ETH Price: $1,975.53 (+0.74%)

Transaction Decoder

Block:
24509348 at Feb-22-2026 02:13:59 AM +UTC
Transaction Fee:
0.00064915227747621 ETH $1.28
Gas Used:
304,870 Gas / 2.129275683 Gwei

Emitted Events:

59 PoolManager.Swap( id=2287A9620ADCBF6250DC71BE9EE9B2D3A1EC85A464FC6F5C06669E8D07B61BBA, sender=0x66a9893c...5e1dBA8Af, amount0=-13228017891421210, amount1=26198725, sqrtPriceX96=3526078560390021322845983, liquidity=63589226560195724, tick=-200409, fee=100 )
60 TetherToken.Transfer( from=PoolManager, to=0x437F64649600E302f4335BE1130F665394015437, value=26198725 )
61 TetherToken.Transfer( from=0x437F64649600E302f4335BE1130F665394015437, to=0x74de5d4FCbf63E00296fd95d33236B9794016631, value=26198725 )
62 OpenOceanExchangeProxy.0x76af224a143865a50b41496e1a73622698692c565c1214bc862f18e22d829c5e( 0x76af224a143865a50b41496e1a73622698692c565c1214bc862f18e22d829c5e, 0x00000000000000000000000074de5d4fcbf63e00296fd95d33236b9794016631, 0x000000000000000000000000eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee, 0x000000000000000000000000dac17f958d2ee523a2206206994597c13d831ec7, 00000000000000000000000074de5d4fcbf63e00296fd95d33236b9794016631, 000000000000000000000000000000000000000000000000002efecfeb802c1a, 000000000000000000000000000000000000000000000000002efecfeb802c1a, 00000000000000000000000000000000000000000000000000000000018fc2c5, 000000000000000000000000000000000000000000000000000000000187c3fe, 00000000000000000000000000000000000000000000000000000000018fc2c5, 000000000000000000000000ef53a4bd0e16ccc9116770a41c4bd3ad1147bd4f )
63 TetherToken.Transfer( from=0x74de5d4FCbf63E00296fd95d33236B9794016631, to=[Sender] 0x125275aff95919881f08b32e74da2083dd9d38bc, value=26198725 )
64 0x881d40237659c251811cec9c364ef91dc08d300c.0xbeee1e6e7fe307ddcf84b0a16137a4430ad5e2480fc4f4a8e250ab56ccd7630d( 0xbeee1e6e7fe307ddcf84b0a16137a4430ad5e2480fc4f4a8e250ab56ccd7630d, 0xcbf46790f422d91c0bc3f78784cac5d123211479f745ef4d632dfd71fd4d53f3, 0x000000000000000000000000125275aff95919881f08b32e74da2083dd9d38bc )

Account State Difference:

  Address   Before After State Difference Code
0x00000000...e3dE08A90
(Uniswap V4: Pool Manager)
49,708.827395252706825107 Eth49,708.840623270598246317 Eth0.01322801789142121
0x125275aF...3dD9d38bc
0.014201091563575076 Eth
Nonce: 105
0.000199661843496375 Eth
Nonce: 106
0.014001429720078701
(Titan Builder)
14.568359561652592602 Eth14.568999788652897472 Eth0.00064022700030487
0xdAC17F95...13D831ec7
0xe3478b0B...948Be1964
(MetaMask: Gas Station Swap)
282.225336470487911694 Eth282.225460730039092975 Eth0.000124259551181281

Execution Trace

ETH 0.013352277442602491 Metamask: Swap Router.5f575529( )
  • ETH 0.013352277442602491 MetaMask: Swaps Spender.e3547335( )
    • ETH 0.013352277442602491 0x03fc94d98d2a3fd1034dbab9bac65dba00e65add.92f5f037( )
      • ETH 0.01322801789142121 OpenOceanExchangeProxy.90411a32( )
        • ETH 0.01322801789142121 OpenOceanExchange.swap( caller=0x437F64649600E302f4335BE1130F665394015437, desc=[{name:srcToken, type:address, order:1, indexed:false, value:0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE, valueString:0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE}, {name:dstToken, type:address, order:2, indexed:false, value:0xdAC17F958D2ee523a2206206994597C13D831ec7, valueString:0xdAC17F958D2ee523a2206206994597C13D831ec7}, {name:srcReceiver, type:address, order:3, indexed:false, value:0x437F64649600E302f4335BE1130F665394015437, valueString:0x437F64649600E302f4335BE1130F665394015437}, {name:dstReceiver, type:address, order:4, indexed:false, value:0x74de5d4FCbf63E00296fd95d33236B9794016631, valueString:0x74de5d4FCbf63E00296fd95d33236B9794016631}, {name:amount, type:uint256, order:5, indexed:false, value:13228017891421210, valueString:13228017891421210}, {name:minReturnAmount, type:uint256, order:6, indexed:false, value:25674750, valueString:25674750}, {name:guaranteedAmount, type:uint256, order:7, indexed:false, value:26198725, valueString:26198725}, {name:flags, type:uint256, order:8, indexed:false, value:0, valueString:0}, {name:referrer, type:address, order:9, indexed:false, value:0xEf53A4Bd0E16cCC9116770A41C4bD3aD1147BD4f, valueString:0xEf53A4Bd0E16cCC9116770A41C4bD3aD1147BD4f}, {name:permit, type:bytes, order:10, indexed:false, value:0x, valueString:0x}], calls= ) => ( returnAmount=26198725 )
          • TetherToken.balanceOf( who=0x74de5d4FCbf63E00296fd95d33236B9794016631 ) => ( 0 )
          • ETH 0.01322801789142121 0x437f64649600e302f4335be1130f665394015437.a8920d2b( )
            • 0x437f64649600e302f4335be1130f665394015437.0c7e1209( )
            • 0x437f64649600e302f4335be1130f665394015437.0c7e1209( )
            • 0x437f64649600e302f4335be1130f665394015437.0c7e1209( )
            • TetherToken.balanceOf( who=0x74de5d4FCbf63E00296fd95d33236B9794016631 ) => ( 26198725 )
            • ETH 0.000124259551181281 MetaMask: Gas Station Swap.CALL( )
            • TetherToken.balanceOf( who=0x74de5d4FCbf63E00296fd95d33236B9794016631 ) => ( 26198725 )
            • TetherToken.transfer( _to=0x125275aFf95919881f08b32e74dA2083dD9d38bc, _value=26198725 )
              File 1 of 4: PoolManager
              // SPDX-License-Identifier: BUSL-1.1
              pragma solidity 0.8.26;
              import {Hooks} from "./libraries/Hooks.sol";
              import {Pool} from "./libraries/Pool.sol";
              import {SafeCast} from "./libraries/SafeCast.sol";
              import {Position} from "./libraries/Position.sol";
              import {LPFeeLibrary} from "./libraries/LPFeeLibrary.sol";
              import {Currency, CurrencyLibrary} from "./types/Currency.sol";
              import {PoolKey} from "./types/PoolKey.sol";
              import {TickMath} from "./libraries/TickMath.sol";
              import {NoDelegateCall} from "./NoDelegateCall.sol";
              import {IHooks} from "./interfaces/IHooks.sol";
              import {IPoolManager} from "./interfaces/IPoolManager.sol";
              import {IUnlockCallback} from "./interfaces/callback/IUnlockCallback.sol";
              import {ProtocolFees} from "./ProtocolFees.sol";
              import {ERC6909Claims} from "./ERC6909Claims.sol";
              import {PoolId} from "./types/PoolId.sol";
              import {BalanceDelta, BalanceDeltaLibrary} from "./types/BalanceDelta.sol";
              import {BeforeSwapDelta} from "./types/BeforeSwapDelta.sol";
              import {Lock} from "./libraries/Lock.sol";
              import {CurrencyDelta} from "./libraries/CurrencyDelta.sol";
              import {NonzeroDeltaCount} from "./libraries/NonzeroDeltaCount.sol";
              import {CurrencyReserves} from "./libraries/CurrencyReserves.sol";
              import {Extsload} from "./Extsload.sol";
              import {Exttload} from "./Exttload.sol";
              import {CustomRevert} from "./libraries/CustomRevert.sol";
              //  4
              //   44
              //     444
              //       444                   4444
              //        4444            4444     4444
              //          4444          4444444    4444                           4
              //            4444        44444444     4444                         4
              //             44444       4444444       4444444444444444       444444
              //           4   44444     44444444       444444444444444444444    4444
              //            4    44444    4444444         4444444444444444444444  44444
              //             4     444444  4444444         44444444444444444444444 44  4
              //              44     44444   444444          444444444444444444444 4     4
              //               44      44444   44444           4444444444444444444 4 44
              //                44       4444     44             444444444444444     444
              //                444     4444                        4444444
              //               4444444444444                     44                      4
              //              44444444444                        444444     444444444    44
              //             444444           4444               4444     4444444444      44
              //             4444           44    44              4      44444444444
              //            44444          444444444                   444444444444    4444
              //            44444          44444444                  4444  44444444    444444
              //            44444                                  4444   444444444    44444444
              //           44444                                 4444     44444444    4444444444
              //          44444                                4444      444444444   444444444444
              //         44444                               4444        44444444    444444444444
              //       4444444                             4444          44444444         4444444
              //      4444444                            44444          44444444          4444444
              //     44444444                           44444444444444444444444444444        4444
              //   4444444444                           44444444444444444444444444444         444
              //  444444444444                         444444444444444444444444444444   444   444
              //  44444444444444                                      444444444         44444
              // 44444  44444444444         444                       44444444         444444
              // 44444  4444444444      4444444444      444444        44444444    444444444444
              //  444444444444444      4444  444444    4444444       44444444     444444444444
              //  444444444444444     444    444444     444444       44444444      44444444444
              //   4444444444444     4444   444444        4444                      4444444444
              //    444444444444      4     44444         4444                       444444444
              //     44444444444           444444         444                        44444444
              //      44444444            444444         4444                         4444444
              //                          44444          444                          44444
              //                          44444         444      4                    4444
              //                          44444        444      44                   444
              //                          44444       444      4444
              //                           444444  44444        444
              //                             444444444           444
              //                                                  44444   444
              //                                                      444
              /// @title PoolManager
              /// @notice Holds the state for all pools
              contract PoolManager is IPoolManager, ProtocolFees, NoDelegateCall, ERC6909Claims, Extsload, Exttload {
                  using SafeCast for *;
                  using Pool for *;
                  using Hooks for IHooks;
                  using CurrencyDelta for Currency;
                  using LPFeeLibrary for uint24;
                  using CurrencyReserves for Currency;
                  using CustomRevert for bytes4;
                  int24 private constant MAX_TICK_SPACING = TickMath.MAX_TICK_SPACING;
                  int24 private constant MIN_TICK_SPACING = TickMath.MIN_TICK_SPACING;
                  mapping(PoolId id => Pool.State) internal _pools;
                  /// @notice This will revert if the contract is locked
                  modifier onlyWhenUnlocked() {
                      if (!Lock.isUnlocked()) ManagerLocked.selector.revertWith();
                      _;
                  }
                  constructor(address initialOwner) ProtocolFees(initialOwner) {}
                  /// @inheritdoc IPoolManager
                  function unlock(bytes calldata data) external override returns (bytes memory result) {
                      if (Lock.isUnlocked()) AlreadyUnlocked.selector.revertWith();
                      Lock.unlock();
                      // the caller does everything in this callback, including paying what they owe via calls to settle
                      result = IUnlockCallback(msg.sender).unlockCallback(data);
                      if (NonzeroDeltaCount.read() != 0) CurrencyNotSettled.selector.revertWith();
                      Lock.lock();
                  }
                  /// @inheritdoc IPoolManager
                  function initialize(PoolKey memory key, uint160 sqrtPriceX96) external noDelegateCall returns (int24 tick) {
                      // see TickBitmap.sol for overflow conditions that can arise from tick spacing being too large
                      if (key.tickSpacing > MAX_TICK_SPACING) TickSpacingTooLarge.selector.revertWith(key.tickSpacing);
                      if (key.tickSpacing < MIN_TICK_SPACING) TickSpacingTooSmall.selector.revertWith(key.tickSpacing);
                      if (key.currency0 >= key.currency1) {
                          CurrenciesOutOfOrderOrEqual.selector.revertWith(
                              Currency.unwrap(key.currency0), Currency.unwrap(key.currency1)
                          );
                      }
                      if (!key.hooks.isValidHookAddress(key.fee)) Hooks.HookAddressNotValid.selector.revertWith(address(key.hooks));
                      uint24 lpFee = key.fee.getInitialLPFee();
                      key.hooks.beforeInitialize(key, sqrtPriceX96);
                      PoolId id = key.toId();
                      tick = _pools[id].initialize(sqrtPriceX96, lpFee);
                      // event is emitted before the afterInitialize call to ensure events are always emitted in order
                      // emit all details of a pool key. poolkeys are not saved in storage and must always be provided by the caller
                      // the key's fee may be a static fee or a sentinel to denote a dynamic fee.
                      emit Initialize(id, key.currency0, key.currency1, key.fee, key.tickSpacing, key.hooks, sqrtPriceX96, tick);
                      key.hooks.afterInitialize(key, sqrtPriceX96, tick);
                  }
                  /// @inheritdoc IPoolManager
                  function modifyLiquidity(
                      PoolKey memory key,
                      IPoolManager.ModifyLiquidityParams memory params,
                      bytes calldata hookData
                  ) external onlyWhenUnlocked noDelegateCall returns (BalanceDelta callerDelta, BalanceDelta feesAccrued) {
                      PoolId id = key.toId();
                      {
                          Pool.State storage pool = _getPool(id);
                          pool.checkPoolInitialized();
                          key.hooks.beforeModifyLiquidity(key, params, hookData);
                          BalanceDelta principalDelta;
                          (principalDelta, feesAccrued) = pool.modifyLiquidity(
                              Pool.ModifyLiquidityParams({
                                  owner: msg.sender,
                                  tickLower: params.tickLower,
                                  tickUpper: params.tickUpper,
                                  liquidityDelta: params.liquidityDelta.toInt128(),
                                  tickSpacing: key.tickSpacing,
                                  salt: params.salt
                              })
                          );
                          // fee delta and principal delta are both accrued to the caller
                          callerDelta = principalDelta + feesAccrued;
                      }
                      // event is emitted before the afterModifyLiquidity call to ensure events are always emitted in order
                      emit ModifyLiquidity(id, msg.sender, params.tickLower, params.tickUpper, params.liquidityDelta, params.salt);
                      BalanceDelta hookDelta;
                      (callerDelta, hookDelta) = key.hooks.afterModifyLiquidity(key, params, callerDelta, feesAccrued, hookData);
                      // if the hook doesn't have the flag to be able to return deltas, hookDelta will always be 0
                      if (hookDelta != BalanceDeltaLibrary.ZERO_DELTA) _accountPoolBalanceDelta(key, hookDelta, address(key.hooks));
                      _accountPoolBalanceDelta(key, callerDelta, msg.sender);
                  }
                  /// @inheritdoc IPoolManager
                  function swap(PoolKey memory key, IPoolManager.SwapParams memory params, bytes calldata hookData)
                      external
                      onlyWhenUnlocked
                      noDelegateCall
                      returns (BalanceDelta swapDelta)
                  {
                      if (params.amountSpecified == 0) SwapAmountCannotBeZero.selector.revertWith();
                      PoolId id = key.toId();
                      Pool.State storage pool = _getPool(id);
                      pool.checkPoolInitialized();
                      BeforeSwapDelta beforeSwapDelta;
                      {
                          int256 amountToSwap;
                          uint24 lpFeeOverride;
                          (amountToSwap, beforeSwapDelta, lpFeeOverride) = key.hooks.beforeSwap(key, params, hookData);
                          // execute swap, account protocol fees, and emit swap event
                          // _swap is needed to avoid stack too deep error
                          swapDelta = _swap(
                              pool,
                              id,
                              Pool.SwapParams({
                                  tickSpacing: key.tickSpacing,
                                  zeroForOne: params.zeroForOne,
                                  amountSpecified: amountToSwap,
                                  sqrtPriceLimitX96: params.sqrtPriceLimitX96,
                                  lpFeeOverride: lpFeeOverride
                              }),
                              params.zeroForOne ? key.currency0 : key.currency1 // input token
                          );
                      }
                      BalanceDelta hookDelta;
                      (swapDelta, hookDelta) = key.hooks.afterSwap(key, params, swapDelta, hookData, beforeSwapDelta);
                      // if the hook doesn't have the flag to be able to return deltas, hookDelta will always be 0
                      if (hookDelta != BalanceDeltaLibrary.ZERO_DELTA) _accountPoolBalanceDelta(key, hookDelta, address(key.hooks));
                      _accountPoolBalanceDelta(key, swapDelta, msg.sender);
                  }
                  /// @notice Internal swap function to execute a swap, take protocol fees on input token, and emit the swap event
                  function _swap(Pool.State storage pool, PoolId id, Pool.SwapParams memory params, Currency inputCurrency)
                      internal
                      returns (BalanceDelta)
                  {
                      (BalanceDelta delta, uint256 amountToProtocol, uint24 swapFee, Pool.SwapResult memory result) =
                          pool.swap(params);
                      // the fee is on the input currency
                      if (amountToProtocol > 0) _updateProtocolFees(inputCurrency, amountToProtocol);
                      // event is emitted before the afterSwap call to ensure events are always emitted in order
                      emit Swap(
                          id,
                          msg.sender,
                          delta.amount0(),
                          delta.amount1(),
                          result.sqrtPriceX96,
                          result.liquidity,
                          result.tick,
                          swapFee
                      );
                      return delta;
                  }
                  /// @inheritdoc IPoolManager
                  function donate(PoolKey memory key, uint256 amount0, uint256 amount1, bytes calldata hookData)
                      external
                      onlyWhenUnlocked
                      noDelegateCall
                      returns (BalanceDelta delta)
                  {
                      PoolId poolId = key.toId();
                      Pool.State storage pool = _getPool(poolId);
                      pool.checkPoolInitialized();
                      key.hooks.beforeDonate(key, amount0, amount1, hookData);
                      delta = pool.donate(amount0, amount1);
                      _accountPoolBalanceDelta(key, delta, msg.sender);
                      // event is emitted before the afterDonate call to ensure events are always emitted in order
                      emit Donate(poolId, msg.sender, amount0, amount1);
                      key.hooks.afterDonate(key, amount0, amount1, hookData);
                  }
                  /// @inheritdoc IPoolManager
                  function sync(Currency currency) external {
                      // address(0) is used for the native currency
                      if (currency.isAddressZero()) {
                          // The reserves balance is not used for native settling, so we only need to reset the currency.
                          CurrencyReserves.resetCurrency();
                      } else {
                          uint256 balance = currency.balanceOfSelf();
                          CurrencyReserves.syncCurrencyAndReserves(currency, balance);
                      }
                  }
                  /// @inheritdoc IPoolManager
                  function take(Currency currency, address to, uint256 amount) external onlyWhenUnlocked {
                      unchecked {
                          // negation must be safe as amount is not negative
                          _accountDelta(currency, -(amount.toInt128()), msg.sender);
                          currency.transfer(to, amount);
                      }
                  }
                  /// @inheritdoc IPoolManager
                  function settle() external payable onlyWhenUnlocked returns (uint256) {
                      return _settle(msg.sender);
                  }
                  /// @inheritdoc IPoolManager
                  function settleFor(address recipient) external payable onlyWhenUnlocked returns (uint256) {
                      return _settle(recipient);
                  }
                  /// @inheritdoc IPoolManager
                  function clear(Currency currency, uint256 amount) external onlyWhenUnlocked {
                      int256 current = currency.getDelta(msg.sender);
                      // Because input is `uint256`, only positive amounts can be cleared.
                      int128 amountDelta = amount.toInt128();
                      if (amountDelta != current) MustClearExactPositiveDelta.selector.revertWith();
                      // negation must be safe as amountDelta is positive
                      unchecked {
                          _accountDelta(currency, -(amountDelta), msg.sender);
                      }
                  }
                  /// @inheritdoc IPoolManager
                  function mint(address to, uint256 id, uint256 amount) external onlyWhenUnlocked {
                      unchecked {
                          Currency currency = CurrencyLibrary.fromId(id);
                          // negation must be safe as amount is not negative
                          _accountDelta(currency, -(amount.toInt128()), msg.sender);
                          _mint(to, currency.toId(), amount);
                      }
                  }
                  /// @inheritdoc IPoolManager
                  function burn(address from, uint256 id, uint256 amount) external onlyWhenUnlocked {
                      Currency currency = CurrencyLibrary.fromId(id);
                      _accountDelta(currency, amount.toInt128(), msg.sender);
                      _burnFrom(from, currency.toId(), amount);
                  }
                  /// @inheritdoc IPoolManager
                  function updateDynamicLPFee(PoolKey memory key, uint24 newDynamicLPFee) external {
                      if (!key.fee.isDynamicFee() || msg.sender != address(key.hooks)) {
                          UnauthorizedDynamicLPFeeUpdate.selector.revertWith();
                      }
                      newDynamicLPFee.validate();
                      PoolId id = key.toId();
                      _pools[id].setLPFee(newDynamicLPFee);
                  }
                  // if settling native, integrators should still call `sync` first to avoid DoS attack vectors
                  function _settle(address recipient) internal returns (uint256 paid) {
                      Currency currency = CurrencyReserves.getSyncedCurrency();
                      // if not previously synced, or the syncedCurrency slot has been reset, expects native currency to be settled
                      if (currency.isAddressZero()) {
                          paid = msg.value;
                      } else {
                          if (msg.value > 0) NonzeroNativeValue.selector.revertWith();
                          // Reserves are guaranteed to be set because currency and reserves are always set together
                          uint256 reservesBefore = CurrencyReserves.getSyncedReserves();
                          uint256 reservesNow = currency.balanceOfSelf();
                          paid = reservesNow - reservesBefore;
                          CurrencyReserves.resetCurrency();
                      }
                      _accountDelta(currency, paid.toInt128(), recipient);
                  }
                  /// @notice Adds a balance delta in a currency for a target address
                  function _accountDelta(Currency currency, int128 delta, address target) internal {
                      if (delta == 0) return;
                      (int256 previous, int256 next) = currency.applyDelta(target, delta);
                      if (next == 0) {
                          NonzeroDeltaCount.decrement();
                      } else if (previous == 0) {
                          NonzeroDeltaCount.increment();
                      }
                  }
                  /// @notice Accounts the deltas of 2 currencies to a target address
                  function _accountPoolBalanceDelta(PoolKey memory key, BalanceDelta delta, address target) internal {
                      _accountDelta(key.currency0, delta.amount0(), target);
                      _accountDelta(key.currency1, delta.amount1(), target);
                  }
                  /// @notice Implementation of the _getPool function defined in ProtocolFees
                  function _getPool(PoolId id) internal view override returns (Pool.State storage) {
                      return _pools[id];
                  }
                  /// @notice Implementation of the _isUnlocked function defined in ProtocolFees
                  function _isUnlocked() internal view override returns (bool) {
                      return Lock.isUnlocked();
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import {PoolKey} from "../types/PoolKey.sol";
              import {IHooks} from "../interfaces/IHooks.sol";
              import {SafeCast} from "./SafeCast.sol";
              import {LPFeeLibrary} from "./LPFeeLibrary.sol";
              import {BalanceDelta, toBalanceDelta, BalanceDeltaLibrary} from "../types/BalanceDelta.sol";
              import {BeforeSwapDelta, BeforeSwapDeltaLibrary} from "../types/BeforeSwapDelta.sol";
              import {IPoolManager} from "../interfaces/IPoolManager.sol";
              import {ParseBytes} from "./ParseBytes.sol";
              import {CustomRevert} from "./CustomRevert.sol";
              /// @notice V4 decides whether to invoke specific hooks by inspecting the least significant bits
              /// of the address that the hooks contract is deployed to.
              /// For example, a hooks contract deployed to address: 0x0000000000000000000000000000000000002400
              /// has the lowest bits '10 0100 0000 0000' which would cause the 'before initialize' and 'after add liquidity' hooks to be used.
              library Hooks {
                  using LPFeeLibrary for uint24;
                  using Hooks for IHooks;
                  using SafeCast for int256;
                  using BeforeSwapDeltaLibrary for BeforeSwapDelta;
                  using ParseBytes for bytes;
                  using CustomRevert for bytes4;
                  uint160 internal constant ALL_HOOK_MASK = uint160((1 << 14) - 1);
                  uint160 internal constant BEFORE_INITIALIZE_FLAG = 1 << 13;
                  uint160 internal constant AFTER_INITIALIZE_FLAG = 1 << 12;
                  uint160 internal constant BEFORE_ADD_LIQUIDITY_FLAG = 1 << 11;
                  uint160 internal constant AFTER_ADD_LIQUIDITY_FLAG = 1 << 10;
                  uint160 internal constant BEFORE_REMOVE_LIQUIDITY_FLAG = 1 << 9;
                  uint160 internal constant AFTER_REMOVE_LIQUIDITY_FLAG = 1 << 8;
                  uint160 internal constant BEFORE_SWAP_FLAG = 1 << 7;
                  uint160 internal constant AFTER_SWAP_FLAG = 1 << 6;
                  uint160 internal constant BEFORE_DONATE_FLAG = 1 << 5;
                  uint160 internal constant AFTER_DONATE_FLAG = 1 << 4;
                  uint160 internal constant BEFORE_SWAP_RETURNS_DELTA_FLAG = 1 << 3;
                  uint160 internal constant AFTER_SWAP_RETURNS_DELTA_FLAG = 1 << 2;
                  uint160 internal constant AFTER_ADD_LIQUIDITY_RETURNS_DELTA_FLAG = 1 << 1;
                  uint160 internal constant AFTER_REMOVE_LIQUIDITY_RETURNS_DELTA_FLAG = 1 << 0;
                  struct Permissions {
                      bool beforeInitialize;
                      bool afterInitialize;
                      bool beforeAddLiquidity;
                      bool afterAddLiquidity;
                      bool beforeRemoveLiquidity;
                      bool afterRemoveLiquidity;
                      bool beforeSwap;
                      bool afterSwap;
                      bool beforeDonate;
                      bool afterDonate;
                      bool beforeSwapReturnDelta;
                      bool afterSwapReturnDelta;
                      bool afterAddLiquidityReturnDelta;
                      bool afterRemoveLiquidityReturnDelta;
                  }
                  /// @notice Thrown if the address will not lead to the specified hook calls being called
                  /// @param hooks The address of the hooks contract
                  error HookAddressNotValid(address hooks);
                  /// @notice Hook did not return its selector
                  error InvalidHookResponse();
                  /// @notice Additional context for ERC-7751 wrapped error when a hook call fails
                  error HookCallFailed();
                  /// @notice The hook's delta changed the swap from exactIn to exactOut or vice versa
                  error HookDeltaExceedsSwapAmount();
                  /// @notice Utility function intended to be used in hook constructors to ensure
                  /// the deployed hooks address causes the intended hooks to be called
                  /// @param permissions The hooks that are intended to be called
                  /// @dev permissions param is memory as the function will be called from constructors
                  function validateHookPermissions(IHooks self, Permissions memory permissions) internal pure {
                      if (
                          permissions.beforeInitialize != self.hasPermission(BEFORE_INITIALIZE_FLAG)
                              || permissions.afterInitialize != self.hasPermission(AFTER_INITIALIZE_FLAG)
                              || permissions.beforeAddLiquidity != self.hasPermission(BEFORE_ADD_LIQUIDITY_FLAG)
                              || permissions.afterAddLiquidity != self.hasPermission(AFTER_ADD_LIQUIDITY_FLAG)
                              || permissions.beforeRemoveLiquidity != self.hasPermission(BEFORE_REMOVE_LIQUIDITY_FLAG)
                              || permissions.afterRemoveLiquidity != self.hasPermission(AFTER_REMOVE_LIQUIDITY_FLAG)
                              || permissions.beforeSwap != self.hasPermission(BEFORE_SWAP_FLAG)
                              || permissions.afterSwap != self.hasPermission(AFTER_SWAP_FLAG)
                              || permissions.beforeDonate != self.hasPermission(BEFORE_DONATE_FLAG)
                              || permissions.afterDonate != self.hasPermission(AFTER_DONATE_FLAG)
                              || permissions.beforeSwapReturnDelta != self.hasPermission(BEFORE_SWAP_RETURNS_DELTA_FLAG)
                              || permissions.afterSwapReturnDelta != self.hasPermission(AFTER_SWAP_RETURNS_DELTA_FLAG)
                              || permissions.afterAddLiquidityReturnDelta != self.hasPermission(AFTER_ADD_LIQUIDITY_RETURNS_DELTA_FLAG)
                              || permissions.afterRemoveLiquidityReturnDelta
                                  != self.hasPermission(AFTER_REMOVE_LIQUIDITY_RETURNS_DELTA_FLAG)
                      ) {
                          HookAddressNotValid.selector.revertWith(address(self));
                      }
                  }
                  /// @notice Ensures that the hook address includes at least one hook flag or dynamic fees, or is the 0 address
                  /// @param self The hook to verify
                  /// @param fee The fee of the pool the hook is used with
                  /// @return bool True if the hook address is valid
                  function isValidHookAddress(IHooks self, uint24 fee) internal pure returns (bool) {
                      // The hook can only have a flag to return a hook delta on an action if it also has the corresponding action flag
                      if (!self.hasPermission(BEFORE_SWAP_FLAG) && self.hasPermission(BEFORE_SWAP_RETURNS_DELTA_FLAG)) return false;
                      if (!self.hasPermission(AFTER_SWAP_FLAG) && self.hasPermission(AFTER_SWAP_RETURNS_DELTA_FLAG)) return false;
                      if (!self.hasPermission(AFTER_ADD_LIQUIDITY_FLAG) && self.hasPermission(AFTER_ADD_LIQUIDITY_RETURNS_DELTA_FLAG))
                      {
                          return false;
                      }
                      if (
                          !self.hasPermission(AFTER_REMOVE_LIQUIDITY_FLAG)
                              && self.hasPermission(AFTER_REMOVE_LIQUIDITY_RETURNS_DELTA_FLAG)
                      ) return false;
                      // If there is no hook contract set, then fee cannot be dynamic
                      // If a hook contract is set, it must have at least 1 flag set, or have a dynamic fee
                      return address(self) == address(0)
                          ? !fee.isDynamicFee()
                          : (uint160(address(self)) & ALL_HOOK_MASK > 0 || fee.isDynamicFee());
                  }
                  /// @notice performs a hook call using the given calldata on the given hook that doesn't return a delta
                  /// @return result The complete data returned by the hook
                  function callHook(IHooks self, bytes memory data) internal returns (bytes memory result) {
                      bool success;
                      assembly ("memory-safe") {
                          success := call(gas(), self, 0, add(data, 0x20), mload(data), 0, 0)
                      }
                      // Revert with FailedHookCall, containing any error message to bubble up
                      if (!success) CustomRevert.bubbleUpAndRevertWith(address(self), bytes4(data), HookCallFailed.selector);
                      // The call was successful, fetch the returned data
                      assembly ("memory-safe") {
                          // allocate result byte array from the free memory pointer
                          result := mload(0x40)
                          // store new free memory pointer at the end of the array padded to 32 bytes
                          mstore(0x40, add(result, and(add(returndatasize(), 0x3f), not(0x1f))))
                          // store length in memory
                          mstore(result, returndatasize())
                          // copy return data to result
                          returndatacopy(add(result, 0x20), 0, returndatasize())
                      }
                      // Length must be at least 32 to contain the selector. Check expected selector and returned selector match.
                      if (result.length < 32 || result.parseSelector() != data.parseSelector()) {
                          InvalidHookResponse.selector.revertWith();
                      }
                  }
                  /// @notice performs a hook call using the given calldata on the given hook
                  /// @return int256 The delta returned by the hook
                  function callHookWithReturnDelta(IHooks self, bytes memory data, bool parseReturn) internal returns (int256) {
                      bytes memory result = callHook(self, data);
                      // If this hook wasn't meant to return something, default to 0 delta
                      if (!parseReturn) return 0;
                      // A length of 64 bytes is required to return a bytes4, and a 32 byte delta
                      if (result.length != 64) InvalidHookResponse.selector.revertWith();
                      return result.parseReturnDelta();
                  }
                  /// @notice modifier to prevent calling a hook if they initiated the action
                  modifier noSelfCall(IHooks self) {
                      if (msg.sender != address(self)) {
                          _;
                      }
                  }
                  /// @notice calls beforeInitialize hook if permissioned and validates return value
                  function beforeInitialize(IHooks self, PoolKey memory key, uint160 sqrtPriceX96) internal noSelfCall(self) {
                      if (self.hasPermission(BEFORE_INITIALIZE_FLAG)) {
                          self.callHook(abi.encodeCall(IHooks.beforeInitialize, (msg.sender, key, sqrtPriceX96)));
                      }
                  }
                  /// @notice calls afterInitialize hook if permissioned and validates return value
                  function afterInitialize(IHooks self, PoolKey memory key, uint160 sqrtPriceX96, int24 tick)
                      internal
                      noSelfCall(self)
                  {
                      if (self.hasPermission(AFTER_INITIALIZE_FLAG)) {
                          self.callHook(abi.encodeCall(IHooks.afterInitialize, (msg.sender, key, sqrtPriceX96, tick)));
                      }
                  }
                  /// @notice calls beforeModifyLiquidity hook if permissioned and validates return value
                  function beforeModifyLiquidity(
                      IHooks self,
                      PoolKey memory key,
                      IPoolManager.ModifyLiquidityParams memory params,
                      bytes calldata hookData
                  ) internal noSelfCall(self) {
                      if (params.liquidityDelta > 0 && self.hasPermission(BEFORE_ADD_LIQUIDITY_FLAG)) {
                          self.callHook(abi.encodeCall(IHooks.beforeAddLiquidity, (msg.sender, key, params, hookData)));
                      } else if (params.liquidityDelta <= 0 && self.hasPermission(BEFORE_REMOVE_LIQUIDITY_FLAG)) {
                          self.callHook(abi.encodeCall(IHooks.beforeRemoveLiquidity, (msg.sender, key, params, hookData)));
                      }
                  }
                  /// @notice calls afterModifyLiquidity hook if permissioned and validates return value
                  function afterModifyLiquidity(
                      IHooks self,
                      PoolKey memory key,
                      IPoolManager.ModifyLiquidityParams memory params,
                      BalanceDelta delta,
                      BalanceDelta feesAccrued,
                      bytes calldata hookData
                  ) internal returns (BalanceDelta callerDelta, BalanceDelta hookDelta) {
                      if (msg.sender == address(self)) return (delta, BalanceDeltaLibrary.ZERO_DELTA);
                      callerDelta = delta;
                      if (params.liquidityDelta > 0) {
                          if (self.hasPermission(AFTER_ADD_LIQUIDITY_FLAG)) {
                              hookDelta = BalanceDelta.wrap(
                                  self.callHookWithReturnDelta(
                                      abi.encodeCall(
                                          IHooks.afterAddLiquidity, (msg.sender, key, params, delta, feesAccrued, hookData)
                                      ),
                                      self.hasPermission(AFTER_ADD_LIQUIDITY_RETURNS_DELTA_FLAG)
                                  )
                              );
                              callerDelta = callerDelta - hookDelta;
                          }
                      } else {
                          if (self.hasPermission(AFTER_REMOVE_LIQUIDITY_FLAG)) {
                              hookDelta = BalanceDelta.wrap(
                                  self.callHookWithReturnDelta(
                                      abi.encodeCall(
                                          IHooks.afterRemoveLiquidity, (msg.sender, key, params, delta, feesAccrued, hookData)
                                      ),
                                      self.hasPermission(AFTER_REMOVE_LIQUIDITY_RETURNS_DELTA_FLAG)
                                  )
                              );
                              callerDelta = callerDelta - hookDelta;
                          }
                      }
                  }
                  /// @notice calls beforeSwap hook if permissioned and validates return value
                  function beforeSwap(IHooks self, PoolKey memory key, IPoolManager.SwapParams memory params, bytes calldata hookData)
                      internal
                      returns (int256 amountToSwap, BeforeSwapDelta hookReturn, uint24 lpFeeOverride)
                  {
                      amountToSwap = params.amountSpecified;
                      if (msg.sender == address(self)) return (amountToSwap, BeforeSwapDeltaLibrary.ZERO_DELTA, lpFeeOverride);
                      if (self.hasPermission(BEFORE_SWAP_FLAG)) {
                          bytes memory result = callHook(self, abi.encodeCall(IHooks.beforeSwap, (msg.sender, key, params, hookData)));
                          // A length of 96 bytes is required to return a bytes4, a 32 byte delta, and an LP fee
                          if (result.length != 96) InvalidHookResponse.selector.revertWith();
                          // dynamic fee pools that want to override the cache fee, return a valid fee with the override flag. If override flag
                          // is set but an invalid fee is returned, the transaction will revert. Otherwise the current LP fee will be used
                          if (key.fee.isDynamicFee()) lpFeeOverride = result.parseFee();
                          // skip this logic for the case where the hook return is 0
                          if (self.hasPermission(BEFORE_SWAP_RETURNS_DELTA_FLAG)) {
                              hookReturn = BeforeSwapDelta.wrap(result.parseReturnDelta());
                              // any return in unspecified is passed to the afterSwap hook for handling
                              int128 hookDeltaSpecified = hookReturn.getSpecifiedDelta();
                              // Update the swap amount according to the hook's return, and check that the swap type doesn't change (exact input/output)
                              if (hookDeltaSpecified != 0) {
                                  bool exactInput = amountToSwap < 0;
                                  amountToSwap += hookDeltaSpecified;
                                  if (exactInput ? amountToSwap > 0 : amountToSwap < 0) {
                                      HookDeltaExceedsSwapAmount.selector.revertWith();
                                  }
                              }
                          }
                      }
                  }
                  /// @notice calls afterSwap hook if permissioned and validates return value
                  function afterSwap(
                      IHooks self,
                      PoolKey memory key,
                      IPoolManager.SwapParams memory params,
                      BalanceDelta swapDelta,
                      bytes calldata hookData,
                      BeforeSwapDelta beforeSwapHookReturn
                  ) internal returns (BalanceDelta, BalanceDelta) {
                      if (msg.sender == address(self)) return (swapDelta, BalanceDeltaLibrary.ZERO_DELTA);
                      int128 hookDeltaSpecified = beforeSwapHookReturn.getSpecifiedDelta();
                      int128 hookDeltaUnspecified = beforeSwapHookReturn.getUnspecifiedDelta();
                      if (self.hasPermission(AFTER_SWAP_FLAG)) {
                          hookDeltaUnspecified += self.callHookWithReturnDelta(
                              abi.encodeCall(IHooks.afterSwap, (msg.sender, key, params, swapDelta, hookData)),
                              self.hasPermission(AFTER_SWAP_RETURNS_DELTA_FLAG)
                          ).toInt128();
                      }
                      BalanceDelta hookDelta;
                      if (hookDeltaUnspecified != 0 || hookDeltaSpecified != 0) {
                          hookDelta = (params.amountSpecified < 0 == params.zeroForOne)
                              ? toBalanceDelta(hookDeltaSpecified, hookDeltaUnspecified)
                              : toBalanceDelta(hookDeltaUnspecified, hookDeltaSpecified);
                          // the caller has to pay for (or receive) the hook's delta
                          swapDelta = swapDelta - hookDelta;
                      }
                      return (swapDelta, hookDelta);
                  }
                  /// @notice calls beforeDonate hook if permissioned and validates return value
                  function beforeDonate(IHooks self, PoolKey memory key, uint256 amount0, uint256 amount1, bytes calldata hookData)
                      internal
                      noSelfCall(self)
                  {
                      if (self.hasPermission(BEFORE_DONATE_FLAG)) {
                          self.callHook(abi.encodeCall(IHooks.beforeDonate, (msg.sender, key, amount0, amount1, hookData)));
                      }
                  }
                  /// @notice calls afterDonate hook if permissioned and validates return value
                  function afterDonate(IHooks self, PoolKey memory key, uint256 amount0, uint256 amount1, bytes calldata hookData)
                      internal
                      noSelfCall(self)
                  {
                      if (self.hasPermission(AFTER_DONATE_FLAG)) {
                          self.callHook(abi.encodeCall(IHooks.afterDonate, (msg.sender, key, amount0, amount1, hookData)));
                      }
                  }
                  function hasPermission(IHooks self, uint160 flag) internal pure returns (bool) {
                      return uint160(address(self)) & flag != 0;
                  }
              }
              // SPDX-License-Identifier: BUSL-1.1
              pragma solidity ^0.8.0;
              import {SafeCast} from "./SafeCast.sol";
              import {TickBitmap} from "./TickBitmap.sol";
              import {Position} from "./Position.sol";
              import {UnsafeMath} from "./UnsafeMath.sol";
              import {FixedPoint128} from "./FixedPoint128.sol";
              import {TickMath} from "./TickMath.sol";
              import {SqrtPriceMath} from "./SqrtPriceMath.sol";
              import {SwapMath} from "./SwapMath.sol";
              import {BalanceDelta, toBalanceDelta, BalanceDeltaLibrary} from "../types/BalanceDelta.sol";
              import {Slot0} from "../types/Slot0.sol";
              import {ProtocolFeeLibrary} from "./ProtocolFeeLibrary.sol";
              import {LiquidityMath} from "./LiquidityMath.sol";
              import {LPFeeLibrary} from "./LPFeeLibrary.sol";
              import {CustomRevert} from "./CustomRevert.sol";
              /// @notice a library with all actions that can be performed on a pool
              library Pool {
                  using SafeCast for *;
                  using TickBitmap for mapping(int16 => uint256);
                  using Position for mapping(bytes32 => Position.State);
                  using Position for Position.State;
                  using Pool for State;
                  using ProtocolFeeLibrary for *;
                  using LPFeeLibrary for uint24;
                  using CustomRevert for bytes4;
                  /// @notice Thrown when tickLower is not below tickUpper
                  /// @param tickLower The invalid tickLower
                  /// @param tickUpper The invalid tickUpper
                  error TicksMisordered(int24 tickLower, int24 tickUpper);
                  /// @notice Thrown when tickLower is less than min tick
                  /// @param tickLower The invalid tickLower
                  error TickLowerOutOfBounds(int24 tickLower);
                  /// @notice Thrown when tickUpper exceeds max tick
                  /// @param tickUpper The invalid tickUpper
                  error TickUpperOutOfBounds(int24 tickUpper);
                  /// @notice For the tick spacing, the tick has too much liquidity
                  error TickLiquidityOverflow(int24 tick);
                  /// @notice Thrown when trying to initialize an already initialized pool
                  error PoolAlreadyInitialized();
                  /// @notice Thrown when trying to interact with a non-initialized pool
                  error PoolNotInitialized();
                  /// @notice Thrown when sqrtPriceLimitX96 on a swap has already exceeded its limit
                  /// @param sqrtPriceCurrentX96 The invalid, already surpassed sqrtPriceLimitX96
                  /// @param sqrtPriceLimitX96 The surpassed price limit
                  error PriceLimitAlreadyExceeded(uint160 sqrtPriceCurrentX96, uint160 sqrtPriceLimitX96);
                  /// @notice Thrown when sqrtPriceLimitX96 lies outside of valid tick/price range
                  /// @param sqrtPriceLimitX96 The invalid, out-of-bounds sqrtPriceLimitX96
                  error PriceLimitOutOfBounds(uint160 sqrtPriceLimitX96);
                  /// @notice Thrown by donate if there is currently 0 liquidity, since the fees will not go to any liquidity providers
                  error NoLiquidityToReceiveFees();
                  /// @notice Thrown when trying to swap with max lp fee and specifying an output amount
                  error InvalidFeeForExactOut();
                  // info stored for each initialized individual tick
                  struct TickInfo {
                      // the total position liquidity that references this tick
                      uint128 liquidityGross;
                      // amount of net liquidity added (subtracted) when tick is crossed from left to right (right to left),
                      int128 liquidityNet;
                      // fee growth per unit of liquidity on the _other_ side of this tick (relative to the current tick)
                      // only has relative meaning, not absolute — the value depends on when the tick is initialized
                      uint256 feeGrowthOutside0X128;
                      uint256 feeGrowthOutside1X128;
                  }
                  /// @notice The state of a pool
                  /// @dev Note that feeGrowthGlobal can be artificially inflated
                  /// For pools with a single liquidity position, actors can donate to themselves to freely inflate feeGrowthGlobal
                  /// atomically donating and collecting fees in the same unlockCallback may make the inflated value more extreme
                  struct State {
                      Slot0 slot0;
                      uint256 feeGrowthGlobal0X128;
                      uint256 feeGrowthGlobal1X128;
                      uint128 liquidity;
                      mapping(int24 tick => TickInfo) ticks;
                      mapping(int16 wordPos => uint256) tickBitmap;
                      mapping(bytes32 positionKey => Position.State) positions;
                  }
                  /// @dev Common checks for valid tick inputs.
                  function checkTicks(int24 tickLower, int24 tickUpper) private pure {
                      if (tickLower >= tickUpper) TicksMisordered.selector.revertWith(tickLower, tickUpper);
                      if (tickLower < TickMath.MIN_TICK) TickLowerOutOfBounds.selector.revertWith(tickLower);
                      if (tickUpper > TickMath.MAX_TICK) TickUpperOutOfBounds.selector.revertWith(tickUpper);
                  }
                  function initialize(State storage self, uint160 sqrtPriceX96, uint24 lpFee) internal returns (int24 tick) {
                      if (self.slot0.sqrtPriceX96() != 0) PoolAlreadyInitialized.selector.revertWith();
                      tick = TickMath.getTickAtSqrtPrice(sqrtPriceX96);
                      // the initial protocolFee is 0 so doesn't need to be set
                      self.slot0 = Slot0.wrap(bytes32(0)).setSqrtPriceX96(sqrtPriceX96).setTick(tick).setLpFee(lpFee);
                  }
                  function setProtocolFee(State storage self, uint24 protocolFee) internal {
                      self.checkPoolInitialized();
                      self.slot0 = self.slot0.setProtocolFee(protocolFee);
                  }
                  /// @notice Only dynamic fee pools may update the lp fee.
                  function setLPFee(State storage self, uint24 lpFee) internal {
                      self.checkPoolInitialized();
                      self.slot0 = self.slot0.setLpFee(lpFee);
                  }
                  struct ModifyLiquidityParams {
                      // the address that owns the position
                      address owner;
                      // the lower and upper tick of the position
                      int24 tickLower;
                      int24 tickUpper;
                      // any change in liquidity
                      int128 liquidityDelta;
                      // the spacing between ticks
                      int24 tickSpacing;
                      // used to distinguish positions of the same owner, at the same tick range
                      bytes32 salt;
                  }
                  struct ModifyLiquidityState {
                      bool flippedLower;
                      uint128 liquidityGrossAfterLower;
                      bool flippedUpper;
                      uint128 liquidityGrossAfterUpper;
                  }
                  /// @notice Effect changes to a position in a pool
                  /// @dev PoolManager checks that the pool is initialized before calling
                  /// @param params the position details and the change to the position's liquidity to effect
                  /// @return delta the deltas of the token balances of the pool, from the liquidity change
                  /// @return feeDelta the fees generated by the liquidity range
                  function modifyLiquidity(State storage self, ModifyLiquidityParams memory params)
                      internal
                      returns (BalanceDelta delta, BalanceDelta feeDelta)
                  {
                      int128 liquidityDelta = params.liquidityDelta;
                      int24 tickLower = params.tickLower;
                      int24 tickUpper = params.tickUpper;
                      checkTicks(tickLower, tickUpper);
                      {
                          ModifyLiquidityState memory state;
                          // if we need to update the ticks, do it
                          if (liquidityDelta != 0) {
                              (state.flippedLower, state.liquidityGrossAfterLower) =
                                  updateTick(self, tickLower, liquidityDelta, false);
                              (state.flippedUpper, state.liquidityGrossAfterUpper) = updateTick(self, tickUpper, liquidityDelta, true);
                              // `>` and `>=` are logically equivalent here but `>=` is cheaper
                              if (liquidityDelta >= 0) {
                                  uint128 maxLiquidityPerTick = tickSpacingToMaxLiquidityPerTick(params.tickSpacing);
                                  if (state.liquidityGrossAfterLower > maxLiquidityPerTick) {
                                      TickLiquidityOverflow.selector.revertWith(tickLower);
                                  }
                                  if (state.liquidityGrossAfterUpper > maxLiquidityPerTick) {
                                      TickLiquidityOverflow.selector.revertWith(tickUpper);
                                  }
                              }
                              if (state.flippedLower) {
                                  self.tickBitmap.flipTick(tickLower, params.tickSpacing);
                              }
                              if (state.flippedUpper) {
                                  self.tickBitmap.flipTick(tickUpper, params.tickSpacing);
                              }
                          }
                          {
                              (uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128) =
                                  getFeeGrowthInside(self, tickLower, tickUpper);
                              Position.State storage position = self.positions.get(params.owner, tickLower, tickUpper, params.salt);
                              (uint256 feesOwed0, uint256 feesOwed1) =
                                  position.update(liquidityDelta, feeGrowthInside0X128, feeGrowthInside1X128);
                              // Fees earned from LPing are calculated, and returned
                              feeDelta = toBalanceDelta(feesOwed0.toInt128(), feesOwed1.toInt128());
                          }
                          // clear any tick data that is no longer needed
                          if (liquidityDelta < 0) {
                              if (state.flippedLower) {
                                  clearTick(self, tickLower);
                              }
                              if (state.flippedUpper) {
                                  clearTick(self, tickUpper);
                              }
                          }
                      }
                      if (liquidityDelta != 0) {
                          Slot0 _slot0 = self.slot0;
                          (int24 tick, uint160 sqrtPriceX96) = (_slot0.tick(), _slot0.sqrtPriceX96());
                          if (tick < tickLower) {
                              // current tick is below the passed range; liquidity can only become in range by crossing from left to
                              // right, when we'll need _more_ currency0 (it's becoming more valuable) so user must provide it
                              delta = toBalanceDelta(
                                  SqrtPriceMath.getAmount0Delta(
                                      TickMath.getSqrtPriceAtTick(tickLower), TickMath.getSqrtPriceAtTick(tickUpper), liquidityDelta
                                  ).toInt128(),
                                  0
                              );
                          } else if (tick < tickUpper) {
                              delta = toBalanceDelta(
                                  SqrtPriceMath.getAmount0Delta(sqrtPriceX96, TickMath.getSqrtPriceAtTick(tickUpper), liquidityDelta)
                                      .toInt128(),
                                  SqrtPriceMath.getAmount1Delta(TickMath.getSqrtPriceAtTick(tickLower), sqrtPriceX96, liquidityDelta)
                                      .toInt128()
                              );
                              self.liquidity = LiquidityMath.addDelta(self.liquidity, liquidityDelta);
                          } else {
                              // current tick is above the passed range; liquidity can only become in range by crossing from right to
                              // left, when we'll need _more_ currency1 (it's becoming more valuable) so user must provide it
                              delta = toBalanceDelta(
                                  0,
                                  SqrtPriceMath.getAmount1Delta(
                                      TickMath.getSqrtPriceAtTick(tickLower), TickMath.getSqrtPriceAtTick(tickUpper), liquidityDelta
                                  ).toInt128()
                              );
                          }
                      }
                  }
                  // Tracks the state of a pool throughout a swap, and returns these values at the end of the swap
                  struct SwapResult {
                      // the current sqrt(price)
                      uint160 sqrtPriceX96;
                      // the tick associated with the current price
                      int24 tick;
                      // the current liquidity in range
                      uint128 liquidity;
                  }
                  struct StepComputations {
                      // the price at the beginning of the step
                      uint160 sqrtPriceStartX96;
                      // the next tick to swap to from the current tick in the swap direction
                      int24 tickNext;
                      // whether tickNext is initialized or not
                      bool initialized;
                      // sqrt(price) for the next tick (1/0)
                      uint160 sqrtPriceNextX96;
                      // how much is being swapped in in this step
                      uint256 amountIn;
                      // how much is being swapped out
                      uint256 amountOut;
                      // how much fee is being paid in
                      uint256 feeAmount;
                      // the global fee growth of the input token. updated in storage at the end of swap
                      uint256 feeGrowthGlobalX128;
                  }
                  struct SwapParams {
                      int256 amountSpecified;
                      int24 tickSpacing;
                      bool zeroForOne;
                      uint160 sqrtPriceLimitX96;
                      uint24 lpFeeOverride;
                  }
                  /// @notice Executes a swap against the state, and returns the amount deltas of the pool
                  /// @dev PoolManager checks that the pool is initialized before calling
                  function swap(State storage self, SwapParams memory params)
                      internal
                      returns (BalanceDelta swapDelta, uint256 amountToProtocol, uint24 swapFee, SwapResult memory result)
                  {
                      Slot0 slot0Start = self.slot0;
                      bool zeroForOne = params.zeroForOne;
                      uint256 protocolFee =
                          zeroForOne ? slot0Start.protocolFee().getZeroForOneFee() : slot0Start.protocolFee().getOneForZeroFee();
                      // the amount remaining to be swapped in/out of the input/output asset. initially set to the amountSpecified
                      int256 amountSpecifiedRemaining = params.amountSpecified;
                      // the amount swapped out/in of the output/input asset. initially set to 0
                      int256 amountCalculated = 0;
                      // initialize to the current sqrt(price)
                      result.sqrtPriceX96 = slot0Start.sqrtPriceX96();
                      // initialize to the current tick
                      result.tick = slot0Start.tick();
                      // initialize to the current liquidity
                      result.liquidity = self.liquidity;
                      // if the beforeSwap hook returned a valid fee override, use that as the LP fee, otherwise load from storage
                      // lpFee, swapFee, and protocolFee are all in pips
                      {
                          uint24 lpFee = params.lpFeeOverride.isOverride()
                              ? params.lpFeeOverride.removeOverrideFlagAndValidate()
                              : slot0Start.lpFee();
                          swapFee = protocolFee == 0 ? lpFee : uint16(protocolFee).calculateSwapFee(lpFee);
                      }
                      // a swap fee totaling MAX_SWAP_FEE (100%) makes exact output swaps impossible since the input is entirely consumed by the fee
                      if (swapFee >= SwapMath.MAX_SWAP_FEE) {
                          // if exactOutput
                          if (params.amountSpecified > 0) {
                              InvalidFeeForExactOut.selector.revertWith();
                          }
                      }
                      // swapFee is the pool's fee in pips (LP fee + protocol fee)
                      // when the amount swapped is 0, there is no protocolFee applied and the fee amount paid to the protocol is set to 0
                      if (params.amountSpecified == 0) return (BalanceDeltaLibrary.ZERO_DELTA, 0, swapFee, result);
                      if (zeroForOne) {
                          if (params.sqrtPriceLimitX96 >= slot0Start.sqrtPriceX96()) {
                              PriceLimitAlreadyExceeded.selector.revertWith(slot0Start.sqrtPriceX96(), params.sqrtPriceLimitX96);
                          }
                          // Swaps can never occur at MIN_TICK, only at MIN_TICK + 1, except at initialization of a pool
                          // Under certain circumstances outlined below, the tick will preemptively reach MIN_TICK without swapping there
                          if (params.sqrtPriceLimitX96 <= TickMath.MIN_SQRT_PRICE) {
                              PriceLimitOutOfBounds.selector.revertWith(params.sqrtPriceLimitX96);
                          }
                      } else {
                          if (params.sqrtPriceLimitX96 <= slot0Start.sqrtPriceX96()) {
                              PriceLimitAlreadyExceeded.selector.revertWith(slot0Start.sqrtPriceX96(), params.sqrtPriceLimitX96);
                          }
                          if (params.sqrtPriceLimitX96 >= TickMath.MAX_SQRT_PRICE) {
                              PriceLimitOutOfBounds.selector.revertWith(params.sqrtPriceLimitX96);
                          }
                      }
                      StepComputations memory step;
                      step.feeGrowthGlobalX128 = zeroForOne ? self.feeGrowthGlobal0X128 : self.feeGrowthGlobal1X128;
                      // continue swapping as long as we haven't used the entire input/output and haven't reached the price limit
                      while (!(amountSpecifiedRemaining == 0 || result.sqrtPriceX96 == params.sqrtPriceLimitX96)) {
                          step.sqrtPriceStartX96 = result.sqrtPriceX96;
                          (step.tickNext, step.initialized) =
                              self.tickBitmap.nextInitializedTickWithinOneWord(result.tick, params.tickSpacing, zeroForOne);
                          // ensure that we do not overshoot the min/max tick, as the tick bitmap is not aware of these bounds
                          if (step.tickNext <= TickMath.MIN_TICK) {
                              step.tickNext = TickMath.MIN_TICK;
                          }
                          if (step.tickNext >= TickMath.MAX_TICK) {
                              step.tickNext = TickMath.MAX_TICK;
                          }
                          // get the price for the next tick
                          step.sqrtPriceNextX96 = TickMath.getSqrtPriceAtTick(step.tickNext);
                          // compute values to swap to the target tick, price limit, or point where input/output amount is exhausted
                          (result.sqrtPriceX96, step.amountIn, step.amountOut, step.feeAmount) = SwapMath.computeSwapStep(
                              result.sqrtPriceX96,
                              SwapMath.getSqrtPriceTarget(zeroForOne, step.sqrtPriceNextX96, params.sqrtPriceLimitX96),
                              result.liquidity,
                              amountSpecifiedRemaining,
                              swapFee
                          );
                          // if exactOutput
                          if (params.amountSpecified > 0) {
                              unchecked {
                                  amountSpecifiedRemaining -= step.amountOut.toInt256();
                              }
                              amountCalculated -= (step.amountIn + step.feeAmount).toInt256();
                          } else {
                              // safe because we test that amountSpecified > amountIn + feeAmount in SwapMath
                              unchecked {
                                  amountSpecifiedRemaining += (step.amountIn + step.feeAmount).toInt256();
                              }
                              amountCalculated += step.amountOut.toInt256();
                          }
                          // if the protocol fee is on, calculate how much is owed, decrement feeAmount, and increment protocolFee
                          if (protocolFee > 0) {
                              unchecked {
                                  // step.amountIn does not include the swap fee, as it's already been taken from it,
                                  // so add it back to get the total amountIn and use that to calculate the amount of fees owed to the protocol
                                  // cannot overflow due to limits on the size of protocolFee and params.amountSpecified
                                  // this rounds down to favor LPs over the protocol
                                  uint256 delta = (swapFee == protocolFee)
                                      ? step.feeAmount // lp fee is 0, so the entire fee is owed to the protocol instead
                                      : (step.amountIn + step.feeAmount) * protocolFee / ProtocolFeeLibrary.PIPS_DENOMINATOR;
                                  // subtract it from the total fee and add it to the protocol fee
                                  step.feeAmount -= delta;
                                  amountToProtocol += delta;
                              }
                          }
                          // update global fee tracker
                          if (result.liquidity > 0) {
                              unchecked {
                                  // FullMath.mulDiv isn't needed as the numerator can't overflow uint256 since tokens have a max supply of type(uint128).max
                                  step.feeGrowthGlobalX128 +=
                                      UnsafeMath.simpleMulDiv(step.feeAmount, FixedPoint128.Q128, result.liquidity);
                              }
                          }
                          // Shift tick if we reached the next price, and preemptively decrement for zeroForOne swaps to tickNext - 1.
                          // If the swap doesn't continue (if amountRemaining == 0 or sqrtPriceLimit is met), slot0.tick will be 1 less
                          // than getTickAtSqrtPrice(slot0.sqrtPrice). This doesn't affect swaps, but donation calls should verify both
                          // price and tick to reward the correct LPs.
                          if (result.sqrtPriceX96 == step.sqrtPriceNextX96) {
                              // if the tick is initialized, run the tick transition
                              if (step.initialized) {
                                  (uint256 feeGrowthGlobal0X128, uint256 feeGrowthGlobal1X128) = zeroForOne
                                      ? (step.feeGrowthGlobalX128, self.feeGrowthGlobal1X128)
                                      : (self.feeGrowthGlobal0X128, step.feeGrowthGlobalX128);
                                  int128 liquidityNet =
                                      Pool.crossTick(self, step.tickNext, feeGrowthGlobal0X128, feeGrowthGlobal1X128);
                                  // if we're moving leftward, we interpret liquidityNet as the opposite sign
                                  // safe because liquidityNet cannot be type(int128).min
                                  unchecked {
                                      if (zeroForOne) liquidityNet = -liquidityNet;
                                  }
                                  result.liquidity = LiquidityMath.addDelta(result.liquidity, liquidityNet);
                              }
                              unchecked {
                                  result.tick = zeroForOne ? step.tickNext - 1 : step.tickNext;
                              }
                          } else if (result.sqrtPriceX96 != step.sqrtPriceStartX96) {
                              // recompute unless we're on a lower tick boundary (i.e. already transitioned ticks), and haven't moved
                              result.tick = TickMath.getTickAtSqrtPrice(result.sqrtPriceX96);
                          }
                      }
                      self.slot0 = slot0Start.setTick(result.tick).setSqrtPriceX96(result.sqrtPriceX96);
                      // update liquidity if it changed
                      if (self.liquidity != result.liquidity) self.liquidity = result.liquidity;
                      // update fee growth global
                      if (!zeroForOne) {
                          self.feeGrowthGlobal1X128 = step.feeGrowthGlobalX128;
                      } else {
                          self.feeGrowthGlobal0X128 = step.feeGrowthGlobalX128;
                      }
                      unchecked {
                          // "if currency1 is specified"
                          if (zeroForOne != (params.amountSpecified < 0)) {
                              swapDelta = toBalanceDelta(
                                  amountCalculated.toInt128(), (params.amountSpecified - amountSpecifiedRemaining).toInt128()
                              );
                          } else {
                              swapDelta = toBalanceDelta(
                                  (params.amountSpecified - amountSpecifiedRemaining).toInt128(), amountCalculated.toInt128()
                              );
                          }
                      }
                  }
                  /// @notice Donates the given amount of currency0 and currency1 to the pool
                  function donate(State storage state, uint256 amount0, uint256 amount1) internal returns (BalanceDelta delta) {
                      uint128 liquidity = state.liquidity;
                      if (liquidity == 0) NoLiquidityToReceiveFees.selector.revertWith();
                      unchecked {
                          // negation safe as amount0 and amount1 are always positive
                          delta = toBalanceDelta(-(amount0.toInt128()), -(amount1.toInt128()));
                          // FullMath.mulDiv is unnecessary because the numerator is bounded by type(int128).max * Q128, which is less than type(uint256).max
                          if (amount0 > 0) {
                              state.feeGrowthGlobal0X128 += UnsafeMath.simpleMulDiv(amount0, FixedPoint128.Q128, liquidity);
                          }
                          if (amount1 > 0) {
                              state.feeGrowthGlobal1X128 += UnsafeMath.simpleMulDiv(amount1, FixedPoint128.Q128, liquidity);
                          }
                      }
                  }
                  /// @notice Retrieves fee growth data
                  /// @param self The Pool state struct
                  /// @param tickLower The lower tick boundary of the position
                  /// @param tickUpper The upper tick boundary of the position
                  /// @return feeGrowthInside0X128 The all-time fee growth in token0, per unit of liquidity, inside the position's tick boundaries
                  /// @return feeGrowthInside1X128 The all-time fee growth in token1, per unit of liquidity, inside the position's tick boundaries
                  function getFeeGrowthInside(State storage self, int24 tickLower, int24 tickUpper)
                      internal
                      view
                      returns (uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128)
                  {
                      TickInfo storage lower = self.ticks[tickLower];
                      TickInfo storage upper = self.ticks[tickUpper];
                      int24 tickCurrent = self.slot0.tick();
                      unchecked {
                          if (tickCurrent < tickLower) {
                              feeGrowthInside0X128 = lower.feeGrowthOutside0X128 - upper.feeGrowthOutside0X128;
                              feeGrowthInside1X128 = lower.feeGrowthOutside1X128 - upper.feeGrowthOutside1X128;
                          } else if (tickCurrent >= tickUpper) {
                              feeGrowthInside0X128 = upper.feeGrowthOutside0X128 - lower.feeGrowthOutside0X128;
                              feeGrowthInside1X128 = upper.feeGrowthOutside1X128 - lower.feeGrowthOutside1X128;
                          } else {
                              feeGrowthInside0X128 =
                                  self.feeGrowthGlobal0X128 - lower.feeGrowthOutside0X128 - upper.feeGrowthOutside0X128;
                              feeGrowthInside1X128 =
                                  self.feeGrowthGlobal1X128 - lower.feeGrowthOutside1X128 - upper.feeGrowthOutside1X128;
                          }
                      }
                  }
                  /// @notice Updates a tick and returns true if the tick was flipped from initialized to uninitialized, or vice versa
                  /// @param self The mapping containing all tick information for initialized ticks
                  /// @param tick The tick that will be updated
                  /// @param liquidityDelta A new amount of liquidity to be added (subtracted) when tick is crossed from left to right (right to left)
                  /// @param upper true for updating a position's upper tick, or false for updating a position's lower tick
                  /// @return flipped Whether the tick was flipped from initialized to uninitialized, or vice versa
                  /// @return liquidityGrossAfter The total amount of liquidity for all positions that references the tick after the update
                  function updateTick(State storage self, int24 tick, int128 liquidityDelta, bool upper)
                      internal
                      returns (bool flipped, uint128 liquidityGrossAfter)
                  {
                      TickInfo storage info = self.ticks[tick];
                      uint128 liquidityGrossBefore = info.liquidityGross;
                      int128 liquidityNetBefore = info.liquidityNet;
                      liquidityGrossAfter = LiquidityMath.addDelta(liquidityGrossBefore, liquidityDelta);
                      flipped = (liquidityGrossAfter == 0) != (liquidityGrossBefore == 0);
                      if (liquidityGrossBefore == 0) {
                          // by convention, we assume that all growth before a tick was initialized happened _below_ the tick
                          if (tick <= self.slot0.tick()) {
                              info.feeGrowthOutside0X128 = self.feeGrowthGlobal0X128;
                              info.feeGrowthOutside1X128 = self.feeGrowthGlobal1X128;
                          }
                      }
                      // when the lower (upper) tick is crossed left to right, liquidity must be added (removed)
                      // when the lower (upper) tick is crossed right to left, liquidity must be removed (added)
                      int128 liquidityNet = upper ? liquidityNetBefore - liquidityDelta : liquidityNetBefore + liquidityDelta;
                      assembly ("memory-safe") {
                          // liquidityGrossAfter and liquidityNet are packed in the first slot of `info`
                          // So we can store them with a single sstore by packing them ourselves first
                          sstore(
                              info.slot,
                              // bitwise OR to pack liquidityGrossAfter and liquidityNet
                              or(
                                  // Put liquidityGrossAfter in the lower bits, clearing out the upper bits
                                  and(liquidityGrossAfter, 0xffffffffffffffffffffffffffffffff),
                                  // Shift liquidityNet to put it in the upper bits (no need for signextend since we're shifting left)
                                  shl(128, liquidityNet)
                              )
                          )
                      }
                  }
                  /// @notice Derives max liquidity per tick from given tick spacing
                  /// @dev Executed when adding liquidity
                  /// @param tickSpacing The amount of required tick separation, realized in multiples of `tickSpacing`
                  ///     e.g., a tickSpacing of 3 requires ticks to be initialized every 3rd tick i.e., ..., -6, -3, 0, 3, 6, ...
                  /// @return result The max liquidity per tick
                  function tickSpacingToMaxLiquidityPerTick(int24 tickSpacing) internal pure returns (uint128 result) {
                      // Equivalent to:
                      // int24 minTick = (TickMath.MIN_TICK / tickSpacing);
                      // if (TickMath.MIN_TICK  % tickSpacing != 0) minTick--;
                      // int24 maxTick = (TickMath.MAX_TICK / tickSpacing);
                      // uint24 numTicks = maxTick - minTick + 1;
                      // return type(uint128).max / numTicks;
                      int24 MAX_TICK = TickMath.MAX_TICK;
                      int24 MIN_TICK = TickMath.MIN_TICK;
                      // tick spacing will never be 0 since TickMath.MIN_TICK_SPACING is 1
                      assembly ("memory-safe") {
                          tickSpacing := signextend(2, tickSpacing)
                          let minTick := sub(sdiv(MIN_TICK, tickSpacing), slt(smod(MIN_TICK, tickSpacing), 0))
                          let maxTick := sdiv(MAX_TICK, tickSpacing)
                          let numTicks := add(sub(maxTick, minTick), 1)
                          result := div(sub(shl(128, 1), 1), numTicks)
                      }
                  }
                  /// @notice Reverts if the given pool has not been initialized
                  function checkPoolInitialized(State storage self) internal view {
                      if (self.slot0.sqrtPriceX96() == 0) PoolNotInitialized.selector.revertWith();
                  }
                  /// @notice Clears tick data
                  /// @param self The mapping containing all initialized tick information for initialized ticks
                  /// @param tick The tick that will be cleared
                  function clearTick(State storage self, int24 tick) internal {
                      delete self.ticks[tick];
                  }
                  /// @notice Transitions to next tick as needed by price movement
                  /// @param self The Pool state struct
                  /// @param tick The destination tick of the transition
                  /// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
                  /// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
                  /// @return liquidityNet The amount of liquidity added (subtracted) when tick is crossed from left to right (right to left)
                  function crossTick(State storage self, int24 tick, uint256 feeGrowthGlobal0X128, uint256 feeGrowthGlobal1X128)
                      internal
                      returns (int128 liquidityNet)
                  {
                      unchecked {
                          TickInfo storage info = self.ticks[tick];
                          info.feeGrowthOutside0X128 = feeGrowthGlobal0X128 - info.feeGrowthOutside0X128;
                          info.feeGrowthOutside1X128 = feeGrowthGlobal1X128 - info.feeGrowthOutside1X128;
                          liquidityNet = info.liquidityNet;
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import {CustomRevert} from "./CustomRevert.sol";
              /// @title Safe casting methods
              /// @notice Contains methods for safely casting between types
              library SafeCast {
                  using CustomRevert for bytes4;
                  error SafeCastOverflow();
                  /// @notice Cast a uint256 to a uint160, revert on overflow
                  /// @param x The uint256 to be downcasted
                  /// @return y The downcasted integer, now type uint160
                  function toUint160(uint256 x) internal pure returns (uint160 y) {
                      y = uint160(x);
                      if (y != x) SafeCastOverflow.selector.revertWith();
                  }
                  /// @notice Cast a uint256 to a uint128, revert on overflow
                  /// @param x The uint256 to be downcasted
                  /// @return y The downcasted integer, now type uint128
                  function toUint128(uint256 x) internal pure returns (uint128 y) {
                      y = uint128(x);
                      if (x != y) SafeCastOverflow.selector.revertWith();
                  }
                  /// @notice Cast a int128 to a uint128, revert on overflow or underflow
                  /// @param x The int128 to be casted
                  /// @return y The casted integer, now type uint128
                  function toUint128(int128 x) internal pure returns (uint128 y) {
                      if (x < 0) SafeCastOverflow.selector.revertWith();
                      y = uint128(x);
                  }
                  /// @notice Cast a int256 to a int128, revert on overflow or underflow
                  /// @param x The int256 to be downcasted
                  /// @return y The downcasted integer, now type int128
                  function toInt128(int256 x) internal pure returns (int128 y) {
                      y = int128(x);
                      if (y != x) SafeCastOverflow.selector.revertWith();
                  }
                  /// @notice Cast a uint256 to a int256, revert on overflow
                  /// @param x The uint256 to be casted
                  /// @return y The casted integer, now type int256
                  function toInt256(uint256 x) internal pure returns (int256 y) {
                      y = int256(x);
                      if (y < 0) SafeCastOverflow.selector.revertWith();
                  }
                  /// @notice Cast a uint256 to a int128, revert on overflow
                  /// @param x The uint256 to be downcasted
                  /// @return The downcasted integer, now type int128
                  function toInt128(uint256 x) internal pure returns (int128) {
                      if (x >= 1 << 127) SafeCastOverflow.selector.revertWith();
                      return int128(int256(x));
                  }
              }
              // SPDX-License-Identifier: BUSL-1.1
              pragma solidity ^0.8.0;
              import {FullMath} from "./FullMath.sol";
              import {FixedPoint128} from "./FixedPoint128.sol";
              import {LiquidityMath} from "./LiquidityMath.sol";
              import {CustomRevert} from "./CustomRevert.sol";
              /// @title Position
              /// @notice Positions represent an owner address' liquidity between a lower and upper tick boundary
              /// @dev Positions store additional state for tracking fees owed to the position
              library Position {
                  using CustomRevert for bytes4;
                  /// @notice Cannot update a position with no liquidity
                  error CannotUpdateEmptyPosition();
                  // info stored for each user's position
                  struct State {
                      // the amount of liquidity owned by this position
                      uint128 liquidity;
                      // fee growth per unit of liquidity as of the last update to liquidity or fees owed
                      uint256 feeGrowthInside0LastX128;
                      uint256 feeGrowthInside1LastX128;
                  }
                  /// @notice Returns the State struct of a position, given an owner and position boundaries
                  /// @param self The mapping containing all user positions
                  /// @param owner The address of the position owner
                  /// @param tickLower The lower tick boundary of the position
                  /// @param tickUpper The upper tick boundary of the position
                  /// @param salt A unique value to differentiate between multiple positions in the same range
                  /// @return position The position info struct of the given owners' position
                  function get(mapping(bytes32 => State) storage self, address owner, int24 tickLower, int24 tickUpper, bytes32 salt)
                      internal
                      view
                      returns (State storage position)
                  {
                      bytes32 positionKey = calculatePositionKey(owner, tickLower, tickUpper, salt);
                      position = self[positionKey];
                  }
                  /// @notice A helper function to calculate the position key
                  /// @param owner The address of the position owner
                  /// @param tickLower the lower tick boundary of the position
                  /// @param tickUpper the upper tick boundary of the position
                  /// @param salt A unique value to differentiate between multiple positions in the same range, by the same owner. Passed in by the caller.
                  function calculatePositionKey(address owner, int24 tickLower, int24 tickUpper, bytes32 salt)
                      internal
                      pure
                      returns (bytes32 positionKey)
                  {
                      // positionKey = keccak256(abi.encodePacked(owner, tickLower, tickUpper, salt))
                      assembly ("memory-safe") {
                          let fmp := mload(0x40)
                          mstore(add(fmp, 0x26), salt) // [0x26, 0x46)
                          mstore(add(fmp, 0x06), tickUpper) // [0x23, 0x26)
                          mstore(add(fmp, 0x03), tickLower) // [0x20, 0x23)
                          mstore(fmp, owner) // [0x0c, 0x20)
                          positionKey := keccak256(add(fmp, 0x0c), 0x3a) // len is 58 bytes
                          // now clean the memory we used
                          mstore(add(fmp, 0x40), 0) // fmp+0x40 held salt
                          mstore(add(fmp, 0x20), 0) // fmp+0x20 held tickLower, tickUpper, salt
                          mstore(fmp, 0) // fmp held owner
                      }
                  }
                  /// @notice Credits accumulated fees to a user's position
                  /// @param self The individual position to update
                  /// @param liquidityDelta The change in pool liquidity as a result of the position update
                  /// @param feeGrowthInside0X128 The all-time fee growth in currency0, per unit of liquidity, inside the position's tick boundaries
                  /// @param feeGrowthInside1X128 The all-time fee growth in currency1, per unit of liquidity, inside the position's tick boundaries
                  /// @return feesOwed0 The amount of currency0 owed to the position owner
                  /// @return feesOwed1 The amount of currency1 owed to the position owner
                  function update(
                      State storage self,
                      int128 liquidityDelta,
                      uint256 feeGrowthInside0X128,
                      uint256 feeGrowthInside1X128
                  ) internal returns (uint256 feesOwed0, uint256 feesOwed1) {
                      uint128 liquidity = self.liquidity;
                      if (liquidityDelta == 0) {
                          // disallow pokes for 0 liquidity positions
                          if (liquidity == 0) CannotUpdateEmptyPosition.selector.revertWith();
                      } else {
                          self.liquidity = LiquidityMath.addDelta(liquidity, liquidityDelta);
                      }
                      // calculate accumulated fees. overflow in the subtraction of fee growth is expected
                      unchecked {
                          feesOwed0 =
                              FullMath.mulDiv(feeGrowthInside0X128 - self.feeGrowthInside0LastX128, liquidity, FixedPoint128.Q128);
                          feesOwed1 =
                              FullMath.mulDiv(feeGrowthInside1X128 - self.feeGrowthInside1LastX128, liquidity, FixedPoint128.Q128);
                      }
                      // update the position
                      self.feeGrowthInside0LastX128 = feeGrowthInside0X128;
                      self.feeGrowthInside1LastX128 = feeGrowthInside1X128;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import {CustomRevert} from "./CustomRevert.sol";
              /// @notice Library of helper functions for a pools LP fee
              library LPFeeLibrary {
                  using LPFeeLibrary for uint24;
                  using CustomRevert for bytes4;
                  /// @notice Thrown when the static or dynamic fee on a pool exceeds 100%.
                  error LPFeeTooLarge(uint24 fee);
                  /// @notice An lp fee of exactly 0b1000000... signals a dynamic fee pool. This isn't a valid static fee as it is > MAX_LP_FEE
                  uint24 public constant DYNAMIC_FEE_FLAG = 0x800000;
                  /// @notice the second bit of the fee returned by beforeSwap is used to signal if the stored LP fee should be overridden in this swap
                  // only dynamic-fee pools can return a fee via the beforeSwap hook
                  uint24 public constant OVERRIDE_FEE_FLAG = 0x400000;
                  /// @notice mask to remove the override fee flag from a fee returned by the beforeSwaphook
                  uint24 public constant REMOVE_OVERRIDE_MASK = 0xBFFFFF;
                  /// @notice the lp fee is represented in hundredths of a bip, so the max is 100%
                  uint24 public constant MAX_LP_FEE = 1000000;
                  /// @notice returns true if a pool's LP fee signals that the pool has a dynamic fee
                  /// @param self The fee to check
                  /// @return bool True of the fee is dynamic
                  function isDynamicFee(uint24 self) internal pure returns (bool) {
                      return self == DYNAMIC_FEE_FLAG;
                  }
                  /// @notice returns true if an LP fee is valid, aka not above the maximum permitted fee
                  /// @param self The fee to check
                  /// @return bool True of the fee is valid
                  function isValid(uint24 self) internal pure returns (bool) {
                      return self <= MAX_LP_FEE;
                  }
                  /// @notice validates whether an LP fee is larger than the maximum, and reverts if invalid
                  /// @param self The fee to validate
                  function validate(uint24 self) internal pure {
                      if (!self.isValid()) LPFeeTooLarge.selector.revertWith(self);
                  }
                  /// @notice gets and validates the initial LP fee for a pool. Dynamic fee pools have an initial fee of 0.
                  /// @dev if a dynamic fee pool wants a non-0 initial fee, it should call `updateDynamicLPFee` in the afterInitialize hook
                  /// @param self The fee to get the initial LP from
                  /// @return initialFee 0 if the fee is dynamic, otherwise the fee (if valid)
                  function getInitialLPFee(uint24 self) internal pure returns (uint24) {
                      // the initial fee for a dynamic fee pool is 0
                      if (self.isDynamicFee()) return 0;
                      self.validate();
                      return self;
                  }
                  /// @notice returns true if the fee has the override flag set (2nd highest bit of the uint24)
                  /// @param self The fee to check
                  /// @return bool True of the fee has the override flag set
                  function isOverride(uint24 self) internal pure returns (bool) {
                      return self & OVERRIDE_FEE_FLAG != 0;
                  }
                  /// @notice returns a fee with the override flag removed
                  /// @param self The fee to remove the override flag from
                  /// @return fee The fee without the override flag set
                  function removeOverrideFlag(uint24 self) internal pure returns (uint24) {
                      return self & REMOVE_OVERRIDE_MASK;
                  }
                  /// @notice Removes the override flag and validates the fee (reverts if the fee is too large)
                  /// @param self The fee to remove the override flag from, and then validate
                  /// @return fee The fee without the override flag set (if valid)
                  function removeOverrideFlagAndValidate(uint24 self) internal pure returns (uint24 fee) {
                      fee = self.removeOverrideFlag();
                      fee.validate();
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import {IERC20Minimal} from "../interfaces/external/IERC20Minimal.sol";
              import {CustomRevert} from "../libraries/CustomRevert.sol";
              type Currency is address;
              using {greaterThan as >, lessThan as <, greaterThanOrEqualTo as >=, equals as ==} for Currency global;
              using CurrencyLibrary for Currency global;
              function equals(Currency currency, Currency other) pure returns (bool) {
                  return Currency.unwrap(currency) == Currency.unwrap(other);
              }
              function greaterThan(Currency currency, Currency other) pure returns (bool) {
                  return Currency.unwrap(currency) > Currency.unwrap(other);
              }
              function lessThan(Currency currency, Currency other) pure returns (bool) {
                  return Currency.unwrap(currency) < Currency.unwrap(other);
              }
              function greaterThanOrEqualTo(Currency currency, Currency other) pure returns (bool) {
                  return Currency.unwrap(currency) >= Currency.unwrap(other);
              }
              /// @title CurrencyLibrary
              /// @dev This library allows for transferring and holding native tokens and ERC20 tokens
              library CurrencyLibrary {
                  /// @notice Additional context for ERC-7751 wrapped error when a native transfer fails
                  error NativeTransferFailed();
                  /// @notice Additional context for ERC-7751 wrapped error when an ERC20 transfer fails
                  error ERC20TransferFailed();
                  /// @notice A constant to represent the native currency
                  Currency public constant ADDRESS_ZERO = Currency.wrap(address(0));
                  function transfer(Currency currency, address to, uint256 amount) internal {
                      // altered from https://github.com/transmissions11/solmate/blob/44a9963d4c78111f77caa0e65d677b8b46d6f2e6/src/utils/SafeTransferLib.sol
                      // modified custom error selectors
                      bool success;
                      if (currency.isAddressZero()) {
                          assembly ("memory-safe") {
                              // Transfer the ETH and revert if it fails.
                              success := call(gas(), to, amount, 0, 0, 0, 0)
                          }
                          // revert with NativeTransferFailed, containing the bubbled up error as an argument
                          if (!success) {
                              CustomRevert.bubbleUpAndRevertWith(to, bytes4(0), NativeTransferFailed.selector);
                          }
                      } else {
                          assembly ("memory-safe") {
                              // Get a pointer to some free memory.
                              let fmp := mload(0x40)
                              // Write the abi-encoded calldata into memory, beginning with the function selector.
                              mstore(fmp, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
                              mstore(add(fmp, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
                              mstore(add(fmp, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.
                              success :=
                                  and(
                                      // Set success to whether the call reverted, if not we check it either
                                      // returned exactly 1 (can't just be non-zero data), or had no return data.
                                      or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                                      // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
                                      // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                                      // Counterintuitively, this call must be positioned second to the or() call in the
                                      // surrounding and() call or else returndatasize() will be zero during the computation.
                                      call(gas(), currency, 0, fmp, 68, 0, 32)
                                  )
                              // Now clean the memory we used
                              mstore(fmp, 0) // 4 byte `selector` and 28 bytes of `to` were stored here
                              mstore(add(fmp, 0x20), 0) // 4 bytes of `to` and 28 bytes of `amount` were stored here
                              mstore(add(fmp, 0x40), 0) // 4 bytes of `amount` were stored here
                          }
                          // revert with ERC20TransferFailed, containing the bubbled up error as an argument
                          if (!success) {
                              CustomRevert.bubbleUpAndRevertWith(
                                  Currency.unwrap(currency), IERC20Minimal.transfer.selector, ERC20TransferFailed.selector
                              );
                          }
                      }
                  }
                  function balanceOfSelf(Currency currency) internal view returns (uint256) {
                      if (currency.isAddressZero()) {
                          return address(this).balance;
                      } else {
                          return IERC20Minimal(Currency.unwrap(currency)).balanceOf(address(this));
                      }
                  }
                  function balanceOf(Currency currency, address owner) internal view returns (uint256) {
                      if (currency.isAddressZero()) {
                          return owner.balance;
                      } else {
                          return IERC20Minimal(Currency.unwrap(currency)).balanceOf(owner);
                      }
                  }
                  function isAddressZero(Currency currency) internal pure returns (bool) {
                      return Currency.unwrap(currency) == Currency.unwrap(ADDRESS_ZERO);
                  }
                  function toId(Currency currency) internal pure returns (uint256) {
                      return uint160(Currency.unwrap(currency));
                  }
                  // If the upper 12 bytes are non-zero, they will be zero-ed out
                  // Therefore, fromId() and toId() are not inverses of each other
                  function fromId(uint256 id) internal pure returns (Currency) {
                      return Currency.wrap(address(uint160(id)));
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import {Currency} from "./Currency.sol";
              import {IHooks} from "../interfaces/IHooks.sol";
              import {PoolIdLibrary} from "./PoolId.sol";
              using PoolIdLibrary for PoolKey global;
              /// @notice Returns the key for identifying a pool
              struct PoolKey {
                  /// @notice The lower currency of the pool, sorted numerically
                  Currency currency0;
                  /// @notice The higher currency of the pool, sorted numerically
                  Currency currency1;
                  /// @notice The pool LP fee, capped at 1_000_000. If the highest bit is 1, the pool has a dynamic fee and must be exactly equal to 0x800000
                  uint24 fee;
                  /// @notice Ticks that involve positions must be a multiple of tick spacing
                  int24 tickSpacing;
                  /// @notice The hooks of the pool
                  IHooks hooks;
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import {BitMath} from "./BitMath.sol";
              import {CustomRevert} from "./CustomRevert.sol";
              /// @title Math library for computing sqrt prices from ticks and vice versa
              /// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports
              /// prices between 2**-128 and 2**128
              library TickMath {
                  using CustomRevert for bytes4;
                  /// @notice Thrown when the tick passed to #getSqrtPriceAtTick is not between MIN_TICK and MAX_TICK
                  error InvalidTick(int24 tick);
                  /// @notice Thrown when the price passed to #getTickAtSqrtPrice does not correspond to a price between MIN_TICK and MAX_TICK
                  error InvalidSqrtPrice(uint160 sqrtPriceX96);
                  /// @dev The minimum tick that may be passed to #getSqrtPriceAtTick computed from log base 1.0001 of 2**-128
                  /// @dev If ever MIN_TICK and MAX_TICK are not centered around 0, the absTick logic in getSqrtPriceAtTick cannot be used
                  int24 internal constant MIN_TICK = -887272;
                  /// @dev The maximum tick that may be passed to #getSqrtPriceAtTick computed from log base 1.0001 of 2**128
                  /// @dev If ever MIN_TICK and MAX_TICK are not centered around 0, the absTick logic in getSqrtPriceAtTick cannot be used
                  int24 internal constant MAX_TICK = 887272;
                  /// @dev The minimum tick spacing value drawn from the range of type int16 that is greater than 0, i.e. min from the range [1, 32767]
                  int24 internal constant MIN_TICK_SPACING = 1;
                  /// @dev The maximum tick spacing value drawn from the range of type int16, i.e. max from the range [1, 32767]
                  int24 internal constant MAX_TICK_SPACING = type(int16).max;
                  /// @dev The minimum value that can be returned from #getSqrtPriceAtTick. Equivalent to getSqrtPriceAtTick(MIN_TICK)
                  uint160 internal constant MIN_SQRT_PRICE = 4295128739;
                  /// @dev The maximum value that can be returned from #getSqrtPriceAtTick. Equivalent to getSqrtPriceAtTick(MAX_TICK)
                  uint160 internal constant MAX_SQRT_PRICE = 1461446703485210103287273052203988822378723970342;
                  /// @dev A threshold used for optimized bounds check, equals `MAX_SQRT_PRICE - MIN_SQRT_PRICE - 1`
                  uint160 internal constant MAX_SQRT_PRICE_MINUS_MIN_SQRT_PRICE_MINUS_ONE =
                      1461446703485210103287273052203988822378723970342 - 4295128739 - 1;
                  /// @notice Given a tickSpacing, compute the maximum usable tick
                  function maxUsableTick(int24 tickSpacing) internal pure returns (int24) {
                      unchecked {
                          return (MAX_TICK / tickSpacing) * tickSpacing;
                      }
                  }
                  /// @notice Given a tickSpacing, compute the minimum usable tick
                  function minUsableTick(int24 tickSpacing) internal pure returns (int24) {
                      unchecked {
                          return (MIN_TICK / tickSpacing) * tickSpacing;
                      }
                  }
                  /// @notice Calculates sqrt(1.0001^tick) * 2^96
                  /// @dev Throws if |tick| > max tick
                  /// @param tick The input tick for the above formula
                  /// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the price of the two assets (currency1/currency0)
                  /// at the given tick
                  function getSqrtPriceAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) {
                      unchecked {
                          uint256 absTick;
                          assembly ("memory-safe") {
                              tick := signextend(2, tick)
                              // mask = 0 if tick >= 0 else -1 (all 1s)
                              let mask := sar(255, tick)
                              // if tick >= 0, |tick| = tick = 0 ^ tick
                              // if tick < 0, |tick| = ~~|tick| = ~(-|tick| - 1) = ~(tick - 1) = (-1) ^ (tick - 1)
                              // either way, |tick| = mask ^ (tick + mask)
                              absTick := xor(mask, add(mask, tick))
                          }
                          if (absTick > uint256(int256(MAX_TICK))) InvalidTick.selector.revertWith(tick);
                          // The tick is decomposed into bits, and for each bit with index i that is set, the product of 1/sqrt(1.0001^(2^i))
                          // is calculated (using Q128.128). The constants used for this calculation are rounded to the nearest integer
                          // Equivalent to:
                          //     price = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000;
                          //     or price = int(2**128 / sqrt(1.0001)) if (absTick & 0x1) else 1 << 128
                          uint256 price;
                          assembly ("memory-safe") {
                              price := xor(shl(128, 1), mul(xor(shl(128, 1), 0xfffcb933bd6fad37aa2d162d1a594001), and(absTick, 0x1)))
                          }
                          if (absTick & 0x2 != 0) price = (price * 0xfff97272373d413259a46990580e213a) >> 128;
                          if (absTick & 0x4 != 0) price = (price * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128;
                          if (absTick & 0x8 != 0) price = (price * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128;
                          if (absTick & 0x10 != 0) price = (price * 0xffcb9843d60f6159c9db58835c926644) >> 128;
                          if (absTick & 0x20 != 0) price = (price * 0xff973b41fa98c081472e6896dfb254c0) >> 128;
                          if (absTick & 0x40 != 0) price = (price * 0xff2ea16466c96a3843ec78b326b52861) >> 128;
                          if (absTick & 0x80 != 0) price = (price * 0xfe5dee046a99a2a811c461f1969c3053) >> 128;
                          if (absTick & 0x100 != 0) price = (price * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128;
                          if (absTick & 0x200 != 0) price = (price * 0xf987a7253ac413176f2b074cf7815e54) >> 128;
                          if (absTick & 0x400 != 0) price = (price * 0xf3392b0822b70005940c7a398e4b70f3) >> 128;
                          if (absTick & 0x800 != 0) price = (price * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128;
                          if (absTick & 0x1000 != 0) price = (price * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128;
                          if (absTick & 0x2000 != 0) price = (price * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128;
                          if (absTick & 0x4000 != 0) price = (price * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128;
                          if (absTick & 0x8000 != 0) price = (price * 0x31be135f97d08fd981231505542fcfa6) >> 128;
                          if (absTick & 0x10000 != 0) price = (price * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128;
                          if (absTick & 0x20000 != 0) price = (price * 0x5d6af8dedb81196699c329225ee604) >> 128;
                          if (absTick & 0x40000 != 0) price = (price * 0x2216e584f5fa1ea926041bedfe98) >> 128;
                          if (absTick & 0x80000 != 0) price = (price * 0x48a170391f7dc42444e8fa2) >> 128;
                          assembly ("memory-safe") {
                              // if (tick > 0) price = type(uint256).max / price;
                              if sgt(tick, 0) { price := div(not(0), price) }
                              // this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96.
                              // we then downcast because we know the result always fits within 160 bits due to our tick input constraint
                              // we round up in the division so getTickAtSqrtPrice of the output price is always consistent
                              // `sub(shl(32, 1), 1)` is `type(uint32).max`
                              // `price + type(uint32).max` will not overflow because `price` fits in 192 bits
                              sqrtPriceX96 := shr(32, add(price, sub(shl(32, 1), 1)))
                          }
                      }
                  }
                  /// @notice Calculates the greatest tick value such that getSqrtPriceAtTick(tick) <= sqrtPriceX96
                  /// @dev Throws in case sqrtPriceX96 < MIN_SQRT_PRICE, as MIN_SQRT_PRICE is the lowest value getSqrtPriceAtTick may
                  /// ever return.
                  /// @param sqrtPriceX96 The sqrt price for which to compute the tick as a Q64.96
                  /// @return tick The greatest tick for which the getSqrtPriceAtTick(tick) is less than or equal to the input sqrtPriceX96
                  function getTickAtSqrtPrice(uint160 sqrtPriceX96) internal pure returns (int24 tick) {
                      unchecked {
                          // Equivalent: if (sqrtPriceX96 < MIN_SQRT_PRICE || sqrtPriceX96 >= MAX_SQRT_PRICE) revert InvalidSqrtPrice();
                          // second inequality must be >= because the price can never reach the price at the max tick
                          // if sqrtPriceX96 < MIN_SQRT_PRICE, the `sub` underflows and `gt` is true
                          // if sqrtPriceX96 >= MAX_SQRT_PRICE, sqrtPriceX96 - MIN_SQRT_PRICE > MAX_SQRT_PRICE - MIN_SQRT_PRICE - 1
                          if ((sqrtPriceX96 - MIN_SQRT_PRICE) > MAX_SQRT_PRICE_MINUS_MIN_SQRT_PRICE_MINUS_ONE) {
                              InvalidSqrtPrice.selector.revertWith(sqrtPriceX96);
                          }
                          uint256 price = uint256(sqrtPriceX96) << 32;
                          uint256 r = price;
                          uint256 msb = BitMath.mostSignificantBit(r);
                          if (msb >= 128) r = price >> (msb - 127);
                          else r = price << (127 - msb);
                          int256 log_2 = (int256(msb) - 128) << 64;
                          assembly ("memory-safe") {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(63, f))
                              r := shr(f, r)
                          }
                          assembly ("memory-safe") {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(62, f))
                              r := shr(f, r)
                          }
                          assembly ("memory-safe") {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(61, f))
                              r := shr(f, r)
                          }
                          assembly ("memory-safe") {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(60, f))
                              r := shr(f, r)
                          }
                          assembly ("memory-safe") {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(59, f))
                              r := shr(f, r)
                          }
                          assembly ("memory-safe") {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(58, f))
                              r := shr(f, r)
                          }
                          assembly ("memory-safe") {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(57, f))
                              r := shr(f, r)
                          }
                          assembly ("memory-safe") {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(56, f))
                              r := shr(f, r)
                          }
                          assembly ("memory-safe") {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(55, f))
                              r := shr(f, r)
                          }
                          assembly ("memory-safe") {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(54, f))
                              r := shr(f, r)
                          }
                          assembly ("memory-safe") {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(53, f))
                              r := shr(f, r)
                          }
                          assembly ("memory-safe") {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(52, f))
                              r := shr(f, r)
                          }
                          assembly ("memory-safe") {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(51, f))
                              r := shr(f, r)
                          }
                          assembly ("memory-safe") {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(50, f))
                          }
                          int256 log_sqrt10001 = log_2 * 255738958999603826347141; // Q22.128 number
                          // Magic number represents the ceiling of the maximum value of the error when approximating log_sqrt10001(x)
                          int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128);
                          // Magic number represents the minimum value of the error when approximating log_sqrt10001(x), when
                          // sqrtPrice is from the range (2^-64, 2^64). This is safe as MIN_SQRT_PRICE is more than 2^-64. If MIN_SQRT_PRICE
                          // is changed, this may need to be changed too
                          int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128);
                          tick = tickLow == tickHi ? tickLow : getSqrtPriceAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow;
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import {CustomRevert} from "./libraries/CustomRevert.sol";
              /// @title Prevents delegatecall to a contract
              /// @notice Base contract that provides a modifier for preventing delegatecall to methods in a child contract
              abstract contract NoDelegateCall {
                  using CustomRevert for bytes4;
                  error DelegateCallNotAllowed();
                  /// @dev The original address of this contract
                  address private immutable original;
                  constructor() {
                      // Immutables are computed in the init code of the contract, and then inlined into the deployed bytecode.
                      // In other words, this variable won't change when it's checked at runtime.
                      original = address(this);
                  }
                  /// @dev Private method is used instead of inlining into modifier because modifiers are copied into each method,
                  ///     and the use of immutable means the address bytes are copied in every place the modifier is used.
                  function checkNotDelegateCall() private view {
                      if (address(this) != original) DelegateCallNotAllowed.selector.revertWith();
                  }
                  /// @notice Prevents delegatecall into the modified method
                  modifier noDelegateCall() {
                      checkNotDelegateCall();
                      _;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import {PoolKey} from "../types/PoolKey.sol";
              import {BalanceDelta} from "../types/BalanceDelta.sol";
              import {IPoolManager} from "./IPoolManager.sol";
              import {BeforeSwapDelta} from "../types/BeforeSwapDelta.sol";
              /// @notice V4 decides whether to invoke specific hooks by inspecting the least significant bits
              /// of the address that the hooks contract is deployed to.
              /// For example, a hooks contract deployed to address: 0x0000000000000000000000000000000000002400
              /// has the lowest bits '10 0100 0000 0000' which would cause the 'before initialize' and 'after add liquidity' hooks to be used.
              /// See the Hooks library for the full spec.
              /// @dev Should only be callable by the v4 PoolManager.
              interface IHooks {
                  /// @notice The hook called before the state of a pool is initialized
                  /// @param sender The initial msg.sender for the initialize call
                  /// @param key The key for the pool being initialized
                  /// @param sqrtPriceX96 The sqrt(price) of the pool as a Q64.96
                  /// @return bytes4 The function selector for the hook
                  function beforeInitialize(address sender, PoolKey calldata key, uint160 sqrtPriceX96) external returns (bytes4);
                  /// @notice The hook called after the state of a pool is initialized
                  /// @param sender The initial msg.sender for the initialize call
                  /// @param key The key for the pool being initialized
                  /// @param sqrtPriceX96 The sqrt(price) of the pool as a Q64.96
                  /// @param tick The current tick after the state of a pool is initialized
                  /// @return bytes4 The function selector for the hook
                  function afterInitialize(address sender, PoolKey calldata key, uint160 sqrtPriceX96, int24 tick)
                      external
                      returns (bytes4);
                  /// @notice The hook called before liquidity is added
                  /// @param sender The initial msg.sender for the add liquidity call
                  /// @param key The key for the pool
                  /// @param params The parameters for adding liquidity
                  /// @param hookData Arbitrary data handed into the PoolManager by the liquidity provider to be passed on to the hook
                  /// @return bytes4 The function selector for the hook
                  function beforeAddLiquidity(
                      address sender,
                      PoolKey calldata key,
                      IPoolManager.ModifyLiquidityParams calldata params,
                      bytes calldata hookData
                  ) external returns (bytes4);
                  /// @notice The hook called after liquidity is added
                  /// @param sender The initial msg.sender for the add liquidity call
                  /// @param key The key for the pool
                  /// @param params The parameters for adding liquidity
                  /// @param delta The caller's balance delta after adding liquidity; the sum of principal delta, fees accrued, and hook delta
                  /// @param feesAccrued The fees accrued since the last time fees were collected from this position
                  /// @param hookData Arbitrary data handed into the PoolManager by the liquidity provider to be passed on to the hook
                  /// @return bytes4 The function selector for the hook
                  /// @return BalanceDelta The hook's delta in token0 and token1. Positive: the hook is owed/took currency, negative: the hook owes/sent currency
                  function afterAddLiquidity(
                      address sender,
                      PoolKey calldata key,
                      IPoolManager.ModifyLiquidityParams calldata params,
                      BalanceDelta delta,
                      BalanceDelta feesAccrued,
                      bytes calldata hookData
                  ) external returns (bytes4, BalanceDelta);
                  /// @notice The hook called before liquidity is removed
                  /// @param sender The initial msg.sender for the remove liquidity call
                  /// @param key The key for the pool
                  /// @param params The parameters for removing liquidity
                  /// @param hookData Arbitrary data handed into the PoolManager by the liquidity provider to be be passed on to the hook
                  /// @return bytes4 The function selector for the hook
                  function beforeRemoveLiquidity(
                      address sender,
                      PoolKey calldata key,
                      IPoolManager.ModifyLiquidityParams calldata params,
                      bytes calldata hookData
                  ) external returns (bytes4);
                  /// @notice The hook called after liquidity is removed
                  /// @param sender The initial msg.sender for the remove liquidity call
                  /// @param key The key for the pool
                  /// @param params The parameters for removing liquidity
                  /// @param delta The caller's balance delta after removing liquidity; the sum of principal delta, fees accrued, and hook delta
                  /// @param feesAccrued The fees accrued since the last time fees were collected from this position
                  /// @param hookData Arbitrary data handed into the PoolManager by the liquidity provider to be be passed on to the hook
                  /// @return bytes4 The function selector for the hook
                  /// @return BalanceDelta The hook's delta in token0 and token1. Positive: the hook is owed/took currency, negative: the hook owes/sent currency
                  function afterRemoveLiquidity(
                      address sender,
                      PoolKey calldata key,
                      IPoolManager.ModifyLiquidityParams calldata params,
                      BalanceDelta delta,
                      BalanceDelta feesAccrued,
                      bytes calldata hookData
                  ) external returns (bytes4, BalanceDelta);
                  /// @notice The hook called before a swap
                  /// @param sender The initial msg.sender for the swap call
                  /// @param key The key for the pool
                  /// @param params The parameters for the swap
                  /// @param hookData Arbitrary data handed into the PoolManager by the swapper to be be passed on to the hook
                  /// @return bytes4 The function selector for the hook
                  /// @return BeforeSwapDelta The hook's delta in specified and unspecified currencies. Positive: the hook is owed/took currency, negative: the hook owes/sent currency
                  /// @return uint24 Optionally override the lp fee, only used if three conditions are met: 1. the Pool has a dynamic fee, 2. the value's 2nd highest bit is set (23rd bit, 0x400000), and 3. the value is less than or equal to the maximum fee (1 million)
                  function beforeSwap(
                      address sender,
                      PoolKey calldata key,
                      IPoolManager.SwapParams calldata params,
                      bytes calldata hookData
                  ) external returns (bytes4, BeforeSwapDelta, uint24);
                  /// @notice The hook called after a swap
                  /// @param sender The initial msg.sender for the swap call
                  /// @param key The key for the pool
                  /// @param params The parameters for the swap
                  /// @param delta The amount owed to the caller (positive) or owed to the pool (negative)
                  /// @param hookData Arbitrary data handed into the PoolManager by the swapper to be be passed on to the hook
                  /// @return bytes4 The function selector for the hook
                  /// @return int128 The hook's delta in unspecified currency. Positive: the hook is owed/took currency, negative: the hook owes/sent currency
                  function afterSwap(
                      address sender,
                      PoolKey calldata key,
                      IPoolManager.SwapParams calldata params,
                      BalanceDelta delta,
                      bytes calldata hookData
                  ) external returns (bytes4, int128);
                  /// @notice The hook called before donate
                  /// @param sender The initial msg.sender for the donate call
                  /// @param key The key for the pool
                  /// @param amount0 The amount of token0 being donated
                  /// @param amount1 The amount of token1 being donated
                  /// @param hookData Arbitrary data handed into the PoolManager by the donor to be be passed on to the hook
                  /// @return bytes4 The function selector for the hook
                  function beforeDonate(
                      address sender,
                      PoolKey calldata key,
                      uint256 amount0,
                      uint256 amount1,
                      bytes calldata hookData
                  ) external returns (bytes4);
                  /// @notice The hook called after donate
                  /// @param sender The initial msg.sender for the donate call
                  /// @param key The key for the pool
                  /// @param amount0 The amount of token0 being donated
                  /// @param amount1 The amount of token1 being donated
                  /// @param hookData Arbitrary data handed into the PoolManager by the donor to be be passed on to the hook
                  /// @return bytes4 The function selector for the hook
                  function afterDonate(
                      address sender,
                      PoolKey calldata key,
                      uint256 amount0,
                      uint256 amount1,
                      bytes calldata hookData
                  ) external returns (bytes4);
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.24;
              import {Currency} from "../types/Currency.sol";
              import {PoolKey} from "../types/PoolKey.sol";
              import {IHooks} from "./IHooks.sol";
              import {IERC6909Claims} from "./external/IERC6909Claims.sol";
              import {IProtocolFees} from "./IProtocolFees.sol";
              import {BalanceDelta} from "../types/BalanceDelta.sol";
              import {PoolId} from "../types/PoolId.sol";
              import {IExtsload} from "./IExtsload.sol";
              import {IExttload} from "./IExttload.sol";
              /// @notice Interface for the PoolManager
              interface IPoolManager is IProtocolFees, IERC6909Claims, IExtsload, IExttload {
                  /// @notice Thrown when a currency is not netted out after the contract is unlocked
                  error CurrencyNotSettled();
                  /// @notice Thrown when trying to interact with a non-initialized pool
                  error PoolNotInitialized();
                  /// @notice Thrown when unlock is called, but the contract is already unlocked
                  error AlreadyUnlocked();
                  /// @notice Thrown when a function is called that requires the contract to be unlocked, but it is not
                  error ManagerLocked();
                  /// @notice Pools are limited to type(int16).max tickSpacing in #initialize, to prevent overflow
                  error TickSpacingTooLarge(int24 tickSpacing);
                  /// @notice Pools must have a positive non-zero tickSpacing passed to #initialize
                  error TickSpacingTooSmall(int24 tickSpacing);
                  /// @notice PoolKey must have currencies where address(currency0) < address(currency1)
                  error CurrenciesOutOfOrderOrEqual(address currency0, address currency1);
                  /// @notice Thrown when a call to updateDynamicLPFee is made by an address that is not the hook,
                  /// or on a pool that does not have a dynamic swap fee.
                  error UnauthorizedDynamicLPFeeUpdate();
                  /// @notice Thrown when trying to swap amount of 0
                  error SwapAmountCannotBeZero();
                  ///@notice Thrown when native currency is passed to a non native settlement
                  error NonzeroNativeValue();
                  /// @notice Thrown when `clear` is called with an amount that is not exactly equal to the open currency delta.
                  error MustClearExactPositiveDelta();
                  /// @notice Emitted when a new pool is initialized
                  /// @param id The abi encoded hash of the pool key struct for the new pool
                  /// @param currency0 The first currency of the pool by address sort order
                  /// @param currency1 The second currency of the pool by address sort order
                  /// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
                  /// @param tickSpacing The minimum number of ticks between initialized ticks
                  /// @param hooks The hooks contract address for the pool, or address(0) if none
                  /// @param sqrtPriceX96 The price of the pool on initialization
                  /// @param tick The initial tick of the pool corresponding to the initialized price
                  event Initialize(
                      PoolId indexed id,
                      Currency indexed currency0,
                      Currency indexed currency1,
                      uint24 fee,
                      int24 tickSpacing,
                      IHooks hooks,
                      uint160 sqrtPriceX96,
                      int24 tick
                  );
                  /// @notice Emitted when a liquidity position is modified
                  /// @param id The abi encoded hash of the pool key struct for the pool that was modified
                  /// @param sender The address that modified the pool
                  /// @param tickLower The lower tick of the position
                  /// @param tickUpper The upper tick of the position
                  /// @param liquidityDelta The amount of liquidity that was added or removed
                  /// @param salt The extra data to make positions unique
                  event ModifyLiquidity(
                      PoolId indexed id, address indexed sender, int24 tickLower, int24 tickUpper, int256 liquidityDelta, bytes32 salt
                  );
                  /// @notice Emitted for swaps between currency0 and currency1
                  /// @param id The abi encoded hash of the pool key struct for the pool that was modified
                  /// @param sender The address that initiated the swap call, and that received the callback
                  /// @param amount0 The delta of the currency0 balance of the pool
                  /// @param amount1 The delta of the currency1 balance of the pool
                  /// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96
                  /// @param liquidity The liquidity of the pool after the swap
                  /// @param tick The log base 1.0001 of the price of the pool after the swap
                  /// @param fee The swap fee in hundredths of a bip
                  event Swap(
                      PoolId indexed id,
                      address indexed sender,
                      int128 amount0,
                      int128 amount1,
                      uint160 sqrtPriceX96,
                      uint128 liquidity,
                      int24 tick,
                      uint24 fee
                  );
                  /// @notice Emitted for donations
                  /// @param id The abi encoded hash of the pool key struct for the pool that was donated to
                  /// @param sender The address that initiated the donate call
                  /// @param amount0 The amount donated in currency0
                  /// @param amount1 The amount donated in currency1
                  event Donate(PoolId indexed id, address indexed sender, uint256 amount0, uint256 amount1);
                  /// @notice All interactions on the contract that account deltas require unlocking. A caller that calls `unlock` must implement
                  /// `IUnlockCallback(msg.sender).unlockCallback(data)`, where they interact with the remaining functions on this contract.
                  /// @dev The only functions callable without an unlocking are `initialize` and `updateDynamicLPFee`
                  /// @param data Any data to pass to the callback, via `IUnlockCallback(msg.sender).unlockCallback(data)`
                  /// @return The data returned by the call to `IUnlockCallback(msg.sender).unlockCallback(data)`
                  function unlock(bytes calldata data) external returns (bytes memory);
                  /// @notice Initialize the state for a given pool ID
                  /// @dev A swap fee totaling MAX_SWAP_FEE (100%) makes exact output swaps impossible since the input is entirely consumed by the fee
                  /// @param key The pool key for the pool to initialize
                  /// @param sqrtPriceX96 The initial square root price
                  /// @return tick The initial tick of the pool
                  function initialize(PoolKey memory key, uint160 sqrtPriceX96) external returns (int24 tick);
                  struct ModifyLiquidityParams {
                      // the lower and upper tick of the position
                      int24 tickLower;
                      int24 tickUpper;
                      // how to modify the liquidity
                      int256 liquidityDelta;
                      // a value to set if you want unique liquidity positions at the same range
                      bytes32 salt;
                  }
                  /// @notice Modify the liquidity for the given pool
                  /// @dev Poke by calling with a zero liquidityDelta
                  /// @param key The pool to modify liquidity in
                  /// @param params The parameters for modifying the liquidity
                  /// @param hookData The data to pass through to the add/removeLiquidity hooks
                  /// @return callerDelta The balance delta of the caller of modifyLiquidity. This is the total of both principal, fee deltas, and hook deltas if applicable
                  /// @return feesAccrued The balance delta of the fees generated in the liquidity range. Returned for informational purposes
                  /// @dev Note that feesAccrued can be artificially inflated by a malicious actor and integrators should be careful using the value
                  /// For pools with a single liquidity position, actors can donate to themselves to inflate feeGrowthGlobal (and consequently feesAccrued)
                  /// atomically donating and collecting fees in the same unlockCallback may make the inflated value more extreme
                  function modifyLiquidity(PoolKey memory key, ModifyLiquidityParams memory params, bytes calldata hookData)
                      external
                      returns (BalanceDelta callerDelta, BalanceDelta feesAccrued);
                  struct SwapParams {
                      /// Whether to swap token0 for token1 or vice versa
                      bool zeroForOne;
                      /// The desired input amount if negative (exactIn), or the desired output amount if positive (exactOut)
                      int256 amountSpecified;
                      /// The sqrt price at which, if reached, the swap will stop executing
                      uint160 sqrtPriceLimitX96;
                  }
                  /// @notice Swap against the given pool
                  /// @param key The pool to swap in
                  /// @param params The parameters for swapping
                  /// @param hookData The data to pass through to the swap hooks
                  /// @return swapDelta The balance delta of the address swapping
                  /// @dev Swapping on low liquidity pools may cause unexpected swap amounts when liquidity available is less than amountSpecified.
                  /// Additionally note that if interacting with hooks that have the BEFORE_SWAP_RETURNS_DELTA_FLAG or AFTER_SWAP_RETURNS_DELTA_FLAG
                  /// the hook may alter the swap input/output. Integrators should perform checks on the returned swapDelta.
                  function swap(PoolKey memory key, SwapParams memory params, bytes calldata hookData)
                      external
                      returns (BalanceDelta swapDelta);
                  /// @notice Donate the given currency amounts to the in-range liquidity providers of a pool
                  /// @dev Calls to donate can be frontrun adding just-in-time liquidity, with the aim of receiving a portion donated funds.
                  /// Donors should keep this in mind when designing donation mechanisms.
                  /// @dev This function donates to in-range LPs at slot0.tick. In certain edge-cases of the swap algorithm, the `sqrtPrice` of
                  /// a pool can be at the lower boundary of tick `n`, but the `slot0.tick` of the pool is already `n - 1`. In this case a call to
                  /// `donate` would donate to tick `n - 1` (slot0.tick) not tick `n` (getTickAtSqrtPrice(slot0.sqrtPriceX96)).
                  /// Read the comments in `Pool.swap()` for more information about this.
                  /// @param key The key of the pool to donate to
                  /// @param amount0 The amount of currency0 to donate
                  /// @param amount1 The amount of currency1 to donate
                  /// @param hookData The data to pass through to the donate hooks
                  /// @return BalanceDelta The delta of the caller after the donate
                  function donate(PoolKey memory key, uint256 amount0, uint256 amount1, bytes calldata hookData)
                      external
                      returns (BalanceDelta);
                  /// @notice Writes the current ERC20 balance of the specified currency to transient storage
                  /// This is used to checkpoint balances for the manager and derive deltas for the caller.
                  /// @dev This MUST be called before any ERC20 tokens are sent into the contract, but can be skipped
                  /// for native tokens because the amount to settle is determined by the sent value.
                  /// However, if an ERC20 token has been synced and not settled, and the caller instead wants to settle
                  /// native funds, this function can be called with the native currency to then be able to settle the native currency
                  function sync(Currency currency) external;
                  /// @notice Called by the user to net out some value owed to the user
                  /// @dev Will revert if the requested amount is not available, consider using `mint` instead
                  /// @dev Can also be used as a mechanism for free flash loans
                  /// @param currency The currency to withdraw from the pool manager
                  /// @param to The address to withdraw to
                  /// @param amount The amount of currency to withdraw
                  function take(Currency currency, address to, uint256 amount) external;
                  /// @notice Called by the user to pay what is owed
                  /// @return paid The amount of currency settled
                  function settle() external payable returns (uint256 paid);
                  /// @notice Called by the user to pay on behalf of another address
                  /// @param recipient The address to credit for the payment
                  /// @return paid The amount of currency settled
                  function settleFor(address recipient) external payable returns (uint256 paid);
                  /// @notice WARNING - Any currency that is cleared, will be non-retrievable, and locked in the contract permanently.
                  /// A call to clear will zero out a positive balance WITHOUT a corresponding transfer.
                  /// @dev This could be used to clear a balance that is considered dust.
                  /// Additionally, the amount must be the exact positive balance. This is to enforce that the caller is aware of the amount being cleared.
                  function clear(Currency currency, uint256 amount) external;
                  /// @notice Called by the user to move value into ERC6909 balance
                  /// @param to The address to mint the tokens to
                  /// @param id The currency address to mint to ERC6909s, as a uint256
                  /// @param amount The amount of currency to mint
                  /// @dev The id is converted to a uint160 to correspond to a currency address
                  /// If the upper 12 bytes are not 0, they will be 0-ed out
                  function mint(address to, uint256 id, uint256 amount) external;
                  /// @notice Called by the user to move value from ERC6909 balance
                  /// @param from The address to burn the tokens from
                  /// @param id The currency address to burn from ERC6909s, as a uint256
                  /// @param amount The amount of currency to burn
                  /// @dev The id is converted to a uint160 to correspond to a currency address
                  /// If the upper 12 bytes are not 0, they will be 0-ed out
                  function burn(address from, uint256 id, uint256 amount) external;
                  /// @notice Updates the pools lp fees for the a pool that has enabled dynamic lp fees.
                  /// @dev A swap fee totaling MAX_SWAP_FEE (100%) makes exact output swaps impossible since the input is entirely consumed by the fee
                  /// @param key The key of the pool to update dynamic LP fees for
                  /// @param newDynamicLPFee The new dynamic pool LP fee
                  function updateDynamicLPFee(PoolKey memory key, uint24 newDynamicLPFee) external;
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @notice Interface for the callback executed when an address unlocks the pool manager
              interface IUnlockCallback {
                  /// @notice Called by the pool manager on `msg.sender` when the manager is unlocked
                  /// @param data The data that was passed to the call to unlock
                  /// @return Any data that you want to be returned from the unlock call
                  function unlockCallback(bytes calldata data) external returns (bytes memory);
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import {Currency} from "./types/Currency.sol";
              import {CurrencyReserves} from "./libraries/CurrencyReserves.sol";
              import {IProtocolFees} from "./interfaces/IProtocolFees.sol";
              import {PoolKey} from "./types/PoolKey.sol";
              import {ProtocolFeeLibrary} from "./libraries/ProtocolFeeLibrary.sol";
              import {Owned} from "solmate/src/auth/Owned.sol";
              import {PoolId} from "./types/PoolId.sol";
              import {Pool} from "./libraries/Pool.sol";
              import {CustomRevert} from "./libraries/CustomRevert.sol";
              /// @notice Contract handling the setting and accrual of protocol fees
              abstract contract ProtocolFees is IProtocolFees, Owned {
                  using ProtocolFeeLibrary for uint24;
                  using Pool for Pool.State;
                  using CustomRevert for bytes4;
                  /// @inheritdoc IProtocolFees
                  mapping(Currency currency => uint256 amount) public protocolFeesAccrued;
                  /// @inheritdoc IProtocolFees
                  address public protocolFeeController;
                  constructor(address initialOwner) Owned(initialOwner) {}
                  /// @inheritdoc IProtocolFees
                  function setProtocolFeeController(address controller) external onlyOwner {
                      protocolFeeController = controller;
                      emit ProtocolFeeControllerUpdated(controller);
                  }
                  /// @inheritdoc IProtocolFees
                  function setProtocolFee(PoolKey memory key, uint24 newProtocolFee) external {
                      if (msg.sender != protocolFeeController) InvalidCaller.selector.revertWith();
                      if (!newProtocolFee.isValidProtocolFee()) ProtocolFeeTooLarge.selector.revertWith(newProtocolFee);
                      PoolId id = key.toId();
                      _getPool(id).setProtocolFee(newProtocolFee);
                      emit ProtocolFeeUpdated(id, newProtocolFee);
                  }
                  /// @inheritdoc IProtocolFees
                  function collectProtocolFees(address recipient, Currency currency, uint256 amount)
                      external
                      returns (uint256 amountCollected)
                  {
                      if (msg.sender != protocolFeeController) InvalidCaller.selector.revertWith();
                      if (!currency.isAddressZero() && CurrencyReserves.getSyncedCurrency() == currency) {
                          // prevent transfer between the sync and settle balanceOfs (native settle uses msg.value)
                          ProtocolFeeCurrencySynced.selector.revertWith();
                      }
                      amountCollected = (amount == 0) ? protocolFeesAccrued[currency] : amount;
                      protocolFeesAccrued[currency] -= amountCollected;
                      currency.transfer(recipient, amountCollected);
                  }
                  /// @dev abstract internal function to allow the ProtocolFees contract to access the lock
                  function _isUnlocked() internal virtual returns (bool);
                  /// @dev abstract internal function to allow the ProtocolFees contract to access pool state
                  /// @dev this is overridden in PoolManager.sol to give access to the _pools mapping
                  function _getPool(PoolId id) internal virtual returns (Pool.State storage);
                  function _updateProtocolFees(Currency currency, uint256 amount) internal {
                      unchecked {
                          protocolFeesAccrued[currency] += amount;
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import {ERC6909} from "./ERC6909.sol";
              /// @notice ERC6909Claims inherits ERC6909 and implements an internal burnFrom function
              abstract contract ERC6909Claims is ERC6909 {
                  /// @notice Burn `amount` tokens of token type `id` from `from`.
                  /// @dev if sender is not `from` they must be an operator or have sufficient allowance.
                  /// @param from The address to burn tokens from.
                  /// @param id The currency to burn.
                  /// @param amount The amount to burn.
                  function _burnFrom(address from, uint256 id, uint256 amount) internal {
                      address sender = msg.sender;
                      if (from != sender && !isOperator[from][sender]) {
                          uint256 senderAllowance = allowance[from][sender][id];
                          if (senderAllowance != type(uint256).max) {
                              allowance[from][sender][id] = senderAllowance - amount;
                          }
                      }
                      _burn(from, id, amount);
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import {PoolKey} from "./PoolKey.sol";
              type PoolId is bytes32;
              /// @notice Library for computing the ID of a pool
              library PoolIdLibrary {
                  /// @notice Returns value equal to keccak256(abi.encode(poolKey))
                  function toId(PoolKey memory poolKey) internal pure returns (PoolId poolId) {
                      assembly ("memory-safe") {
                          // 0xa0 represents the total size of the poolKey struct (5 slots of 32 bytes)
                          poolId := keccak256(poolKey, 0xa0)
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import {SafeCast} from "../libraries/SafeCast.sol";
              /// @dev Two `int128` values packed into a single `int256` where the upper 128 bits represent the amount0
              /// and the lower 128 bits represent the amount1.
              type BalanceDelta is int256;
              using {add as +, sub as -, eq as ==, neq as !=} for BalanceDelta global;
              using BalanceDeltaLibrary for BalanceDelta global;
              using SafeCast for int256;
              function toBalanceDelta(int128 _amount0, int128 _amount1) pure returns (BalanceDelta balanceDelta) {
                  assembly ("memory-safe") {
                      balanceDelta := or(shl(128, _amount0), and(sub(shl(128, 1), 1), _amount1))
                  }
              }
              function add(BalanceDelta a, BalanceDelta b) pure returns (BalanceDelta) {
                  int256 res0;
                  int256 res1;
                  assembly ("memory-safe") {
                      let a0 := sar(128, a)
                      let a1 := signextend(15, a)
                      let b0 := sar(128, b)
                      let b1 := signextend(15, b)
                      res0 := add(a0, b0)
                      res1 := add(a1, b1)
                  }
                  return toBalanceDelta(res0.toInt128(), res1.toInt128());
              }
              function sub(BalanceDelta a, BalanceDelta b) pure returns (BalanceDelta) {
                  int256 res0;
                  int256 res1;
                  assembly ("memory-safe") {
                      let a0 := sar(128, a)
                      let a1 := signextend(15, a)
                      let b0 := sar(128, b)
                      let b1 := signextend(15, b)
                      res0 := sub(a0, b0)
                      res1 := sub(a1, b1)
                  }
                  return toBalanceDelta(res0.toInt128(), res1.toInt128());
              }
              function eq(BalanceDelta a, BalanceDelta b) pure returns (bool) {
                  return BalanceDelta.unwrap(a) == BalanceDelta.unwrap(b);
              }
              function neq(BalanceDelta a, BalanceDelta b) pure returns (bool) {
                  return BalanceDelta.unwrap(a) != BalanceDelta.unwrap(b);
              }
              /// @notice Library for getting the amount0 and amount1 deltas from the BalanceDelta type
              library BalanceDeltaLibrary {
                  /// @notice A BalanceDelta of 0
                  BalanceDelta public constant ZERO_DELTA = BalanceDelta.wrap(0);
                  function amount0(BalanceDelta balanceDelta) internal pure returns (int128 _amount0) {
                      assembly ("memory-safe") {
                          _amount0 := sar(128, balanceDelta)
                      }
                  }
                  function amount1(BalanceDelta balanceDelta) internal pure returns (int128 _amount1) {
                      assembly ("memory-safe") {
                          _amount1 := signextend(15, balanceDelta)
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              // Return type of the beforeSwap hook.
              // Upper 128 bits is the delta in specified tokens. Lower 128 bits is delta in unspecified tokens (to match the afterSwap hook)
              type BeforeSwapDelta is int256;
              // Creates a BeforeSwapDelta from specified and unspecified
              function toBeforeSwapDelta(int128 deltaSpecified, int128 deltaUnspecified)
                  pure
                  returns (BeforeSwapDelta beforeSwapDelta)
              {
                  assembly ("memory-safe") {
                      beforeSwapDelta := or(shl(128, deltaSpecified), and(sub(shl(128, 1), 1), deltaUnspecified))
                  }
              }
              /// @notice Library for getting the specified and unspecified deltas from the BeforeSwapDelta type
              library BeforeSwapDeltaLibrary {
                  /// @notice A BeforeSwapDelta of 0
                  BeforeSwapDelta public constant ZERO_DELTA = BeforeSwapDelta.wrap(0);
                  /// extracts int128 from the upper 128 bits of the BeforeSwapDelta
                  /// returned by beforeSwap
                  function getSpecifiedDelta(BeforeSwapDelta delta) internal pure returns (int128 deltaSpecified) {
                      assembly ("memory-safe") {
                          deltaSpecified := sar(128, delta)
                      }
                  }
                  /// extracts int128 from the lower 128 bits of the BeforeSwapDelta
                  /// returned by beforeSwap and afterSwap
                  function getUnspecifiedDelta(BeforeSwapDelta delta) internal pure returns (int128 deltaUnspecified) {
                      assembly ("memory-safe") {
                          deltaUnspecified := signextend(15, delta)
                      }
                  }
              }
              // SPDX-License-Identifier: BUSL-1.1
              pragma solidity ^0.8.24;
              /// @notice This is a temporary library that allows us to use transient storage (tstore/tload)
              /// TODO: This library can be deleted when we have the transient keyword support in solidity.
              library Lock {
                  // The slot holding the unlocked state, transiently. bytes32(uint256(keccak256("Unlocked")) - 1)
                  bytes32 internal constant IS_UNLOCKED_SLOT = 0xc090fc4683624cfc3884e9d8de5eca132f2d0ec062aff75d43c0465d5ceeab23;
                  function unlock() internal {
                      assembly ("memory-safe") {
                          // unlock
                          tstore(IS_UNLOCKED_SLOT, true)
                      }
                  }
                  function lock() internal {
                      assembly ("memory-safe") {
                          tstore(IS_UNLOCKED_SLOT, false)
                      }
                  }
                  function isUnlocked() internal view returns (bool unlocked) {
                      assembly ("memory-safe") {
                          unlocked := tload(IS_UNLOCKED_SLOT)
                      }
                  }
              }
              // SPDX-License-Identifier: BUSL-1.1
              pragma solidity ^0.8.24;
              import {Currency} from "../types/Currency.sol";
              /// @title a library to store callers' currency deltas in transient storage
              /// @dev this library implements the equivalent of a mapping, as transient storage can only be accessed in assembly
              library CurrencyDelta {
                  /// @notice calculates which storage slot a delta should be stored in for a given account and currency
                  function _computeSlot(address target, Currency currency) internal pure returns (bytes32 hashSlot) {
                      assembly ("memory-safe") {
                          mstore(0, and(target, 0xffffffffffffffffffffffffffffffffffffffff))
                          mstore(32, and(currency, 0xffffffffffffffffffffffffffffffffffffffff))
                          hashSlot := keccak256(0, 64)
                      }
                  }
                  function getDelta(Currency currency, address target) internal view returns (int256 delta) {
                      bytes32 hashSlot = _computeSlot(target, currency);
                      assembly ("memory-safe") {
                          delta := tload(hashSlot)
                      }
                  }
                  /// @notice applies a new currency delta for a given account and currency
                  /// @return previous The prior value
                  /// @return next The modified result
                  function applyDelta(Currency currency, address target, int128 delta)
                      internal
                      returns (int256 previous, int256 next)
                  {
                      bytes32 hashSlot = _computeSlot(target, currency);
                      assembly ("memory-safe") {
                          previous := tload(hashSlot)
                      }
                      next = previous + delta;
                      assembly ("memory-safe") {
                          tstore(hashSlot, next)
                      }
                  }
              }
              // SPDX-License-Identifier: BUSL-1.1
              pragma solidity ^0.8.24;
              /// @notice This is a temporary library that allows us to use transient storage (tstore/tload)
              /// for the nonzero delta count.
              /// TODO: This library can be deleted when we have the transient keyword support in solidity.
              library NonzeroDeltaCount {
                  // The slot holding the number of nonzero deltas. bytes32(uint256(keccak256("NonzeroDeltaCount")) - 1)
                  bytes32 internal constant NONZERO_DELTA_COUNT_SLOT =
                      0x7d4b3164c6e45b97e7d87b7125a44c5828d005af88f9d751cfd78729c5d99a0b;
                  function read() internal view returns (uint256 count) {
                      assembly ("memory-safe") {
                          count := tload(NONZERO_DELTA_COUNT_SLOT)
                      }
                  }
                  function increment() internal {
                      assembly ("memory-safe") {
                          let count := tload(NONZERO_DELTA_COUNT_SLOT)
                          count := add(count, 1)
                          tstore(NONZERO_DELTA_COUNT_SLOT, count)
                      }
                  }
                  /// @notice Potential to underflow. Ensure checks are performed by integrating contracts to ensure this does not happen.
                  /// Current usage ensures this will not happen because we call decrement with known boundaries (only up to the number of times we call increment).
                  function decrement() internal {
                      assembly ("memory-safe") {
                          let count := tload(NONZERO_DELTA_COUNT_SLOT)
                          count := sub(count, 1)
                          tstore(NONZERO_DELTA_COUNT_SLOT, count)
                      }
                  }
              }
              // SPDX-License-Identifier: BUSL-1.1
              pragma solidity ^0.8.24;
              import {Currency} from "../types/Currency.sol";
              import {CustomRevert} from "./CustomRevert.sol";
              library CurrencyReserves {
                  using CustomRevert for bytes4;
                  /// bytes32(uint256(keccak256("ReservesOf")) - 1)
                  bytes32 constant RESERVES_OF_SLOT = 0x1e0745a7db1623981f0b2a5d4232364c00787266eb75ad546f190e6cebe9bd95;
                  /// bytes32(uint256(keccak256("Currency")) - 1)
                  bytes32 constant CURRENCY_SLOT = 0x27e098c505d44ec3574004bca052aabf76bd35004c182099d8c575fb238593b9;
                  function getSyncedCurrency() internal view returns (Currency currency) {
                      assembly ("memory-safe") {
                          currency := tload(CURRENCY_SLOT)
                      }
                  }
                  function resetCurrency() internal {
                      assembly ("memory-safe") {
                          tstore(CURRENCY_SLOT, 0)
                      }
                  }
                  function syncCurrencyAndReserves(Currency currency, uint256 value) internal {
                      assembly ("memory-safe") {
                          tstore(CURRENCY_SLOT, and(currency, 0xffffffffffffffffffffffffffffffffffffffff))
                          tstore(RESERVES_OF_SLOT, value)
                      }
                  }
                  function getSyncedReserves() internal view returns (uint256 value) {
                      assembly ("memory-safe") {
                          value := tload(RESERVES_OF_SLOT)
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import {IExtsload} from "./interfaces/IExtsload.sol";
              /// @notice Enables public storage access for efficient state retrieval by external contracts.
              /// https://eips.ethereum.org/EIPS/eip-2330#rationale
              abstract contract Extsload is IExtsload {
                  /// @inheritdoc IExtsload
                  function extsload(bytes32 slot) external view returns (bytes32) {
                      assembly ("memory-safe") {
                          mstore(0, sload(slot))
                          return(0, 0x20)
                      }
                  }
                  /// @inheritdoc IExtsload
                  function extsload(bytes32 startSlot, uint256 nSlots) external view returns (bytes32[] memory) {
                      assembly ("memory-safe") {
                          let memptr := mload(0x40)
                          let start := memptr
                          // A left bit-shift of 5 is equivalent to multiplying by 32 but costs less gas.
                          let length := shl(5, nSlots)
                          // The abi offset of dynamic array in the returndata is 32.
                          mstore(memptr, 0x20)
                          // Store the length of the array returned
                          mstore(add(memptr, 0x20), nSlots)
                          // update memptr to the first location to hold a result
                          memptr := add(memptr, 0x40)
                          let end := add(memptr, length)
                          for {} 1 {} {
                              mstore(memptr, sload(startSlot))
                              memptr := add(memptr, 0x20)
                              startSlot := add(startSlot, 1)
                              if iszero(lt(memptr, end)) { break }
                          }
                          return(start, sub(end, start))
                      }
                  }
                  /// @inheritdoc IExtsload
                  function extsload(bytes32[] calldata slots) external view returns (bytes32[] memory) {
                      assembly ("memory-safe") {
                          let memptr := mload(0x40)
                          let start := memptr
                          // for abi encoding the response - the array will be found at 0x20
                          mstore(memptr, 0x20)
                          // next we store the length of the return array
                          mstore(add(memptr, 0x20), slots.length)
                          // update memptr to the first location to hold an array entry
                          memptr := add(memptr, 0x40)
                          // A left bit-shift of 5 is equivalent to multiplying by 32 but costs less gas.
                          let end := add(memptr, shl(5, slots.length))
                          let calldataptr := slots.offset
                          for {} 1 {} {
                              mstore(memptr, sload(calldataload(calldataptr)))
                              memptr := add(memptr, 0x20)
                              calldataptr := add(calldataptr, 0x20)
                              if iszero(lt(memptr, end)) { break }
                          }
                          return(start, sub(end, start))
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.24;
              import {IExttload} from "./interfaces/IExttload.sol";
              /// @notice Enables public transient storage access for efficient state retrieval by external contracts.
              /// https://eips.ethereum.org/EIPS/eip-2330#rationale
              abstract contract Exttload is IExttload {
                  /// @inheritdoc IExttload
                  function exttload(bytes32 slot) external view returns (bytes32) {
                      assembly ("memory-safe") {
                          mstore(0, tload(slot))
                          return(0, 0x20)
                      }
                  }
                  /// @inheritdoc IExttload
                  function exttload(bytes32[] calldata slots) external view returns (bytes32[] memory) {
                      assembly ("memory-safe") {
                          let memptr := mload(0x40)
                          let start := memptr
                          // for abi encoding the response - the array will be found at 0x20
                          mstore(memptr, 0x20)
                          // next we store the length of the return array
                          mstore(add(memptr, 0x20), slots.length)
                          // update memptr to the first location to hold an array entry
                          memptr := add(memptr, 0x40)
                          // A left bit-shift of 5 is equivalent to multiplying by 32 but costs less gas.
                          let end := add(memptr, shl(5, slots.length))
                          let calldataptr := slots.offset
                          for {} 1 {} {
                              mstore(memptr, tload(calldataload(calldataptr)))
                              memptr := add(memptr, 0x20)
                              calldataptr := add(calldataptr, 0x20)
                              if iszero(lt(memptr, end)) { break }
                          }
                          return(start, sub(end, start))
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title Library for reverting with custom errors efficiently
              /// @notice Contains functions for reverting with custom errors with different argument types efficiently
              /// @dev To use this library, declare `using CustomRevert for bytes4;` and replace `revert CustomError()` with
              /// `CustomError.selector.revertWith()`
              /// @dev The functions may tamper with the free memory pointer but it is fine since the call context is exited immediately
              library CustomRevert {
                  /// @dev ERC-7751 error for wrapping bubbled up reverts
                  error WrappedError(address target, bytes4 selector, bytes reason, bytes details);
                  /// @dev Reverts with the selector of a custom error in the scratch space
                  function revertWith(bytes4 selector) internal pure {
                      assembly ("memory-safe") {
                          mstore(0, selector)
                          revert(0, 0x04)
                      }
                  }
                  /// @dev Reverts with a custom error with an address argument in the scratch space
                  function revertWith(bytes4 selector, address addr) internal pure {
                      assembly ("memory-safe") {
                          mstore(0, selector)
                          mstore(0x04, and(addr, 0xffffffffffffffffffffffffffffffffffffffff))
                          revert(0, 0x24)
                      }
                  }
                  /// @dev Reverts with a custom error with an int24 argument in the scratch space
                  function revertWith(bytes4 selector, int24 value) internal pure {
                      assembly ("memory-safe") {
                          mstore(0, selector)
                          mstore(0x04, signextend(2, value))
                          revert(0, 0x24)
                      }
                  }
                  /// @dev Reverts with a custom error with a uint160 argument in the scratch space
                  function revertWith(bytes4 selector, uint160 value) internal pure {
                      assembly ("memory-safe") {
                          mstore(0, selector)
                          mstore(0x04, and(value, 0xffffffffffffffffffffffffffffffffffffffff))
                          revert(0, 0x24)
                      }
                  }
                  /// @dev Reverts with a custom error with two int24 arguments
                  function revertWith(bytes4 selector, int24 value1, int24 value2) internal pure {
                      assembly ("memory-safe") {
                          let fmp := mload(0x40)
                          mstore(fmp, selector)
                          mstore(add(fmp, 0x04), signextend(2, value1))
                          mstore(add(fmp, 0x24), signextend(2, value2))
                          revert(fmp, 0x44)
                      }
                  }
                  /// @dev Reverts with a custom error with two uint160 arguments
                  function revertWith(bytes4 selector, uint160 value1, uint160 value2) internal pure {
                      assembly ("memory-safe") {
                          let fmp := mload(0x40)
                          mstore(fmp, selector)
                          mstore(add(fmp, 0x04), and(value1, 0xffffffffffffffffffffffffffffffffffffffff))
                          mstore(add(fmp, 0x24), and(value2, 0xffffffffffffffffffffffffffffffffffffffff))
                          revert(fmp, 0x44)
                      }
                  }
                  /// @dev Reverts with a custom error with two address arguments
                  function revertWith(bytes4 selector, address value1, address value2) internal pure {
                      assembly ("memory-safe") {
                          let fmp := mload(0x40)
                          mstore(fmp, selector)
                          mstore(add(fmp, 0x04), and(value1, 0xffffffffffffffffffffffffffffffffffffffff))
                          mstore(add(fmp, 0x24), and(value2, 0xffffffffffffffffffffffffffffffffffffffff))
                          revert(fmp, 0x44)
                      }
                  }
                  /// @notice bubble up the revert message returned by a call and revert with a wrapped ERC-7751 error
                  /// @dev this method can be vulnerable to revert data bombs
                  function bubbleUpAndRevertWith(
                      address revertingContract,
                      bytes4 revertingFunctionSelector,
                      bytes4 additionalContext
                  ) internal pure {
                      bytes4 wrappedErrorSelector = WrappedError.selector;
                      assembly ("memory-safe") {
                          // Ensure the size of the revert data is a multiple of 32 bytes
                          let encodedDataSize := mul(div(add(returndatasize(), 31), 32), 32)
                          let fmp := mload(0x40)
                          // Encode wrapped error selector, address, function selector, offset, additional context, size, revert reason
                          mstore(fmp, wrappedErrorSelector)
                          mstore(add(fmp, 0x04), and(revertingContract, 0xffffffffffffffffffffffffffffffffffffffff))
                          mstore(
                              add(fmp, 0x24),
                              and(revertingFunctionSelector, 0xffffffff00000000000000000000000000000000000000000000000000000000)
                          )
                          // offset revert reason
                          mstore(add(fmp, 0x44), 0x80)
                          // offset additional context
                          mstore(add(fmp, 0x64), add(0xa0, encodedDataSize))
                          // size revert reason
                          mstore(add(fmp, 0x84), returndatasize())
                          // revert reason
                          returndatacopy(add(fmp, 0xa4), 0, returndatasize())
                          // size additional context
                          mstore(add(fmp, add(0xa4, encodedDataSize)), 0x04)
                          // additional context
                          mstore(
                              add(fmp, add(0xc4, encodedDataSize)),
                              and(additionalContext, 0xffffffff00000000000000000000000000000000000000000000000000000000)
                          )
                          revert(fmp, add(0xe4, encodedDataSize))
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @notice Parses bytes returned from hooks and the byte selector used to check return selectors from hooks.
              /// @dev parseSelector also is used to parse the expected selector
              /// For parsing hook returns, note that all hooks return either bytes4 or (bytes4, 32-byte-delta) or (bytes4, 32-byte-delta, uint24).
              library ParseBytes {
                  function parseSelector(bytes memory result) internal pure returns (bytes4 selector) {
                      // equivalent: (selector,) = abi.decode(result, (bytes4, int256));
                      assembly ("memory-safe") {
                          selector := mload(add(result, 0x20))
                      }
                  }
                  function parseFee(bytes memory result) internal pure returns (uint24 lpFee) {
                      // equivalent: (,, lpFee) = abi.decode(result, (bytes4, int256, uint24));
                      assembly ("memory-safe") {
                          lpFee := mload(add(result, 0x60))
                      }
                  }
                  function parseReturnDelta(bytes memory result) internal pure returns (int256 hookReturn) {
                      // equivalent: (, hookReturnDelta) = abi.decode(result, (bytes4, int256));
                      assembly ("memory-safe") {
                          hookReturn := mload(add(result, 0x40))
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import {BitMath} from "./BitMath.sol";
              /// @title Packed tick initialized state library
              /// @notice Stores a packed mapping of tick index to its initialized state
              /// @dev The mapping uses int16 for keys since ticks are represented as int24 and there are 256 (2^8) values per word.
              library TickBitmap {
                  /// @notice Thrown when the tick is not enumerated by the tick spacing
                  /// @param tick the invalid tick
                  /// @param tickSpacing The tick spacing of the pool
                  error TickMisaligned(int24 tick, int24 tickSpacing);
                  /// @dev round towards negative infinity
                  function compress(int24 tick, int24 tickSpacing) internal pure returns (int24 compressed) {
                      // compressed = tick / tickSpacing;
                      // if (tick < 0 && tick % tickSpacing != 0) compressed--;
                      assembly ("memory-safe") {
                          tick := signextend(2, tick)
                          tickSpacing := signextend(2, tickSpacing)
                          compressed :=
                              sub(
                                  sdiv(tick, tickSpacing),
                                  // if (tick < 0 && tick % tickSpacing != 0) then tick % tickSpacing < 0, vice versa
                                  slt(smod(tick, tickSpacing), 0)
                              )
                      }
                  }
                  /// @notice Computes the position in the mapping where the initialized bit for a tick lives
                  /// @param tick The tick for which to compute the position
                  /// @return wordPos The key in the mapping containing the word in which the bit is stored
                  /// @return bitPos The bit position in the word where the flag is stored
                  function position(int24 tick) internal pure returns (int16 wordPos, uint8 bitPos) {
                      assembly ("memory-safe") {
                          // signed arithmetic shift right
                          wordPos := sar(8, signextend(2, tick))
                          bitPos := and(tick, 0xff)
                      }
                  }
                  /// @notice Flips the initialized state for a given tick from false to true, or vice versa
                  /// @param self The mapping in which to flip the tick
                  /// @param tick The tick to flip
                  /// @param tickSpacing The spacing between usable ticks
                  function flipTick(mapping(int16 => uint256) storage self, int24 tick, int24 tickSpacing) internal {
                      // Equivalent to the following Solidity:
                      //     if (tick % tickSpacing != 0) revert TickMisaligned(tick, tickSpacing);
                      //     (int16 wordPos, uint8 bitPos) = position(tick / tickSpacing);
                      //     uint256 mask = 1 << bitPos;
                      //     self[wordPos] ^= mask;
                      assembly ("memory-safe") {
                          tick := signextend(2, tick)
                          tickSpacing := signextend(2, tickSpacing)
                          // ensure that the tick is spaced
                          if smod(tick, tickSpacing) {
                              let fmp := mload(0x40)
                              mstore(fmp, 0xd4d8f3e6) // selector for TickMisaligned(int24,int24)
                              mstore(add(fmp, 0x20), tick)
                              mstore(add(fmp, 0x40), tickSpacing)
                              revert(add(fmp, 0x1c), 0x44)
                          }
                          tick := sdiv(tick, tickSpacing)
                          // calculate the storage slot corresponding to the tick
                          // wordPos = tick >> 8
                          mstore(0, sar(8, tick))
                          mstore(0x20, self.slot)
                          // the slot of self[wordPos] is keccak256(abi.encode(wordPos, self.slot))
                          let slot := keccak256(0, 0x40)
                          // mask = 1 << bitPos = 1 << (tick % 256)
                          // self[wordPos] ^= mask
                          sstore(slot, xor(sload(slot), shl(and(tick, 0xff), 1)))
                      }
                  }
                  /// @notice Returns the next initialized tick contained in the same word (or adjacent word) as the tick that is either
                  /// to the left (less than or equal to) or right (greater than) of the given tick
                  /// @param self The mapping in which to compute the next initialized tick
                  /// @param tick The starting tick
                  /// @param tickSpacing The spacing between usable ticks
                  /// @param lte Whether to search for the next initialized tick to the left (less than or equal to the starting tick)
                  /// @return next The next initialized or uninitialized tick up to 256 ticks away from the current tick
                  /// @return initialized Whether the next tick is initialized, as the function only searches within up to 256 ticks
                  function nextInitializedTickWithinOneWord(
                      mapping(int16 => uint256) storage self,
                      int24 tick,
                      int24 tickSpacing,
                      bool lte
                  ) internal view returns (int24 next, bool initialized) {
                      unchecked {
                          int24 compressed = compress(tick, tickSpacing);
                          if (lte) {
                              (int16 wordPos, uint8 bitPos) = position(compressed);
                              // all the 1s at or to the right of the current bitPos
                              uint256 mask = type(uint256).max >> (uint256(type(uint8).max) - bitPos);
                              uint256 masked = self[wordPos] & mask;
                              // if there are no initialized ticks to the right of or at the current tick, return rightmost in the word
                              initialized = masked != 0;
                              // overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick
                              next = initialized
                                  ? (compressed - int24(uint24(bitPos - BitMath.mostSignificantBit(masked)))) * tickSpacing
                                  : (compressed - int24(uint24(bitPos))) * tickSpacing;
                          } else {
                              // start from the word of the next tick, since the current tick state doesn't matter
                              (int16 wordPos, uint8 bitPos) = position(++compressed);
                              // all the 1s at or to the left of the bitPos
                              uint256 mask = ~((1 << bitPos) - 1);
                              uint256 masked = self[wordPos] & mask;
                              // if there are no initialized ticks to the left of the current tick, return leftmost in the word
                              initialized = masked != 0;
                              // overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick
                              next = initialized
                                  ? (compressed + int24(uint24(BitMath.leastSignificantBit(masked) - bitPos))) * tickSpacing
                                  : (compressed + int24(uint24(type(uint8).max - bitPos))) * tickSpacing;
                          }
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title Math functions that do not check inputs or outputs
              /// @notice Contains methods that perform common math functions but do not do any overflow or underflow checks
              library UnsafeMath {
                  /// @notice Returns ceil(x / y)
                  /// @dev division by 0 will return 0, and should be checked externally
                  /// @param x The dividend
                  /// @param y The divisor
                  /// @return z The quotient, ceil(x / y)
                  function divRoundingUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
                      assembly ("memory-safe") {
                          z := add(div(x, y), gt(mod(x, y), 0))
                      }
                  }
                  /// @notice Calculates floor(a×b÷denominator)
                  /// @dev division by 0 will return 0, and should be checked externally
                  /// @param a The multiplicand
                  /// @param b The multiplier
                  /// @param denominator The divisor
                  /// @return result The 256-bit result, floor(a×b÷denominator)
                  function simpleMulDiv(uint256 a, uint256 b, uint256 denominator) internal pure returns (uint256 result) {
                      assembly ("memory-safe") {
                          result := div(mul(a, b), denominator)
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title FixedPoint128
              /// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format)
              library FixedPoint128 {
                  uint256 internal constant Q128 = 0x100000000000000000000000000000000;
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import {SafeCast} from "./SafeCast.sol";
              import {FullMath} from "./FullMath.sol";
              import {UnsafeMath} from "./UnsafeMath.sol";
              import {FixedPoint96} from "./FixedPoint96.sol";
              /// @title Functions based on Q64.96 sqrt price and liquidity
              /// @notice Contains the math that uses square root of price as a Q64.96 and liquidity to compute deltas
              library SqrtPriceMath {
                  using SafeCast for uint256;
                  error InvalidPriceOrLiquidity();
                  error InvalidPrice();
                  error NotEnoughLiquidity();
                  error PriceOverflow();
                  /// @notice Gets the next sqrt price given a delta of currency0
                  /// @dev Always rounds up, because in the exact output case (increasing price) we need to move the price at least
                  /// far enough to get the desired output amount, and in the exact input case (decreasing price) we need to move the
                  /// price less in order to not send too much output.
                  /// The most precise formula for this is liquidity * sqrtPX96 / (liquidity +- amount * sqrtPX96),
                  /// if this is impossible because of overflow, we calculate liquidity / (liquidity / sqrtPX96 +- amount).
                  /// @param sqrtPX96 The starting price, i.e. before accounting for the currency0 delta
                  /// @param liquidity The amount of usable liquidity
                  /// @param amount How much of currency0 to add or remove from virtual reserves
                  /// @param add Whether to add or remove the amount of currency0
                  /// @return The price after adding or removing amount, depending on add
                  function getNextSqrtPriceFromAmount0RoundingUp(uint160 sqrtPX96, uint128 liquidity, uint256 amount, bool add)
                      internal
                      pure
                      returns (uint160)
                  {
                      // we short circuit amount == 0 because the result is otherwise not guaranteed to equal the input price
                      if (amount == 0) return sqrtPX96;
                      uint256 numerator1 = uint256(liquidity) << FixedPoint96.RESOLUTION;
                      if (add) {
                          unchecked {
                              uint256 product = amount * sqrtPX96;
                              if (product / amount == sqrtPX96) {
                                  uint256 denominator = numerator1 + product;
                                  if (denominator >= numerator1) {
                                      // always fits in 160 bits
                                      return uint160(FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator));
                                  }
                              }
                          }
                          // denominator is checked for overflow
                          return uint160(UnsafeMath.divRoundingUp(numerator1, (numerator1 / sqrtPX96) + amount));
                      } else {
                          unchecked {
                              uint256 product = amount * sqrtPX96;
                              // if the product overflows, we know the denominator underflows
                              // in addition, we must check that the denominator does not underflow
                              // equivalent: if (product / amount != sqrtPX96 || numerator1 <= product) revert PriceOverflow();
                              assembly ("memory-safe") {
                                  if iszero(
                                      and(
                                          eq(div(product, amount), and(sqrtPX96, 0xffffffffffffffffffffffffffffffffffffffff)),
                                          gt(numerator1, product)
                                      )
                                  ) {
                                      mstore(0, 0xf5c787f1) // selector for PriceOverflow()
                                      revert(0x1c, 0x04)
                                  }
                              }
                              uint256 denominator = numerator1 - product;
                              return FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator).toUint160();
                          }
                      }
                  }
                  /// @notice Gets the next sqrt price given a delta of currency1
                  /// @dev Always rounds down, because in the exact output case (decreasing price) we need to move the price at least
                  /// far enough to get the desired output amount, and in the exact input case (increasing price) we need to move the
                  /// price less in order to not send too much output.
                  /// The formula we compute is within <1 wei of the lossless version: sqrtPX96 +- amount / liquidity
                  /// @param sqrtPX96 The starting price, i.e., before accounting for the currency1 delta
                  /// @param liquidity The amount of usable liquidity
                  /// @param amount How much of currency1 to add, or remove, from virtual reserves
                  /// @param add Whether to add, or remove, the amount of currency1
                  /// @return The price after adding or removing `amount`
                  function getNextSqrtPriceFromAmount1RoundingDown(uint160 sqrtPX96, uint128 liquidity, uint256 amount, bool add)
                      internal
                      pure
                      returns (uint160)
                  {
                      // if we're adding (subtracting), rounding down requires rounding the quotient down (up)
                      // in both cases, avoid a mulDiv for most inputs
                      if (add) {
                          uint256 quotient = (
                              amount <= type(uint160).max
                                  ? (amount << FixedPoint96.RESOLUTION) / liquidity
                                  : FullMath.mulDiv(amount, FixedPoint96.Q96, liquidity)
                          );
                          return (uint256(sqrtPX96) + quotient).toUint160();
                      } else {
                          uint256 quotient = (
                              amount <= type(uint160).max
                                  ? UnsafeMath.divRoundingUp(amount << FixedPoint96.RESOLUTION, liquidity)
                                  : FullMath.mulDivRoundingUp(amount, FixedPoint96.Q96, liquidity)
                          );
                          // equivalent: if (sqrtPX96 <= quotient) revert NotEnoughLiquidity();
                          assembly ("memory-safe") {
                              if iszero(gt(and(sqrtPX96, 0xffffffffffffffffffffffffffffffffffffffff), quotient)) {
                                  mstore(0, 0x4323a555) // selector for NotEnoughLiquidity()
                                  revert(0x1c, 0x04)
                              }
                          }
                          // always fits 160 bits
                          unchecked {
                              return uint160(sqrtPX96 - quotient);
                          }
                      }
                  }
                  /// @notice Gets the next sqrt price given an input amount of currency0 or currency1
                  /// @dev Throws if price or liquidity are 0, or if the next price is out of bounds
                  /// @param sqrtPX96 The starting price, i.e., before accounting for the input amount
                  /// @param liquidity The amount of usable liquidity
                  /// @param amountIn How much of currency0, or currency1, is being swapped in
                  /// @param zeroForOne Whether the amount in is currency0 or currency1
                  /// @return uint160 The price after adding the input amount to currency0 or currency1
                  function getNextSqrtPriceFromInput(uint160 sqrtPX96, uint128 liquidity, uint256 amountIn, bool zeroForOne)
                      internal
                      pure
                      returns (uint160)
                  {
                      // equivalent: if (sqrtPX96 == 0 || liquidity == 0) revert InvalidPriceOrLiquidity();
                      assembly ("memory-safe") {
                          if or(
                              iszero(and(sqrtPX96, 0xffffffffffffffffffffffffffffffffffffffff)),
                              iszero(and(liquidity, 0xffffffffffffffffffffffffffffffff))
                          ) {
                              mstore(0, 0x4f2461b8) // selector for InvalidPriceOrLiquidity()
                              revert(0x1c, 0x04)
                          }
                      }
                      // round to make sure that we don't pass the target price
                      return zeroForOne
                          ? getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountIn, true)
                          : getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountIn, true);
                  }
                  /// @notice Gets the next sqrt price given an output amount of currency0 or currency1
                  /// @dev Throws if price or liquidity are 0 or the next price is out of bounds
                  /// @param sqrtPX96 The starting price before accounting for the output amount
                  /// @param liquidity The amount of usable liquidity
                  /// @param amountOut How much of currency0, or currency1, is being swapped out
                  /// @param zeroForOne Whether the amount out is currency1 or currency0
                  /// @return uint160 The price after removing the output amount of currency0 or currency1
                  function getNextSqrtPriceFromOutput(uint160 sqrtPX96, uint128 liquidity, uint256 amountOut, bool zeroForOne)
                      internal
                      pure
                      returns (uint160)
                  {
                      // equivalent: if (sqrtPX96 == 0 || liquidity == 0) revert InvalidPriceOrLiquidity();
                      assembly ("memory-safe") {
                          if or(
                              iszero(and(sqrtPX96, 0xffffffffffffffffffffffffffffffffffffffff)),
                              iszero(and(liquidity, 0xffffffffffffffffffffffffffffffff))
                          ) {
                              mstore(0, 0x4f2461b8) // selector for InvalidPriceOrLiquidity()
                              revert(0x1c, 0x04)
                          }
                      }
                      // round to make sure that we pass the target price
                      return zeroForOne
                          ? getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountOut, false)
                          : getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountOut, false);
                  }
                  /// @notice Gets the amount0 delta between two prices
                  /// @dev Calculates liquidity / sqrt(lower) - liquidity / sqrt(upper),
                  /// i.e. liquidity * (sqrt(upper) - sqrt(lower)) / (sqrt(upper) * sqrt(lower))
                  /// @param sqrtPriceAX96 A sqrt price
                  /// @param sqrtPriceBX96 Another sqrt price
                  /// @param liquidity The amount of usable liquidity
                  /// @param roundUp Whether to round the amount up or down
                  /// @return uint256 Amount of currency0 required to cover a position of size liquidity between the two passed prices
                  function getAmount0Delta(uint160 sqrtPriceAX96, uint160 sqrtPriceBX96, uint128 liquidity, bool roundUp)
                      internal
                      pure
                      returns (uint256)
                  {
                      unchecked {
                          if (sqrtPriceAX96 > sqrtPriceBX96) (sqrtPriceAX96, sqrtPriceBX96) = (sqrtPriceBX96, sqrtPriceAX96);
                          // equivalent: if (sqrtPriceAX96 == 0) revert InvalidPrice();
                          assembly ("memory-safe") {
                              if iszero(and(sqrtPriceAX96, 0xffffffffffffffffffffffffffffffffffffffff)) {
                                  mstore(0, 0x00bfc921) // selector for InvalidPrice()
                                  revert(0x1c, 0x04)
                              }
                          }
                          uint256 numerator1 = uint256(liquidity) << FixedPoint96.RESOLUTION;
                          uint256 numerator2 = sqrtPriceBX96 - sqrtPriceAX96;
                          return roundUp
                              ? UnsafeMath.divRoundingUp(FullMath.mulDivRoundingUp(numerator1, numerator2, sqrtPriceBX96), sqrtPriceAX96)
                              : FullMath.mulDiv(numerator1, numerator2, sqrtPriceBX96) / sqrtPriceAX96;
                      }
                  }
                  /// @notice Equivalent to: `a >= b ? a - b : b - a`
                  function absDiff(uint160 a, uint160 b) internal pure returns (uint256 res) {
                      assembly ("memory-safe") {
                          let diff :=
                              sub(and(a, 0xffffffffffffffffffffffffffffffffffffffff), and(b, 0xffffffffffffffffffffffffffffffffffffffff))
                          // mask = 0 if a >= b else -1 (all 1s)
                          let mask := sar(255, diff)
                          // if a >= b, res = a - b = 0 ^ (a - b)
                          // if a < b, res = b - a = ~~(b - a) = ~(-(b - a) - 1) = ~(a - b - 1) = (-1) ^ (a - b - 1)
                          // either way, res = mask ^ (a - b + mask)
                          res := xor(mask, add(mask, diff))
                      }
                  }
                  /// @notice Gets the amount1 delta between two prices
                  /// @dev Calculates liquidity * (sqrt(upper) - sqrt(lower))
                  /// @param sqrtPriceAX96 A sqrt price
                  /// @param sqrtPriceBX96 Another sqrt price
                  /// @param liquidity The amount of usable liquidity
                  /// @param roundUp Whether to round the amount up, or down
                  /// @return amount1 Amount of currency1 required to cover a position of size liquidity between the two passed prices
                  function getAmount1Delta(uint160 sqrtPriceAX96, uint160 sqrtPriceBX96, uint128 liquidity, bool roundUp)
                      internal
                      pure
                      returns (uint256 amount1)
                  {
                      uint256 numerator = absDiff(sqrtPriceAX96, sqrtPriceBX96);
                      uint256 denominator = FixedPoint96.Q96;
                      uint256 _liquidity = uint256(liquidity);
                      /**
                       * Equivalent to:
                       *   amount1 = roundUp
                       *       ? FullMath.mulDivRoundingUp(liquidity, sqrtPriceBX96 - sqrtPriceAX96, FixedPoint96.Q96)
                       *       : FullMath.mulDiv(liquidity, sqrtPriceBX96 - sqrtPriceAX96, FixedPoint96.Q96);
                       * Cannot overflow because `type(uint128).max * type(uint160).max >> 96 < (1 << 192)`.
                       */
                      amount1 = FullMath.mulDiv(_liquidity, numerator, denominator);
                      assembly ("memory-safe") {
                          amount1 := add(amount1, and(gt(mulmod(_liquidity, numerator, denominator), 0), roundUp))
                      }
                  }
                  /// @notice Helper that gets signed currency0 delta
                  /// @param sqrtPriceAX96 A sqrt price
                  /// @param sqrtPriceBX96 Another sqrt price
                  /// @param liquidity The change in liquidity for which to compute the amount0 delta
                  /// @return int256 Amount of currency0 corresponding to the passed liquidityDelta between the two prices
                  function getAmount0Delta(uint160 sqrtPriceAX96, uint160 sqrtPriceBX96, int128 liquidity)
                      internal
                      pure
                      returns (int256)
                  {
                      unchecked {
                          return liquidity < 0
                              ? getAmount0Delta(sqrtPriceAX96, sqrtPriceBX96, uint128(-liquidity), false).toInt256()
                              : -getAmount0Delta(sqrtPriceAX96, sqrtPriceBX96, uint128(liquidity), true).toInt256();
                      }
                  }
                  /// @notice Helper that gets signed currency1 delta
                  /// @param sqrtPriceAX96 A sqrt price
                  /// @param sqrtPriceBX96 Another sqrt price
                  /// @param liquidity The change in liquidity for which to compute the amount1 delta
                  /// @return int256 Amount of currency1 corresponding to the passed liquidityDelta between the two prices
                  function getAmount1Delta(uint160 sqrtPriceAX96, uint160 sqrtPriceBX96, int128 liquidity)
                      internal
                      pure
                      returns (int256)
                  {
                      unchecked {
                          return liquidity < 0
                              ? getAmount1Delta(sqrtPriceAX96, sqrtPriceBX96, uint128(-liquidity), false).toInt256()
                              : -getAmount1Delta(sqrtPriceAX96, sqrtPriceBX96, uint128(liquidity), true).toInt256();
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import {FullMath} from "./FullMath.sol";
              import {SqrtPriceMath} from "./SqrtPriceMath.sol";
              /// @title Computes the result of a swap within ticks
              /// @notice Contains methods for computing the result of a swap within a single tick price range, i.e., a single tick.
              library SwapMath {
                  /// @notice the swap fee is represented in hundredths of a bip, so the max is 100%
                  /// @dev the swap fee is the total fee on a swap, including both LP and Protocol fee
                  uint256 internal constant MAX_SWAP_FEE = 1e6;
                  /// @notice Computes the sqrt price target for the next swap step
                  /// @param zeroForOne The direction of the swap, true for currency0 to currency1, false for currency1 to currency0
                  /// @param sqrtPriceNextX96 The Q64.96 sqrt price for the next initialized tick
                  /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this value
                  /// after the swap. If one for zero, the price cannot be greater than this value after the swap
                  /// @return sqrtPriceTargetX96 The price target for the next swap step
                  function getSqrtPriceTarget(bool zeroForOne, uint160 sqrtPriceNextX96, uint160 sqrtPriceLimitX96)
                      internal
                      pure
                      returns (uint160 sqrtPriceTargetX96)
                  {
                      assembly ("memory-safe") {
                          // a flag to toggle between sqrtPriceNextX96 and sqrtPriceLimitX96
                          // when zeroForOne == true, nextOrLimit reduces to sqrtPriceNextX96 >= sqrtPriceLimitX96
                          // sqrtPriceTargetX96 = max(sqrtPriceNextX96, sqrtPriceLimitX96)
                          // when zeroForOne == false, nextOrLimit reduces to sqrtPriceNextX96 < sqrtPriceLimitX96
                          // sqrtPriceTargetX96 = min(sqrtPriceNextX96, sqrtPriceLimitX96)
                          sqrtPriceNextX96 := and(sqrtPriceNextX96, 0xffffffffffffffffffffffffffffffffffffffff)
                          sqrtPriceLimitX96 := and(sqrtPriceLimitX96, 0xffffffffffffffffffffffffffffffffffffffff)
                          let nextOrLimit := xor(lt(sqrtPriceNextX96, sqrtPriceLimitX96), and(zeroForOne, 0x1))
                          let symDiff := xor(sqrtPriceNextX96, sqrtPriceLimitX96)
                          sqrtPriceTargetX96 := xor(sqrtPriceLimitX96, mul(symDiff, nextOrLimit))
                      }
                  }
                  /// @notice Computes the result of swapping some amount in, or amount out, given the parameters of the swap
                  /// @dev If the swap's amountSpecified is negative, the combined fee and input amount will never exceed the absolute value of the remaining amount.
                  /// @param sqrtPriceCurrentX96 The current sqrt price of the pool
                  /// @param sqrtPriceTargetX96 The price that cannot be exceeded, from which the direction of the swap is inferred
                  /// @param liquidity The usable liquidity
                  /// @param amountRemaining How much input or output amount is remaining to be swapped in/out
                  /// @param feePips The fee taken from the input amount, expressed in hundredths of a bip
                  /// @return sqrtPriceNextX96 The price after swapping the amount in/out, not to exceed the price target
                  /// @return amountIn The amount to be swapped in, of either currency0 or currency1, based on the direction of the swap
                  /// @return amountOut The amount to be received, of either currency0 or currency1, based on the direction of the swap
                  /// @return feeAmount The amount of input that will be taken as a fee
                  /// @dev feePips must be no larger than MAX_SWAP_FEE for this function. We ensure that before setting a fee using LPFeeLibrary.isValid.
                  function computeSwapStep(
                      uint160 sqrtPriceCurrentX96,
                      uint160 sqrtPriceTargetX96,
                      uint128 liquidity,
                      int256 amountRemaining,
                      uint24 feePips
                  ) internal pure returns (uint160 sqrtPriceNextX96, uint256 amountIn, uint256 amountOut, uint256 feeAmount) {
                      unchecked {
                          uint256 _feePips = feePips; // upcast once and cache
                          bool zeroForOne = sqrtPriceCurrentX96 >= sqrtPriceTargetX96;
                          bool exactIn = amountRemaining < 0;
                          if (exactIn) {
                              uint256 amountRemainingLessFee =
                                  FullMath.mulDiv(uint256(-amountRemaining), MAX_SWAP_FEE - _feePips, MAX_SWAP_FEE);
                              amountIn = zeroForOne
                                  ? SqrtPriceMath.getAmount0Delta(sqrtPriceTargetX96, sqrtPriceCurrentX96, liquidity, true)
                                  : SqrtPriceMath.getAmount1Delta(sqrtPriceCurrentX96, sqrtPriceTargetX96, liquidity, true);
                              if (amountRemainingLessFee >= amountIn) {
                                  // `amountIn` is capped by the target price
                                  sqrtPriceNextX96 = sqrtPriceTargetX96;
                                  feeAmount = _feePips == MAX_SWAP_FEE
                                      ? amountIn // amountIn is always 0 here, as amountRemainingLessFee == 0 and amountRemainingLessFee >= amountIn
                                      : FullMath.mulDivRoundingUp(amountIn, _feePips, MAX_SWAP_FEE - _feePips);
                              } else {
                                  // exhaust the remaining amount
                                  amountIn = amountRemainingLessFee;
                                  sqrtPriceNextX96 = SqrtPriceMath.getNextSqrtPriceFromInput(
                                      sqrtPriceCurrentX96, liquidity, amountRemainingLessFee, zeroForOne
                                  );
                                  // we didn't reach the target, so take the remainder of the maximum input as fee
                                  feeAmount = uint256(-amountRemaining) - amountIn;
                              }
                              amountOut = zeroForOne
                                  ? SqrtPriceMath.getAmount1Delta(sqrtPriceNextX96, sqrtPriceCurrentX96, liquidity, false)
                                  : SqrtPriceMath.getAmount0Delta(sqrtPriceCurrentX96, sqrtPriceNextX96, liquidity, false);
                          } else {
                              amountOut = zeroForOne
                                  ? SqrtPriceMath.getAmount1Delta(sqrtPriceTargetX96, sqrtPriceCurrentX96, liquidity, false)
                                  : SqrtPriceMath.getAmount0Delta(sqrtPriceCurrentX96, sqrtPriceTargetX96, liquidity, false);
                              if (uint256(amountRemaining) >= amountOut) {
                                  // `amountOut` is capped by the target price
                                  sqrtPriceNextX96 = sqrtPriceTargetX96;
                              } else {
                                  // cap the output amount to not exceed the remaining output amount
                                  amountOut = uint256(amountRemaining);
                                  sqrtPriceNextX96 =
                                      SqrtPriceMath.getNextSqrtPriceFromOutput(sqrtPriceCurrentX96, liquidity, amountOut, zeroForOne);
                              }
                              amountIn = zeroForOne
                                  ? SqrtPriceMath.getAmount0Delta(sqrtPriceNextX96, sqrtPriceCurrentX96, liquidity, true)
                                  : SqrtPriceMath.getAmount1Delta(sqrtPriceCurrentX96, sqrtPriceNextX96, liquidity, true);
                              // `feePips` cannot be `MAX_SWAP_FEE` for exact out
                              feeAmount = FullMath.mulDivRoundingUp(amountIn, _feePips, MAX_SWAP_FEE - _feePips);
                          }
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /**
               * @dev Slot0 is a packed version of solidity structure.
               * Using the packaged version saves gas by not storing the structure fields in memory slots.
               *
               * Layout:
               * 24 bits empty | 24 bits lpFee | 12 bits protocolFee 1->0 | 12 bits protocolFee 0->1 | 24 bits tick | 160 bits sqrtPriceX96
               *
               * Fields in the direction from the least significant bit:
               *
               * The current price
               * uint160 sqrtPriceX96;
               *
               * The current tick
               * int24 tick;
               *
               * Protocol fee, expressed in hundredths of a bip, upper 12 bits are for 1->0, and the lower 12 are for 0->1
               * the maximum is 1000 - meaning the maximum protocol fee is 0.1%
               * the protocolFee is taken from the input first, then the lpFee is taken from the remaining input
               * uint24 protocolFee;
               *
               * The current LP fee of the pool. If the pool is dynamic, this does not include the dynamic fee flag.
               * uint24 lpFee;
               */
              type Slot0 is bytes32;
              using Slot0Library for Slot0 global;
              /// @notice Library for getting and setting values in the Slot0 type
              library Slot0Library {
                  uint160 internal constant MASK_160_BITS = 0x00FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                  uint24 internal constant MASK_24_BITS = 0xFFFFFF;
                  uint8 internal constant TICK_OFFSET = 160;
                  uint8 internal constant PROTOCOL_FEE_OFFSET = 184;
                  uint8 internal constant LP_FEE_OFFSET = 208;
                  // #### GETTERS ####
                  function sqrtPriceX96(Slot0 _packed) internal pure returns (uint160 _sqrtPriceX96) {
                      assembly ("memory-safe") {
                          _sqrtPriceX96 := and(MASK_160_BITS, _packed)
                      }
                  }
                  function tick(Slot0 _packed) internal pure returns (int24 _tick) {
                      assembly ("memory-safe") {
                          _tick := signextend(2, shr(TICK_OFFSET, _packed))
                      }
                  }
                  function protocolFee(Slot0 _packed) internal pure returns (uint24 _protocolFee) {
                      assembly ("memory-safe") {
                          _protocolFee := and(MASK_24_BITS, shr(PROTOCOL_FEE_OFFSET, _packed))
                      }
                  }
                  function lpFee(Slot0 _packed) internal pure returns (uint24 _lpFee) {
                      assembly ("memory-safe") {
                          _lpFee := and(MASK_24_BITS, shr(LP_FEE_OFFSET, _packed))
                      }
                  }
                  // #### SETTERS ####
                  function setSqrtPriceX96(Slot0 _packed, uint160 _sqrtPriceX96) internal pure returns (Slot0 _result) {
                      assembly ("memory-safe") {
                          _result := or(and(not(MASK_160_BITS), _packed), and(MASK_160_BITS, _sqrtPriceX96))
                      }
                  }
                  function setTick(Slot0 _packed, int24 _tick) internal pure returns (Slot0 _result) {
                      assembly ("memory-safe") {
                          _result := or(and(not(shl(TICK_OFFSET, MASK_24_BITS)), _packed), shl(TICK_OFFSET, and(MASK_24_BITS, _tick)))
                      }
                  }
                  function setProtocolFee(Slot0 _packed, uint24 _protocolFee) internal pure returns (Slot0 _result) {
                      assembly ("memory-safe") {
                          _result :=
                              or(
                                  and(not(shl(PROTOCOL_FEE_OFFSET, MASK_24_BITS)), _packed),
                                  shl(PROTOCOL_FEE_OFFSET, and(MASK_24_BITS, _protocolFee))
                              )
                      }
                  }
                  function setLpFee(Slot0 _packed, uint24 _lpFee) internal pure returns (Slot0 _result) {
                      assembly ("memory-safe") {
                          _result :=
                              or(and(not(shl(LP_FEE_OFFSET, MASK_24_BITS)), _packed), shl(LP_FEE_OFFSET, and(MASK_24_BITS, _lpFee)))
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @notice library of functions related to protocol fees
              library ProtocolFeeLibrary {
                  /// @notice Max protocol fee is 0.1% (1000 pips)
                  /// @dev Increasing these values could lead to overflow in Pool.swap
                  uint16 public constant MAX_PROTOCOL_FEE = 1000;
                  /// @notice Thresholds used for optimized bounds checks on protocol fees
                  uint24 internal constant FEE_0_THRESHOLD = 1001;
                  uint24 internal constant FEE_1_THRESHOLD = 1001 << 12;
                  /// @notice the protocol fee is represented in hundredths of a bip
                  uint256 internal constant PIPS_DENOMINATOR = 1_000_000;
                  function getZeroForOneFee(uint24 self) internal pure returns (uint16) {
                      return uint16(self & 0xfff);
                  }
                  function getOneForZeroFee(uint24 self) internal pure returns (uint16) {
                      return uint16(self >> 12);
                  }
                  function isValidProtocolFee(uint24 self) internal pure returns (bool valid) {
                      // Equivalent to: getZeroForOneFee(self) <= MAX_PROTOCOL_FEE && getOneForZeroFee(self) <= MAX_PROTOCOL_FEE
                      assembly ("memory-safe") {
                          let isZeroForOneFeeOk := lt(and(self, 0xfff), FEE_0_THRESHOLD)
                          let isOneForZeroFeeOk := lt(and(self, 0xfff000), FEE_1_THRESHOLD)
                          valid := and(isZeroForOneFeeOk, isOneForZeroFeeOk)
                      }
                  }
                  // The protocol fee is taken from the input amount first and then the LP fee is taken from the remaining
                  // The swap fee is capped at 100%
                  // Equivalent to protocolFee + lpFee(1_000_000 - protocolFee) / 1_000_000 (rounded up)
                  /// @dev here `self` is just a single direction's protocol fee, not a packed type of 2 protocol fees
                  function calculateSwapFee(uint16 self, uint24 lpFee) internal pure returns (uint24 swapFee) {
                      // protocolFee + lpFee - (protocolFee * lpFee / 1_000_000)
                      assembly ("memory-safe") {
                          self := and(self, 0xfff)
                          lpFee := and(lpFee, 0xffffff)
                          let numerator := mul(self, lpFee)
                          swapFee := sub(add(self, lpFee), div(numerator, PIPS_DENOMINATOR))
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title Math library for liquidity
              library LiquidityMath {
                  /// @notice Add a signed liquidity delta to liquidity and revert if it overflows or underflows
                  /// @param x The liquidity before change
                  /// @param y The delta by which liquidity should be changed
                  /// @return z The liquidity delta
                  function addDelta(uint128 x, int128 y) internal pure returns (uint128 z) {
                      assembly ("memory-safe") {
                          z := add(and(x, 0xffffffffffffffffffffffffffffffff), signextend(15, y))
                          if shr(128, z) {
                              // revert SafeCastOverflow()
                              mstore(0, 0x93dafdf1)
                              revert(0x1c, 0x04)
                          }
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title Contains 512-bit math functions
              /// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
              /// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
              library FullMath {
                  /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                  /// @param a The multiplicand
                  /// @param b The multiplier
                  /// @param denominator The divisor
                  /// @return result The 256-bit result
                  /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
                  function mulDiv(uint256 a, uint256 b, uint256 denominator) internal pure returns (uint256 result) {
                      unchecked {
                          // 512-bit multiply [prod1 prod0] = a * b
                          // Compute the product mod 2**256 and mod 2**256 - 1
                          // then use the Chinese Remainder Theorem to reconstruct
                          // the 512 bit result. The result is stored in two 256
                          // variables such that product = prod1 * 2**256 + prod0
                          uint256 prod0 = a * b; // Least significant 256 bits of the product
                          uint256 prod1; // Most significant 256 bits of the product
                          assembly ("memory-safe") {
                              let mm := mulmod(a, b, not(0))
                              prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                          }
                          // Make sure the result is less than 2**256.
                          // Also prevents denominator == 0
                          require(denominator > prod1);
                          // Handle non-overflow cases, 256 by 256 division
                          if (prod1 == 0) {
                              assembly ("memory-safe") {
                                  result := div(prod0, denominator)
                              }
                              return result;
                          }
                          ///////////////////////////////////////////////
                          // 512 by 256 division.
                          ///////////////////////////////////////////////
                          // Make division exact by subtracting the remainder from [prod1 prod0]
                          // Compute remainder using mulmod
                          uint256 remainder;
                          assembly ("memory-safe") {
                              remainder := mulmod(a, b, denominator)
                          }
                          // Subtract 256 bit number from 512 bit number
                          assembly ("memory-safe") {
                              prod1 := sub(prod1, gt(remainder, prod0))
                              prod0 := sub(prod0, remainder)
                          }
                          // Factor powers of two out of denominator
                          // Compute largest power of two divisor of denominator.
                          // Always >= 1.
                          uint256 twos = (0 - denominator) & denominator;
                          // Divide denominator by power of two
                          assembly ("memory-safe") {
                              denominator := div(denominator, twos)
                          }
                          // Divide [prod1 prod0] by the factors of two
                          assembly ("memory-safe") {
                              prod0 := div(prod0, twos)
                          }
                          // Shift in bits from prod1 into prod0. For this we need
                          // to flip `twos` such that it is 2**256 / twos.
                          // If twos is zero, then it becomes one
                          assembly ("memory-safe") {
                              twos := add(div(sub(0, twos), twos), 1)
                          }
                          prod0 |= prod1 * twos;
                          // Invert denominator mod 2**256
                          // Now that denominator is an odd number, it has an inverse
                          // modulo 2**256 such that denominator * inv = 1 mod 2**256.
                          // Compute the inverse by starting with a seed that is correct
                          // correct for four bits. That is, denominator * inv = 1 mod 2**4
                          uint256 inv = (3 * denominator) ^ 2;
                          // Now use Newton-Raphson iteration to improve the precision.
                          // Thanks to Hensel's lifting lemma, this also works in modular
                          // arithmetic, doubling the correct bits in each step.
                          inv *= 2 - denominator * inv; // inverse mod 2**8
                          inv *= 2 - denominator * inv; // inverse mod 2**16
                          inv *= 2 - denominator * inv; // inverse mod 2**32
                          inv *= 2 - denominator * inv; // inverse mod 2**64
                          inv *= 2 - denominator * inv; // inverse mod 2**128
                          inv *= 2 - denominator * inv; // inverse mod 2**256
                          // Because the division is now exact we can divide by multiplying
                          // with the modular inverse of denominator. This will give us the
                          // correct result modulo 2**256. Since the preconditions guarantee
                          // that the outcome is less than 2**256, this is the final result.
                          // We don't need to compute the high bits of the result and prod1
                          // is no longer required.
                          result = prod0 * inv;
                          return result;
                      }
                  }
                  /// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                  /// @param a The multiplicand
                  /// @param b The multiplier
                  /// @param denominator The divisor
                  /// @return result The 256-bit result
                  function mulDivRoundingUp(uint256 a, uint256 b, uint256 denominator) internal pure returns (uint256 result) {
                      unchecked {
                          result = mulDiv(a, b, denominator);
                          if (mulmod(a, b, denominator) != 0) {
                              require(++result > 0);
                          }
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title Minimal ERC20 interface for Uniswap
              /// @notice Contains a subset of the full ERC20 interface that is used in Uniswap V3
              interface IERC20Minimal {
                  /// @notice Returns an account's balance in the token
                  /// @param account The account for which to look up the number of tokens it has, i.e. its balance
                  /// @return The number of tokens held by the account
                  function balanceOf(address account) external view returns (uint256);
                  /// @notice Transfers the amount of token from the `msg.sender` to the recipient
                  /// @param recipient The account that will receive the amount transferred
                  /// @param amount The number of tokens to send from the sender to the recipient
                  /// @return Returns true for a successful transfer, false for an unsuccessful transfer
                  function transfer(address recipient, uint256 amount) external returns (bool);
                  /// @notice Returns the current allowance given to a spender by an owner
                  /// @param owner The account of the token owner
                  /// @param spender The account of the token spender
                  /// @return The current allowance granted by `owner` to `spender`
                  function allowance(address owner, address spender) external view returns (uint256);
                  /// @notice Sets the allowance of a spender from the `msg.sender` to the value `amount`
                  /// @param spender The account which will be allowed to spend a given amount of the owners tokens
                  /// @param amount The amount of tokens allowed to be used by `spender`
                  /// @return Returns true for a successful approval, false for unsuccessful
                  function approve(address spender, uint256 amount) external returns (bool);
                  /// @notice Transfers `amount` tokens from `sender` to `recipient` up to the allowance given to the `msg.sender`
                  /// @param sender The account from which the transfer will be initiated
                  /// @param recipient The recipient of the transfer
                  /// @param amount The amount of the transfer
                  /// @return Returns true for a successful transfer, false for unsuccessful
                  function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
                  /// @notice Event emitted when tokens are transferred from one address to another, either via `#transfer` or `#transferFrom`.
                  /// @param from The account from which the tokens were sent, i.e. the balance decreased
                  /// @param to The account to which the tokens were sent, i.e. the balance increased
                  /// @param value The amount of tokens that were transferred
                  event Transfer(address indexed from, address indexed to, uint256 value);
                  /// @notice Event emitted when the approval amount for the spender of a given owner's tokens changes.
                  /// @param owner The account that approved spending of its tokens
                  /// @param spender The account for which the spending allowance was modified
                  /// @param value The new allowance from the owner to the spender
                  event Approval(address indexed owner, address indexed spender, uint256 value);
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title BitMath
              /// @dev This library provides functionality for computing bit properties of an unsigned integer
              /// @author Solady (https://github.com/Vectorized/solady/blob/8200a70e8dc2a77ecb074fc2e99a2a0d36547522/src/utils/LibBit.sol)
              library BitMath {
                  /// @notice Returns the index of the most significant bit of the number,
                  ///     where the least significant bit is at index 0 and the most significant bit is at index 255
                  /// @param x the value for which to compute the most significant bit, must be greater than 0
                  /// @return r the index of the most significant bit
                  function mostSignificantBit(uint256 x) internal pure returns (uint8 r) {
                      require(x > 0);
                      assembly ("memory-safe") {
                          r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                          r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                          r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                          r := or(r, shl(4, lt(0xffff, shr(r, x))))
                          r := or(r, shl(3, lt(0xff, shr(r, x))))
                          // forgefmt: disable-next-item
                          r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                              0x0706060506020500060203020504000106050205030304010505030400000000))
                      }
                  }
                  /// @notice Returns the index of the least significant bit of the number,
                  ///     where the least significant bit is at index 0 and the most significant bit is at index 255
                  /// @param x the value for which to compute the least significant bit, must be greater than 0
                  /// @return r the index of the least significant bit
                  function leastSignificantBit(uint256 x) internal pure returns (uint8 r) {
                      require(x > 0);
                      assembly ("memory-safe") {
                          // Isolate the least significant bit.
                          x := and(x, sub(0, x))
                          // For the upper 3 bits of the result, use a De Bruijn-like lookup.
                          // Credit to adhusson: https://blog.adhusson.com/cheap-find-first-set-evm/
                          // forgefmt: disable-next-item
                          r := shl(5, shr(252, shl(shl(2, shr(250, mul(x,
                              0xb6db6db6ddddddddd34d34d349249249210842108c6318c639ce739cffffffff))),
                              0x8040405543005266443200005020610674053026020000107506200176117077)))
                          // For the lower 5 bits of the result, use a De Bruijn lookup.
                          // forgefmt: disable-next-item
                          r := or(r, byte(and(div(0xd76453e0, shr(r, x)), 0x1f),
                              0x001f0d1e100c1d070f090b19131c1706010e11080a1a141802121b1503160405))
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @notice Interface for claims over a contract balance, wrapped as a ERC6909
              interface IERC6909Claims {
                  /*//////////////////////////////////////////////////////////////
                                               EVENTS
                  //////////////////////////////////////////////////////////////*/
                  event OperatorSet(address indexed owner, address indexed operator, bool approved);
                  event Approval(address indexed owner, address indexed spender, uint256 indexed id, uint256 amount);
                  event Transfer(address caller, address indexed from, address indexed to, uint256 indexed id, uint256 amount);
                  /*//////////////////////////////////////////////////////////////
                                               FUNCTIONS
                  //////////////////////////////////////////////////////////////*/
                  /// @notice Owner balance of an id.
                  /// @param owner The address of the owner.
                  /// @param id The id of the token.
                  /// @return amount The balance of the token.
                  function balanceOf(address owner, uint256 id) external view returns (uint256 amount);
                  /// @notice Spender allowance of an id.
                  /// @param owner The address of the owner.
                  /// @param spender The address of the spender.
                  /// @param id The id of the token.
                  /// @return amount The allowance of the token.
                  function allowance(address owner, address spender, uint256 id) external view returns (uint256 amount);
                  /// @notice Checks if a spender is approved by an owner as an operator
                  /// @param owner The address of the owner.
                  /// @param spender The address of the spender.
                  /// @return approved The approval status.
                  function isOperator(address owner, address spender) external view returns (bool approved);
                  /// @notice Transfers an amount of an id from the caller to a receiver.
                  /// @param receiver The address of the receiver.
                  /// @param id The id of the token.
                  /// @param amount The amount of the token.
                  /// @return bool True, always, unless the function reverts
                  function transfer(address receiver, uint256 id, uint256 amount) external returns (bool);
                  /// @notice Transfers an amount of an id from a sender to a receiver.
                  /// @param sender The address of the sender.
                  /// @param receiver The address of the receiver.
                  /// @param id The id of the token.
                  /// @param amount The amount of the token.
                  /// @return bool True, always, unless the function reverts
                  function transferFrom(address sender, address receiver, uint256 id, uint256 amount) external returns (bool);
                  /// @notice Approves an amount of an id to a spender.
                  /// @param spender The address of the spender.
                  /// @param id The id of the token.
                  /// @param amount The amount of the token.
                  /// @return bool True, always
                  function approve(address spender, uint256 id, uint256 amount) external returns (bool);
                  /// @notice Sets or removes an operator for the caller.
                  /// @param operator The address of the operator.
                  /// @param approved The approval status.
                  /// @return bool True, always
                  function setOperator(address operator, bool approved) external returns (bool);
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import {Currency} from "../types/Currency.sol";
              import {PoolId} from "../types/PoolId.sol";
              import {PoolKey} from "../types/PoolKey.sol";
              /// @notice Interface for all protocol-fee related functions in the pool manager
              interface IProtocolFees {
                  /// @notice Thrown when protocol fee is set too high
                  error ProtocolFeeTooLarge(uint24 fee);
                  /// @notice Thrown when collectProtocolFees or setProtocolFee is not called by the controller.
                  error InvalidCaller();
                  /// @notice Thrown when collectProtocolFees is attempted on a token that is synced.
                  error ProtocolFeeCurrencySynced();
                  /// @notice Emitted when the protocol fee controller address is updated in setProtocolFeeController.
                  event ProtocolFeeControllerUpdated(address indexed protocolFeeController);
                  /// @notice Emitted when the protocol fee is updated for a pool.
                  event ProtocolFeeUpdated(PoolId indexed id, uint24 protocolFee);
                  /// @notice Given a currency address, returns the protocol fees accrued in that currency
                  /// @param currency The currency to check
                  /// @return amount The amount of protocol fees accrued in the currency
                  function protocolFeesAccrued(Currency currency) external view returns (uint256 amount);
                  /// @notice Sets the protocol fee for the given pool
                  /// @param key The key of the pool to set a protocol fee for
                  /// @param newProtocolFee The fee to set
                  function setProtocolFee(PoolKey memory key, uint24 newProtocolFee) external;
                  /// @notice Sets the protocol fee controller
                  /// @param controller The new protocol fee controller
                  function setProtocolFeeController(address controller) external;
                  /// @notice Collects the protocol fees for a given recipient and currency, returning the amount collected
                  /// @dev This will revert if the contract is unlocked
                  /// @param recipient The address to receive the protocol fees
                  /// @param currency The currency to withdraw
                  /// @param amount The amount of currency to withdraw
                  /// @return amountCollected The amount of currency successfully withdrawn
                  function collectProtocolFees(address recipient, Currency currency, uint256 amount)
                      external
                      returns (uint256 amountCollected);
                  /// @notice Returns the current protocol fee controller address
                  /// @return address The current protocol fee controller address
                  function protocolFeeController() external view returns (address);
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @notice Interface for functions to access any storage slot in a contract
              interface IExtsload {
                  /// @notice Called by external contracts to access granular pool state
                  /// @param slot Key of slot to sload
                  /// @return value The value of the slot as bytes32
                  function extsload(bytes32 slot) external view returns (bytes32 value);
                  /// @notice Called by external contracts to access granular pool state
                  /// @param startSlot Key of slot to start sloading from
                  /// @param nSlots Number of slots to load into return value
                  /// @return values List of loaded values.
                  function extsload(bytes32 startSlot, uint256 nSlots) external view returns (bytes32[] memory values);
                  /// @notice Called by external contracts to access sparse pool state
                  /// @param slots List of slots to SLOAD from.
                  /// @return values List of loaded values.
                  function extsload(bytes32[] calldata slots) external view returns (bytes32[] memory values);
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.24;
              /// @notice Interface for functions to access any transient storage slot in a contract
              interface IExttload {
                  /// @notice Called by external contracts to access transient storage of the contract
                  /// @param slot Key of slot to tload
                  /// @return value The value of the slot as bytes32
                  function exttload(bytes32 slot) external view returns (bytes32 value);
                  /// @notice Called by external contracts to access sparse transient pool state
                  /// @param slots List of slots to tload
                  /// @return values List of loaded values
                  function exttload(bytes32[] calldata slots) external view returns (bytes32[] memory values);
              }
              // SPDX-License-Identifier: AGPL-3.0-only
              pragma solidity >=0.8.0;
              /// @notice Simple single owner authorization mixin.
              /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/auth/Owned.sol)
              abstract contract Owned {
                  /*//////////////////////////////////////////////////////////////
                                               EVENTS
                  //////////////////////////////////////////////////////////////*/
                  event OwnershipTransferred(address indexed user, address indexed newOwner);
                  /*//////////////////////////////////////////////////////////////
                                          OWNERSHIP STORAGE
                  //////////////////////////////////////////////////////////////*/
                  address public owner;
                  modifier onlyOwner() virtual {
                      require(msg.sender == owner, "UNAUTHORIZED");
                      _;
                  }
                  /*//////////////////////////////////////////////////////////////
                                             CONSTRUCTOR
                  //////////////////////////////////////////////////////////////*/
                  constructor(address _owner) {
                      owner = _owner;
                      emit OwnershipTransferred(address(0), _owner);
                  }
                  /*//////////////////////////////////////////////////////////////
                                           OWNERSHIP LOGIC
                  //////////////////////////////////////////////////////////////*/
                  function transferOwnership(address newOwner) public virtual onlyOwner {
                      owner = newOwner;
                      emit OwnershipTransferred(msg.sender, newOwner);
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import {IERC6909Claims} from "./interfaces/external/IERC6909Claims.sol";
              /// @notice Minimalist and gas efficient standard ERC6909 implementation.
              /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC6909.sol)
              /// @dev Copied from the commit at 4b47a19038b798b4a33d9749d25e570443520647
              /// @dev This contract has been modified from the implementation at the above link.
              abstract contract ERC6909 is IERC6909Claims {
                  /*//////////////////////////////////////////////////////////////
                                           ERC6909 STORAGE
                  //////////////////////////////////////////////////////////////*/
                  mapping(address owner => mapping(address operator => bool isOperator)) public isOperator;
                  mapping(address owner => mapping(uint256 id => uint256 balance)) public balanceOf;
                  mapping(address owner => mapping(address spender => mapping(uint256 id => uint256 amount))) public allowance;
                  /*//////////////////////////////////////////////////////////////
                                            ERC6909 LOGIC
                  //////////////////////////////////////////////////////////////*/
                  function transfer(address receiver, uint256 id, uint256 amount) public virtual returns (bool) {
                      balanceOf[msg.sender][id] -= amount;
                      balanceOf[receiver][id] += amount;
                      emit Transfer(msg.sender, msg.sender, receiver, id, amount);
                      return true;
                  }
                  function transferFrom(address sender, address receiver, uint256 id, uint256 amount) public virtual returns (bool) {
                      if (msg.sender != sender && !isOperator[sender][msg.sender]) {
                          uint256 allowed = allowance[sender][msg.sender][id];
                          if (allowed != type(uint256).max) allowance[sender][msg.sender][id] = allowed - amount;
                      }
                      balanceOf[sender][id] -= amount;
                      balanceOf[receiver][id] += amount;
                      emit Transfer(msg.sender, sender, receiver, id, amount);
                      return true;
                  }
                  function approve(address spender, uint256 id, uint256 amount) public virtual returns (bool) {
                      allowance[msg.sender][spender][id] = amount;
                      emit Approval(msg.sender, spender, id, amount);
                      return true;
                  }
                  function setOperator(address operator, bool approved) public virtual returns (bool) {
                      isOperator[msg.sender][operator] = approved;
                      emit OperatorSet(msg.sender, operator, approved);
                      return true;
                  }
                  /*//////////////////////////////////////////////////////////////
                                            ERC165 LOGIC
                  //////////////////////////////////////////////////////////////*/
                  function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
                      return interfaceId == 0x01ffc9a7 // ERC165 Interface ID for ERC165
                          || interfaceId == 0x0f632fb3; // ERC165 Interface ID for ERC6909
                  }
                  /*//////////////////////////////////////////////////////////////
                                      INTERNAL MINT/BURN LOGIC
                  //////////////////////////////////////////////////////////////*/
                  function _mint(address receiver, uint256 id, uint256 amount) internal virtual {
                      balanceOf[receiver][id] += amount;
                      emit Transfer(msg.sender, address(0), receiver, id, amount);
                  }
                  function _burn(address sender, uint256 id, uint256 amount) internal virtual {
                      balanceOf[sender][id] -= amount;
                      emit Transfer(msg.sender, sender, address(0), id, amount);
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title FixedPoint96
              /// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format)
              /// @dev Used in SqrtPriceMath.sol
              library FixedPoint96 {
                  uint8 internal constant RESOLUTION = 96;
                  uint256 internal constant Q96 = 0x1000000000000000000000000;
              }
              

              File 2 of 4: TetherToken
              pragma solidity ^0.4.17;
              
              /**
               * @title SafeMath
               * @dev Math operations with safety checks that throw on error
               */
              library SafeMath {
                  function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                      if (a == 0) {
                          return 0;
                      }
                      uint256 c = a * b;
                      assert(c / a == b);
                      return c;
                  }
              
                  function div(uint256 a, uint256 b) internal pure returns (uint256) {
                      // assert(b > 0); // Solidity automatically throws when dividing by 0
                      uint256 c = a / b;
                      // assert(a == b * c + a % b); // There is no case in which this doesn't hold
                      return c;
                  }
              
                  function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                      assert(b <= a);
                      return a - b;
                  }
              
                  function add(uint256 a, uint256 b) internal pure returns (uint256) {
                      uint256 c = a + b;
                      assert(c >= a);
                      return c;
                  }
              }
              
              /**
               * @title Ownable
               * @dev The Ownable contract has an owner address, and provides basic authorization control
               * functions, this simplifies the implementation of "user permissions".
               */
              contract Ownable {
                  address public owner;
              
                  /**
                    * @dev The Ownable constructor sets the original `owner` of the contract to the sender
                    * account.
                    */
                  function Ownable() public {
                      owner = msg.sender;
                  }
              
                  /**
                    * @dev Throws if called by any account other than the owner.
                    */
                  modifier onlyOwner() {
                      require(msg.sender == owner);
                      _;
                  }
              
                  /**
                  * @dev Allows the current owner to transfer control of the contract to a newOwner.
                  * @param newOwner The address to transfer ownership to.
                  */
                  function transferOwnership(address newOwner) public onlyOwner {
                      if (newOwner != address(0)) {
                          owner = newOwner;
                      }
                  }
              
              }
              
              /**
               * @title ERC20Basic
               * @dev Simpler version of ERC20 interface
               * @dev see https://github.com/ethereum/EIPs/issues/20
               */
              contract ERC20Basic {
                  uint public _totalSupply;
                  function totalSupply() public constant returns (uint);
                  function balanceOf(address who) public constant returns (uint);
                  function transfer(address to, uint value) public;
                  event Transfer(address indexed from, address indexed to, uint value);
              }
              
              /**
               * @title ERC20 interface
               * @dev see https://github.com/ethereum/EIPs/issues/20
               */
              contract ERC20 is ERC20Basic {
                  function allowance(address owner, address spender) public constant returns (uint);
                  function transferFrom(address from, address to, uint value) public;
                  function approve(address spender, uint value) public;
                  event Approval(address indexed owner, address indexed spender, uint value);
              }
              
              /**
               * @title Basic token
               * @dev Basic version of StandardToken, with no allowances.
               */
              contract BasicToken is Ownable, ERC20Basic {
                  using SafeMath for uint;
              
                  mapping(address => uint) public balances;
              
                  // additional variables for use if transaction fees ever became necessary
                  uint public basisPointsRate = 0;
                  uint public maximumFee = 0;
              
                  /**
                  * @dev Fix for the ERC20 short address attack.
                  */
                  modifier onlyPayloadSize(uint size) {
                      require(!(msg.data.length < size + 4));
                      _;
                  }
              
                  /**
                  * @dev transfer token for a specified address
                  * @param _to The address to transfer to.
                  * @param _value The amount to be transferred.
                  */
                  function transfer(address _to, uint _value) public onlyPayloadSize(2 * 32) {
                      uint fee = (_value.mul(basisPointsRate)).div(10000);
                      if (fee > maximumFee) {
                          fee = maximumFee;
                      }
                      uint sendAmount = _value.sub(fee);
                      balances[msg.sender] = balances[msg.sender].sub(_value);
                      balances[_to] = balances[_to].add(sendAmount);
                      if (fee > 0) {
                          balances[owner] = balances[owner].add(fee);
                          Transfer(msg.sender, owner, fee);
                      }
                      Transfer(msg.sender, _to, sendAmount);
                  }
              
                  /**
                  * @dev Gets the balance of the specified address.
                  * @param _owner The address to query the the balance of.
                  * @return An uint representing the amount owned by the passed address.
                  */
                  function balanceOf(address _owner) public constant returns (uint balance) {
                      return balances[_owner];
                  }
              
              }
              
              /**
               * @title Standard ERC20 token
               *
               * @dev Implementation of the basic standard token.
               * @dev https://github.com/ethereum/EIPs/issues/20
               * @dev Based oncode by FirstBlood: https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol
               */
              contract StandardToken is BasicToken, ERC20 {
              
                  mapping (address => mapping (address => uint)) public allowed;
              
                  uint public constant MAX_UINT = 2**256 - 1;
              
                  /**
                  * @dev Transfer tokens from one address to another
                  * @param _from address The address which you want to send tokens from
                  * @param _to address The address which you want to transfer to
                  * @param _value uint the amount of tokens to be transferred
                  */
                  function transferFrom(address _from, address _to, uint _value) public onlyPayloadSize(3 * 32) {
                      var _allowance = allowed[_from][msg.sender];
              
                      // Check is not needed because sub(_allowance, _value) will already throw if this condition is not met
                      // if (_value > _allowance) throw;
              
                      uint fee = (_value.mul(basisPointsRate)).div(10000);
                      if (fee > maximumFee) {
                          fee = maximumFee;
                      }
                      if (_allowance < MAX_UINT) {
                          allowed[_from][msg.sender] = _allowance.sub(_value);
                      }
                      uint sendAmount = _value.sub(fee);
                      balances[_from] = balances[_from].sub(_value);
                      balances[_to] = balances[_to].add(sendAmount);
                      if (fee > 0) {
                          balances[owner] = balances[owner].add(fee);
                          Transfer(_from, owner, fee);
                      }
                      Transfer(_from, _to, sendAmount);
                  }
              
                  /**
                  * @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender.
                  * @param _spender The address which will spend the funds.
                  * @param _value The amount of tokens to be spent.
                  */
                  function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) {
              
                      // To change the approve amount you first have to reduce the addresses`
                      //  allowance to zero by calling `approve(_spender, 0)` if it is not
                      //  already 0 to mitigate the race condition described here:
                      //  https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                      require(!((_value != 0) && (allowed[msg.sender][_spender] != 0)));
              
                      allowed[msg.sender][_spender] = _value;
                      Approval(msg.sender, _spender, _value);
                  }
              
                  /**
                  * @dev Function to check the amount of tokens than an owner allowed to a spender.
                  * @param _owner address The address which owns the funds.
                  * @param _spender address The address which will spend the funds.
                  * @return A uint specifying the amount of tokens still available for the spender.
                  */
                  function allowance(address _owner, address _spender) public constant returns (uint remaining) {
                      return allowed[_owner][_spender];
                  }
              
              }
              
              
              /**
               * @title Pausable
               * @dev Base contract which allows children to implement an emergency stop mechanism.
               */
              contract Pausable is Ownable {
                event Pause();
                event Unpause();
              
                bool public paused = false;
              
              
                /**
                 * @dev Modifier to make a function callable only when the contract is not paused.
                 */
                modifier whenNotPaused() {
                  require(!paused);
                  _;
                }
              
                /**
                 * @dev Modifier to make a function callable only when the contract is paused.
                 */
                modifier whenPaused() {
                  require(paused);
                  _;
                }
              
                /**
                 * @dev called by the owner to pause, triggers stopped state
                 */
                function pause() onlyOwner whenNotPaused public {
                  paused = true;
                  Pause();
                }
              
                /**
                 * @dev called by the owner to unpause, returns to normal state
                 */
                function unpause() onlyOwner whenPaused public {
                  paused = false;
                  Unpause();
                }
              }
              
              contract BlackList is Ownable, BasicToken {
              
                  /////// Getters to allow the same blacklist to be used also by other contracts (including upgraded Tether) ///////
                  function getBlackListStatus(address _maker) external constant returns (bool) {
                      return isBlackListed[_maker];
                  }
              
                  function getOwner() external constant returns (address) {
                      return owner;
                  }
              
                  mapping (address => bool) public isBlackListed;
                  
                  function addBlackList (address _evilUser) public onlyOwner {
                      isBlackListed[_evilUser] = true;
                      AddedBlackList(_evilUser);
                  }
              
                  function removeBlackList (address _clearedUser) public onlyOwner {
                      isBlackListed[_clearedUser] = false;
                      RemovedBlackList(_clearedUser);
                  }
              
                  function destroyBlackFunds (address _blackListedUser) public onlyOwner {
                      require(isBlackListed[_blackListedUser]);
                      uint dirtyFunds = balanceOf(_blackListedUser);
                      balances[_blackListedUser] = 0;
                      _totalSupply -= dirtyFunds;
                      DestroyedBlackFunds(_blackListedUser, dirtyFunds);
                  }
              
                  event DestroyedBlackFunds(address _blackListedUser, uint _balance);
              
                  event AddedBlackList(address _user);
              
                  event RemovedBlackList(address _user);
              
              }
              
              contract UpgradedStandardToken is StandardToken{
                  // those methods are called by the legacy contract
                  // and they must ensure msg.sender to be the contract address
                  function transferByLegacy(address from, address to, uint value) public;
                  function transferFromByLegacy(address sender, address from, address spender, uint value) public;
                  function approveByLegacy(address from, address spender, uint value) public;
              }
              
              contract TetherToken is Pausable, StandardToken, BlackList {
              
                  string public name;
                  string public symbol;
                  uint public decimals;
                  address public upgradedAddress;
                  bool public deprecated;
              
                  //  The contract can be initialized with a number of tokens
                  //  All the tokens are deposited to the owner address
                  //
                  // @param _balance Initial supply of the contract
                  // @param _name Token Name
                  // @param _symbol Token symbol
                  // @param _decimals Token decimals
                  function TetherToken(uint _initialSupply, string _name, string _symbol, uint _decimals) public {
                      _totalSupply = _initialSupply;
                      name = _name;
                      symbol = _symbol;
                      decimals = _decimals;
                      balances[owner] = _initialSupply;
                      deprecated = false;
                  }
              
                  // Forward ERC20 methods to upgraded contract if this one is deprecated
                  function transfer(address _to, uint _value) public whenNotPaused {
                      require(!isBlackListed[msg.sender]);
                      if (deprecated) {
                          return UpgradedStandardToken(upgradedAddress).transferByLegacy(msg.sender, _to, _value);
                      } else {
                          return super.transfer(_to, _value);
                      }
                  }
              
                  // Forward ERC20 methods to upgraded contract if this one is deprecated
                  function transferFrom(address _from, address _to, uint _value) public whenNotPaused {
                      require(!isBlackListed[_from]);
                      if (deprecated) {
                          return UpgradedStandardToken(upgradedAddress).transferFromByLegacy(msg.sender, _from, _to, _value);
                      } else {
                          return super.transferFrom(_from, _to, _value);
                      }
                  }
              
                  // Forward ERC20 methods to upgraded contract if this one is deprecated
                  function balanceOf(address who) public constant returns (uint) {
                      if (deprecated) {
                          return UpgradedStandardToken(upgradedAddress).balanceOf(who);
                      } else {
                          return super.balanceOf(who);
                      }
                  }
              
                  // Forward ERC20 methods to upgraded contract if this one is deprecated
                  function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) {
                      if (deprecated) {
                          return UpgradedStandardToken(upgradedAddress).approveByLegacy(msg.sender, _spender, _value);
                      } else {
                          return super.approve(_spender, _value);
                      }
                  }
              
                  // Forward ERC20 methods to upgraded contract if this one is deprecated
                  function allowance(address _owner, address _spender) public constant returns (uint remaining) {
                      if (deprecated) {
                          return StandardToken(upgradedAddress).allowance(_owner, _spender);
                      } else {
                          return super.allowance(_owner, _spender);
                      }
                  }
              
                  // deprecate current contract in favour of a new one
                  function deprecate(address _upgradedAddress) public onlyOwner {
                      deprecated = true;
                      upgradedAddress = _upgradedAddress;
                      Deprecate(_upgradedAddress);
                  }
              
                  // deprecate current contract if favour of a new one
                  function totalSupply() public constant returns (uint) {
                      if (deprecated) {
                          return StandardToken(upgradedAddress).totalSupply();
                      } else {
                          return _totalSupply;
                      }
                  }
              
                  // Issue a new amount of tokens
                  // these tokens are deposited into the owner address
                  //
                  // @param _amount Number of tokens to be issued
                  function issue(uint amount) public onlyOwner {
                      require(_totalSupply + amount > _totalSupply);
                      require(balances[owner] + amount > balances[owner]);
              
                      balances[owner] += amount;
                      _totalSupply += amount;
                      Issue(amount);
                  }
              
                  // Redeem tokens.
                  // These tokens are withdrawn from the owner address
                  // if the balance must be enough to cover the redeem
                  // or the call will fail.
                  // @param _amount Number of tokens to be issued
                  function redeem(uint amount) public onlyOwner {
                      require(_totalSupply >= amount);
                      require(balances[owner] >= amount);
              
                      _totalSupply -= amount;
                      balances[owner] -= amount;
                      Redeem(amount);
                  }
              
                  function setParams(uint newBasisPoints, uint newMaxFee) public onlyOwner {
                      // Ensure transparency by hardcoding limit beyond which fees can never be added
                      require(newBasisPoints < 20);
                      require(newMaxFee < 50);
              
                      basisPointsRate = newBasisPoints;
                      maximumFee = newMaxFee.mul(10**decimals);
              
                      Params(basisPointsRate, maximumFee);
                  }
              
                  // Called when new token are issued
                  event Issue(uint amount);
              
                  // Called when tokens are redeemed
                  event Redeem(uint amount);
              
                  // Called when contract is deprecated
                  event Deprecate(address newAddress);
              
                  // Called if contract ever adds fees
                  event Params(uint feeBasisPoints, uint maxFee);
              }

              File 3 of 4: OpenOceanExchangeProxy
              // File: @openzeppelin/contracts/proxy/Proxy.sol
              
              // SPDX-License-Identifier: MIT
              
              pragma solidity >=0.6.0 <0.8.0;
              
              /**
               * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
               * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
               * be specified by overriding the virtual {_implementation} function.
               *
               * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
               * different contract through the {_delegate} function.
               *
               * The success and return data of the delegated call will be returned back to the caller of the proxy.
               */
              abstract contract Proxy {
                  /**
                   * @dev Delegates the current call to `implementation`.
                   *
                   * This function does not return to its internall call site, it will return directly to the external caller.
                   */
                  function _delegate(address implementation) internal virtual {
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          // Copy msg.data. We take full control of memory in this inline assembly
                          // block because it will not return to Solidity code. We overwrite the
                          // Solidity scratch pad at memory position 0.
                          calldatacopy(0, 0, calldatasize())
              
                          // Call the implementation.
                          // out and outsize are 0 because we don't know the size yet.
                          let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
              
                          // Copy the returned data.
                          returndatacopy(0, 0, returndatasize())
              
                          switch result
                          // delegatecall returns 0 on error.
                          case 0 {
                              revert(0, returndatasize())
                          }
                          default {
                              return(0, returndatasize())
                          }
                      }
                  }
              
                  /**
                   * @dev This is a virtual function that should be overriden so it returns the address to which the fallback function
                   * and {_fallback} should delegate.
                   */
                  function _implementation() internal view virtual returns (address);
              
                  /**
                   * @dev Delegates the current call to the address returned by `_implementation()`.
                   *
                   * This function does not return to its internall call site, it will return directly to the external caller.
                   */
                  function _fallback() internal virtual {
                      _beforeFallback();
                      _delegate(_implementation());
                  }
              
                  /**
                   * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
                   * function in the contract matches the call data.
                   */
                  fallback() external payable virtual {
                      _fallback();
                  }
              
                  /**
                   * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data
                   * is empty.
                   */
                  receive() external payable virtual {
                      _fallback();
                  }
              
                  /**
                   * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback`
                   * call, or as part of the Solidity `fallback` or `receive` functions.
                   *
                   * If overriden should call `super._beforeFallback()`.
                   */
                  function _beforeFallback() internal virtual {}
              }
              
              // File: @openzeppelin/contracts/utils/Address.sol
              
              pragma solidity >=0.6.2 <0.8.0;
              
              /**
               * @dev Collection of functions related to the address type
               */
              library Address {
                  /**
                   * @dev Returns true if `account` is a contract.
                   *
                   * [IMPORTANT]
                   * ====
                   * It is unsafe to assume that an address for which this function returns
                   * false is an externally-owned account (EOA) and not a contract.
                   *
                   * Among others, `isContract` will return false for the following
                   * types of addresses:
                   *
                   *  - an externally-owned account
                   *  - a contract in construction
                   *  - an address where a contract will be created
                   *  - an address where a contract lived, but was destroyed
                   * ====
                   */
                  function isContract(address account) internal view returns (bool) {
                      // This method relies on extcodesize, which returns 0 for contracts in
                      // construction, since the code is only stored at the end of the
                      // constructor execution.
              
                      uint256 size;
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          size := extcodesize(account)
                      }
                      return size > 0;
                  }
              
                  /**
                   * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                   * `recipient`, forwarding all available gas and reverting on errors.
                   *
                   * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                   * of certain opcodes, possibly making contracts go over the 2300 gas limit
                   * imposed by `transfer`, making them unable to receive funds via
                   * `transfer`. {sendValue} removes this limitation.
                   *
                   * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                   *
                   * IMPORTANT: because control is transferred to `recipient`, care must be
                   * taken to not create reentrancy vulnerabilities. Consider using
                   * {ReentrancyGuard} or the
                   * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                   */
                  function sendValue(address payable recipient, uint256 amount) internal {
                      require(address(this).balance >= amount, "Address: insufficient balance");
              
                      // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
                      (bool success, ) = recipient.call{value: amount}("");
                      require(success, "Address: unable to send value, recipient may have reverted");
                  }
              
                  /**
                   * @dev Performs a Solidity function call using a low level `call`. A
                   * plain`call` is an unsafe replacement for a function call: use this
                   * function instead.
                   *
                   * If `target` reverts with a revert reason, it is bubbled up by this
                   * function (like regular Solidity function calls).
                   *
                   * Returns the raw returned data. To convert to the expected return value,
                   * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                   *
                   * Requirements:
                   *
                   * - `target` must be a contract.
                   * - calling `target` with `data` must not revert.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionCall(target, data, "Address: low-level call failed");
                  }
              
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                   * `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, 0, errorMessage);
                  }
              
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but also transferring `value` wei to `target`.
                   *
                   * Requirements:
                   *
                   * - the calling contract must have an ETH balance of at least `value`.
                   * - the called Solidity function must be `payable`.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                  }
              
                  /**
                   * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                   * with `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      require(address(this).balance >= value, "Address: insufficient balance for call");
                      require(isContract(target), "Address: call to non-contract");
              
                      // solhint-disable-next-line avoid-low-level-calls
                      (bool success, bytes memory returndata) = target.call{value: value}(data);
                      return _verifyCallResult(success, returndata, errorMessage);
                  }
              
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                      return functionStaticCall(target, data, "Address: low-level static call failed");
                  }
              
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal view returns (bytes memory) {
                      require(isContract(target), "Address: static call to non-contract");
              
                      // solhint-disable-next-line avoid-low-level-calls
                      (bool success, bytes memory returndata) = target.staticcall(data);
                      return _verifyCallResult(success, returndata, errorMessage);
                  }
              
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a delegate call.
                   *
                   * _Available since v3.4._
                   */
                  function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                  }
              
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a delegate call.
                   *
                   * _Available since v3.4._
                   */
                  function functionDelegateCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      require(isContract(target), "Address: delegate call to non-contract");
              
                      // solhint-disable-next-line avoid-low-level-calls
                      (bool success, bytes memory returndata) = target.delegatecall(data);
                      return _verifyCallResult(success, returndata, errorMessage);
                  }
              
                  function _verifyCallResult(
                      bool success,
                      bytes memory returndata,
                      string memory errorMessage
                  ) private pure returns (bytes memory) {
                      if (success) {
                          return returndata;
                      } else {
                          // Look for revert reason and bubble it up if present
                          if (returndata.length > 0) {
                              // The easiest way to bubble the revert reason is using memory via assembly
              
                              // solhint-disable-next-line no-inline-assembly
                              assembly {
                                  let returndata_size := mload(returndata)
                                  revert(add(32, returndata), returndata_size)
                              }
                          } else {
                              revert(errorMessage);
                          }
                      }
                  }
              }
              
              // File: @openzeppelin/contracts/proxy/UpgradeableProxy.sol
              
              pragma solidity >=0.6.0 <0.8.0;
              
              /**
               * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
               * implementation address that can be changed. This address is stored in storage in the location specified by
               * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
               * implementation behind the proxy.
               *
               * Upgradeability is only provided internally through {_upgradeTo}. For an externally upgradeable proxy see
               * {TransparentUpgradeableProxy}.
               */
              contract UpgradeableProxy is Proxy {
                  /**
                   * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`.
                   *
                   * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded
                   * function call, and allows initializating the storage of the proxy like a Solidity constructor.
                   */
                  constructor(address _logic, bytes memory _data) public payable {
                      assert(_IMPLEMENTATION_SLOT == bytes32(uint256(keccak256("eip1967.proxy.implementation")) - 1));
                      _setImplementation(_logic);
                      if (_data.length > 0) {
                          Address.functionDelegateCall(_logic, _data);
                      }
                  }
              
                  /**
                   * @dev Emitted when the implementation is upgraded.
                   */
                  event Upgraded(address indexed implementation);
              
                  /**
                   * @dev Storage slot with the address of the current implementation.
                   * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
                   * validated in the constructor.
                   */
                  bytes32 private constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
              
                  /**
                   * @dev Returns the current implementation address.
                   */
                  function _implementation() internal view virtual override returns (address impl) {
                      bytes32 slot = _IMPLEMENTATION_SLOT;
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          impl := sload(slot)
                      }
                  }
              
                  /**
                   * @dev Upgrades the proxy to a new implementation.
                   *
                   * Emits an {Upgraded} event.
                   */
                  function _upgradeTo(address newImplementation) internal virtual {
                      _setImplementation(newImplementation);
                      emit Upgraded(newImplementation);
                  }
              
                  /**
                   * @dev Stores a new address in the EIP1967 implementation slot.
                   */
                  function _setImplementation(address newImplementation) private {
                      require(Address.isContract(newImplementation), "UpgradeableProxy: new implementation is not a contract");
              
                      bytes32 slot = _IMPLEMENTATION_SLOT;
              
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          sstore(slot, newImplementation)
                      }
                  }
              }
              
              // File: @openzeppelin/contracts/proxy/TransparentUpgradeableProxy.sol
              
              pragma solidity >=0.6.0 <0.8.0;
              
              /**
               * @dev This contract implements a proxy that is upgradeable by an admin.
               *
               * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector
               * clashing], which can potentially be used in an attack, this contract uses the
               * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two
               * things that go hand in hand:
               *
               * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if
               * that call matches one of the admin functions exposed by the proxy itself.
               * 2. If the admin calls the proxy, it can access the admin functions, but its calls will never be forwarded to the
               * implementation. If the admin tries to call a function on the implementation it will fail with an error that says
               * "admin cannot fallback to proxy target".
               *
               * These properties mean that the admin account can only be used for admin actions like upgrading the proxy or changing
               * the admin, so it's best if it's a dedicated account that is not used for anything else. This will avoid headaches due
               * to sudden errors when trying to call a function from the proxy implementation.
               *
               * Our recommendation is for the dedicated account to be an instance of the {ProxyAdmin} contract. If set up this way,
               * you should think of the `ProxyAdmin` instance as the real administrative interface of your proxy.
               */
              contract TransparentUpgradeableProxy is UpgradeableProxy {
                  /**
                   * @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and
                   * optionally initialized with `_data` as explained in {UpgradeableProxy-constructor}.
                   */
                  constructor(
                      address _logic,
                      address admin_,
                      bytes memory _data
                  ) public payable UpgradeableProxy(_logic, _data) {
                      assert(_ADMIN_SLOT == bytes32(uint256(keccak256("eip1967.proxy.admin")) - 1));
                      _setAdmin(admin_);
                  }
              
                  /**
                   * @dev Emitted when the admin account has changed.
                   */
                  event AdminChanged(address previousAdmin, address newAdmin);
              
                  /**
                   * @dev Storage slot with the admin of the contract.
                   * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
                   * validated in the constructor.
                   */
                  bytes32 private constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
              
                  /**
                   * @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin.
                   */
                  modifier ifAdmin() {
                      if (msg.sender == _admin()) {
                          _;
                      } else {
                          _fallback();
                      }
                  }
              
                  /**
                   * @dev Returns the current admin.
                   *
                   * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyAdmin}.
                   *
                   * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
                   * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
                   * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
                   */
                  function admin() external ifAdmin returns (address admin_) {
                      admin_ = _admin();
                  }
              
                  /**
                   * @dev Returns the current implementation.
                   *
                   * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyImplementation}.
                   *
                   * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
                   * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
                   * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
                   */
                  function implementation() external ifAdmin returns (address implementation_) {
                      implementation_ = _implementation();
                  }
              
                  /**
                   * @dev Changes the admin of the proxy.
                   *
                   * Emits an {AdminChanged} event.
                   *
                   * NOTE: Only the admin can call this function. See {ProxyAdmin-changeProxyAdmin}.
                   */
                  function changeAdmin(address newAdmin) external virtual ifAdmin {
                      require(newAdmin != address(0), "TransparentUpgradeableProxy: new admin is the zero address");
                      emit AdminChanged(_admin(), newAdmin);
                      _setAdmin(newAdmin);
                  }
              
                  /**
                   * @dev Upgrade the implementation of the proxy.
                   *
                   * NOTE: Only the admin can call this function. See {ProxyAdmin-upgrade}.
                   */
                  function upgradeTo(address newImplementation) external virtual ifAdmin {
                      _upgradeTo(newImplementation);
                  }
              
                  /**
                   * @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified
                   * by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the
                   * proxied contract.
                   *
                   * NOTE: Only the admin can call this function. See {ProxyAdmin-upgradeAndCall}.
                   */
                  function upgradeToAndCall(address newImplementation, bytes calldata data) external payable virtual ifAdmin {
                      _upgradeTo(newImplementation);
                      Address.functionDelegateCall(newImplementation, data);
                  }
              
                  /**
                   * @dev Returns the current admin.
                   */
                  function _admin() internal view virtual returns (address adm) {
                      bytes32 slot = _ADMIN_SLOT;
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          adm := sload(slot)
                      }
                  }
              
                  /**
                   * @dev Stores a new address in the EIP1967 admin slot.
                   */
                  function _setAdmin(address newAdmin) private {
                      bytes32 slot = _ADMIN_SLOT;
              
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          sstore(slot, newAdmin)
                      }
                  }
              
                  /**
                   * @dev Makes sure the admin cannot access the fallback function. See {Proxy-_beforeFallback}.
                   */
                  function _beforeFallback() internal virtual override {
                      require(msg.sender != _admin(), "TransparentUpgradeableProxy: admin cannot fallback to proxy target");
                      super._beforeFallback();
                  }
              }
              
              // File: contracts/OpenOceanExchangeProxy.sol
              
              pragma solidity ^0.6.12;
              
              contract OpenOceanExchangeProxy is TransparentUpgradeableProxy {
                  constructor(
                      address logic,
                      address admin,
                      bytes memory data
                  ) public TransparentUpgradeableProxy(logic, admin, data) {}
              }

              File 4 of 4: OpenOceanExchange
              /**
               *Submitted for verification at Arbiscan.io on 2025-01-02
              */
              
              // File: @openzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol
              
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
              
              pragma solidity ^0.8.1;
              
              /**
               * @dev Collection of functions related to the address type
               */
              library AddressUpgradeable {
                  /**
                   * @dev Returns true if `account` is a contract.
                   *
                   * [IMPORTANT]
                   * ====
                   * It is unsafe to assume that an address for which this function returns
                   * false is an externally-owned account (EOA) and not a contract.
                   *
                   * Among others, `isContract` will return false for the following
                   * types of addresses:
                   *
                   *  - an externally-owned account
                   *  - a contract in construction
                   *  - an address where a contract will be created
                   *  - an address where a contract lived, but was destroyed
                   * ====
                   *
                   * [IMPORTANT]
                   * ====
                   * You shouldn't rely on `isContract` to protect against flash loan attacks!
                   *
                   * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                   * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                   * constructor.
                   * ====
                   */
                  function isContract(address account) internal view returns (bool) {
                      // This method relies on extcodesize/address.code.length, which returns 0
                      // for contracts in construction, since the code is only stored at the end
                      // of the constructor execution.
              
                      return account.code.length > 0;
                  }
              
                  /**
                   * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                   * `recipient`, forwarding all available gas and reverting on errors.
                   *
                   * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                   * of certain opcodes, possibly making contracts go over the 2300 gas limit
                   * imposed by `transfer`, making them unable to receive funds via
                   * `transfer`. {sendValue} removes this limitation.
                   *
                   * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                   *
                   * IMPORTANT: because control is transferred to `recipient`, care must be
                   * taken to not create reentrancy vulnerabilities. Consider using
                   * {ReentrancyGuard} or the
                   * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                   */
                  function sendValue(address payable recipient, uint256 amount) internal {
                      require(address(this).balance >= amount, "Address: insufficient balance");
              
                      (bool success, ) = recipient.call{value: amount}("");
                      require(success, "Address: unable to send value, recipient may have reverted");
                  }
              
                  /**
                   * @dev Performs a Solidity function call using a low level `call`. A
                   * plain `call` is an unsafe replacement for a function call: use this
                   * function instead.
                   *
                   * If `target` reverts with a revert reason, it is bubbled up by this
                   * function (like regular Solidity function calls).
                   *
                   * Returns the raw returned data. To convert to the expected return value,
                   * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                   *
                   * Requirements:
                   *
                   * - `target` must be a contract.
                   * - calling `target` with `data` must not revert.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, 0, "Address: low-level call failed");
                  }
              
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                   * `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, 0, errorMessage);
                  }
              
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but also transferring `value` wei to `target`.
                   *
                   * Requirements:
                   *
                   * - the calling contract must have an ETH balance of at least `value`.
                   * - the called Solidity function must be `payable`.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                  }
              
                  /**
                   * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                   * with `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      require(address(this).balance >= value, "Address: insufficient balance for call");
                      (bool success, bytes memory returndata) = target.call{value: value}(data);
                      return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                  }
              
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                      return functionStaticCall(target, data, "Address: low-level static call failed");
                  }
              
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal view returns (bytes memory) {
                      (bool success, bytes memory returndata) = target.staticcall(data);
                      return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                  }
              
                  /**
                   * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
                   * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
                   *
                   * _Available since v4.8._
                   */
                  function verifyCallResultFromTarget(
                      address target,
                      bool success,
                      bytes memory returndata,
                      string memory errorMessage
                  ) internal view returns (bytes memory) {
                      if (success) {
                          if (returndata.length == 0) {
                              // only check isContract if the call was successful and the return data is empty
                              // otherwise we already know that it was a contract
                              require(isContract(target), "Address: call to non-contract");
                          }
                          return returndata;
                      } else {
                          _revert(returndata, errorMessage);
                      }
                  }
              
                  /**
                   * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
                   * revert reason or using the provided one.
                   *
                   * _Available since v4.3._
                   */
                  function verifyCallResult(
                      bool success,
                      bytes memory returndata,
                      string memory errorMessage
                  ) internal pure returns (bytes memory) {
                      if (success) {
                          return returndata;
                      } else {
                          _revert(returndata, errorMessage);
                      }
                  }
              
                  function _revert(bytes memory returndata, string memory errorMessage) private pure {
                      // Look for revert reason and bubble it up if present
                      if (returndata.length > 0) {
                          // The easiest way to bubble the revert reason is using memory via assembly
                          /// @solidity memory-safe-assembly
                          assembly {
                              let returndata_size := mload(returndata)
                              revert(add(32, returndata), returndata_size)
                          }
                      } else {
                          revert(errorMessage);
                      }
                  }
              }
              
              // File: @openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol
              
              
              // OpenZeppelin Contracts (last updated v4.8.1) (proxy/utils/Initializable.sol)
              
              pragma solidity ^0.8.2;
              
              /**
               * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
               * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
               * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
               * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
               *
               * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
               * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
               * case an upgrade adds a module that needs to be initialized.
               *
               * For example:
               *
               * [.hljs-theme-light.nopadding]
               * ```
               * contract MyToken is ERC20Upgradeable {
               *     function initialize() initializer public {
               *         __ERC20_init("MyToken", "MTK");
               *     }
               * }
               * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
               *     function initializeV2() reinitializer(2) public {
               *         __ERC20Permit_init("MyToken");
               *     }
               * }
               * ```
               *
               * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
               * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
               *
               * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
               * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
               *
               * [CAUTION]
               * ====
               * Avoid leaving a contract uninitialized.
               *
               * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
               * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
               * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
               *
               * [.hljs-theme-light.nopadding]
               * ```
               * /// @custom:oz-upgrades-unsafe-allow constructor
               * constructor() {
               *     _disableInitializers();
               * }
               * ```
               * ====
               */
              abstract contract Initializable {
                  /**
                   * @dev Indicates that the contract has been initialized.
                   * @custom:oz-retyped-from bool
                   */
                  uint8 private _initialized;
              
                  /**
                   * @dev Indicates that the contract is in the process of being initialized.
                   */
                  bool private _initializing;
              
                  /**
                   * @dev Triggered when the contract has been initialized or reinitialized.
                   */
                  event Initialized(uint8 version);
              
                  /**
                   * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                   * `onlyInitializing` functions can be used to initialize parent contracts.
                   *
                   * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
                   * constructor.
                   *
                   * Emits an {Initialized} event.
                   */
                  modifier initializer() {
                      bool isTopLevelCall = !_initializing;
                      require(
                          (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                          "Initializable: contract is already initialized"
                      );
                      _initialized = 1;
                      if (isTopLevelCall) {
                          _initializing = true;
                      }
                      _;
                      if (isTopLevelCall) {
                          _initializing = false;
                          emit Initialized(1);
                      }
                  }
              
                  /**
                   * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                   * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                   * used to initialize parent contracts.
                   *
                   * A reinitializer may be used after the original initialization step. This is essential to configure modules that
                   * are added through upgrades and that require initialization.
                   *
                   * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
                   * cannot be nested. If one is invoked in the context of another, execution will revert.
                   *
                   * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                   * a contract, executing them in the right order is up to the developer or operator.
                   *
                   * WARNING: setting the version to 255 will prevent any future reinitialization.
                   *
                   * Emits an {Initialized} event.
                   */
                  modifier reinitializer(uint8 version) {
                      require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                      _initialized = version;
                      _initializing = true;
                      _;
                      _initializing = false;
                      emit Initialized(version);
                  }
              
                  /**
                   * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                   * {initializer} and {reinitializer} modifiers, directly or indirectly.
                   */
                  modifier onlyInitializing() {
                      require(_initializing, "Initializable: contract is not initializing");
                      _;
                  }
              
                  /**
                   * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                   * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                   * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                   * through proxies.
                   *
                   * Emits an {Initialized} event the first time it is successfully executed.
                   */
                  function _disableInitializers() internal virtual {
                      require(!_initializing, "Initializable: contract is initializing");
                      if (_initialized < type(uint8).max) {
                          _initialized = type(uint8).max;
                          emit Initialized(type(uint8).max);
                      }
                  }
              
                  /**
                   * @dev Returns the highest version that has been initialized. See {reinitializer}.
                   */
                  function _getInitializedVersion() internal view returns (uint8) {
                      return _initialized;
                  }
              
                  /**
                   * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
                   */
                  function _isInitializing() internal view returns (bool) {
                      return _initializing;
                  }
              }
              
              // File: @openzeppelin/contracts-upgradeable/utils/ContextUpgradeable.sol
              
              
              // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
              
              pragma solidity ^0.8.0;
              
              /**
               * @dev Provides information about the current execution context, including the
               * sender of the transaction and its data. While these are generally available
               * via msg.sender and msg.data, they should not be accessed in such a direct
               * manner, since when dealing with meta-transactions the account sending and
               * paying for execution may not be the actual sender (as far as an application
               * is concerned).
               *
               * This contract is only required for intermediate, library-like contracts.
               */
              abstract contract ContextUpgradeable is Initializable {
                  function __Context_init() internal onlyInitializing {
                  }
              
                  function __Context_init_unchained() internal onlyInitializing {
                  }
                  function _msgSender() internal view virtual returns (address) {
                      return msg.sender;
                  }
              
                  function _msgData() internal view virtual returns (bytes calldata) {
                      return msg.data;
                  }
              
                  /**
                   * @dev This empty reserved space is put in place to allow future versions to add new
                   * variables without shifting down storage in the inheritance chain.
                   * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
                   */
                  uint256[50] private __gap;
              }
              
              // File: @openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol
              
              
              // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
              
              pragma solidity ^0.8.0;
              
              
              /**
               * @dev Contract module which provides a basic access control mechanism, where
               * there is an account (an owner) that can be granted exclusive access to
               * specific functions.
               *
               * By default, the owner account will be the one that deploys the contract. This
               * can later be changed with {transferOwnership}.
               *
               * This module is used through inheritance. It will make available the modifier
               * `onlyOwner`, which can be applied to your functions to restrict their use to
               * the owner.
               */
              abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
                  address private _owner;
              
                  event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
              
                  /**
                   * @dev Initializes the contract setting the deployer as the initial owner.
                   */
                  function __Ownable_init() internal onlyInitializing {
                      __Ownable_init_unchained();
                  }
              
                  function __Ownable_init_unchained() internal onlyInitializing {
                      _transferOwnership(_msgSender());
                  }
              
                  /**
                   * @dev Throws if called by any account other than the owner.
                   */
                  modifier onlyOwner() {
                      _checkOwner();
                      _;
                  }
              
                  /**
                   * @dev Returns the address of the current owner.
                   */
                  function owner() public view virtual returns (address) {
                      return _owner;
                  }
              
                  /**
                   * @dev Throws if the sender is not the owner.
                   */
                  function _checkOwner() internal view virtual {
                      require(owner() == _msgSender(), "Ownable: caller is not the owner");
                  }
              
                  /**
                   * @dev Leaves the contract without owner. It will not be possible to call
                   * `onlyOwner` functions anymore. Can only be called by the current owner.
                   *
                   * NOTE: Renouncing ownership will leave the contract without an owner,
                   * thereby removing any functionality that is only available to the owner.
                   */
                  function renounceOwnership() public virtual onlyOwner {
                      _transferOwnership(address(0));
                  }
              
                  /**
                   * @dev Transfers ownership of the contract to a new account (`newOwner`).
                   * Can only be called by the current owner.
                   */
                  function transferOwnership(address newOwner) public virtual onlyOwner {
                      require(newOwner != address(0), "Ownable: new owner is the zero address");
                      _transferOwnership(newOwner);
                  }
              
                  /**
                   * @dev Transfers ownership of the contract to a new account (`newOwner`).
                   * Internal function without access restriction.
                   */
                  function _transferOwnership(address newOwner) internal virtual {
                      address oldOwner = _owner;
                      _owner = newOwner;
                      emit OwnershipTransferred(oldOwner, newOwner);
                  }
              
                  /**
                   * @dev This empty reserved space is put in place to allow future versions to add new
                   * variables without shifting down storage in the inheritance chain.
                   * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
                   */
                  uint256[49] private __gap;
              }
              
              // File: @openzeppelin/contracts/token/ERC20/IERC20.sol
              
              
              // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
              
              pragma solidity ^0.8.0;
              
              /**
               * @dev Interface of the ERC20 standard as defined in the EIP.
               */
              interface IERC20 {
                  /**
                   * @dev Emitted when `value` tokens are moved from one account (`from`) to
                   * another (`to`).
                   *
                   * Note that `value` may be zero.
                   */
                  event Transfer(address indexed from, address indexed to, uint256 value);
              
                  /**
                   * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                   * a call to {approve}. `value` is the new allowance.
                   */
                  event Approval(address indexed owner, address indexed spender, uint256 value);
              
                  /**
                   * @dev Returns the amount of tokens in existence.
                   */
                  function totalSupply() external view returns (uint256);
              
                  /**
                   * @dev Returns the amount of tokens owned by `account`.
                   */
                  function balanceOf(address account) external view returns (uint256);
              
                  /**
                   * @dev Moves `amount` tokens from the caller's account to `to`.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * Emits a {Transfer} event.
                   */
                  function transfer(address to, uint256 amount) external returns (bool);
              
                  /**
                   * @dev Returns the remaining number of tokens that `spender` will be
                   * allowed to spend on behalf of `owner` through {transferFrom}. This is
                   * zero by default.
                   *
                   * This value changes when {approve} or {transferFrom} are called.
                   */
                  function allowance(address owner, address spender) external view returns (uint256);
              
                  /**
                   * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * IMPORTANT: Beware that changing an allowance with this method brings the risk
                   * that someone may use both the old and the new allowance by unfortunate
                   * transaction ordering. One possible solution to mitigate this race
                   * condition is to first reduce the spender's allowance to 0 and set the
                   * desired value afterwards:
                   * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                   *
                   * Emits an {Approval} event.
                   */
                  function approve(address spender, uint256 amount) external returns (bool);
              
                  /**
                   * @dev Moves `amount` tokens from `from` to `to` using the
                   * allowance mechanism. `amount` is then deducted from the caller's
                   * allowance.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * Emits a {Transfer} event.
                   */
                  function transferFrom(
                      address from,
                      address to,
                      uint256 amount
                  ) external returns (bool);
              }
              
              // File: @openzeppelin/contracts/token/ERC20/extensions/draft-IERC20Permit.sol
              
              
              // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
              
              pragma solidity ^0.8.0;
              
              /**
               * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
               * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
               *
               * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
               * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
               * need to send a transaction, and thus is not required to hold Ether at all.
               */
              interface IERC20Permit {
                  /**
                   * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
                   * given ``owner``'s signed approval.
                   *
                   * IMPORTANT: The same issues {IERC20-approve} has related to transaction
                   * ordering also apply here.
                   *
                   * Emits an {Approval} event.
                   *
                   * Requirements:
                   *
                   * - `spender` cannot be the zero address.
                   * - `deadline` must be a timestamp in the future.
                   * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
                   * over the EIP712-formatted function arguments.
                   * - the signature must use ``owner``'s current nonce (see {nonces}).
                   *
                   * For more information on the signature format, see the
                   * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
                   * section].
                   */
                  function permit(
                      address owner,
                      address spender,
                      uint256 value,
                      uint256 deadline,
                      uint8 v,
                      bytes32 r,
                      bytes32 s
                  ) external;
              
                  /**
                   * @dev Returns the current nonce for `owner`. This value must be
                   * included whenever a signature is generated for {permit}.
                   *
                   * Every successful call to {permit} increases ``owner``'s nonce by one. This
                   * prevents a signature from being used multiple times.
                   */
                  function nonces(address owner) external view returns (uint256);
              
                  /**
                   * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
                   */
                  // solhint-disable-next-line func-name-mixedcase
                  function DOMAIN_SEPARATOR() external view returns (bytes32);
              }
              
              // File: @openzeppelin/contracts/utils/Address.sol
              
              
              // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
              
              pragma solidity ^0.8.1;
              
              /**
               * @dev Collection of functions related to the address type
               */
              library Address {
                  /**
                   * @dev Returns true if `account` is a contract.
                   *
                   * [IMPORTANT]
                   * ====
                   * It is unsafe to assume that an address for which this function returns
                   * false is an externally-owned account (EOA) and not a contract.
                   *
                   * Among others, `isContract` will return false for the following
                   * types of addresses:
                   *
                   *  - an externally-owned account
                   *  - a contract in construction
                   *  - an address where a contract will be created
                   *  - an address where a contract lived, but was destroyed
                   * ====
                   *
                   * [IMPORTANT]
                   * ====
                   * You shouldn't rely on `isContract` to protect against flash loan attacks!
                   *
                   * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                   * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                   * constructor.
                   * ====
                   */
                  function isContract(address account) internal view returns (bool) {
                      // This method relies on extcodesize/address.code.length, which returns 0
                      // for contracts in construction, since the code is only stored at the end
                      // of the constructor execution.
              
                      return account.code.length > 0;
                  }
              
                  /**
                   * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                   * `recipient`, forwarding all available gas and reverting on errors.
                   *
                   * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                   * of certain opcodes, possibly making contracts go over the 2300 gas limit
                   * imposed by `transfer`, making them unable to receive funds via
                   * `transfer`. {sendValue} removes this limitation.
                   *
                   * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                   *
                   * IMPORTANT: because control is transferred to `recipient`, care must be
                   * taken to not create reentrancy vulnerabilities. Consider using
                   * {ReentrancyGuard} or the
                   * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                   */
                  function sendValue(address payable recipient, uint256 amount) internal {
                      require(address(this).balance >= amount, "Address: insufficient balance");
              
                      (bool success, ) = recipient.call{value: amount}("");
                      require(success, "Address: unable to send value, recipient may have reverted");
                  }
              
                  /**
                   * @dev Performs a Solidity function call using a low level `call`. A
                   * plain `call` is an unsafe replacement for a function call: use this
                   * function instead.
                   *
                   * If `target` reverts with a revert reason, it is bubbled up by this
                   * function (like regular Solidity function calls).
                   *
                   * Returns the raw returned data. To convert to the expected return value,
                   * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                   *
                   * Requirements:
                   *
                   * - `target` must be a contract.
                   * - calling `target` with `data` must not revert.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, 0, "Address: low-level call failed");
                  }
              
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                   * `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, 0, errorMessage);
                  }
              
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but also transferring `value` wei to `target`.
                   *
                   * Requirements:
                   *
                   * - the calling contract must have an ETH balance of at least `value`.
                   * - the called Solidity function must be `payable`.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                  }
              
                  /**
                   * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                   * with `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      require(address(this).balance >= value, "Address: insufficient balance for call");
                      (bool success, bytes memory returndata) = target.call{value: value}(data);
                      return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                  }
              
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                      return functionStaticCall(target, data, "Address: low-level static call failed");
                  }
              
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal view returns (bytes memory) {
                      (bool success, bytes memory returndata) = target.staticcall(data);
                      return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                  }
              
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a delegate call.
                   *
                   * _Available since v3.4._
                   */
                  function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                  }
              
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a delegate call.
                   *
                   * _Available since v3.4._
                   */
                  function functionDelegateCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      (bool success, bytes memory returndata) = target.delegatecall(data);
                      return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                  }
              
                  /**
                   * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
                   * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
                   *
                   * _Available since v4.8._
                   */
                  function verifyCallResultFromTarget(
                      address target,
                      bool success,
                      bytes memory returndata,
                      string memory errorMessage
                  ) internal view returns (bytes memory) {
                      if (success) {
                          if (returndata.length == 0) {
                              // only check isContract if the call was successful and the return data is empty
                              // otherwise we already know that it was a contract
                              require(isContract(target), "Address: call to non-contract");
                          }
                          return returndata;
                      } else {
                          _revert(returndata, errorMessage);
                      }
                  }
              
                  /**
                   * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
                   * revert reason or using the provided one.
                   *
                   * _Available since v4.3._
                   */
                  function verifyCallResult(
                      bool success,
                      bytes memory returndata,
                      string memory errorMessage
                  ) internal pure returns (bytes memory) {
                      if (success) {
                          return returndata;
                      } else {
                          _revert(returndata, errorMessage);
                      }
                  }
              
                  function _revert(bytes memory returndata, string memory errorMessage) private pure {
                      // Look for revert reason and bubble it up if present
                      if (returndata.length > 0) {
                          // The easiest way to bubble the revert reason is using memory via assembly
                          /// @solidity memory-safe-assembly
                          assembly {
                              let returndata_size := mload(returndata)
                              revert(add(32, returndata), returndata_size)
                          }
                      } else {
                          revert(errorMessage);
                      }
                  }
              }
              
              // File: @openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol
              
              
              // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)
              
              pragma solidity ^0.8.0;
              
              
              
              /**
               * @title SafeERC20
               * @dev Wrappers around ERC20 operations that throw on failure (when the token
               * contract returns false). Tokens that return no value (and instead revert or
               * throw on failure) are also supported, non-reverting calls are assumed to be
               * successful.
               * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
               * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
               */
              library SafeERC20 {
                  using Address for address;
              
                  function safeTransfer(
                      IERC20 token,
                      address to,
                      uint256 value
                  ) internal {
                      _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
                  }
              
                  function safeTransferFrom(
                      IERC20 token,
                      address from,
                      address to,
                      uint256 value
                  ) internal {
                      _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
                  }
              
                  /**
                   * @dev Deprecated. This function has issues similar to the ones found in
                   * {IERC20-approve}, and its usage is discouraged.
                   *
                   * Whenever possible, use {safeIncreaseAllowance} and
                   * {safeDecreaseAllowance} instead.
                   */
                  function safeApprove(
                      IERC20 token,
                      address spender,
                      uint256 value
                  ) internal {
                      // safeApprove should only be called when setting an initial allowance,
                      // or when resetting it to zero. To increase and decrease it, use
                      // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                      require(
                          (value == 0) || (token.allowance(address(this), spender) == 0),
                          "SafeERC20: approve from non-zero to non-zero allowance"
                      );
                      _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
                  }
              
                  function safeIncreaseAllowance(
                      IERC20 token,
                      address spender,
                      uint256 value
                  ) internal {
                      uint256 newAllowance = token.allowance(address(this), spender) + value;
                      _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                  }
              
                  function safeDecreaseAllowance(
                      IERC20 token,
                      address spender,
                      uint256 value
                  ) internal {
                      unchecked {
                          uint256 oldAllowance = token.allowance(address(this), spender);
                          require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                          uint256 newAllowance = oldAllowance - value;
                          _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                      }
                  }
              
                  function safePermit(
                      IERC20Permit token,
                      address owner,
                      address spender,
                      uint256 value,
                      uint256 deadline,
                      uint8 v,
                      bytes32 r,
                      bytes32 s
                  ) internal {
                      uint256 nonceBefore = token.nonces(owner);
                      token.permit(owner, spender, value, deadline, v, r, s);
                      uint256 nonceAfter = token.nonces(owner);
                      require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
                  }
              
                  /**
                   * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
                   * on the return value: the return value is optional (but if data is returned, it must not be false).
                   * @param token The token targeted by the call.
                   * @param data The call data (encoded using abi.encode or one of its variants).
                   */
                  function _callOptionalReturn(IERC20 token, bytes memory data) private {
                      // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                      // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
                      // the target address contains contract code and also asserts for success in the low-level call.
              
                      bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                      if (returndata.length > 0) {
                          // Return data is optional
                          require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                      }
                  }
              }
              
              // File: @openzeppelin/contracts-upgradeable/security/PausableUpgradeable.sol
              
              
              // OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol)
              
              pragma solidity ^0.8.0;
              
              
              /**
               * @dev Contract module which allows children to implement an emergency stop
               * mechanism that can be triggered by an authorized account.
               *
               * This module is used through inheritance. It will make available the
               * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
               * the functions of your contract. Note that they will not be pausable by
               * simply including this module, only once the modifiers are put in place.
               */
              abstract contract PausableUpgradeable is Initializable, ContextUpgradeable {
                  /**
                   * @dev Emitted when the pause is triggered by `account`.
                   */
                  event Paused(address account);
              
                  /**
                   * @dev Emitted when the pause is lifted by `account`.
                   */
                  event Unpaused(address account);
              
                  bool private _paused;
              
                  /**
                   * @dev Initializes the contract in unpaused state.
                   */
                  function __Pausable_init() internal onlyInitializing {
                      __Pausable_init_unchained();
                  }
              
                  function __Pausable_init_unchained() internal onlyInitializing {
                      _paused = false;
                  }
              
                  /**
                   * @dev Modifier to make a function callable only when the contract is not paused.
                   *
                   * Requirements:
                   *
                   * - The contract must not be paused.
                   */
                  modifier whenNotPaused() {
                      _requireNotPaused();
                      _;
                  }
              
                  /**
                   * @dev Modifier to make a function callable only when the contract is paused.
                   *
                   * Requirements:
                   *
                   * - The contract must be paused.
                   */
                  modifier whenPaused() {
                      _requirePaused();
                      _;
                  }
              
                  /**
                   * @dev Returns true if the contract is paused, and false otherwise.
                   */
                  function paused() public view virtual returns (bool) {
                      return _paused;
                  }
              
                  /**
                   * @dev Throws if the contract is paused.
                   */
                  function _requireNotPaused() internal view virtual {
                      require(!paused(), "Pausable: paused");
                  }
              
                  /**
                   * @dev Throws if the contract is not paused.
                   */
                  function _requirePaused() internal view virtual {
                      require(paused(), "Pausable: not paused");
                  }
              
                  /**
                   * @dev Triggers stopped state.
                   *
                   * Requirements:
                   *
                   * - The contract must not be paused.
                   */
                  function _pause() internal virtual whenNotPaused {
                      _paused = true;
                      emit Paused(_msgSender());
                  }
              
                  /**
                   * @dev Returns to normal state.
                   *
                   * Requirements:
                   *
                   * - The contract must be paused.
                   */
                  function _unpause() internal virtual whenPaused {
                      _paused = false;
                      emit Unpaused(_msgSender());
                  }
              
                  /**
                   * @dev This empty reserved space is put in place to allow future versions to add new
                   * variables without shifting down storage in the inheritance chain.
                   * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
                   */
                  uint256[49] private __gap;
              }
              
              // File: contracts/interfaces/IOpenOceanCaller.sol
              
              
              pragma solidity ^0.8.0;
              
              
              interface IOpenOceanCaller {
                  struct CallDescription {
                      uint256 target;
                      uint256 gasLimit;
                      uint256 value;
                      bytes data;
                  }
              
                  function makeCall(CallDescription memory desc) external;
              
                  function makeCalls(CallDescription[] memory desc) external payable;
              }
              
              // File: contracts/libraries/RevertReasonParser.sol
              
              
              pragma solidity ^0.8.0;
              
              library RevertReasonParser {
                  function parse(bytes memory data, string memory prefix) internal pure returns (string memory) {
                      // https://solidity.readthedocs.io/en/latest/control-structures.html#revert
                      // We assume that revert reason is abi-encoded as Error(string)
              
                      // 68 = 4-byte selector 0x08c379a0 + 32 bytes offset + 32 bytes length
                      if (data.length >= 68 && data[0] == "\x08" && data[1] == "\xc3" && data[2] == "\x79" && data[3] == "\xa0") {
                          string memory reason;
                          // solhint-disable no-inline-assembly
                          assembly {
                              // 68 = 32 bytes data length + 4-byte selector + 32 bytes offset
                              reason := add(data, 68)
                          }
                          /*
                              revert reason is padded up to 32 bytes with ABI encoder: Error(string)
                              also sometimes there is extra 32 bytes of zeros padded in the end:
                              https://github.com/ethereum/solidity/issues/10170
                              because of that we can't check for equality and instead check
                              that string length + extra 68 bytes is less than overall data length
                          */
                          require(data.length >= 68 + bytes(reason).length, "Invalid revert reason");
                          return string(abi.encodePacked(prefix, "Error(", reason, ")"));
                      }
                      // 36 = 4-byte selector 0x4e487b71 + 32 bytes integer
                      else if (data.length == 36 && data[0] == "\x4e" && data[1] == "\x48" && data[2] == "\x7b" && data[3] == "\x71") {
                          uint256 code;
                          // solhint-disable no-inline-assembly
                          assembly {
                              // 36 = 32 bytes data length + 4-byte selector
                              code := mload(add(data, 36))
                          }
                          return string(abi.encodePacked(prefix, "Panic(", _toHex(code), ")"));
                      }
              
                      return string(abi.encodePacked(prefix, "Unknown()"));
                  }
              
                  function _toHex(uint256 value) private pure returns (string memory) {
                      return _toHex(abi.encodePacked(value));
                  }
              
                  function _toHex(bytes memory data) private pure returns (string memory) {
                      bytes memory alphabet = "0123456789abcdef";
                      bytes memory str = new bytes(2 + data.length * 2);
                      str[0] = "0";
                      str[1] = "x";
                      for (uint256 i = 0; i < data.length; i++) {
                          str[2 * i + 2] = alphabet[uint8(data[i] >> 4)];
                          str[2 * i + 3] = alphabet[uint8(data[i] & 0x0f)];
                      }
                      return string(str);
                  }
              }
              
              // File: @openzeppelin/contracts/utils/math/SafeMath.sol
              
              
              // OpenZeppelin Contracts (last updated v4.6.0) (utils/math/SafeMath.sol)
              
              pragma solidity ^0.8.0;
              
              // CAUTION
              // This version of SafeMath should only be used with Solidity 0.8 or later,
              // because it relies on the compiler's built in overflow checks.
              
              /**
               * @dev Wrappers over Solidity's arithmetic operations.
               *
               * NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler
               * now has built in overflow checking.
               */
              library SafeMath {
                  /**
                   * @dev Returns the addition of two unsigned integers, with an overflow flag.
                   *
                   * _Available since v3.4._
                   */
                  function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                      unchecked {
                          uint256 c = a + b;
                          if (c < a) return (false, 0);
                          return (true, c);
                      }
                  }
              
                  /**
                   * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
                   *
                   * _Available since v3.4._
                   */
                  function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                      unchecked {
                          if (b > a) return (false, 0);
                          return (true, a - b);
                      }
                  }
              
                  /**
                   * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
                   *
                   * _Available since v3.4._
                   */
                  function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                      unchecked {
                          // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                          // benefit is lost if 'b' is also tested.
                          // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                          if (a == 0) return (true, 0);
                          uint256 c = a * b;
                          if (c / a != b) return (false, 0);
                          return (true, c);
                      }
                  }
              
                  /**
                   * @dev Returns the division of two unsigned integers, with a division by zero flag.
                   *
                   * _Available since v3.4._
                   */
                  function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                      unchecked {
                          if (b == 0) return (false, 0);
                          return (true, a / b);
                      }
                  }
              
                  /**
                   * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
                   *
                   * _Available since v3.4._
                   */
                  function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                      unchecked {
                          if (b == 0) return (false, 0);
                          return (true, a % b);
                      }
                  }
              
                  /**
                   * @dev Returns the addition of two unsigned integers, reverting on
                   * overflow.
                   *
                   * Counterpart to Solidity's `+` operator.
                   *
                   * Requirements:
                   *
                   * - Addition cannot overflow.
                   */
                  function add(uint256 a, uint256 b) internal pure returns (uint256) {
                      return a + b;
                  }
              
                  /**
                   * @dev Returns the subtraction of two unsigned integers, reverting on
                   * overflow (when the result is negative).
                   *
                   * Counterpart to Solidity's `-` operator.
                   *
                   * Requirements:
                   *
                   * - Subtraction cannot overflow.
                   */
                  function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                      return a - b;
                  }
              
                  /**
                   * @dev Returns the multiplication of two unsigned integers, reverting on
                   * overflow.
                   *
                   * Counterpart to Solidity's `*` operator.
                   *
                   * Requirements:
                   *
                   * - Multiplication cannot overflow.
                   */
                  function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                      return a * b;
                  }
              
                  /**
                   * @dev Returns the integer division of two unsigned integers, reverting on
                   * division by zero. The result is rounded towards zero.
                   *
                   * Counterpart to Solidity's `/` operator.
                   *
                   * Requirements:
                   *
                   * - The divisor cannot be zero.
                   */
                  function div(uint256 a, uint256 b) internal pure returns (uint256) {
                      return a / b;
                  }
              
                  /**
                   * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
                   * reverting when dividing by zero.
                   *
                   * Counterpart to Solidity's `%` operator. This function uses a `revert`
                   * opcode (which leaves remaining gas untouched) while Solidity uses an
                   * invalid opcode to revert (consuming all remaining gas).
                   *
                   * Requirements:
                   *
                   * - The divisor cannot be zero.
                   */
                  function mod(uint256 a, uint256 b) internal pure returns (uint256) {
                      return a % b;
                  }
              
                  /**
                   * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
                   * overflow (when the result is negative).
                   *
                   * CAUTION: This function is deprecated because it requires allocating memory for the error
                   * message unnecessarily. For custom revert reasons use {trySub}.
                   *
                   * Counterpart to Solidity's `-` operator.
                   *
                   * Requirements:
                   *
                   * - Subtraction cannot overflow.
                   */
                  function sub(
                      uint256 a,
                      uint256 b,
                      string memory errorMessage
                  ) internal pure returns (uint256) {
                      unchecked {
                          require(b <= a, errorMessage);
                          return a - b;
                      }
                  }
              
                  /**
                   * @dev Returns the integer division of two unsigned integers, reverting with custom message on
                   * division by zero. The result is rounded towards zero.
                   *
                   * Counterpart to Solidity's `/` operator. Note: this function uses a
                   * `revert` opcode (which leaves remaining gas untouched) while Solidity
                   * uses an invalid opcode to revert (consuming all remaining gas).
                   *
                   * Requirements:
                   *
                   * - The divisor cannot be zero.
                   */
                  function div(
                      uint256 a,
                      uint256 b,
                      string memory errorMessage
                  ) internal pure returns (uint256) {
                      unchecked {
                          require(b > 0, errorMessage);
                          return a / b;
                      }
                  }
              
                  /**
                   * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
                   * reverting with custom message when dividing by zero.
                   *
                   * CAUTION: This function is deprecated because it requires allocating memory for the error
                   * message unnecessarily. For custom revert reasons use {tryMod}.
                   *
                   * Counterpart to Solidity's `%` operator. This function uses a `revert`
                   * opcode (which leaves remaining gas untouched) while Solidity uses an
                   * invalid opcode to revert (consuming all remaining gas).
                   *
                   * Requirements:
                   *
                   * - The divisor cannot be zero.
                   */
                  function mod(
                      uint256 a,
                      uint256 b,
                      string memory errorMessage
                  ) internal pure returns (uint256) {
                      unchecked {
                          require(b > 0, errorMessage);
                          return a % b;
                      }
                  }
              }
              
              // File: contracts/libraries/UniversalERC20.sol
              
              
              pragma solidity ^0.8.0;
              
              
              
              library UniversalERC20 {
                  using SafeMath for uint256;
                  using SafeERC20 for IERC20;
              
                  IERC20 internal constant ZERO_ADDRESS = IERC20(0x0000000000000000000000000000000000000000);
                  IERC20 internal constant ETH_ADDRESS = IERC20(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE);
                  IERC20 internal constant MATIC_ADDRESS = IERC20(0x0000000000000000000000000000000000001010);
              
                  function universalTransfer(
                      IERC20 token,
                      address payable to,
                      uint256 amount
                  ) internal {
                      if (amount > 0) {
                          if (isETH(token)) {
                              (bool result, ) = to.call{value: amount}("");
                              require(result, "Failed to transfer ETH");
                          } else {
                              token.safeTransfer(to, amount);
                          }
                      }
                  }
              
                  function universalApprove(
                      IERC20 token,
                      address to,
                      uint256 amount
                  ) internal {
                      require(!isETH(token), "Approve called on ETH");
              
                      if (amount == 0) {
                          token.safeApprove(to, 0);
                      } else {
                          uint256 allowance = token.allowance(address(this), to);
                          if (allowance < amount) {
                              if (allowance > 0) {
                                  token.safeApprove(to, 0);
                              }
                              token.safeApprove(to, amount);
                          }
                      }
                  }
              
                  function universalBalanceOf(IERC20 token, address account) internal view returns (uint256) {
                      if (isETH(token)) {
                          return account.balance;
                      } else {
                          return token.balanceOf(account);
                      }
                  }
              
                  function isETH(IERC20 token) internal pure returns (bool) {
                      return
                          address(token) == address(ETH_ADDRESS) ||
                          address(token) == address(MATIC_ADDRESS) ||
                          address(token) == address(ZERO_ADDRESS);
                  }
              }
              
              // File: contracts/libraries/Permitable.sol
              
              
              pragma solidity ^0.8.0;
              
              /// @title Interface for DAI-style permits
              interface IDaiLikePermit {
                  function permit(
                      address holder,
                      address spender,
                      uint256 nonce,
                      uint256 expiry,
                      bool allowed,
                      uint8 v,
                      bytes32 r,
                      bytes32 s
                  ) external;
              }
              
              /// @title SignatureTransfer
              /// @notice Handles ERC20 token transfers through signature based actions
              /// @dev Requires user's token approval on the Permit2 contract
              interface IPermit2 {
                  /// @notice The token and amount details for a transfer signed in the permit transfer signature
                  struct TokenPermissions {
                      // ERC20 token address
                      address token;
                      // the maximum amount that can be spent
                      uint256 amount;
                  }
              
                  /// @notice The signed permit message for a single token transfer
                  struct PermitTransferFrom {
                      TokenPermissions permitted;
                      // a unique value for every token owner's signature to prevent signature replays
                      uint256 nonce;
                      // deadline on the permit signature
                      uint256 deadline;
                  }
              
                  /// @notice Specifies the recipient address and amount for batched transfers.
                  /// @dev Recipients and amounts correspond to the index of the signed token permissions array.
                  /// @dev Reverts if the requested amount is greater than the permitted signed amount.
                  struct SignatureTransferDetails {
                      // recipient address
                      address to;
                      // spender requested amount
                      uint256 requestedAmount;
                  }
              
                  /// @notice A map from token owner address and a caller specified word index to a bitmap. Used to set bits in the bitmap to prevent against signature replay protection
                  /// @dev Uses unordered nonces so that permit messages do not need to be spent in a certain order
                  /// @dev The mapping is indexed first by the token owner, then by an index specified in the nonce
                  /// @dev It returns a uint256 bitmap
                  /// @dev The index, or wordPosition is capped at type(uint248).max
                  function nonceBitmap(address, uint256) external view returns (uint256);
              
                  /// @notice Transfers a token using a signed permit message
                  /// @dev Reverts if the requested amount is greater than the permitted signed amount
                  /// @param permit The permit data signed over by the owner
                  /// @param owner The owner of the tokens to transfer
                  /// @param transferDetails The spender's requested transfer details for the permitted token
                  /// @param signature The signature to verify
                  function permitTransferFrom(
                      PermitTransferFrom memory permit,
                      SignatureTransferDetails calldata transferDetails,
                      address owner,
                      bytes calldata signature
                  ) external;
              
                  /// @notice Returns the domain separator for the current chain.
                  /// @dev Uses cached version if chainid and address are unchanged from construction.
                  function DOMAIN_SEPARATOR() external view returns (bytes32);
              }
              
              /// @title Base contract with common permit handling logics
              contract Permitable {
                  address public permit2;
              
                  function permit2DomainSeperator() external view returns (bytes32) {
                      return IPermit2(permit2).DOMAIN_SEPARATOR();
                  }
              
                  function _permit(address token, bytes calldata permit) internal returns (bool) {
                      if (permit.length > 0) {
                          if (permit.length == 32 * 7 || permit.length == 32 * 8) {
                              (bool success, bytes memory result) = _permit1(token, permit);
                              if (!success) {
                                  revert(RevertReasonParser.parse(result, "Permit failed: "));
                              }
                              return false;
                          } else {
                              (bool success, bytes memory result) = _permit2(permit);
                              if (!success) {
                                  revert(RevertReasonParser.parse(result, "Permit2 failed: "));
                              }
                              return true;
                          }
                      }
                      return false;
                  }
              
                  function _isPermit2(bytes calldata permit) internal pure returns (bool) {
                      return permit.length == 32 * 11 || permit.length == 32 * 12;
                  }
              
                  function _permit1(address token, bytes calldata permit) private returns (bool success, bytes memory result) {
                      if (permit.length == 32 * 7) {
                          // solhint-disable-next-line avoid-low-level-calls
                          (success, result) = token.call(abi.encodePacked(IERC20Permit.permit.selector, permit));
                      } else if (permit.length == 32 * 8) {
                          // solhint-disable-next-line avoid-low-level-calls
                          (success, result) = token.call(abi.encodePacked(IDaiLikePermit.permit.selector, permit));
                      }
                  }
              
                  function _permit2(bytes calldata permit) private returns (bool success, bytes memory result) {
                      (, , address owner, ) = abi.decode(
                          permit,
                          (IPermit2.PermitTransferFrom, IPermit2.SignatureTransferDetails, address, bytes)
                      );
                      require(owner == msg.sender, "Permit2 denied");
                      // solhint-disable-next-line avoid-low-level-calls
                      (success, result) = permit2.call(abi.encodePacked(IPermit2.permitTransferFrom.selector, permit)); // TODO support batch permit
                  }
              
                  /// @notice Finds the next valid nonce for a user, starting from 0.
                  /// @param owner The owner of the nonces
                  /// @return nonce The first valid nonce starting from 0
                  function permit2NextNonce(address owner) external view returns (uint256 nonce) {
                      nonce = _permit2NextNonce(owner, 0, 0);
                  }
              
                  /// @notice Finds the next valid nonce for a user, after from a given nonce.
                  /// @dev This can be helpful if you're signing multiple nonces in a row and need the next nonce to sign but the start one is still valid.
                  /// @param owner The owner of the nonces
                  /// @param start The nonce to start from
                  /// @return nonce The first valid nonce after the given nonce
                  function permit2NextNonceAfter(address owner, uint256 start) external view returns (uint256 nonce) {
                      uint248 word = uint248(start >> 8);
                      uint8 pos = uint8(start);
                      if (pos == type(uint8).max) {
                          // If the position is 255, we need to move to the next word
                          word++;
                          pos = 0;
                      } else {
                          // Otherwise, we just move to the next position
                          pos++;
                      }
                      nonce = _permit2NextNonce(owner, word, pos);
                  }
              
                  /// @notice Finds the next valid nonce for a user, starting from a given word and position.
                  /// @param owner The owner of the nonces
                  /// @param word Word to start looking from
                  /// @param pos Position inside the word to start looking from
                  function _permit2NextNonce(address owner, uint248 word, uint8 pos) internal view returns (uint256 nonce) {
                      while (true) {
                          uint256 bitmap = IPermit2(permit2).nonceBitmap(owner, word);
              
                          // Check if the bitmap is completely full
                          if (bitmap == type(uint256).max) {
                              // If so, move to the next word
                              ++word;
                              pos = 0;
                              continue;
                          }
                          if (pos != 0) {
                              // If the position is not 0, we need to shift the bitmap to ignore the bits before position
                              bitmap = bitmap >> pos;
                          }
                          // Find the first zero bit in the bitmap
                          while (bitmap & 1 == 1) {
                              bitmap = bitmap >> 1;
                              ++pos;
                          }
              
                          return _permit2NonceFromWordAndPos(word, pos);
                      }
                  }
              
                  /// @notice Constructs a nonce from a word and a position inside the word
                  /// @param word The word containing the nonce
                  /// @param pos The position of the nonce inside the word
                  /// @return nonce The nonce constructed from the word and position
                  function _permit2NonceFromWordAndPos(uint248 word, uint8 pos) internal pure returns (uint256 nonce) {
                      // The last 248 bits of the word are the nonce bits
                      nonce = uint256(word) << 8;
                      // The first 8 bits of the word are the position inside the word
                      nonce |= pos;
                  }
              }
              
              // File: contracts/libraries/EthRejector.sol
              
              
              pragma solidity ^0.8.0;
              
              abstract contract EthRejector {
                  receive() external payable {
                      // require(msg.sender != tx.origin, "ETH deposit rejected");
                  }
              }
              
              // File: contracts/UniswapV2Exchange.sol
              
              
              
              pragma solidity ^0.8.0;
              
              
              contract UniswapV2Exchange is EthRejector, Permitable {
                  uint256 private constant TRANSFER_FROM_CALL_SELECTOR_32 = 0x23b872dd00000000000000000000000000000000000000000000000000000000;
                  uint256 private constant WETH_DEPOSIT_CALL_SELECTOR_32 = 0xd0e30db000000000000000000000000000000000000000000000000000000000;
                  uint256 private constant WETH_WITHDRAW_CALL_SELECTOR_32 = 0x2e1a7d4d00000000000000000000000000000000000000000000000000000000;
                  uint256 private constant ERC20_TRANSFER_CALL_SELECTOR_32 = 0xa9059cbb00000000000000000000000000000000000000000000000000000000;
                  uint256 private constant ADDRESS_MASK = 0x000000000000000000000000ffffffffffffffffffffffffffffffffffffffff;
                  uint256 private constant REVERSE_MASK = 0x8000000000000000000000000000000000000000000000000000000000000000;
                  uint256 private constant WETH_MASK = 0x4000000000000000000000000000000000000000000000000000000000000000;
                  uint256 private constant NUMERATOR_MASK = 0x0000000000000000ffffffff0000000000000000000000000000000000000000;
                  uint256 private constant WETH = 0x000000000000000000000000C02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
                  uint256 private constant UNISWAP_PAIR_RESERVES_CALL_SELECTOR_32 =
                      0x0902f1ac00000000000000000000000000000000000000000000000000000000;
                  uint256 private constant UNISWAP_PAIR_SWAP_CALL_SELECTOR_32 =
                      0x022c0d9f00000000000000000000000000000000000000000000000000000000;
                  uint256 private constant DENOMINATOR = 1000000000;
                  uint256 private constant NUMERATOR_OFFSET = 160;
              
                  function callUniswapToWithPermit(
                      IERC20 srcToken,
                      uint256 amount,
                      uint256 minReturn,
                      bytes32[] calldata pools,
                      bytes calldata permit,
                      address payable recipient
                  ) external returns (uint256 returnAmount) {
                      bool claimed = _permit(address(srcToken), permit);
                      return _callUniswap(srcToken, amount, minReturn, pools, recipient, claimed);
                  }
              
                  function callUniswapWithPermit(
                      IERC20 srcToken,
                      uint256 amount,
                      uint256 minReturn,
                      bytes32[] calldata pools,
                      bytes calldata permit
                  ) external returns (uint256 returnAmount) {
                      bool claimed = _permit(address(srcToken), permit);
                      return _callUniswap(srcToken, amount, minReturn, pools, payable(msg.sender), claimed);
                  }
              
                  function callUniswapTo(
                      IERC20 srcToken,
                      uint256 amount,
                      uint256 minReturn,
                      bytes32[] calldata pools,
                      address payable recipient
                  ) external payable returns (uint256 returnAmount) {
                      return _callUniswap(srcToken, amount, minReturn, pools, recipient, false);
                  }
              
                  function callUniswap(
                      IERC20 srcToken,
                      uint256 amount,
                      uint256 minReturn,
                      bytes32[] calldata pools
                  ) external payable returns (uint256 returnAmount) {
                      return _callUniswap(srcToken, amount, minReturn, pools, payable(msg.sender), false);
                  }
              
                  function _callUniswap(
                      IERC20 srcToken,
                      uint256 amount,
                      uint256 minReturn,
                      bytes32[] calldata /* pools */,
                      address payable recipient,
                      bool claimed
                  ) internal returns (uint256 returnAmount) {
                      assembly {
                          // solhint-disable-line no-inline-assembly
                          function reRevert() {
                              returndatacopy(0, 0, returndatasize())
                              revert(0, returndatasize())
                          }
              
                          function revertWithReason(m, len) {
                              mstore(0, 0x08c379a000000000000000000000000000000000000000000000000000000000)
                              mstore(0x20, 0x0000002000000000000000000000000000000000000000000000000000000000)
                              mstore(0x40, m)
                              revert(0, len)
                          }
              
                          function swap(emptyPtr, swapAmount, pair, reversed, numerator, dst) -> ret {
                              mstore(emptyPtr, UNISWAP_PAIR_RESERVES_CALL_SELECTOR_32)
                              if iszero(staticcall(gas(), pair, emptyPtr, 0x4, emptyPtr, 0x40)) {
                                  reRevert()
                              }
              
                              let reserve0 := mload(emptyPtr)
                              let reserve1 := mload(add(emptyPtr, 0x20))
                              if reversed {
                                  let tmp := reserve0
                                  reserve0 := reserve1
                                  reserve1 := tmp
                              }
                              ret := mul(swapAmount, numerator)
                              ret := div(mul(ret, reserve1), add(ret, mul(reserve0, DENOMINATOR)))
              
                              mstore(emptyPtr, UNISWAP_PAIR_SWAP_CALL_SELECTOR_32)
                              switch reversed
                              case 0 {
                                  mstore(add(emptyPtr, 0x04), 0)
                                  mstore(add(emptyPtr, 0x24), ret)
                              }
                              default {
                                  mstore(add(emptyPtr, 0x04), ret)
                                  mstore(add(emptyPtr, 0x24), 0)
                              }
                              mstore(add(emptyPtr, 0x44), dst)
                              mstore(add(emptyPtr, 0x64), 0x80)
                              mstore(add(emptyPtr, 0x84), 0)
                              if iszero(call(gas(), pair, 0, emptyPtr, 0xa4, 0, 0)) {
                                  reRevert()
                              }
                          }
              
                          function callSwap(emptyPtr, token, srcAmount, swapCaller, receiver, min, claim) -> ret {
                              let poolsOffset := add(calldataload(0x64), 0x4)
                              let poolsEndOffset := calldataload(poolsOffset)
                              poolsOffset := add(poolsOffset, 0x20)
                              poolsEndOffset := add(poolsOffset, mul(0x20, poolsEndOffset))
                              let rawPair := calldataload(poolsOffset)
                              switch token
                              case 0 {
                                  if iszero(eq(srcAmount, callvalue())) {
                                      revertWithReason(0x00000011696e76616c6964206d73672e76616c75650000000000000000000000, 0x55) // "invalid msg.value"
                                  }
              
                                  mstore(emptyPtr, WETH_DEPOSIT_CALL_SELECTOR_32)
                                  if iszero(call(gas(), WETH, srcAmount, emptyPtr, 0x4, 0, 0)) {
                                      reRevert()
                                  }
              
                                  mstore(emptyPtr, ERC20_TRANSFER_CALL_SELECTOR_32)
                                  mstore(add(emptyPtr, 0x4), and(rawPair, ADDRESS_MASK))
                                  mstore(add(emptyPtr, 0x24), srcAmount)
                                  if iszero(call(gas(), WETH, 0, emptyPtr, 0x44, 0, 0)) {
                                      reRevert()
                                  }
                              }
                              default {
                                  if callvalue() {
                                      revertWithReason(0x00000011696e76616c6964206d73672e76616c75650000000000000000000000, 0x55) // "invalid msg.value"
                                  }
              
                                  if claim {
                                      mstore(emptyPtr, TRANSFER_FROM_CALL_SELECTOR_32)
                                      mstore(add(emptyPtr, 0x4), swapCaller)
                                      mstore(add(emptyPtr, 0x24), and(rawPair, ADDRESS_MASK))
                                      mstore(add(emptyPtr, 0x44), srcAmount)
                                      if iszero(call(gas(), token, 0, emptyPtr, 0x64, 0, 0)) {
                                          reRevert()
                                      }
                                  }
                              }
              
                              ret := srcAmount
              
                              for {
                                  let i := add(poolsOffset, 0x20)
                              } lt(i, poolsEndOffset) {
                                  i := add(i, 0x20)
                              } {
                                  let nextRawPair := calldataload(i)
              
                                  ret := swap(
                                      emptyPtr,
                                      ret,
                                      and(rawPair, ADDRESS_MASK),
                                      and(rawPair, REVERSE_MASK),
                                      shr(NUMERATOR_OFFSET, and(rawPair, NUMERATOR_MASK)),
                                      and(nextRawPair, ADDRESS_MASK)
                                  )
              
                                  rawPair := nextRawPair
                              }
              
                              ret := swap(
                                  emptyPtr,
                                  ret,
                                  and(rawPair, ADDRESS_MASK),
                                  and(rawPair, REVERSE_MASK),
                                  shr(NUMERATOR_OFFSET, and(rawPair, NUMERATOR_MASK)),
                                  address()
                              )
              
                              if lt(ret, min) {
                                  revertWithReason(0x000000164d696e2072657475726e206e6f742072656163686564000000000000, 0x5a) // "Min return not reached"
                              }
              
                              mstore(emptyPtr, 0xd21220a700000000000000000000000000000000000000000000000000000000)
                              if and(rawPair, REVERSE_MASK) {
                                  mstore(emptyPtr, 0x0dfe168100000000000000000000000000000000000000000000000000000000)
                              }
                              if iszero(staticcall(gas(), and(rawPair, ADDRESS_MASK), emptyPtr, 0x4, emptyPtr, 0x40)) {
                                  reRevert()
                              }
                              let dstToken := mload(emptyPtr)
              
                              let finalAmount := div(
                                  mul(calldataload(0x44), 0x2710),
                                  sub(
                                      10000,
                                      shr(
                                          232,
                                          and(
                                              calldataload(add(add(calldataload(0x64), 0x4), 0x20)),
                                              0x00ffff0000000000000000000000000000000000000000000000000000000000
                                          )
                                      )
                                  )
                              )
                              switch gt(ret, finalAmount)
                              case 1 {
                                  switch and(rawPair, WETH_MASK)
                                  case 0 {
                                      mstore(emptyPtr, ERC20_TRANSFER_CALL_SELECTOR_32)
                                      mstore(add(emptyPtr, 0x4), receiver)
                                      mstore(add(emptyPtr, 0x24), finalAmount)
                                      if iszero(call(gas(), dstToken, 0, emptyPtr, 0x44, 0, 0)) {
                                          reRevert()
                                      }
              
                                      mstore(add(emptyPtr, 0x4), 0x922164BBBd36Acf9E854AcBbF32faCC949fCAEef)
                                      mstore(add(emptyPtr, 0x24), sub(ret, finalAmount))
                                      if iszero(call(gas(), dstToken, 0, emptyPtr, 0x44, 0, 0)) {
                                          reRevert()
                                      }
                                  }
                                  default {
                                      mstore(emptyPtr, WETH_WITHDRAW_CALL_SELECTOR_32)
                                      mstore(add(emptyPtr, 0x04), ret)
                                      if iszero(call(gas(), WETH, 0, emptyPtr, 0x24, 0, 0)) {
                                          reRevert()
                                      }
              
                                      if iszero(call(gas(), receiver, finalAmount, 0, 0, 0, 0)) {
                                          reRevert()
                                      }
              
                                      if iszero(call(gas(), 0x922164BBBd36Acf9E854AcBbF32faCC949fCAEef, sub(ret, finalAmount), 0, 0, 0, 0)) {
                                          reRevert()
                                      }
                                  }
                              }
                              default {
                                  switch and(rawPair, WETH_MASK)
                                  case 0 {
                                      mstore(emptyPtr, ERC20_TRANSFER_CALL_SELECTOR_32)
                                      mstore(add(emptyPtr, 0x4), receiver)
                                      mstore(add(emptyPtr, 0x24), ret)
                                      if iszero(call(gas(), dstToken, 0, emptyPtr, 0x44, 0, 0)) {
                                          reRevert()
                                      }
                                  }
                                  default {
                                      mstore(emptyPtr, WETH_WITHDRAW_CALL_SELECTOR_32)
                                      mstore(add(emptyPtr, 0x04), ret)
                                      if iszero(call(gas(), WETH, 0, emptyPtr, 0x24, 0, 0)) {
                                          reRevert()
                                      }
              
                                      if iszero(call(gas(), receiver, ret, 0, 0, 0, 0)) {
                                          reRevert()
                                      }
                                  }
                              }
                          }
              
                          let emptyPtr := mload(0x40)
                          mstore(0x40, add(emptyPtr, 0xc0))
                          returnAmount := callSwap(emptyPtr, srcToken, amount, caller(), recipient, minReturn, eq(claimed, 0))
                      }
                  }
              }
              
              // File: @openzeppelin/contracts/utils/math/SafeCast.sol
              
              
              // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SafeCast.sol)
              // This file was procedurally generated from scripts/generate/templates/SafeCast.js.
              
              pragma solidity ^0.8.0;
              
              /**
               * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
               * checks.
               *
               * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
               * easily result in undesired exploitation or bugs, since developers usually
               * assume that overflows raise errors. `SafeCast` restores this intuition by
               * reverting the transaction when such an operation overflows.
               *
               * Using this library instead of the unchecked operations eliminates an entire
               * class of bugs, so it's recommended to use it always.
               *
               * Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing
               * all math on `uint256` and `int256` and then downcasting.
               */
              library SafeCast {
                  /**
                   * @dev Returns the downcasted uint248 from uint256, reverting on
                   * overflow (when the input is greater than largest uint248).
                   *
                   * Counterpart to Solidity's `uint248` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 248 bits
                   *
                   * _Available since v4.7._
                   */
                  function toUint248(uint256 value) internal pure returns (uint248) {
                      require(value <= type(uint248).max, "SafeCast: value doesn't fit in 248 bits");
                      return uint248(value);
                  }
              
                  /**
                   * @dev Returns the downcasted uint240 from uint256, reverting on
                   * overflow (when the input is greater than largest uint240).
                   *
                   * Counterpart to Solidity's `uint240` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 240 bits
                   *
                   * _Available since v4.7._
                   */
                  function toUint240(uint256 value) internal pure returns (uint240) {
                      require(value <= type(uint240).max, "SafeCast: value doesn't fit in 240 bits");
                      return uint240(value);
                  }
              
                  /**
                   * @dev Returns the downcasted uint232 from uint256, reverting on
                   * overflow (when the input is greater than largest uint232).
                   *
                   * Counterpart to Solidity's `uint232` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 232 bits
                   *
                   * _Available since v4.7._
                   */
                  function toUint232(uint256 value) internal pure returns (uint232) {
                      require(value <= type(uint232).max, "SafeCast: value doesn't fit in 232 bits");
                      return uint232(value);
                  }
              
                  /**
                   * @dev Returns the downcasted uint224 from uint256, reverting on
                   * overflow (when the input is greater than largest uint224).
                   *
                   * Counterpart to Solidity's `uint224` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 224 bits
                   *
                   * _Available since v4.2._
                   */
                  function toUint224(uint256 value) internal pure returns (uint224) {
                      require(value <= type(uint224).max, "SafeCast: value doesn't fit in 224 bits");
                      return uint224(value);
                  }
              
                  /**
                   * @dev Returns the downcasted uint216 from uint256, reverting on
                   * overflow (when the input is greater than largest uint216).
                   *
                   * Counterpart to Solidity's `uint216` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 216 bits
                   *
                   * _Available since v4.7._
                   */
                  function toUint216(uint256 value) internal pure returns (uint216) {
                      require(value <= type(uint216).max, "SafeCast: value doesn't fit in 216 bits");
                      return uint216(value);
                  }
              
                  /**
                   * @dev Returns the downcasted uint208 from uint256, reverting on
                   * overflow (when the input is greater than largest uint208).
                   *
                   * Counterpart to Solidity's `uint208` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 208 bits
                   *
                   * _Available since v4.7._
                   */
                  function toUint208(uint256 value) internal pure returns (uint208) {
                      require(value <= type(uint208).max, "SafeCast: value doesn't fit in 208 bits");
                      return uint208(value);
                  }
              
                  /**
                   * @dev Returns the downcasted uint200 from uint256, reverting on
                   * overflow (when the input is greater than largest uint200).
                   *
                   * Counterpart to Solidity's `uint200` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 200 bits
                   *
                   * _Available since v4.7._
                   */
                  function toUint200(uint256 value) internal pure returns (uint200) {
                      require(value <= type(uint200).max, "SafeCast: value doesn't fit in 200 bits");
                      return uint200(value);
                  }
              
                  /**
                   * @dev Returns the downcasted uint192 from uint256, reverting on
                   * overflow (when the input is greater than largest uint192).
                   *
                   * Counterpart to Solidity's `uint192` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 192 bits
                   *
                   * _Available since v4.7._
                   */
                  function toUint192(uint256 value) internal pure returns (uint192) {
                      require(value <= type(uint192).max, "SafeCast: value doesn't fit in 192 bits");
                      return uint192(value);
                  }
              
                  /**
                   * @dev Returns the downcasted uint184 from uint256, reverting on
                   * overflow (when the input is greater than largest uint184).
                   *
                   * Counterpart to Solidity's `uint184` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 184 bits
                   *
                   * _Available since v4.7._
                   */
                  function toUint184(uint256 value) internal pure returns (uint184) {
                      require(value <= type(uint184).max, "SafeCast: value doesn't fit in 184 bits");
                      return uint184(value);
                  }
              
                  /**
                   * @dev Returns the downcasted uint176 from uint256, reverting on
                   * overflow (when the input is greater than largest uint176).
                   *
                   * Counterpart to Solidity's `uint176` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 176 bits
                   *
                   * _Available since v4.7._
                   */
                  function toUint176(uint256 value) internal pure returns (uint176) {
                      require(value <= type(uint176).max, "SafeCast: value doesn't fit in 176 bits");
                      return uint176(value);
                  }
              
                  /**
                   * @dev Returns the downcasted uint168 from uint256, reverting on
                   * overflow (when the input is greater than largest uint168).
                   *
                   * Counterpart to Solidity's `uint168` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 168 bits
                   *
                   * _Available since v4.7._
                   */
                  function toUint168(uint256 value) internal pure returns (uint168) {
                      require(value <= type(uint168).max, "SafeCast: value doesn't fit in 168 bits");
                      return uint168(value);
                  }
              
                  /**
                   * @dev Returns the downcasted uint160 from uint256, reverting on
                   * overflow (when the input is greater than largest uint160).
                   *
                   * Counterpart to Solidity's `uint160` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 160 bits
                   *
                   * _Available since v4.7._
                   */
                  function toUint160(uint256 value) internal pure returns (uint160) {
                      require(value <= type(uint160).max, "SafeCast: value doesn't fit in 160 bits");
                      return uint160(value);
                  }
              
                  /**
                   * @dev Returns the downcasted uint152 from uint256, reverting on
                   * overflow (when the input is greater than largest uint152).
                   *
                   * Counterpart to Solidity's `uint152` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 152 bits
                   *
                   * _Available since v4.7._
                   */
                  function toUint152(uint256 value) internal pure returns (uint152) {
                      require(value <= type(uint152).max, "SafeCast: value doesn't fit in 152 bits");
                      return uint152(value);
                  }
              
                  /**
                   * @dev Returns the downcasted uint144 from uint256, reverting on
                   * overflow (when the input is greater than largest uint144).
                   *
                   * Counterpart to Solidity's `uint144` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 144 bits
                   *
                   * _Available since v4.7._
                   */
                  function toUint144(uint256 value) internal pure returns (uint144) {
                      require(value <= type(uint144).max, "SafeCast: value doesn't fit in 144 bits");
                      return uint144(value);
                  }
              
                  /**
                   * @dev Returns the downcasted uint136 from uint256, reverting on
                   * overflow (when the input is greater than largest uint136).
                   *
                   * Counterpart to Solidity's `uint136` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 136 bits
                   *
                   * _Available since v4.7._
                   */
                  function toUint136(uint256 value) internal pure returns (uint136) {
                      require(value <= type(uint136).max, "SafeCast: value doesn't fit in 136 bits");
                      return uint136(value);
                  }
              
                  /**
                   * @dev Returns the downcasted uint128 from uint256, reverting on
                   * overflow (when the input is greater than largest uint128).
                   *
                   * Counterpart to Solidity's `uint128` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 128 bits
                   *
                   * _Available since v2.5._
                   */
                  function toUint128(uint256 value) internal pure returns (uint128) {
                      require(value <= type(uint128).max, "SafeCast: value doesn't fit in 128 bits");
                      return uint128(value);
                  }
              
                  /**
                   * @dev Returns the downcasted uint120 from uint256, reverting on
                   * overflow (when the input is greater than largest uint120).
                   *
                   * Counterpart to Solidity's `uint120` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 120 bits
                   *
                   * _Available since v4.7._
                   */
                  function toUint120(uint256 value) internal pure returns (uint120) {
                      require(value <= type(uint120).max, "SafeCast: value doesn't fit in 120 bits");
                      return uint120(value);
                  }
              
                  /**
                   * @dev Returns the downcasted uint112 from uint256, reverting on
                   * overflow (when the input is greater than largest uint112).
                   *
                   * Counterpart to Solidity's `uint112` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 112 bits
                   *
                   * _Available since v4.7._
                   */
                  function toUint112(uint256 value) internal pure returns (uint112) {
                      require(value <= type(uint112).max, "SafeCast: value doesn't fit in 112 bits");
                      return uint112(value);
                  }
              
                  /**
                   * @dev Returns the downcasted uint104 from uint256, reverting on
                   * overflow (when the input is greater than largest uint104).
                   *
                   * Counterpart to Solidity's `uint104` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 104 bits
                   *
                   * _Available since v4.7._
                   */
                  function toUint104(uint256 value) internal pure returns (uint104) {
                      require(value <= type(uint104).max, "SafeCast: value doesn't fit in 104 bits");
                      return uint104(value);
                  }
              
                  /**
                   * @dev Returns the downcasted uint96 from uint256, reverting on
                   * overflow (when the input is greater than largest uint96).
                   *
                   * Counterpart to Solidity's `uint96` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 96 bits
                   *
                   * _Available since v4.2._
                   */
                  function toUint96(uint256 value) internal pure returns (uint96) {
                      require(value <= type(uint96).max, "SafeCast: value doesn't fit in 96 bits");
                      return uint96(value);
                  }
              
                  /**
                   * @dev Returns the downcasted uint88 from uint256, reverting on
                   * overflow (when the input is greater than largest uint88).
                   *
                   * Counterpart to Solidity's `uint88` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 88 bits
                   *
                   * _Available since v4.7._
                   */
                  function toUint88(uint256 value) internal pure returns (uint88) {
                      require(value <= type(uint88).max, "SafeCast: value doesn't fit in 88 bits");
                      return uint88(value);
                  }
              
                  /**
                   * @dev Returns the downcasted uint80 from uint256, reverting on
                   * overflow (when the input is greater than largest uint80).
                   *
                   * Counterpart to Solidity's `uint80` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 80 bits
                   *
                   * _Available since v4.7._
                   */
                  function toUint80(uint256 value) internal pure returns (uint80) {
                      require(value <= type(uint80).max, "SafeCast: value doesn't fit in 80 bits");
                      return uint80(value);
                  }
              
                  /**
                   * @dev Returns the downcasted uint72 from uint256, reverting on
                   * overflow (when the input is greater than largest uint72).
                   *
                   * Counterpart to Solidity's `uint72` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 72 bits
                   *
                   * _Available since v4.7._
                   */
                  function toUint72(uint256 value) internal pure returns (uint72) {
                      require(value <= type(uint72).max, "SafeCast: value doesn't fit in 72 bits");
                      return uint72(value);
                  }
              
                  /**
                   * @dev Returns the downcasted uint64 from uint256, reverting on
                   * overflow (when the input is greater than largest uint64).
                   *
                   * Counterpart to Solidity's `uint64` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 64 bits
                   *
                   * _Available since v2.5._
                   */
                  function toUint64(uint256 value) internal pure returns (uint64) {
                      require(value <= type(uint64).max, "SafeCast: value doesn't fit in 64 bits");
                      return uint64(value);
                  }
              
                  /**
                   * @dev Returns the downcasted uint56 from uint256, reverting on
                   * overflow (when the input is greater than largest uint56).
                   *
                   * Counterpart to Solidity's `uint56` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 56 bits
                   *
                   * _Available since v4.7._
                   */
                  function toUint56(uint256 value) internal pure returns (uint56) {
                      require(value <= type(uint56).max, "SafeCast: value doesn't fit in 56 bits");
                      return uint56(value);
                  }
              
                  /**
                   * @dev Returns the downcasted uint48 from uint256, reverting on
                   * overflow (when the input is greater than largest uint48).
                   *
                   * Counterpart to Solidity's `uint48` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 48 bits
                   *
                   * _Available since v4.7._
                   */
                  function toUint48(uint256 value) internal pure returns (uint48) {
                      require(value <= type(uint48).max, "SafeCast: value doesn't fit in 48 bits");
                      return uint48(value);
                  }
              
                  /**
                   * @dev Returns the downcasted uint40 from uint256, reverting on
                   * overflow (when the input is greater than largest uint40).
                   *
                   * Counterpart to Solidity's `uint40` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 40 bits
                   *
                   * _Available since v4.7._
                   */
                  function toUint40(uint256 value) internal pure returns (uint40) {
                      require(value <= type(uint40).max, "SafeCast: value doesn't fit in 40 bits");
                      return uint40(value);
                  }
              
                  /**
                   * @dev Returns the downcasted uint32 from uint256, reverting on
                   * overflow (when the input is greater than largest uint32).
                   *
                   * Counterpart to Solidity's `uint32` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 32 bits
                   *
                   * _Available since v2.5._
                   */
                  function toUint32(uint256 value) internal pure returns (uint32) {
                      require(value <= type(uint32).max, "SafeCast: value doesn't fit in 32 bits");
                      return uint32(value);
                  }
              
                  /**
                   * @dev Returns the downcasted uint24 from uint256, reverting on
                   * overflow (when the input is greater than largest uint24).
                   *
                   * Counterpart to Solidity's `uint24` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 24 bits
                   *
                   * _Available since v4.7._
                   */
                  function toUint24(uint256 value) internal pure returns (uint24) {
                      require(value <= type(uint24).max, "SafeCast: value doesn't fit in 24 bits");
                      return uint24(value);
                  }
              
                  /**
                   * @dev Returns the downcasted uint16 from uint256, reverting on
                   * overflow (when the input is greater than largest uint16).
                   *
                   * Counterpart to Solidity's `uint16` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 16 bits
                   *
                   * _Available since v2.5._
                   */
                  function toUint16(uint256 value) internal pure returns (uint16) {
                      require(value <= type(uint16).max, "SafeCast: value doesn't fit in 16 bits");
                      return uint16(value);
                  }
              
                  /**
                   * @dev Returns the downcasted uint8 from uint256, reverting on
                   * overflow (when the input is greater than largest uint8).
                   *
                   * Counterpart to Solidity's `uint8` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 8 bits
                   *
                   * _Available since v2.5._
                   */
                  function toUint8(uint256 value) internal pure returns (uint8) {
                      require(value <= type(uint8).max, "SafeCast: value doesn't fit in 8 bits");
                      return uint8(value);
                  }
              
                  /**
                   * @dev Converts a signed int256 into an unsigned uint256.
                   *
                   * Requirements:
                   *
                   * - input must be greater than or equal to 0.
                   *
                   * _Available since v3.0._
                   */
                  function toUint256(int256 value) internal pure returns (uint256) {
                      require(value >= 0, "SafeCast: value must be positive");
                      return uint256(value);
                  }
              
                  /**
                   * @dev Returns the downcasted int248 from int256, reverting on
                   * overflow (when the input is less than smallest int248 or
                   * greater than largest int248).
                   *
                   * Counterpart to Solidity's `int248` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 248 bits
                   *
                   * _Available since v4.7._
                   */
                  function toInt248(int256 value) internal pure returns (int248 downcasted) {
                      downcasted = int248(value);
                      require(downcasted == value, "SafeCast: value doesn't fit in 248 bits");
                  }
              
                  /**
                   * @dev Returns the downcasted int240 from int256, reverting on
                   * overflow (when the input is less than smallest int240 or
                   * greater than largest int240).
                   *
                   * Counterpart to Solidity's `int240` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 240 bits
                   *
                   * _Available since v4.7._
                   */
                  function toInt240(int256 value) internal pure returns (int240 downcasted) {
                      downcasted = int240(value);
                      require(downcasted == value, "SafeCast: value doesn't fit in 240 bits");
                  }
              
                  /**
                   * @dev Returns the downcasted int232 from int256, reverting on
                   * overflow (when the input is less than smallest int232 or
                   * greater than largest int232).
                   *
                   * Counterpart to Solidity's `int232` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 232 bits
                   *
                   * _Available since v4.7._
                   */
                  function toInt232(int256 value) internal pure returns (int232 downcasted) {
                      downcasted = int232(value);
                      require(downcasted == value, "SafeCast: value doesn't fit in 232 bits");
                  }
              
                  /**
                   * @dev Returns the downcasted int224 from int256, reverting on
                   * overflow (when the input is less than smallest int224 or
                   * greater than largest int224).
                   *
                   * Counterpart to Solidity's `int224` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 224 bits
                   *
                   * _Available since v4.7._
                   */
                  function toInt224(int256 value) internal pure returns (int224 downcasted) {
                      downcasted = int224(value);
                      require(downcasted == value, "SafeCast: value doesn't fit in 224 bits");
                  }
              
                  /**
                   * @dev Returns the downcasted int216 from int256, reverting on
                   * overflow (when the input is less than smallest int216 or
                   * greater than largest int216).
                   *
                   * Counterpart to Solidity's `int216` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 216 bits
                   *
                   * _Available since v4.7._
                   */
                  function toInt216(int256 value) internal pure returns (int216 downcasted) {
                      downcasted = int216(value);
                      require(downcasted == value, "SafeCast: value doesn't fit in 216 bits");
                  }
              
                  /**
                   * @dev Returns the downcasted int208 from int256, reverting on
                   * overflow (when the input is less than smallest int208 or
                   * greater than largest int208).
                   *
                   * Counterpart to Solidity's `int208` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 208 bits
                   *
                   * _Available since v4.7._
                   */
                  function toInt208(int256 value) internal pure returns (int208 downcasted) {
                      downcasted = int208(value);
                      require(downcasted == value, "SafeCast: value doesn't fit in 208 bits");
                  }
              
                  /**
                   * @dev Returns the downcasted int200 from int256, reverting on
                   * overflow (when the input is less than smallest int200 or
                   * greater than largest int200).
                   *
                   * Counterpart to Solidity's `int200` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 200 bits
                   *
                   * _Available since v4.7._
                   */
                  function toInt200(int256 value) internal pure returns (int200 downcasted) {
                      downcasted = int200(value);
                      require(downcasted == value, "SafeCast: value doesn't fit in 200 bits");
                  }
              
                  /**
                   * @dev Returns the downcasted int192 from int256, reverting on
                   * overflow (when the input is less than smallest int192 or
                   * greater than largest int192).
                   *
                   * Counterpart to Solidity's `int192` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 192 bits
                   *
                   * _Available since v4.7._
                   */
                  function toInt192(int256 value) internal pure returns (int192 downcasted) {
                      downcasted = int192(value);
                      require(downcasted == value, "SafeCast: value doesn't fit in 192 bits");
                  }
              
                  /**
                   * @dev Returns the downcasted int184 from int256, reverting on
                   * overflow (when the input is less than smallest int184 or
                   * greater than largest int184).
                   *
                   * Counterpart to Solidity's `int184` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 184 bits
                   *
                   * _Available since v4.7._
                   */
                  function toInt184(int256 value) internal pure returns (int184 downcasted) {
                      downcasted = int184(value);
                      require(downcasted == value, "SafeCast: value doesn't fit in 184 bits");
                  }
              
                  /**
                   * @dev Returns the downcasted int176 from int256, reverting on
                   * overflow (when the input is less than smallest int176 or
                   * greater than largest int176).
                   *
                   * Counterpart to Solidity's `int176` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 176 bits
                   *
                   * _Available since v4.7._
                   */
                  function toInt176(int256 value) internal pure returns (int176 downcasted) {
                      downcasted = int176(value);
                      require(downcasted == value, "SafeCast: value doesn't fit in 176 bits");
                  }
              
                  /**
                   * @dev Returns the downcasted int168 from int256, reverting on
                   * overflow (when the input is less than smallest int168 or
                   * greater than largest int168).
                   *
                   * Counterpart to Solidity's `int168` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 168 bits
                   *
                   * _Available since v4.7._
                   */
                  function toInt168(int256 value) internal pure returns (int168 downcasted) {
                      downcasted = int168(value);
                      require(downcasted == value, "SafeCast: value doesn't fit in 168 bits");
                  }
              
                  /**
                   * @dev Returns the downcasted int160 from int256, reverting on
                   * overflow (when the input is less than smallest int160 or
                   * greater than largest int160).
                   *
                   * Counterpart to Solidity's `int160` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 160 bits
                   *
                   * _Available since v4.7._
                   */
                  function toInt160(int256 value) internal pure returns (int160 downcasted) {
                      downcasted = int160(value);
                      require(downcasted == value, "SafeCast: value doesn't fit in 160 bits");
                  }
              
                  /**
                   * @dev Returns the downcasted int152 from int256, reverting on
                   * overflow (when the input is less than smallest int152 or
                   * greater than largest int152).
                   *
                   * Counterpart to Solidity's `int152` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 152 bits
                   *
                   * _Available since v4.7._
                   */
                  function toInt152(int256 value) internal pure returns (int152 downcasted) {
                      downcasted = int152(value);
                      require(downcasted == value, "SafeCast: value doesn't fit in 152 bits");
                  }
              
                  /**
                   * @dev Returns the downcasted int144 from int256, reverting on
                   * overflow (when the input is less than smallest int144 or
                   * greater than largest int144).
                   *
                   * Counterpart to Solidity's `int144` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 144 bits
                   *
                   * _Available since v4.7._
                   */
                  function toInt144(int256 value) internal pure returns (int144 downcasted) {
                      downcasted = int144(value);
                      require(downcasted == value, "SafeCast: value doesn't fit in 144 bits");
                  }
              
                  /**
                   * @dev Returns the downcasted int136 from int256, reverting on
                   * overflow (when the input is less than smallest int136 or
                   * greater than largest int136).
                   *
                   * Counterpart to Solidity's `int136` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 136 bits
                   *
                   * _Available since v4.7._
                   */
                  function toInt136(int256 value) internal pure returns (int136 downcasted) {
                      downcasted = int136(value);
                      require(downcasted == value, "SafeCast: value doesn't fit in 136 bits");
                  }
              
                  /**
                   * @dev Returns the downcasted int128 from int256, reverting on
                   * overflow (when the input is less than smallest int128 or
                   * greater than largest int128).
                   *
                   * Counterpart to Solidity's `int128` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 128 bits
                   *
                   * _Available since v3.1._
                   */
                  function toInt128(int256 value) internal pure returns (int128 downcasted) {
                      downcasted = int128(value);
                      require(downcasted == value, "SafeCast: value doesn't fit in 128 bits");
                  }
              
                  /**
                   * @dev Returns the downcasted int120 from int256, reverting on
                   * overflow (when the input is less than smallest int120 or
                   * greater than largest int120).
                   *
                   * Counterpart to Solidity's `int120` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 120 bits
                   *
                   * _Available since v4.7._
                   */
                  function toInt120(int256 value) internal pure returns (int120 downcasted) {
                      downcasted = int120(value);
                      require(downcasted == value, "SafeCast: value doesn't fit in 120 bits");
                  }
              
                  /**
                   * @dev Returns the downcasted int112 from int256, reverting on
                   * overflow (when the input is less than smallest int112 or
                   * greater than largest int112).
                   *
                   * Counterpart to Solidity's `int112` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 112 bits
                   *
                   * _Available since v4.7._
                   */
                  function toInt112(int256 value) internal pure returns (int112 downcasted) {
                      downcasted = int112(value);
                      require(downcasted == value, "SafeCast: value doesn't fit in 112 bits");
                  }
              
                  /**
                   * @dev Returns the downcasted int104 from int256, reverting on
                   * overflow (when the input is less than smallest int104 or
                   * greater than largest int104).
                   *
                   * Counterpart to Solidity's `int104` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 104 bits
                   *
                   * _Available since v4.7._
                   */
                  function toInt104(int256 value) internal pure returns (int104 downcasted) {
                      downcasted = int104(value);
                      require(downcasted == value, "SafeCast: value doesn't fit in 104 bits");
                  }
              
                  /**
                   * @dev Returns the downcasted int96 from int256, reverting on
                   * overflow (when the input is less than smallest int96 or
                   * greater than largest int96).
                   *
                   * Counterpart to Solidity's `int96` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 96 bits
                   *
                   * _Available since v4.7._
                   */
                  function toInt96(int256 value) internal pure returns (int96 downcasted) {
                      downcasted = int96(value);
                      require(downcasted == value, "SafeCast: value doesn't fit in 96 bits");
                  }
              
                  /**
                   * @dev Returns the downcasted int88 from int256, reverting on
                   * overflow (when the input is less than smallest int88 or
                   * greater than largest int88).
                   *
                   * Counterpart to Solidity's `int88` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 88 bits
                   *
                   * _Available since v4.7._
                   */
                  function toInt88(int256 value) internal pure returns (int88 downcasted) {
                      downcasted = int88(value);
                      require(downcasted == value, "SafeCast: value doesn't fit in 88 bits");
                  }
              
                  /**
                   * @dev Returns the downcasted int80 from int256, reverting on
                   * overflow (when the input is less than smallest int80 or
                   * greater than largest int80).
                   *
                   * Counterpart to Solidity's `int80` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 80 bits
                   *
                   * _Available since v4.7._
                   */
                  function toInt80(int256 value) internal pure returns (int80 downcasted) {
                      downcasted = int80(value);
                      require(downcasted == value, "SafeCast: value doesn't fit in 80 bits");
                  }
              
                  /**
                   * @dev Returns the downcasted int72 from int256, reverting on
                   * overflow (when the input is less than smallest int72 or
                   * greater than largest int72).
                   *
                   * Counterpart to Solidity's `int72` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 72 bits
                   *
                   * _Available since v4.7._
                   */
                  function toInt72(int256 value) internal pure returns (int72 downcasted) {
                      downcasted = int72(value);
                      require(downcasted == value, "SafeCast: value doesn't fit in 72 bits");
                  }
              
                  /**
                   * @dev Returns the downcasted int64 from int256, reverting on
                   * overflow (when the input is less than smallest int64 or
                   * greater than largest int64).
                   *
                   * Counterpart to Solidity's `int64` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 64 bits
                   *
                   * _Available since v3.1._
                   */
                  function toInt64(int256 value) internal pure returns (int64 downcasted) {
                      downcasted = int64(value);
                      require(downcasted == value, "SafeCast: value doesn't fit in 64 bits");
                  }
              
                  /**
                   * @dev Returns the downcasted int56 from int256, reverting on
                   * overflow (when the input is less than smallest int56 or
                   * greater than largest int56).
                   *
                   * Counterpart to Solidity's `int56` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 56 bits
                   *
                   * _Available since v4.7._
                   */
                  function toInt56(int256 value) internal pure returns (int56 downcasted) {
                      downcasted = int56(value);
                      require(downcasted == value, "SafeCast: value doesn't fit in 56 bits");
                  }
              
                  /**
                   * @dev Returns the downcasted int48 from int256, reverting on
                   * overflow (when the input is less than smallest int48 or
                   * greater than largest int48).
                   *
                   * Counterpart to Solidity's `int48` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 48 bits
                   *
                   * _Available since v4.7._
                   */
                  function toInt48(int256 value) internal pure returns (int48 downcasted) {
                      downcasted = int48(value);
                      require(downcasted == value, "SafeCast: value doesn't fit in 48 bits");
                  }
              
                  /**
                   * @dev Returns the downcasted int40 from int256, reverting on
                   * overflow (when the input is less than smallest int40 or
                   * greater than largest int40).
                   *
                   * Counterpart to Solidity's `int40` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 40 bits
                   *
                   * _Available since v4.7._
                   */
                  function toInt40(int256 value) internal pure returns (int40 downcasted) {
                      downcasted = int40(value);
                      require(downcasted == value, "SafeCast: value doesn't fit in 40 bits");
                  }
              
                  /**
                   * @dev Returns the downcasted int32 from int256, reverting on
                   * overflow (when the input is less than smallest int32 or
                   * greater than largest int32).
                   *
                   * Counterpart to Solidity's `int32` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 32 bits
                   *
                   * _Available since v3.1._
                   */
                  function toInt32(int256 value) internal pure returns (int32 downcasted) {
                      downcasted = int32(value);
                      require(downcasted == value, "SafeCast: value doesn't fit in 32 bits");
                  }
              
                  /**
                   * @dev Returns the downcasted int24 from int256, reverting on
                   * overflow (when the input is less than smallest int24 or
                   * greater than largest int24).
                   *
                   * Counterpart to Solidity's `int24` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 24 bits
                   *
                   * _Available since v4.7._
                   */
                  function toInt24(int256 value) internal pure returns (int24 downcasted) {
                      downcasted = int24(value);
                      require(downcasted == value, "SafeCast: value doesn't fit in 24 bits");
                  }
              
                  /**
                   * @dev Returns the downcasted int16 from int256, reverting on
                   * overflow (when the input is less than smallest int16 or
                   * greater than largest int16).
                   *
                   * Counterpart to Solidity's `int16` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 16 bits
                   *
                   * _Available since v3.1._
                   */
                  function toInt16(int256 value) internal pure returns (int16 downcasted) {
                      downcasted = int16(value);
                      require(downcasted == value, "SafeCast: value doesn't fit in 16 bits");
                  }
              
                  /**
                   * @dev Returns the downcasted int8 from int256, reverting on
                   * overflow (when the input is less than smallest int8 or
                   * greater than largest int8).
                   *
                   * Counterpart to Solidity's `int8` operator.
                   *
                   * Requirements:
                   *
                   * - input must fit into 8 bits
                   *
                   * _Available since v3.1._
                   */
                  function toInt8(int256 value) internal pure returns (int8 downcasted) {
                      downcasted = int8(value);
                      require(downcasted == value, "SafeCast: value doesn't fit in 8 bits");
                  }
              
                  /**
                   * @dev Converts an unsigned uint256 into a signed int256.
                   *
                   * Requirements:
                   *
                   * - input must be less than or equal to maxInt256.
                   *
                   * _Available since v3.0._
                   */
                  function toInt256(uint256 value) internal pure returns (int256) {
                      // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
                      require(value <= uint256(type(int256).max), "SafeCast: value doesn't fit in an int256");
                      return int256(value);
                  }
              }
              
              // File: contracts/interfaces/IUniswapV3.sol
              
              
              pragma solidity ^0.8.0;
              pragma experimental ABIEncoderV2;
              
              interface IUniswapV3Pool {
                  /// @notice Swap token0 for token1, or token1 for token0
                  /// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback
                  /// @param recipient The address to receive the output of the swap
                  /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0
                  /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative)
                  /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this
                  /// value after the swap. If one for zero, the price cannot be greater than this value after the swap
                  /// @param data Any data to be passed through to the callback
                  /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive
                  /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive
                  function swap(
                      address recipient,
                      bool zeroForOne,
                      int256 amountSpecified,
                      uint160 sqrtPriceLimitX96,
                      bytes calldata data
                  ) external returns (int256 amount0, int256 amount1);
              
                  /// @notice The first of the two tokens of the pool, sorted by address
                  /// @return The token contract address
                  function token0() external view returns (address);
              
                  /// @notice The second of the two tokens of the pool, sorted by address
                  /// @return The token contract address
                  function token1() external view returns (address);
              
                  /// @notice The pool's fee in hundredths of a bip, i.e. 1e-6
                  /// @return The fee
                  function fee() external view returns (uint24);
              }
              
              /// @title Callback for IUniswapV3PoolActions#swap
              /// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface
              interface IUniswapV3SwapCallback {
                  /// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap.
                  /// @dev In the implementation you must pay the pool tokens owed for the swap.
                  /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
                  /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
                  /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
                  /// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
                  /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
                  /// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
                  /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call
                  function uniswapV3SwapCallback(int256 amount0Delta, int256 amount1Delta, bytes calldata data) external;
              }
              
              /// @title Callback for IAlgebraPoolActions#swap
              /// @notice Any contract that calls IAlgebraPoolActions#swap must implement this interface
              /// @dev Credit to Uniswap Labs under GPL-2.0-or-later license:
              /// https://github.com/Uniswap/v3-core/tree/main/contracts/interfaces
              interface IAlgebraSwapCallback {
                  /// @notice Called to `msg.sender` after executing a swap via IAlgebraPool#swap.
                  /// @dev In the implementation you must pay the pool tokens owed for the swap.
                  /// The caller of this method must be checked to be a AlgebraPool deployed by the canonical AlgebraFactory.
                  /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
                  /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
                  /// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
                  /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
                  /// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
                  /// @param data Any data passed through by the caller via the IAlgebraPoolActions#swap call
                  function algebraSwapCallback(int256 amount0Delta, int256 amount1Delta, bytes calldata data) external;
              }
              
              /// @title Callback for IPancakeV3PoolActions#swap
              /// @notice Any contract that calls IPancakeV3PoolActions#swap must implement this interface
              interface IPancakeV3SwapCallback {
                  /// @notice Called to `msg.sender` after executing a swap via IPancakeV3Pool#swap.
                  /// @dev In the implementation you must pay the pool tokens owed for the swap.
                  /// The caller of this method must be checked to be a PancakeV3Pool deployed by the canonical PancakeV3Factory.
                  /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
                  /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
                  /// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
                  /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
                  /// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
                  /// @param data Any data passed through by the caller via the IPancakeV3PoolActions#swap call
                  function pancakeV3SwapCallback(int256 amount0Delta, int256 amount1Delta, bytes calldata data) external;
              }
              
              /// @title Callback for IRamsesV2PoolActions#swap
              /// @notice Any contract that calls IRamsesV2PoolActions#swap must implement this interface
              interface IRamsesV2SwapCallback {
                  /// @notice Called to `msg.sender` after executing a swap via IRamsesV2Pool#swap.
                  /// @dev In the implementation you must pay the pool tokens owed for the swap.
                  /// The caller of this method must be checked to be a RamsesV2Pool deployed by the canonical RamsesV2Factory.
                  /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
                  /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
                  /// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
                  /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
                  /// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
                  /// @param data Any data passed through by the caller via the IRamsesV2PoolActions#swap call
                  function ramsesV2SwapCallback(int256 amount0Delta, int256 amount1Delta, bytes calldata data) external;
              }
              
              /// @title Callback for IAgniPoolActions#swap
              /// @notice Any contract that calls IAgniPoolActions#swap must implement this interface
              interface IAgniSwapCallback {
                  /// @notice Called to `msg.sender` after executing a swap via IAgniPool#swap.
                  /// @dev In the implementation you must pay the pool tokens owed for the swap.
                  /// The caller of this method must be checked to be a AgniPool deployed by the canonical AgniFactory.
                  /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
                  /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
                  /// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
                  /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
                  /// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
                  /// @param data Any data passed through by the caller via the IAgniPoolActions#swap call
                  function agniSwapCallback(int256 amount0Delta, int256 amount1Delta, bytes calldata data) external;
              }
              
              /// @title Callback for IFusionXV3PoolActions#swap
              /// @notice Any contract that calls IFusionXV3PoolActions#swap must implement this interface
              interface IFusionXV3SwapCallback {
                  /// @notice Called to `msg.sender` after executing a swap via IFusionXV3Pool#swap.
                  /// @dev In the implementation you must pay the pool tokens owed for the swap.
                  /// The caller of this method must be checked to be a FusionXV3Pool deployed by the canonical FusionXV3Factory.
                  /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
                  /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
                  /// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
                  /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
                  /// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
                  /// @param data Any data passed through by the caller via the IFusionXV3PoolActions#swap call
                  function fusionXV3SwapCallback(int256 amount0Delta, int256 amount1Delta, bytes calldata data) external;
              }
              
              /// @title Callback for ISupV3PoolActions#swap
              /// @notice Any contract that calls ISupV3PoolActions#swap must implement this interface
              interface ISupV3SwapCallback {
                  /// @notice Called to `msg.sender` after executing a swap via ISupV3Pool#swap.
                  /// @dev In the implementation you must pay the pool tokens owed for the swap.
                  /// The caller of this method must be checked to be a SUPV3Pool deployed by the canonical SupV3Factory.
                  /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
                  /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
                  /// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
                  /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
                  /// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
                  /// @param data Any data passed through by the caller via the ISupV3PoolActions#swap call
                  function supV3SwapCallback(int256 amount0Delta, int256 amount1Delta, bytes calldata data) external;
              }
              /// @title Callback for IZebraV3PoolActions#swap
              /// @notice Any contract that calls IZebraV3PoolActions#swap must implement this interface
              interface IZebraV3SwapCallback {
                  /// @notice Called to `msg.sender` after executing a swap via IZebraV3Pool#swap.
                  /// @dev In the implementation you must pay the pool tokens owed for the swap.
                  /// The caller of this method must be checked to be a ZebraV3Pool deployed by the canonical ZebraV3Factory.
                  /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
                  /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
                  /// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
                  /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
                  /// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
                  /// @param data Any data passed through by the caller via the IZebraV3PoolActions#swap call
                  function zebraV3SwapCallback(int256 amount0Delta, int256 amount1Delta, bytes calldata data) external;
              }
              /// @title Callback for IKellerPoolActions#swap
              /// @notice Any contract that calls IKellerPoolActions#swap must implement this interface
              interface IKellerSwapCallback {
                  /// @notice Called to `msg.sender` after executing a swap via IKellerPool#swap.
                  /// @dev In the implementation you must pay the pool tokens owed for the swap.
                  /// The caller of this method must be checked to be a KellerPool deployed by the canonical KellerFactory.
                  /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
                  /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
                  /// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
                  /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
                  /// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
                  /// @param data Any data passed through by the caller via the IKellerPoolActions#swap call
                  function KellerSwapCallback(int256 amount0Delta, int256 amount1Delta, bytes calldata data) external;
              }
              /// @title Callback for IDragonswapV2PoolActions#swap
              /// @notice Any contract that calls IDragonswapV2PoolActions#swap must implement this interface
              interface IDragonswapV2SwapCallback {
                  /// @notice Called to `msg.sender` after executing a swap via IDragonswapV2Pool#swap.
                  /// @dev In the implementation you must pay the pool tokens owed for the swap.
                  /// The caller of this method must be checked to be a DragonswapV2Pool deployed by the canonical DragonswapV2Factory.
                  /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
                  /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
                  /// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
                  /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
                  /// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
                  /// @param data Any data passed through by the caller via the IDragonswapV2PoolActions#swap call
                  function dragonswapV2SwapCallback(
                      int256 amount0Delta,
                      int256 amount1Delta,
                      bytes calldata data
                  ) external;
              }
              
              // File: contracts/interfaces/IWETH.sol
              
              
              pragma solidity ^0.8.0;
              
              /// @title Interface for WETH tokens
              interface IWETH is IERC20 {
                  function deposit() external payable;
              
                  function withdraw(uint256 amount) external;
              }
              
              // File: contracts/UniswapV3Exchange.sol
              
              
              pragma solidity ^0.8.0;
              
              
              
              
              
              
              contract UniswapV3Exchange is EthRejector, Permitable, IUniswapV3SwapCallback {
                  using Address for address payable;
                  using SafeERC20 for IERC20;
                  using SafeMath for uint256;
              
                  uint256 private constant _ONE_FOR_ZERO_MASK = 1 << 255;
                  uint256 private constant _WETH_WRAP_MASK = 1 << 254;
                  uint256 private constant _WETH_UNWRAP_MASK = 1 << 253;
                  bytes32 private constant _POOL_INIT_CODE_HASH = 0xe34f199b19b2b4f47f68442619d555527d244f78a3297ea89325f843f87b8b54;
                  bytes32 private constant _FF_FACTORY = 0xff1F98431c8aD98523631AE4a59f267346ea31F9840000000000000000000000;
                  bytes32 private constant _SELECTORS = 0x0dfe1681d21220a7ddca3f430000000000000000000000000000000000000000;
                  uint256 private constant _ADDRESS_MASK = 0x000000000000000000000000ffffffffffffffffffffffffffffffffffffffff;
                  /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK)
                  uint160 private constant _MIN_SQRT_RATIO = 4295128739 + 1;
                  /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK)
                  uint160 private constant _MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342 - 1;
                  /// @dev Change for different chains
                  address private constant _WETH = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
              
                  /// @notice Same as `uniswapV3SwapTo` but calls permit first,
                  /// allowing to approve token spending and make a swap in one transaction.
                  /// @param recipient Address that will receive swap funds
                  /// @param amount Amount of source tokens to swap
                  /// @param minReturn Minimal allowed returnAmount to make transaction commit
                  /// @param pools Pools chain used for swaps. Pools src and dst tokens should match to make swap happen
                  /// @param permit Should contain valid permit that can be used in `IERC20Permit.permit` calls.
                  /// @param srcToken Source token
                  /// See tests for examples
                  function uniswapV3SwapToWithPermit(
                      address payable recipient,
                      uint256 amount,
                      uint256 minReturn,
                      uint256[] calldata pools,
                      bytes calldata permit,
                      IERC20 srcToken
                  ) external returns (uint256 returnAmount) {
                      _permit(address(srcToken), permit);
                      return _uniswapV3Swap(recipient, amount, minReturn, pools, _isPermit2(permit));
                  }
              
                  /// @notice Performs swap using Uniswap V3 exchange. Wraps and unwraps ETH if required.
                  /// Sending non-zero `msg.value` for anything but ETH swaps is prohibited
                  /// @param recipient Address that will receive swap funds
                  /// @param amount Amount of source tokens to swap
                  /// @param minReturn Minimal allowed returnAmount to make transaction commit
                  /// @param pools Pools chain used for swaps. Pools src and dst tokens should match to make swap happen
                  function uniswapV3SwapTo(
                      address payable recipient,
                      uint256 amount,
                      uint256 minReturn,
                      uint256[] calldata pools
                  ) external payable returns (uint256 returnAmount) {
                      return _uniswapV3Swap(recipient, amount, minReturn, pools, false);
                  }
              
                  function _uniswapV3Swap(
                      address payable recipient,
                      uint256 amount,
                      uint256 minReturn,
                      uint256[] calldata pools,
                      bool permit2
                  ) internal returns (uint256 returnAmount) {
                      uint256 len = pools.length;
                      address dstToken;
                      require(len > 0, "UniswapV3: empty pools");
                      uint256 lastIndex = len - 1;
                      returnAmount = amount;
                      bool wrapWeth = pools[0] & _WETH_WRAP_MASK > 0;
                      bool unwrapWeth = pools[lastIndex] & _WETH_UNWRAP_MASK > 0;
                      if (wrapWeth) {
                          require(msg.value == amount, "UniswapV3: wrong msg.value");
                          IWETH(_WETH).deposit{value: amount}();
                      } else {
                          require(msg.value == 0, "UniswapV3: msg.value should be 0");
                      }
                      if (len > 1) {
                          (returnAmount, ) = _makeSwap(address(this), wrapWeth || permit2 ? address(this) : msg.sender, pools[0], returnAmount);
                          for (uint256 i = 1; i < lastIndex; i++) {
                              (returnAmount, ) = _makeSwap(address(this), address(this), pools[i], returnAmount);
                          }
                          (returnAmount, dstToken) = _makeSwap(address(this), address(this), pools[lastIndex], returnAmount);
                      } else {
                          (returnAmount, dstToken) = _makeSwap(
                              address(this),
                              wrapWeth || permit2 ? address(this) : msg.sender,
                              pools[0],
                              returnAmount
                          );
                      }
              
                      require(returnAmount >= minReturn, "UniswapV3: min return");
              
                      assembly {
                          function reRevert() {
                              returndatacopy(0, 0, returndatasize())
                              revert(0, returndatasize())
                          }
              
                          function run(_returnAmount, _recipient, _unwrapWeth, _dstToken) {
                              let slp := shr(
                                  232,
                                  and(
                                      calldataload(add(add(calldataload(0x64), 0x4), 0x20)),
                                      0x00ffff0000000000000000000000000000000000000000000000000000000000
                                  )
                              )
                              let finalAmount := div(mul(calldataload(0x44), 0x2710), sub(10000, slp))
                              let emptyPtr := mload(0x40)
                              switch gt(_returnAmount, finalAmount)
                              case 1 {
                                  switch _unwrapWeth
                                  case 0 {
                                      mstore(emptyPtr, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
                                      mstore(add(emptyPtr, 0x4), _recipient)
                                      mstore(add(emptyPtr, 0x24), finalAmount)
                                      if iszero(call(gas(), _dstToken, 0, emptyPtr, 0x44, 0, 0)) {
                                          reRevert()
                                      }
              
                                      mstore(add(emptyPtr, 0x4), 0x922164BBBd36Acf9E854AcBbF32faCC949fCAEef)
                                      mstore(add(emptyPtr, 0x24), sub(_returnAmount, finalAmount))
                                      if iszero(call(gas(), _dstToken, 0, emptyPtr, 0x44, 0, 0)) {
                                          reRevert()
                                      }
                                  }
                                  default {
                                      mstore(emptyPtr, 0x2e1a7d4d00000000000000000000000000000000000000000000000000000000)
                                      mstore(add(emptyPtr, 0x04), _returnAmount)
                                      if iszero(
                                          call(gas(), 0x000000000000000000000000C02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, 0, emptyPtr, 0x24, 0, 0)
                                      ) {
                                          reRevert()
                                      }
              
                                      if iszero(call(gas(), _recipient, finalAmount, 0, 0, 0, 0)) {
                                          reRevert()
                                      }
              
                                      if iszero(
                                          call(gas(), 0x922164BBBd36Acf9E854AcBbF32faCC949fCAEef, sub(_returnAmount, finalAmount), 0, 0, 0, 0)
                                      ) {
                                          reRevert()
                                      }
                                  }
                              }
                              default {
                                  switch _unwrapWeth
                                  case 0 {
                                      mstore(emptyPtr, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
                                      mstore(add(emptyPtr, 0x4), _recipient)
                                      mstore(add(emptyPtr, 0x24), _returnAmount)
                                      if iszero(call(gas(), _dstToken, 0, emptyPtr, 0x44, 0, 0)) {
                                          reRevert()
                                      }
                                  }
                                  default {
                                      mstore(emptyPtr, 0x2e1a7d4d00000000000000000000000000000000000000000000000000000000)
                                      mstore(add(emptyPtr, 0x04), _returnAmount)
                                      if iszero(
                                          call(gas(), 0x000000000000000000000000C02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, 0, emptyPtr, 0x24, 0, 0)
                                      ) {
                                          reRevert()
                                      }
              
                                      if iszero(call(gas(), _recipient, _returnAmount, 0, 0, 0, 0)) {
                                          reRevert()
                                      }
                                  }
                              }
                          }
              
                          run(returnAmount, recipient, unwrapWeth, dstToken)
                      }
                  }
              
                  /// @inheritdoc IUniswapV3SwapCallback
                  function uniswapV3SwapCallback(int256 amount0Delta, int256 amount1Delta, bytes calldata /*data*/) external override {
                      IERC20 token0;
                      IERC20 token1;
                      bytes32 ffFactoryAddress = _FF_FACTORY;
                      bytes32 poolInitCodeHash = _POOL_INIT_CODE_HASH;
                      address payer;
              
                      assembly {
                          // solhint-disable-line no-inline-assembly
                          function reRevert() {
                              returndatacopy(0, 0, returndatasize())
                              revert(0, returndatasize())
                          }
              
                          function revertWithReason(m, len) {
                              mstore(0x00, 0x08c379a000000000000000000000000000000000000000000000000000000000)
                              mstore(0x20, 0x0000002000000000000000000000000000000000000000000000000000000000)
                              mstore(0x40, m)
                              revert(0, len)
                          }
              
                          let emptyPtr := mload(0x40)
                          let resultPtr := add(emptyPtr, 0x20)
                          mstore(emptyPtr, _SELECTORS)
              
                          if iszero(staticcall(gas(), caller(), emptyPtr, 0x4, resultPtr, 0x20)) {
                              reRevert()
                          }
                          token0 := mload(resultPtr)
                          if iszero(staticcall(gas(), caller(), add(emptyPtr, 0x4), 0x4, resultPtr, 0x20)) {
                              reRevert()
                          }
                          token1 := mload(resultPtr)
                          if iszero(staticcall(gas(), caller(), add(emptyPtr, 0x8), 0x4, resultPtr, 0x20)) {
                              reRevert()
                          }
                          let fee := mload(resultPtr)
              
                          let p := emptyPtr
                          mstore(p, ffFactoryAddress)
                          p := add(p, 21)
                          // Compute the inner hash in-place
                          mstore(p, token0)
                          mstore(add(p, 32), token1)
                          mstore(add(p, 64), fee)
                          mstore(p, keccak256(p, 96))
                          p := add(p, 32)
                          mstore(p, poolInitCodeHash)
                          let pool := and(keccak256(emptyPtr, 85), _ADDRESS_MASK)
              
                          if iszero(eq(pool, caller())) {
                              revertWithReason(0x00000010554e495633523a2062616420706f6f6c000000000000000000000000, 0x54) // UniswapV3: bad pool
                          }
              
                          calldatacopy(emptyPtr, 0x84, 0x20)
                          payer := mload(emptyPtr)
                      }
              
                      if (amount0Delta > 0) {
                          if (payer == address(this)) {
                              token0.safeTransfer(msg.sender, uint256(amount0Delta));
                          } else {
                              token0.safeTransferFrom(payer, msg.sender, uint256(amount0Delta));
                          }
                      }
                      if (amount1Delta > 0) {
                          if (payer == address(this)) {
                              token1.safeTransfer(msg.sender, uint256(amount1Delta));
                          } else {
                              token1.safeTransferFrom(payer, msg.sender, uint256(amount1Delta));
                          }
                      }
                  }
              
                  function _makeSwap(address recipient, address payer, uint256 pool, uint256 amount) private returns (uint256, address) {
                      bool zeroForOne = pool & _ONE_FOR_ZERO_MASK == 0;
                      if (zeroForOne) {
                          (, int256 amount1) = IUniswapV3Pool(address(uint160(pool))).swap(
                              recipient,
                              zeroForOne,
                              SafeCast.toInt256(amount),
                              _MIN_SQRT_RATIO,
                              abi.encode(payer)
                          );
                          return (SafeCast.toUint256(-amount1), IUniswapV3Pool(address(uint160(pool))).token1());
                      } else {
                          (int256 amount0, ) = IUniswapV3Pool(address(uint160(pool))).swap(
                              recipient,
                              zeroForOne,
                              SafeCast.toInt256(amount),
                              _MAX_SQRT_RATIO,
                              abi.encode(payer)
                          );
                          return (SafeCast.toUint256(-amount0), IUniswapV3Pool(address(uint160(pool))).token0());
                      }
                  }
              }
              
              // File: contracts/OpenOceanExchange.sol
              
              
              
              pragma solidity ^0.8.0;
              
              
              
              
              
              
              
              
              
              
              contract OpenOceanExchange is OwnableUpgradeable, PausableUpgradeable, Permitable, UniswapV2Exchange, UniswapV3Exchange {
                  using SafeMath for uint256;
                  using SafeERC20 for IERC20;
                  using UniversalERC20 for IERC20;
              
                  uint256 private constant _PARTIAL_FILL = 0x01;
                  uint256 private constant _SHOULD_CLAIM = 0x02;
              
                  struct SwapDescription {
                      IERC20 srcToken;
                      IERC20 dstToken;
                      address srcReceiver;
                      address dstReceiver;
                      uint256 amount;
                      uint256 minReturnAmount;
                      uint256 guaranteedAmount;
                      uint256 flags;
                      address referrer;
                      bytes permit;
                  }
              
                  event Swapped(
                      address indexed sender,
                      IERC20 indexed srcToken,
                      IERC20 indexed dstToken,
                      address dstReceiver,
                      uint256 amount,
                      uint256 spentAmount,
                      uint256 returnAmount,
                      uint256 minReturnAmount,
                      uint256 guaranteedAmount,
                      address referrer
                  );
              
                  function initialize() public initializer {
                      OwnableUpgradeable.__Ownable_init();
                      PausableUpgradeable.__Pausable_init();
                  }
              
                  function swap(
                      IOpenOceanCaller caller,
                      SwapDescription calldata desc,
                      IOpenOceanCaller.CallDescription[] calldata calls
                  ) external payable whenNotPaused returns (uint256 returnAmount) {
                      require(desc.minReturnAmount > 0, "Min return should not be 0");
                      require(calls.length > 0, "Call data should exist");
              
                      uint256 flags = desc.flags;
                      IERC20 srcToken = desc.srcToken;
                      IERC20 dstToken = desc.dstToken;
              
                      require(msg.value == (srcToken.isETH() ? desc.amount : 0), "Invalid msg.value");
              
                      if (flags & _SHOULD_CLAIM != 0) {
                          require(!srcToken.isETH(), "Claim token is ETH");
                          _claim(srcToken, desc.srcReceiver, desc.amount, desc.permit);
                      }
              
                      address dstReceiver = (desc.dstReceiver == address(0)) ? msg.sender : desc.dstReceiver;
                      uint256 initialSrcBalance = (flags & _PARTIAL_FILL != 0) ? srcToken.universalBalanceOf(msg.sender) : 0;
                      uint256 initialDstBalance = dstToken.universalBalanceOf(dstReceiver);
              
                      caller.makeCalls{value: msg.value}(calls);
              
                      uint256 spentAmount = desc.amount;
                      returnAmount = dstToken.universalBalanceOf(dstReceiver).sub(initialDstBalance);
              
                      if (flags & _PARTIAL_FILL != 0) {
                          spentAmount = initialSrcBalance.add(desc.amount).sub(srcToken.universalBalanceOf(msg.sender));
                          require(returnAmount.mul(desc.amount) >= desc.minReturnAmount.mul(spentAmount), "Return amount is not enough");
                      } else {
                          require(returnAmount >= desc.minReturnAmount, "Return amount is not enough");
                      }
              
                      _emitSwapped(desc, srcToken, dstToken, dstReceiver, spentAmount, returnAmount);
                  }
              
                  function _emitSwapped(
                      SwapDescription calldata desc,
                      IERC20 srcToken,
                      IERC20 dstToken,
                      address dstReceiver,
                      uint256 spentAmount,
                      uint256 returnAmount
                  ) private {
                      emit Swapped(
                          msg.sender,
                          srcToken,
                          dstToken,
                          dstReceiver,
                          desc.amount,
                          spentAmount,
                          returnAmount,
                          desc.minReturnAmount,
                          desc.guaranteedAmount,
                          desc.referrer
                      );
                  }
              
                  function _claim(IERC20 token, address dst, uint256 amount, bytes calldata permit) private {
                      if (!_permit(address(token), permit)) {
                          token.safeTransferFrom(msg.sender, dst, amount);
                      }
                  }
              
                  function rescueFunds(IERC20 token, uint256 amount) external onlyOwner {
                      token.universalTransfer(payable(msg.sender), amount);
                  }
              
                  function pause() external onlyOwner {
                      _pause();
                  }
              
                  function swapGmxV2(
                      IOpenOceanCaller caller,
                      SwapDescription calldata desc,
                      IOpenOceanCaller.CallDescription[] calldata calls
                  ) external payable whenNotPaused returns (uint256 returnAmount) {
                      require(calls.length > 0, "Call data should exist");
                      require(msg.value > 0, "Invalid msg.value");
              
                      uint256 flags = desc.flags;
                      IERC20 srcToken = desc.srcToken;
                      IERC20 dstToken = desc.dstToken;
              
                      if (flags & _SHOULD_CLAIM != 0) {
                          require(!srcToken.isETH(), "Claim token is ETH");
                          _claim(srcToken, desc.srcReceiver, desc.amount, desc.permit);
                      }
              
                      address dstReceiver = (desc.dstReceiver == address(0)) ? msg.sender : desc.dstReceiver;
                      uint256 initialSrcBalance = (flags & _PARTIAL_FILL != 0) ? srcToken.universalBalanceOf(msg.sender) : 0;
                      uint256 initialDstBalance = dstToken.universalBalanceOf(dstReceiver);
              
                      caller.makeCalls{value: msg.value}(calls);
              
                      uint256 spentAmount = desc.amount;
                      returnAmount = dstToken.universalBalanceOf(dstReceiver).sub(initialDstBalance);
              
                      if (flags & _PARTIAL_FILL != 0) {
                          spentAmount = initialSrcBalance.add(desc.amount).sub(srcToken.universalBalanceOf(msg.sender));
                          require(returnAmount.mul(desc.amount) >= desc.minReturnAmount.mul(spentAmount), "Return amount is not enough");
                      } else {
                          require(returnAmount >= desc.minReturnAmount, "Return amount is not enough");
                      }
              
                      _emitSwapped(desc, srcToken, dstToken, dstReceiver, spentAmount, returnAmount);
                  }
              
                  function setPermit2(address _permit2) external onlyOwner {
                      permit2 = _permit2;
                  }
              }