
                                         * @param value     Allowance amount.
                                         */
                                        function _approve(
                                            address owner,
                                            address spender,
                                            uint256 value
                                        ) internal override {
                                            require(owner != address(0), "ERC20: approve from the zero address");
                                            require(spender != address(0), "ERC20: approve to the zero address");
                                            allowed[owner][spender] = value;
                                            emit Approval(owner, spender, value);
                                        }
                                        /**
                                         * @notice Transfers tokens from an address to another by spending the caller's allowance.
                                         * @dev The caller must have some fiat token allowance on the payer's tokens.
                                         * @param from  Payer's address.
                                         * @param to    Payee's address.
                                         * @param value Transfer amount.
                                         * @return True if the operation was successful.
                                         */
                                        function transferFrom(
                                            address from,
                                            address to,
                                            uint256 value
                                        )
                                            external
                                            override
                                            whenNotPaused
                                            notBlacklisted(msg.sender)
                                            notBlacklisted(from)
                                            notBlacklisted(to)
                                            returns (bool)
                                        {
                                            require(
                                                value <= allowed[from][msg.sender],
                                                "ERC20: transfer amount exceeds allowance"
                                            );
                                            _transfer(from, to, value);
                                            allowed[from][msg.sender] = allowed[from][msg.sender].sub(value);
                                            return true;
                                        }
                                        /**
                                         * @notice Transfers tokens from the caller.
                                         * @param to    Payee's address.
                                         * @param value Transfer amount.
                                         * @return True if the operation was successful.
                                         */
                                        function transfer(address to, uint256 value)
                                            external
                                            override
                                            whenNotPaused
                                            notBlacklisted(msg.sender)
                                            notBlacklisted(to)
                                            returns (bool)
                                        {
                                            _transfer(msg.sender, to, value);
                                            return true;
                                        }
                                        /**
                                         * @dev Internal function to process transfers.
                                         * @param from  Payer's address.
                                         * @param to    Payee's address.
                                         * @param value Transfer amount.
                                         */
                                        function _transfer(
                                            address from,
                                            address to,
                                            uint256 value
                                        ) internal override {
                                            require(from != address(0), "ERC20: transfer from the zero address");
                                            require(to != address(0), "ERC20: transfer to the zero address");
                                            require(
                                                value <= _balanceOf(from),
                                                "ERC20: transfer amount exceeds balance"
                                            );
                                            _setBalance(from, _balanceOf(from).sub(value));
                                            _setBalance(to, _balanceOf(to).add(value));
                                            emit Transfer(from, to, value);
                                        }
                                        /**
                                         * @notice Adds or updates a new minter with a mint allowance.
                                         * @param minter The address of the minter.
                                         * @param minterAllowedAmount The minting amount allowed for the minter.
                                         * @return True if the operation was successful.
                                         */
                                        function configureMinter(address minter, uint256 minterAllowedAmount)
                                            external
                                            whenNotPaused
                                            onlyMasterMinter
                                            returns (bool)
                                        {
                                            minters[minter] = true;
                                            minterAllowed[minter] = minterAllowedAmount;
                                            emit MinterConfigured(minter, minterAllowedAmount);
                                            return true;
                                        }
                                        /**
                                         * @notice Removes a minter.
                                         * @param minter The address of the minter to remove.
                                         * @return True if the operation was successful.
                                         */
                                        function removeMinter(address minter)
                                            external
                                            onlyMasterMinter
                                            returns (bool)
                                        {
                                            minters[minter] = false;
                                            minterAllowed[minter] = 0;
                                            emit MinterRemoved(minter);
                                            return true;
                                        }
                                        /**
                                         * @notice Allows a minter to burn some of its own tokens.
                                         * @dev The caller must be a minter, must not be blacklisted, and the amount to burn
                                         * should be less than or equal to the account's balance.
                                         * @param _amount the amount of tokens to be burned.
                                         */
                                        function burn(uint256 _amount)
                                            external
                                            whenNotPaused
                                            onlyMinters
                                            notBlacklisted(msg.sender)
                                        {
                                            uint256 balance = _balanceOf(msg.sender);
                                            require(_amount > 0, "FiatToken: burn amount not greater than 0");
                                            require(balance >= _amount, "FiatToken: burn amount exceeds balance");
                                            totalSupply_ = totalSupply_.sub(_amount);
                                            _setBalance(msg.sender, balance.sub(_amount));
                                            emit Burn(msg.sender, _amount);
                                            emit Transfer(msg.sender, address(0), _amount);
                                        }
                                        /**
                                         * @notice Updates the master minter address.
                                         * @param _newMasterMinter The address of the new master minter.
                                         */
                                        function updateMasterMinter(address _newMasterMinter) external onlyOwner {
                                            require(
                                                _newMasterMinter != address(0),
                                                "FiatToken: new masterMinter is the zero address"
                                            );
                                            masterMinter = _newMasterMinter;
                                            emit MasterMinterChanged(masterMinter);
                                        }
                                        /**
                                         * @inheritdoc Blacklistable
                                         */
                                        function _blacklist(address _account) internal override {
                                            _setBlacklistState(_account, true);
                                        }
                                        /**
                                         * @inheritdoc Blacklistable
                                         */
                                        function _unBlacklist(address _account) internal override {
                                            _setBlacklistState(_account, false);
                                        }
                                        /**
                                         * @dev Helper method that sets the blacklist state of an account.
                                         * @param _account         The address of the account.
                                         * @param _shouldBlacklist True if the account should be blacklisted, false if the account should be unblacklisted.
                                         */
                                        function _setBlacklistState(address _account, bool _shouldBlacklist)
                                            internal
                                            virtual
                                        {
                                            _deprecatedBlacklisted[_account] = _shouldBlacklist;
                                        }
                                        /**
                                         * @dev Helper method that sets the balance of an account.
                                         * @param _account The address of the account.
                                         * @param _balance The new fiat token balance of the account.
                                         */
                                        function _setBalance(address _account, uint256 _balance) internal virtual {
                                            balanceAndBlacklistStates[_account] = _balance;
                                        }
                                        /**
                                         * @inheritdoc Blacklistable
                                         */
                                        function _isBlacklisted(address _account)
                                            internal
                                            virtual
                                            override
                                            view
                                            returns (bool)
                                        {
                                            return _deprecatedBlacklisted[_account];
                                        }
                                        /**
                                         * @dev Helper method to obtain the balance of an account.
                                         * @param _account  The address of the account.
                                         * @return          The fiat token balance of the account.
                                         */
                                        function _balanceOf(address _account)
                                            internal
                                            virtual
                                            view
                                            returns (uint256)
                                        {
                                            return balanceAndBlacklistStates[_account];
                                        }
                                    }
                                    /**
                                     * SPDX-License-Identifier: Apache-2.0
                                     *
                                     * Copyright (c) 2023, Circle Internet Financial, LLC.
                                     *
                                     * Licensed under the Apache License, Version 2.0 (the "License");
                                     * you may not use this file except in compliance with the License.
                                     * You may obtain a copy of the License at
                                     *
                                     * http://www.apache.org/licenses/LICENSE-2.0
                                     *
                                     * Unless required by applicable law or agreed to in writing, software
                                     * distributed under the License is distributed on an "AS IS" BASIS,
                                     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                                     * See the License for the specific language governing permissions and
                                     * limitations under the License.
                                     */
                                    pragma solidity 0.6.12;
                                    import { Ownable } from "./Ownable.sol";
                                    /**
                                     * @title Blacklistable Token
                                     * @dev Allows accounts to be blacklisted by a "blacklister" role
                                     */
                                    abstract contract Blacklistable is Ownable {
                                        address public blacklister;
                                        mapping(address => bool) internal _deprecatedBlacklisted;
                                        event Blacklisted(address indexed _account);
                                        event UnBlacklisted(address indexed _account);
                                        event BlacklisterChanged(address indexed newBlacklister);
                                        /**
                                         * @dev Throws if called by any account other than the blacklister.
                                         */
                                        modifier onlyBlacklister() {
                                            require(
                                                msg.sender == blacklister,
                                                "Blacklistable: caller is not the blacklister"
                                            );
                                            _;
                                        }
                                        /**
                                         * @dev Throws if argument account is blacklisted.
                                         * @param _account The address to check.
                                         */
                                        modifier notBlacklisted(address _account) {
                                            require(
                                                !_isBlacklisted(_account),
                                                "Blacklistable: account is blacklisted"
                                            );
                                            _;
                                        }
                                        /**
                                         * @notice Checks if account is blacklisted.
                                         * @param _account The address to check.
                                         * @return True if the account is blacklisted, false if the account is not blacklisted.
                                         */
                                        function isBlacklisted(address _account) external view returns (bool) {
                                            return _isBlacklisted(_account);
                                        }
                                        /**
                                         * @notice Adds account to blacklist.
                                         * @param _account The address to blacklist.
                                         */
                                        function blacklist(address _account) external onlyBlacklister {
                                            _blacklist(_account);
                                            emit Blacklisted(_account);
                                        }
                                        /**
                                         * @notice Removes account from blacklist.
                                         * @param _account The address to remove from the blacklist.
                                         */
                                        function unBlacklist(address _account) external onlyBlacklister {
                                            _unBlacklist(_account);
                                            emit UnBlacklisted(_account);
                                        }
                                        /**
                                         * @notice Updates the blacklister address.
                                         * @param _newBlacklister The address of the new blacklister.
                                         */
                                        function updateBlacklister(address _newBlacklister) external onlyOwner {
                                            require(
                                                _newBlacklister != address(0),
                                                "Blacklistable: new blacklister is the zero address"
                                            );
                                            blacklister = _newBlacklister;
                                            emit BlacklisterChanged(blacklister);
                                        }
                                        /**
                                         * @dev Checks if account is blacklisted.
                                         * @param _account The address to check.
                                         * @return true if the account is blacklisted, false otherwise.
                                         */
                                        function _isBlacklisted(address _account)
                                            internal
                                            virtual
                                            view
                                            returns (bool);
                                        /**
                                         * @dev Helper method that blacklists an account.
                                         * @param _account The address to blacklist.
                                         */
                                        function _blacklist(address _account) internal virtual;
                                        /**
                                         * @dev Helper method that unblacklists an account.
                                         * @param _account The address to unblacklist.
                                         */
                                        function _unBlacklist(address _account) internal virtual;
                                    }
                                    /**
                                     * SPDX-License-Identifier: Apache-2.0
                                     *
                                     * Copyright (c) 2023, Circle Internet Financial, LLC.
                                     *
                                     * Licensed under the Apache License, Version 2.0 (the "License");
                                     * you may not use this file except in compliance with the License.
                                     * You may obtain a copy of the License at
                                     *
                                     * http://www.apache.org/licenses/LICENSE-2.0
                                     *
                                     * Unless required by applicable law or agreed to in writing, software
                                     * distributed under the License is distributed on an "AS IS" BASIS,
                                     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                                     * See the License for the specific language governing permissions and
                                     * limitations under the License.
                                     */
                                    pragma solidity 0.6.12;
                                    import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
                                    abstract contract AbstractFiatTokenV1 is IERC20 {
                                        function _approve(
                                            address owner,
                                            address spender,
                                            uint256 value
                                        ) internal virtual;
                                        function _transfer(
                                            address from,
                                            address to,
                                            uint256 value
                                        ) internal virtual;
                                    }
                                    /**
                                     * SPDX-License-Identifier: Apache-2.0
                                     *
                                     * Copyright (c) 2023, Circle Internet Financial, LLC.
                                     *
                                     * Licensed under the Apache License, Version 2.0 (the "License");
                                     * you may not use this file except in compliance with the License.
                                     * You may obtain a copy of the License at
                                     *
                                     * http://www.apache.org/licenses/LICENSE-2.0
                                     *
                                     * Unless required by applicable law or agreed to in writing, software
                                     * distributed under the License is distributed on an "AS IS" BASIS,
                                     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                                     * See the License for the specific language governing permissions and
                                     * limitations under the License.
                                     */
                                    pragma solidity 0.6.12;
                                    import { Ownable } from "../v1/Ownable.sol";
                                    import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
                                    import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
                                    contract Rescuable is Ownable {
                                        using SafeERC20 for IERC20;
                                        address private _rescuer;
                                        event RescuerChanged(address indexed newRescuer);
                                        /**
                                         * @notice Returns current rescuer
                                         * @return Rescuer's address
                                         */
                                        function rescuer() external view returns (address) {
                                            return _rescuer;
                                        }
                                        /**
                                         * @notice Revert if called by any account other than the rescuer.
                                         */
                                        modifier onlyRescuer() {
                                            require(msg.sender == _rescuer, "Rescuable: caller is not the rescuer");
                                            _;
                                        }
                                        /**
                                         * @notice Rescue ERC20 tokens locked up in this contract.
                                         * @param tokenContract ERC20 token contract address
                                         * @param to        Recipient address
                                         * @param amount    Amount to withdraw
                                         */
                                        function rescueERC20(
                                            IERC20 tokenContract,
                                            address to,
                                            uint256 amount
                                        ) external onlyRescuer {
                                            tokenContract.safeTransfer(to, amount);
                                        }
                                        /**
                                         * @notice Updates the rescuer address.
                                         * @param newRescuer The address of the new rescuer.
                                         */
                                        function updateRescuer(address newRescuer) external onlyOwner {
                                            require(
                                                newRescuer != address(0),
                                                "Rescuable: new rescuer is the zero address"
                                            );
                                            _rescuer = newRescuer;
                                            emit RescuerChanged(newRescuer);
                                        }
                                    }
                                    /**
                                     * SPDX-License-Identifier: Apache-2.0
                                     *
                                     * Copyright (c) 2023, Circle Internet Financial, LLC.
                                     *
                                     * Licensed under the Apache License, Version 2.0 (the "License");
                                     * you may not use this file except in compliance with the License.
                                     * You may obtain a copy of the License at
                                     *
                                     * http://www.apache.org/licenses/LICENSE-2.0
                                     *
                                     * Unless required by applicable law or agreed to in writing, software
                                     * distributed under the License is distributed on an "AS IS" BASIS,
                                     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                                     * See the License for the specific language governing permissions and
                                     * limitations under the License.
                                     */
                                    pragma solidity 0.6.12;
                                    import { FiatTokenV1 } from "../v1/FiatTokenV1.sol";
                                    import { Rescuable } from "./Rescuable.sol";
                                    /**
                                     * @title FiatTokenV1_1
                                     * @dev ERC20 Token backed by fiat reserves
                                     */
                                    contract FiatTokenV1_1 is FiatTokenV1, Rescuable {
                                    }
                                    /**
                                     * SPDX-License-Identifier: Apache-2.0
                                     *
                                     * Copyright (c) 2023, Circle Internet Financial, LLC.
                                     *
                                     * Licensed under the Apache License, Version 2.0 (the "License");
                                     * you may not use this file except in compliance with the License.
                                     * You may obtain a copy of the License at
                                     *
                                     * http://www.apache.org/licenses/LICENSE-2.0
                                     *
                                     * Unless required by applicable law or agreed to in writing, software
                                     * distributed under the License is distributed on an "AS IS" BASIS,
                                     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                                     * See the License for the specific language governing permissions and
                                     * limitations under the License.
                                     */
                                    pragma solidity 0.6.12;
                                    import { ECRecover } from "./ECRecover.sol";
                                    import { IERC1271 } from "../interface/IERC1271.sol";
                                    /**
                                     * @dev Signature verification helper that can be used instead of `ECRecover.recover` to seamlessly support both ECDSA
                                     * signatures from externally owned accounts (EOAs) as well as ERC1271 signatures from smart contract wallets.
                                     *
                                     * Adapted from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/21bb89ef5bfc789b9333eb05e3ba2b7b284ac77c/contracts/utils/cryptography/SignatureChecker.sol
                                     */
                                    library SignatureChecker {
                                        /**
                                         * @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the
                                         * signature is validated against that smart contract using ERC1271, otherwise it's validated using `ECRecover.recover`.
                                         * @param signer        Address of the claimed signer
                                         * @param digest        Keccak-256 hash digest of the signed message
                                         * @param signature     Signature byte array associated with hash
                                         */
                                        function isValidSignatureNow(
                                            address signer,
                                            bytes32 digest,
                                            bytes memory signature
                                        ) external view returns (bool) {
                                            if (!isContract(signer)) {
                                                return ECRecover.recover(digest, signature) == signer;
                                            }
                                            return isValidERC1271SignatureNow(signer, digest, signature);
                                        }
                                        /**
                                         * @dev Checks if a signature is valid for a given signer and data hash. The signature is validated
                                         * against the signer smart contract using ERC1271.
                                         * @param signer        Address of the claimed signer
                                         * @param digest        Keccak-256 hash digest of the signed message
                                         * @param signature     Signature byte array associated with hash
                                         *
                                         * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
                                         * change through time. It could return true at block N and false at block N+1 (or the opposite).
                                         */
                                        function isValidERC1271SignatureNow(
                                            address signer,
                                            bytes32 digest,
                                            bytes memory signature
                                        ) internal view returns (bool) {
                                            (bool success, bytes memory result) = signer.staticcall(
                                                abi.encodeWithSelector(
                                                    IERC1271.isValidSignature.selector,
                                                    digest,
                                                    signature
                                                )
                                            );
                                            return (success &&
                                                result.length >= 32 &&
                                                abi.decode(result, (bytes32)) ==
                                                bytes32(IERC1271.isValidSignature.selector));
                                        }
                                        /**
                                         * @dev Checks if the input address is a smart contract.
                                         */
                                        function isContract(address addr) internal view returns (bool) {
                                            uint256 size;
                                            assembly {
                                                size := extcodesize(addr)
                                            }
                                            return size > 0;
                                        }
                                    }
                                    /**
                                     * SPDX-License-Identifier: Apache-2.0
                                     *
                                     * Copyright (c) 2023, Circle Internet Financial, LLC.
                                     *
                                     * Licensed under the Apache License, Version 2.0 (the "License");
                                     * you may not use this file except in compliance with the License.
                                     * You may obtain a copy of the License at
                                     *
                                     * http://www.apache.org/licenses/LICENSE-2.0
                                     *
                                     * Unless required by applicable law or agreed to in writing, software
                                     * distributed under the License is distributed on an "AS IS" BASIS,
                                     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                                     * See the License for the specific language governing permissions and
                                     * limitations under the License.
                                     */
                                    pragma solidity 0.6.12;
                                    /**
                                     * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
                                     *
                                     * The library provides methods for generating a hash of a message that conforms to the
                                     * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
                                     * specifications.
                                     */
                                    library MessageHashUtils {
                                        /**
                                         * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
                                         * Adapted from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/21bb89ef5bfc789b9333eb05e3ba2b7b284ac77c/contracts/utils/cryptography/MessageHashUtils.sol
                                         *
                                         * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
                                         * `\\x19\\x01` and hashing the result. It corresponds to the hash signed by the
                                         * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
                                         *
                                         * @param domainSeparator    Domain separator
                                         * @param structHash         Hashed EIP-712 data struct
                                         * @return digest            The keccak256 digest of an EIP-712 typed data
                                         */
                                        function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash)
                                            internal
                                            pure
                                            returns (bytes32 digest)
                                        {
                                            assembly {
                                                let ptr := mload(0x40)
                                                mstore(ptr, "\\x19\\x01")
                                                mstore(add(ptr, 0x02), domainSeparator)
                                                mstore(add(ptr, 0x22), structHash)
                                                digest := keccak256(ptr, 0x42)
                                            }
                                        }
                                    }
                                    /**
                                     * SPDX-License-Identifier: Apache-2.0
                                     *
                                     * Copyright (c) 2023, Circle Internet Financial, LLC.
                                     *
                                     * Licensed under the Apache License, Version 2.0 (the "License");
                                     * you may not use this file except in compliance with the License.
                                     * You may obtain a copy of the License at
                                     *
                                     * http://www.apache.org/licenses/LICENSE-2.0
                                     *
                                     * Unless required by applicable law or agreed to in writing, software
                                     * distributed under the License is distributed on an "AS IS" BASIS,
                                     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                                     * See the License for the specific language governing permissions and
                                     * limitations under the License.
                                     */
                                    pragma solidity 0.6.12;
                                    /**
                                     * @title EIP712
                                     * @notice A library that provides EIP712 helper functions
                                     */
                                    library EIP712 {
                                        /**
                                         * @notice Make EIP712 domain separator
                                         * @param name      Contract name
                                         * @param version   Contract version
                                         * @param chainId   Blockchain ID
                                         * @return Domain separator
                                         */
                                        function makeDomainSeparator(
                                            string memory name,
                                            string memory version,
                                            uint256 chainId
                                        ) internal view returns (bytes32) {
                                            return
                                                keccak256(
                                                    abi.encode(
                                                        // keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)")
                                                        0x8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f,
                                                        keccak256(bytes(name)),
                                                        keccak256(bytes(version)),
                                                        chainId,
                                                        address(this)
                                                    )
                                                );
                                        }
                                        /**
                                         * @notice Make EIP712 domain separator
                                         * @param name      Contract name
                                         * @param version   Contract version
                                         * @return Domain separator
                                         */
                                        function makeDomainSeparator(string memory name, string memory version)
                                            internal
                                            view
                                            returns (bytes32)
                                        {
                                            uint256 chainId;
                                            assembly {
                                                chainId := chainid()
                                            }
                                            return makeDomainSeparator(name, version, chainId);
                                        }
                                    }
                                    /**
                                     * SPDX-License-Identifier: Apache-2.0
                                     *
                                     * Copyright (c) 2023, Circle Internet Financial, LLC.
                                     *
                                     * Licensed under the Apache License, Version 2.0 (the "License");
                                     * you may not use this file except in compliance with the License.
                                     * You may obtain a copy of the License at
                                     *
                                     * http://www.apache.org/licenses/LICENSE-2.0
                                     *
                                     * Unless required by applicable law or agreed to in writing, software
                                     * distributed under the License is distributed on an "AS IS" BASIS,
                                     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                                     * See the License for the specific language governing permissions and
                                     * limitations under the License.
                                     */
                                    pragma solidity 0.6.12;
                                    /**
                                     * @title ECRecover
                                     * @notice A library that provides a safe ECDSA recovery function
                                     */
                                    library ECRecover {
                                        /**
                                         * @notice Recover signer's address from a signed message
                                         * @dev Adapted from: https://github.com/OpenZeppelin/openzeppelin-contracts/blob/65e4ffde586ec89af3b7e9140bdc9235d1254853/contracts/cryptography/ECDSA.sol
                                         * Modifications: Accept v, r, and s as separate arguments
                                         * @param digest    Keccak-256 hash digest of the signed message
                                         * @param v         v of the signature
                                         * @param r         r of the signature
                                         * @param s         s of the signature
                                         * @return Signer address
                                         */
                                        function recover(
                                            bytes32 digest,
                                            uint8 v,
                                            bytes32 r,
                                            bytes32 s
                                        ) internal pure returns (address) {
                                            // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
                                            // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
                                            // the valid range for s in (281): 0 < s < secp256k1n ÷ 2 + 1, and for v in (282): v ∈ {27, 28}. Most
                                            // signatures from current libraries generate a unique signature with an s-value in the lower half order.
                                            //
                                            // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
                                            // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
                                            // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
                                            // these malleable signatures as well.
                                            if (
                                                uint256(s) >
                                                0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0
                                            ) {
                                                revert("ECRecover: invalid signature 's' value");
                                            }
                                            if (v != 27 && v != 28) {
                                                revert("ECRecover: invalid signature 'v' value");
                                            }
                                            // If the signature is valid (and not malleable), return the signer address
                                            address signer = ecrecover(digest, v, r, s);
                                            require(signer != address(0), "ECRecover: invalid signature");
                                            return signer;
                                        }
                                        /**
                                         * @notice Recover signer's address from a signed message
                                         * @dev Adapted from: https://github.com/OpenZeppelin/openzeppelin-contracts/blob/0053ee040a7ff1dbc39691c9e67a69f564930a88/contracts/utils/cryptography/ECDSA.sol
                                         * @param digest    Keccak-256 hash digest of the signed message
                                         * @param signature Signature byte array associated with hash
                                         * @return Signer address
                                         */
                                        function recover(bytes32 digest, bytes memory signature)
                                            internal
                                            pure
                                            returns (address)
                                        {
                                            require(signature.length == 65, "ECRecover: invalid signature length");
                                            bytes32 r;
                                            bytes32 s;
                                            uint8 v;
                                            // ecrecover takes the signature parameters, and the only way to get them
                                            // currently is to use assembly.
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                r := mload(add(signature, 0x20))
                                                s := mload(add(signature, 0x40))
                                                v := byte(0, mload(add(signature, 0x60)))
                                            }
                                            return recover(digest, v, r, s);
                                        }
                                    }
                                    /**
                                     * SPDX-License-Identifier: Apache-2.0
                                     *
                                     * Copyright (c) 2023, Circle Internet Financial, LLC.
                                     *
                                     * Licensed under the Apache License, Version 2.0 (the "License");
                                     * you may not use this file except in compliance with the License.
                                     * You may obtain a copy of the License at
                                     *
                                     * http://www.apache.org/licenses/LICENSE-2.0
                                     *
                                     * Unless required by applicable law or agreed to in writing, software
                                     * distributed under the License is distributed on an "AS IS" BASIS,
                                     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                                     * See the License for the specific language governing permissions and
                                     * limitations under the License.
                                     */
                                    pragma solidity 0.6.12;
                                    /**
                                     * @dev Interface of the ERC1271 standard signature validation method for
                                     * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
                                     */
                                    interface IERC1271 {
                                        /**
                                         * @dev Should return whether the signature provided is valid for the provided data
                                         * @param hash          Hash of the data to be signed
                                         * @param signature     Signature byte array associated with the provided data hash
                                         * @return magicValue   bytes4 magic value 0x1626ba7e when function passes
                                         */
                                        function isValidSignature(bytes32 hash, bytes memory signature)
                                            external
                                            view
                                            returns (bytes4 magicValue);
                                    }
                                    

                                    File 10 of 10: Diamond
                                    // SPDX-License-Identifier: MIT
                                    pragma solidity 0.8.23;
                                    import {LibDiamond} from "./Libraries/LibDiamond.sol";
                                    import {IDiamondCut} from "./Interfaces/IDiamondCut.sol";
                                    import {LibUtil} from "./Libraries/LibUtil.sol";
                                    contract Diamond {
                                        constructor(address _contractOwner, address _diamondCutFacet) payable {
                                            LibDiamond.setContractOwner(_contractOwner);
                                            // Add the diamondCut external function from the diamondCutFacet
                                            IDiamondCut.FacetCut[] memory cut = new IDiamondCut.FacetCut[](1);
                                            bytes4[] memory functionSelectors = new bytes4[](1);
                                            functionSelectors[0] = IDiamondCut.diamondCut.selector;
                                            cut[0] = IDiamondCut.FacetCut({
                                                facetAddress: _diamondCutFacet,
                                                action: IDiamondCut.FacetCutAction.Add,
                                                functionSelectors: functionSelectors
                                            });
                                            LibDiamond.diamondCut(cut, address(0), "");
                                        }
                                        // Find facet for function that is called and execute the
                                        // function if a facet is found and return any value.
                                        // solhint-disable-next-line no-complex-fallback
                                        fallback() external payable {
                                            LibDiamond.DiamondStorage storage ds;
                                            bytes32 position = LibDiamond.DIAMOND_STORAGE_POSITION;
                                            // get diamond storage
                                            // solhint-disable-next-line no-inline-assembly
                                            assembly {
                                                ds.slot := position
                                            }
                                            // get facet from function selector
                                            address facet = ds.selectorToFacetAndPosition[msg.sig].facetAddress;
                                            if (facet == address(0)) {
                                                revert LibDiamond.FunctionDoesNotExist();
                                            }
                                            // Execute external function from facet using delegatecall and return any value.
                                            // solhint-disable-next-line no-inline-assembly
                                            assembly {
                                                // copy function selector and any arguments
                                                calldatacopy(0, 0, calldatasize())
                                                // execute function call using the facet
                                                let result := delegatecall(gas(), facet, 0, calldatasize(), 0, 0)
                                                // get any return value
                                                returndatacopy(0, 0, returndatasize())
                                                // return any return value or error back to the caller
                                                switch result
                                                case 0 { revert(0, returndatasize()) }
                                                default { return(0, returndatasize()) }
                                            }
                                        }
                                        // Able to receive ether
                                        // solhint-disable-next-line no-empty-blocks
                                        receive() external payable {}
                                    }
                                    // SPDX-License-Identifier: MIT
                                    pragma solidity 0.8.23;
                                    import {IDiamondCut} from "../Interfaces/IDiamondCut.sol";
                                    import {LibUtil} from "../Libraries/LibUtil.sol";
                                    import {OnlyContractOwner} from "../Errors/GenericErrors.sol";
                                    /// Implementation of EIP-2535 Diamond Standard
                                    /// https://eips.ethereum.org/EIPS/eip-2535
                                    library LibDiamond {
                                        bytes32 internal constant DIAMOND_STORAGE_POSITION = keccak256("com.binance.w3w.diamond.storage");
                                        // Diamond specific errors
                                        error IncorrectFacetCutAction();
                                        error NoSelectorsInFace();
                                        error FunctionAlreadyExists();
                                        error FacetAddressIsZero();
                                        error FacetAddressIsNotZero();
                                        error FacetContainsNoCode();
                                        error FunctionDoesNotExist();
                                        error FunctionIsImmutable();
                                        error InitZeroButCalldataNotEmpty();
                                        error CalldataEmptyButInitNotZero();
                                        error InitReverted();
                                        // ----------------
                                        struct FacetAddressAndPosition {
                                            address facetAddress;
                                            uint96 functionSelectorPosition; // position in facetFunctionSelectors.functionSelectors array
                                        }
                                        struct FacetFunctionSelectors {
                                            bytes4[] functionSelectors;
                                            uint256 facetAddressPosition; // position of facetAddress in facetAddresses array
                                        }
                                        struct DiamondStorage {
                                            // maps function selector to the facet address and
                                            // the position of the selector in the facetFunctionSelectors.selectors array
                                            mapping(bytes4 => FacetAddressAndPosition) selectorToFacetAndPosition;
                                            // maps facet addresses to function selectors
                                            mapping(address => FacetFunctionSelectors) facetFunctionSelectors;
                                            // facet addresses
                                            address[] facetAddresses;
                                            // Used to query if a contract implements an interface.
                                            // Used to implement ERC-165.
                                            mapping(bytes4 => bool) supportedInterfaces;
                                            // owner of the contract
                                            address contractOwner;
                                        }
                                        function diamondStorage() internal pure returns (DiamondStorage storage ds) {
                                            bytes32 position = DIAMOND_STORAGE_POSITION;
                                            // solhint-disable-next-line no-inline-assembly
                                            assembly {
                                                ds.slot := position
                                            }
                                        }
                                        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                                        function setContractOwner(address _newOwner) internal {
                                            DiamondStorage storage ds = diamondStorage();
                                            address previousOwner = ds.contractOwner;
                                            ds.contractOwner = _newOwner;
                                            emit OwnershipTransferred(previousOwner, _newOwner);
                                        }
                                        function contractOwner() internal view returns (address contractOwner_) {
                                            contractOwner_ = diamondStorage().contractOwner;
                                        }
                                        function enforceIsContractOwner() internal view {
                                            if (msg.sender != diamondStorage().contractOwner) {
                                                revert OnlyContractOwner();
                                            }
                                        }
                                        event DiamondCut(IDiamondCut.FacetCut[] _diamondCut, address _init, bytes _calldata);
                                        // Internal function version of diamondCut
                                        function diamondCut(IDiamondCut.FacetCut[] memory _diamondCut, address _init, bytes memory _calldata) internal {
                                            for (uint256 facetIndex; facetIndex < _diamondCut.length;) {
                                                IDiamondCut.FacetCutAction action = _diamondCut[facetIndex].action;
                                                if (action == IDiamondCut.FacetCutAction.Add) {
                                                    addFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
                                                } else if (action == IDiamondCut.FacetCutAction.Replace) {
                                                    replaceFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
                                                } else if (action == IDiamondCut.FacetCutAction.Remove) {
                                                    removeFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
                                                } else {
                                                    revert IncorrectFacetCutAction();
                                                }
                                                unchecked {
                                                    ++facetIndex;
                                                }
                                            }
                                            emit DiamondCut(_diamondCut, _init, _calldata);
                                            initializeDiamondCut(_init, _calldata);
                                        }
                                        function addFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
                                            if (_functionSelectors.length == 0) {
                                                revert NoSelectorsInFace();
                                            }
                                            DiamondStorage storage ds = diamondStorage();
                                            if (LibUtil.isZeroAddress(_facetAddress)) {
                                                revert FacetAddressIsZero();
                                            }
                                            uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length);
                                            // add new facet address if it does not exist
                                            if (selectorPosition == 0) {
                                                addFacet(ds, _facetAddress);
                                            }
                                            for (uint256 selectorIndex; selectorIndex < _functionSelectors.length;) {
                                                bytes4 selector = _functionSelectors[selectorIndex];
                                                address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
                                                if (!LibUtil.isZeroAddress(oldFacetAddress)) {
                                                    revert FunctionAlreadyExists();
                                                }
                                                addFunction(ds, selector, selectorPosition, _facetAddress);
                                                unchecked {
                                                    ++selectorPosition;
                                                    ++selectorIndex;
                                                }
                                            }
                                        }
                                        function replaceFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
                                            if (_functionSelectors.length == 0) {
                                                revert NoSelectorsInFace();
                                            }
                                            DiamondStorage storage ds = diamondStorage();
                                            if (LibUtil.isZeroAddress(_facetAddress)) {
                                                revert FacetAddressIsZero();
                                            }
                                            uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length);
                                            // add new facet address if it does not exist
                                            if (selectorPosition == 0) {
                                                addFacet(ds, _facetAddress);
                                            }
                                            for (uint256 selectorIndex; selectorIndex < _functionSelectors.length;) {
                                                bytes4 selector = _functionSelectors[selectorIndex];
                                                address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
                                                if (oldFacetAddress == _facetAddress) {
                                                    revert FunctionAlreadyExists();
                                                }
                                                removeFunction(ds, oldFacetAddress, selector);
                                                addFunction(ds, selector, selectorPosition, _facetAddress);
                                                unchecked {
                                                    ++selectorPosition;
                                                    ++selectorIndex;
                                                }
                                            }
                                        }
                                        function removeFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
                                            if (_functionSelectors.length == 0) {
                                                revert NoSelectorsInFace();
                                            }
                                            DiamondStorage storage ds = diamondStorage();
                                            // if function does not exist then do nothing and return
                                            if (!LibUtil.isZeroAddress(_facetAddress)) {
                                                revert FacetAddressIsNotZero();
                                            }
                                            for (uint256 selectorIndex; selectorIndex < _functionSelectors.length;) {
                                                bytes4 selector = _functionSelectors[selectorIndex];
                                                address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
                                                removeFunction(ds, oldFacetAddress, selector);
                                                unchecked {
                                                    ++selectorIndex;
                                                }
                                            }
                                        }
                                        function addFacet(DiamondStorage storage ds, address _facetAddress) internal {
                                            enforceHasContractCode(_facetAddress);
                                            ds.facetFunctionSelectors[_facetAddress].facetAddressPosition = ds.facetAddresses.length;
                                            ds.facetAddresses.push(_facetAddress);
                                        }
                                        function addFunction(DiamondStorage storage ds, bytes4 _selector, uint96 _selectorPosition, address _facetAddress)
                                            internal
                                        {
                                            ds.selectorToFacetAndPosition[_selector].functionSelectorPosition = _selectorPosition;
                                            ds.facetFunctionSelectors[_facetAddress].functionSelectors.push(_selector);
                                            ds.selectorToFacetAndPosition[_selector].facetAddress = _facetAddress;
                                        }
                                        function removeFunction(DiamondStorage storage ds, address _facetAddress, bytes4 _selector) internal {
                                            if (LibUtil.isZeroAddress(_facetAddress)) {
                                                revert FunctionDoesNotExist();
                                            }
                                            // an immutable function is a function defined directly in a diamond
                                            if (_facetAddress == address(this)) {
                                                revert FunctionIsImmutable();
                                            }
                                            // replace selector with last selector, then delete last selector
                                            uint256 selectorPosition = ds.selectorToFacetAndPosition[_selector].functionSelectorPosition;
                                            uint256 lastSelectorPosition = ds.facetFunctionSelectors[_facetAddress].functionSelectors.length - 1;
                                            // if not the same then replace _selector with lastSelector
                                            if (selectorPosition != lastSelectorPosition) {
                                                bytes4 lastSelector = ds.facetFunctionSelectors[_facetAddress].functionSelectors[lastSelectorPosition];
                                                ds.facetFunctionSelectors[_facetAddress].functionSelectors[selectorPosition] = lastSelector;
                                                ds.selectorToFacetAndPosition[lastSelector].functionSelectorPosition = uint96(selectorPosition);
                                            }
                                            // delete the last selector
                                            ds.facetFunctionSelectors[_facetAddress].functionSelectors.pop();
                                            delete ds.selectorToFacetAndPosition[_selector];
                                            // if no more selectors for facet address then delete the facet address
                                            if (lastSelectorPosition == 0) {
                                                // replace facet address with last facet address and delete last facet address
                                                uint256 lastFacetAddressPosition = ds.facetAddresses.length - 1;
                                                uint256 facetAddressPosition = ds.facetFunctionSelectors[_facetAddress].facetAddressPosition;
                                                if (facetAddressPosition != lastFacetAddressPosition) {
                                                    address lastFacetAddress = ds.facetAddresses[lastFacetAddressPosition];
                                                    ds.facetAddresses[facetAddressPosition] = lastFacetAddress;
                                                    ds.facetFunctionSelectors[lastFacetAddress].facetAddressPosition = facetAddressPosition;
                                                }
                                                ds.facetAddresses.pop();
                                                delete ds
                                                    .facetFunctionSelectors[_facetAddress]
                                                    .facetAddressPosition;
                                            }
                                        }
                                        function initializeDiamondCut(address _init, bytes memory _calldata) internal {
                                            if (LibUtil.isZeroAddress(_init)) {
                                                if (_calldata.length != 0) {
                                                    revert InitZeroButCalldataNotEmpty();
                                                }
                                            } else {
                                                if (_calldata.length == 0) {
                                                    revert CalldataEmptyButInitNotZero();
                                                }
                                                if (_init != address(this)) {
                                                    enforceHasContractCode(_init);
                                                }
                                                // solhint-disable-next-line avoid-low-level-calls
                                                (bool success, bytes memory error) = _init.delegatecall(_calldata);
                                                if (!success) {
                                                    if (error.length > 0) {
                                                        // bubble up the error
                                                        revert(string(error));
                                                    } else {
                                                        revert InitReverted();
                                                    }
                                                }
                                            }
                                        }
                                        function enforceHasContractCode(address _contract) internal view {
                                            uint256 contractSize;
                                            // solhint-disable-next-line no-inline-assembly
                                            assembly {
                                                contractSize := extcodesize(_contract)
                                            }
                                            if (contractSize == 0) {
                                                revert FacetContainsNoCode();
                                            }
                                        }
                                    }
                                    // SPDX-License-Identifier: MIT
                                    pragma solidity 0.8.23;
                                    interface IDiamondCut {
                                        // Add=0, Replace=1, Remove=2
                                        enum FacetCutAction {
                                            Add,
                                            Replace,
                                            Remove
                                        }
                                        struct FacetCut {
                                            address facetAddress;
                                            FacetCutAction action;
                                            bytes4[] functionSelectors;
                                        }
                                        /// @notice Add/replace/remove any number of functions and optionally execute
                                        ///         a function with delegatecall
                                        /// @param _diamondCut Contains the facet addresses and function selectors
                                        /// @param _init The address of the contract or facet to execute _calldata
                                        /// @param _calldata A function call, including function selector and arguments
                                        ///                  _calldata is executed with delegatecall on _init
                                        function diamondCut(FacetCut[] calldata _diamondCut, address _init, bytes calldata _calldata) external;
                                        event DiamondCut(FacetCut[] _diamondCut, address _init, bytes _calldata);
                                    }
                                    // SPDX-License-Identifier: MIT
                                    pragma solidity 0.8.23;
                                    import "./LibBytes.sol";
                                    library LibUtil {
                                        using LibBytes for bytes;
                                        function getRevertMsg(bytes memory _res) internal pure returns (string memory) {
                                            // If the _res length is less than 68, then the transaction failed silently (without a revert message)
                                            if (_res.length < 68) return "Transaction reverted silently";
                                            bytes memory revertData = _res.slice(4, _res.length - 4); // Remove the selector which is the first 4 bytes
                                            return abi.decode(revertData, (string)); // All that remains is the revert string
                                        }
                                        /// @notice Determines whether the given address is the zero address
                                        /// @param addr The address to verify
                                        /// @return Boolean indicating if the address is the zero address
                                        function isZeroAddress(address addr) internal pure returns (bool) {
                                            return addr == address(0);
                                        }
                                    }
                                    // SPDX-License-Identifier: MIT
                                    pragma solidity 0.8.23;
                                    error OnlyContractOwner();
                                    // SPDX-License-Identifier: MIT
                                    pragma solidity 0.8.23;
                                    library LibBytes {
                                        // solhint-disable no-inline-assembly
                                        // LibBytes specific errors
                                        error SliceOverflow();
                                        error SliceOutOfBounds();
                                        error AddressOutOfBounds();
                                        bytes16 private constant _SYMBOLS = "0123456789abcdef";
                                        // -------------------------
                                        function slice(bytes memory _bytes, uint256 _start, uint256 _length) internal pure returns (bytes memory) {
                                            unchecked {
                                                if (_length + 31 < _length) revert SliceOverflow();
                                                if (_bytes.length < _start + _length) revert SliceOutOfBounds();
                                                if (_start + _length < _start) revert SliceOverflow();
                                            }
                                            bytes memory tempBytes;
                                            assembly {
                                                switch iszero(_length)
                                                case 0 {
                                                    // Get a location of some free memory and store it in tempBytes as
                                                    // Solidity does for memory variables.
                                                    tempBytes := mload(0x40)
                                                    // The first word of the slice result is potentially a partial
                                                    // word read from the original array. To read it, we calculate
                                                    // the length of that partial word and start copying that many
                                                    // bytes into the array. The first word we copy will start with
                                                    // data we don't care about, but the last `lengthmod` bytes will
                                                    // land at the beginning of the contents of the new array. When
                                                    // we're done copying, we overwrite the full first word with
                                                    // the actual length of the slice.
                                                    let lengthmod := and(_length, 31)
                                                    // The multiplication in the next line is necessary
                                                    // because when slicing multiples of 32 bytes (lengthmod == 0)
                                                    // the following copy loop was copying the origin's length
                                                    // and then ending prematurely not copying everything it should.
                                                    let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                                                    let end := add(mc, _length)
                                                    for {
                                                        // The multiplication in the next line has the same exact purpose
                                                        // as the one above.
                                                        let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                                                    } lt(mc, end) {
                                                        mc := add(mc, 0x20)
                                                        cc := add(cc, 0x20)
                                                    } { mstore(mc, mload(cc)) }
                                                    mstore(tempBytes, _length)
                                                    //update free-memory pointer
                                                    //allocating the array padded to 32 bytes like the compiler does now
                                                    mstore(0x40, and(add(mc, 31), not(31)))
                                                }
                                                //if we want a zero-length slice let's just return a zero-length array
                                                default {
                                                    tempBytes := mload(0x40)
                                                    //zero out the 32 bytes slice we are about to return
                                                    //we need to do it because Solidity does not garbage collect
                                                    mstore(tempBytes, 0)
                                                    mstore(0x40, add(tempBytes, 0x20))
                                                }
                                            }
                                            return tempBytes;
                                        }
                                        function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) {
                                            if (_bytes.length < _start + 20) {
                                                revert AddressOutOfBounds();
                                            }
                                            address tempAddress;
                                            assembly {
                                                tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000)
                                            }
                                            return tempAddress;
                                        }
                                        /// Copied from OpenZeppelin's `Strings.sol` utility library.
                                        /// https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8335676b0e99944eef6a742e16dcd9ff6e68e609/contracts/utils/Strings.sol
                                        function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
                                            bytes memory buffer = new bytes(2 * length + 2);
                                            buffer[0] = "0";
                                            buffer[1] = "x";
                                            for (uint256 i = 2 * length + 1; i > 1; --i) {
                                                buffer[i] = _SYMBOLS[value & 0xf];
                                                value >>= 4;
                                            }
                                            require(value == 0, "Strings: hex length insufficient");
                                            return string(buffer);
                                        }
                                    }