Transaction Hash:
Block:
15536965 at Sep-15-2022 04:57:45 AM +UTC
Transaction Fee:
0.01741482107137884 ETH
$34.36
Gas Used:
3,041,160 Gas / 5.726374499 Gwei
Emitted Events:
| 41 |
WETH9.Transfer( src=0x6147C54106dc2e3d7f5d4b5aFD2804F2D30dB0b5, dst=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, wad=2705181832456302715 )
|
| 42 |
MiniMeToken.Transfer( _from=0xa3f558aebAecAf0e11cA4b2199cC5Ed341edfd74, _to=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, _amount=132167931893471212440 )
|
| 43 |
ConvexToken.Transfer( from=UniswapV2Pair, to=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, value=15736475236471210158 )
|
| 44 |
Sand.Transfer( from=0x5859ebE6Fd3BBC6bD646b73a5DbB09a5D7B6e7B7, to=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, value=327852275039725866576 )
|
| 45 |
DSToken.Transfer( from=0xe8c6c9227491C0a8156A0106A0204d881BB7E531, to=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, value=220957932492814183 )
|
| 46 |
SimpleToken.Transfer( from=0xAc4b3DacB91461209Ae9d41EC517c2B9Cb1B7DAF, to=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, value=75781515337958691240 )
|
| 47 |
Gala.Transfer( from=0xf8a95b2409C27678A6d18D950c5d913D5C38aB03, to=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, value=161992285973 )
|
| 48 |
Vyper_contract.Transfer( _from=UniswapV2Pair, _to=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, _value=89297907250913419380 )
|
| 49 |
ProxyERC20.Transfer( from=0xEDe8dd046586d22625Ae7fF2708F879eF7bdb8CF, to=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, value=59720974378667956991 )
|
| 50 |
InitializableAdminUpgradeabilityProxy.0xa0a19463ee116110c9b282012d9b65cc5522dc38a9520340cbaf3142e550127f( 0xa0a19463ee116110c9b282012d9b65cc5522dc38a9520340cbaf3142e550127f, 0x000000000000000000000000dfc14d2af169b0d36c4eff567ada9b2e0cae044f, 000000000000000000000000000000000000000000000042373e979fa9562cc4, 0000000000000000000000000000000000000000000000000000000000000000 )
|
| 51 |
InitializableAdminUpgradeabilityProxy.0xa0a19463ee116110c9b282012d9b65cc5522dc38a9520340cbaf3142e550127f( 0xa0a19463ee116110c9b282012d9b65cc5522dc38a9520340cbaf3142e550127f, 0x000000000000000000000000ba71b56fd0b590ed2a6992ed57a34c1391940513, 0000000000000000000000000000000000000000000000003196b9d0251cf451, 0000000000000000000000000000000000000000000000000000000000000000 )
|
| 52 |
InitializableAdminUpgradeabilityProxy.0xa0a19463ee116110c9b282012d9b65cc5522dc38a9520340cbaf3142e550127f( 0xa0a19463ee116110c9b282012d9b65cc5522dc38a9520340cbaf3142e550127f, 0x000000000000000000000000dfc14d2af169b0d36c4eff567ada9b2e0cae044f, 000000000000000000000000000000000000000000000042373e979fa9562cc4, 0000000000000000000000000000000000000000000000000000000000000001 )
|
| 53 |
InitializableAdminUpgradeabilityProxy.0xa0a19463ee116110c9b282012d9b65cc5522dc38a9520340cbaf3142e550127f( 0xa0a19463ee116110c9b282012d9b65cc5522dc38a9520340cbaf3142e550127f, 0x000000000000000000000000ba71b56fd0b590ed2a6992ed57a34c1391940513, 0000000000000000000000000000000000000000000000003196b9d0251cf451, 0000000000000000000000000000000000000000000000000000000000000001 )
|
| 54 |
InitializableAdminUpgradeabilityProxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x000000000000000000000000dfc14d2af169b0d36c4eff567ada9b2e0cae044f, 0x000000000000000000000000ba71b56fd0b590ed2a6992ed57a34c1391940513, 0000000000000000000000000000000000000000000000003196b9d0251cf451 )
|
| 55 |
MANAToken.Transfer( from=0x8661aE7918C0115Af9e3691662f605e9c550dDc9, to=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, value=440994189603624936039 )
|
| 56 |
LinkToken.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x000000000000000000000000a6cc3c2531fdaa6ae1a3ca84c2855806728693e8, 0x000000000000000000000000ba71b56fd0b590ed2a6992ed57a34c1391940513, 00000000000000000000000000000000000000000000000622eb38660f7258f7 )
|
| 57 |
LRC_v2.Transfer( from=0xe1d92f1De49CAEC73514f696FEa2a7d5441498E5, to=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, value=320252800800763862367 )
|
| 58 |
ENJToken.Transfer( _from=0xe16Be1798F860bC1EB0FEb64cD67Ca00AE9b6E58, _to=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, _value=229456932328758586485 )
|
| 59 |
Uni.Transfer( from=UniswapV3Pool, to=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, amount=109983665765757656671 )
|
| 60 |
BitDAO.Transfer( from=0x5C128d25A21f681e678cB050E551A895c9309945, to=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, value=271809417692931385801 )
|
| 61 |
BAToken.Transfer( _from=0xAE614a7a56cB79c04Df2aeBA6f5dAB80A39CA78E, _to=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, _value=340936839493291978664 )
|
| 62 |
GraphToken.Transfer( from=UniswapV2Pair, to=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, value=1833356889541465508890 )
|
| 63 |
WETH9.Transfer( src=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, dst=UniswapV2Pair, wad=124757945100459663 )
|
| 64 |
WETH9.Transfer( src=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, dst=0xAE614a7a56cB79c04Df2aeBA6f5dAB80A39CA78E, wad=67432908682170061 )
|
| 65 |
WETH9.Transfer( src=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, dst=0x5C128d25A21f681e678cB050E551A895c9309945, wad=95793660637223495 )
|
| 66 |
WETH9.Transfer( src=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, dst=UniswapV3Pool, wad=409743391579946203 )
|
| 67 |
WETH9.Transfer( src=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, dst=0xe16Be1798F860bC1EB0FEb64cD67Ca00AE9b6E58, wad=70532564697744877 )
|
| 68 |
WETH9.Transfer( src=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, dst=0xe1d92f1De49CAEC73514f696FEa2a7d5441498E5, wad=64980871907155620 )
|
| 69 |
WETH9.Transfer( src=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, dst=0xa6Cc3C2531FdaA6Ae1A3CA84c2855806728693e8, wad=508971452055477895 )
|
| 70 |
WETH9.Transfer( src=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, dst=0x8661aE7918C0115Af9e3691662f605e9c550dDc9, wad=199678043662418688 )
|
| 71 |
WETH9.Transfer( src=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, dst=UniswapV2Pair, wad=179485135524796809 )
|
| 72 |
WETH9.Transfer( src=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, dst=0xEDe8dd046586d22625Ae7fF2708F879eF7bdb8CF, wad=97582970560084598 )
|
| 73 |
WETH9.Transfer( src=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, dst=UniswapV2Pair, wad=57570102360687107 )
|
| 74 |
WETH9.Transfer( src=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, dst=0xf8a95b2409C27678A6d18D950c5d913D5C38aB03, wad=47789401519215620 )
|
| 75 |
WETH9.Transfer( src=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, dst=Vyper_contract, wad=55683242118377705 )
|
| 76 |
WETH9.Withdrawal( src=Vyper_contract, wad=55683242118377705 )
|
| 77 |
FRAXShares.VoterVotesChanged( voter=Vyper_contract, previousBalance=38950778784443625821555, newBalance=38934331903328055710968 )
|
| 78 |
FRAXShares.VoterVotesChanged( voter=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, previousBalance=179132495, newBalance=16446881115749243082 )
|
| 79 |
FRAXShares.Transfer( from=Vyper_contract, to=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, value=16446881115570110587 )
|
| 80 |
Vyper_contract.TokenExchange( buyer=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, sold_id=0, tokens_sold=55683242118377705, bought_id=1, tokens_bought=16446881115570110587 )
|
| 81 |
WETH9.Transfer( src=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, dst=0xAc4b3DacB91461209Ae9d41EC517c2B9Cb1B7DAF, wad=236540446674032996 )
|
| 82 |
WETH9.Transfer( src=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, dst=0xe8c6c9227491C0a8156A0106A0204d881BB7E531, wad=94722090600515620 )
|
| 83 |
WETH9.Transfer( src=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, dst=0x5859ebE6Fd3BBC6bD646b73a5DbB09a5D7B6e7B7, wad=178492292270980762 )
|
| 84 |
WETH9.Transfer( src=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, dst=UniswapV2Pair, wad=47198085869298833 )
|
| 85 |
WETH9.Transfer( src=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, dst=0xa3f558aebAecAf0e11cA4b2199cC5Ed341edfd74, wad=140946809874968900 )
|
| 86 |
LinkToken.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x000000000000000000000000ba71b56fd0b590ed2a6992ed57a34c1391940513, 0x000000000000000000000000e8e8486228753e01dbc222da262aa706bd67e601, 00000000000000000000000000000000000000000000000622eb38660f7258f7 )
|
| 87 |
Uni.Transfer( from=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, to=SetToken, amount=109983665765757656671 )
|
| 88 |
BitDAO.Transfer( from=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, to=SetToken, value=271809417692931385801 )
|
| 89 |
BitDAO.Approval( owner=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, spender=BasicIssuanceModule, value=115792089237316195423570985008687907853269984665640564034483781688146841453274 )
|
| 90 |
GraphToken.Transfer( from=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, to=SetToken, value=1833356889541465508890 )
|
| 91 |
GraphToken.Approval( owner=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, spender=BasicIssuanceModule, value=115792089237316195423570985008687907853269984665640563991894303753588709689581 )
|
| 92 |
InitializableAdminUpgradeabilityProxy.0xa0a19463ee116110c9b282012d9b65cc5522dc38a9520340cbaf3142e550127f( 0xa0a19463ee116110c9b282012d9b65cc5522dc38a9520340cbaf3142e550127f, 0x000000000000000000000000ba71b56fd0b590ed2a6992ed57a34c1391940513, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000 )
|
| 93 |
InitializableAdminUpgradeabilityProxy.0xa0a19463ee116110c9b282012d9b65cc5522dc38a9520340cbaf3142e550127f( 0xa0a19463ee116110c9b282012d9b65cc5522dc38a9520340cbaf3142e550127f, 0x000000000000000000000000e8e8486228753e01dbc222da262aa706bd67e601, 00000000000000000000000000000000000000000000000a2f5a85d8f6e0b459, 0000000000000000000000000000000000000000000000000000000000000000 )
|
| 94 |
InitializableAdminUpgradeabilityProxy.0xa0a19463ee116110c9b282012d9b65cc5522dc38a9520340cbaf3142e550127f( 0xa0a19463ee116110c9b282012d9b65cc5522dc38a9520340cbaf3142e550127f, 0x000000000000000000000000ba71b56fd0b590ed2a6992ed57a34c1391940513, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000001 )
|
| 95 |
InitializableAdminUpgradeabilityProxy.0xa0a19463ee116110c9b282012d9b65cc5522dc38a9520340cbaf3142e550127f( 0xa0a19463ee116110c9b282012d9b65cc5522dc38a9520340cbaf3142e550127f, 0x000000000000000000000000e8e8486228753e01dbc222da262aa706bd67e601, 00000000000000000000000000000000000000000000000a2f5a85d8f6e0b459, 0000000000000000000000000000000000000000000000000000000000000001 )
|
| 96 |
InitializableAdminUpgradeabilityProxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x000000000000000000000000ba71b56fd0b590ed2a6992ed57a34c1391940513, 0x000000000000000000000000e8e8486228753e01dbc222da262aa706bd67e601, 0000000000000000000000000000000000000000000000003196b9d0251cf451 )
|
| 97 |
InitializableAdminUpgradeabilityProxy.0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925( 0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925, 0x000000000000000000000000ba71b56fd0b590ed2a6992ed57a34c1391940513, 0x000000000000000000000000d8ef3cace8b4907117a45b0b125c68560532f94d, fffffffffffffffffffffffffffffffffffffffffffffffeae48c4d4172cdff5 )
|
| 98 |
MANAToken.Transfer( from=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, to=SetToken, value=440994189603624936039 )
|
| 99 |
Gala.Transfer( from=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, to=SetToken, value=161992285973 )
|
| 100 |
Gala.Approval( owner=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, spender=BasicIssuanceModule, value=115792089237316195423570985008687907853269984665640564039457584002334732612949 )
|
| 101 |
ENJToken.Transfer( _from=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, _to=SetToken, _value=229456932328758586485 )
|
| 102 |
Sand.Transfer( from=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, to=SetToken, value=327852275039725866576 )
|
| 103 |
DSToken.Transfer( from=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, to=SetToken, value=220957932492814183 )
|
| 104 |
Vyper_contract.Transfer( _from=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, _to=SetToken, _value=89297907250913419380 )
|
| 105 |
FRAXShares.VoterVotesChanged( voter=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, previousBalance=16446881115749243082, newBalance=184858679 )
|
| 106 |
FRAXShares.VoterVotesChanged( voter=SetToken, previousBalance=848322145402008844132, newBalance=864769026517573228535 )
|
| 107 |
FRAXShares.Transfer( from=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, to=SetToken, value=16446881115564384403 )
|
| 108 |
FRAXShares.Approval( owner=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, spender=BasicIssuanceModule, value=115792089237316195423570985008687907853269984665640564038891216096209503602085 )
|
| 109 |
MiniMeToken.Transfer( _from=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, _to=SetToken, _amount=132167931893471212440 )
|
| 110 |
ProxyERC20.Transfer( from=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, to=SetToken, value=59720974378667956991 )
|
| 111 |
LRC_v2.Transfer( from=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, to=SetToken, value=320252800800763862367 )
|
| 112 |
SimpleToken.Transfer( from=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, to=SetToken, value=75781515337958691240 )
|
| 113 |
SimpleToken.Approval( owner=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, spender=BasicIssuanceModule, value=115792089237316195423570985008687907853269984665640564038951670337590445158083 )
|
| 114 |
ConvexToken.Transfer( from=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, to=SetToken, value=15736475236471210158 )
|
| 115 |
ConvexToken.Approval( owner=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, spender=BasicIssuanceModule, value=115792089237316195423570985008687907853269984665640564038915679767551009059963 )
|
| 116 |
BAToken.Transfer( _from=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, _to=SetToken, _value=340936839493291978664 )
|
| 117 |
SetToken.Transfer( from=0x0000000000000000000000000000000000000000, to=0x6147C54106dc2e3d7f5d4b5aFD2804F2D30dB0b5, value=2568008884656672750526 )
|
| 118 |
BasicIssuanceModule.SetTokenIssued( _setToken=SetToken, _issuer=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, _to=0x6147C54106dc2e3d7f5d4b5aFD2804F2D30dB0b5, _hookContract=0x0000000000000000000000000000000000000000, _quantity=2568008884656672750526 )
|
| 119 |
WETH9.Withdrawal( src=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, wad=27280416760747263 )
|
| 120 |
UniswapV2Pair.Sync( reserve0=30141248744075525230, reserve1=442428975173479463913748 )
|
| 121 |
UniswapV2Pair.Swap( sender=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, amount0In=124757945100459663, amount1In=0, amount0Out=0, amount1Out=1833356889541465508890, to=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513 )
|
| 122 |
0xae614a7a56cb79c04df2aeba6f5dab80a39ca78e.0xc42079f94a6350d7e6235f29174924f928cc2ac818eb64fed8004e115fbcca67( 0xc42079f94a6350d7e6235f29174924f928cc2ac818eb64fed8004e115fbcca67, 0x000000000000000000000000ba71b56fd0b590ed2a6992ed57a34c1391940513, 0x000000000000000000000000ba71b56fd0b590ed2a6992ed57a34c1391940513, ffffffffffffffffffffffffffffffffffffffffffffffed848d06d775f65058, 00000000000000000000000000000000000000000000000000ef91df882c0ecd, 0000000000000000000000000000000000000000039863cc19ec554d1d971d08, 0000000000000000000000000000000000000000000004db81c5be8d3a4c860a, fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeb2bc )
|
| 123 |
0x5c128d25a21f681e678cb050e551a895c9309945.0xc42079f94a6350d7e6235f29174924f928cc2ac818eb64fed8004e115fbcca67( 0xc42079f94a6350d7e6235f29174924f928cc2ac818eb64fed8004e115fbcca67, 0x000000000000000000000000ba71b56fd0b590ed2a6992ed57a34c1391940513, 0x000000000000000000000000ba71b56fd0b590ed2a6992ed57a34c1391940513, fffffffffffffffffffffffffffffffffffffffffffffff143e2f6b75f0c9637, 000000000000000000000000000000000000000000000000015453d3aa041a47, 000000000000000000000000000000000000000004cc79a6ba4a3e9d9ebd27f3, 0000000000000000000000000000000000000000000055389529ca95415c97f9, fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffec94b )
|
| 124 |
UniswapV3Pool.Swap( sender=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, recipient=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, amount0=-109983665765757656671, amount1=409743391579946203, sqrtPriceX96=4828717772452398508223617775, liquidity=113926253836959496297481, tick=-55958 )
|
| 125 |
0xe16be1798f860bc1eb0feb64cd67ca00ae9b6e58.0xc42079f94a6350d7e6235f29174924f928cc2ac818eb64fed8004e115fbcca67( 0xc42079f94a6350d7e6235f29174924f928cc2ac818eb64fed8004e115fbcca67, 0x000000000000000000000000ba71b56fd0b590ed2a6992ed57a34c1391940513, 0x000000000000000000000000ba71b56fd0b590ed2a6992ed57a34c1391940513, 00000000000000000000000000000000000000000000000000fa94fe6fe805ed, fffffffffffffffffffffffffffffffffffffffffffffff38fa537c30d7fd38b, 00000000000000000000000000000000000000391dcc2469cf73178653f52ca9, 0000000000000000000000000000000000000000000003e6124d1859eb6ef2bb, 0000000000000000000000000000000000000000000000000000000000013c09 )
|
| 126 |
0xe1d92f1de49caec73514f696fea2a7d5441498e5.0xc42079f94a6350d7e6235f29174924f928cc2ac818eb64fed8004e115fbcca67( 0xc42079f94a6350d7e6235f29174924f928cc2ac818eb64fed8004e115fbcca67, 0x000000000000000000000000ba71b56fd0b590ed2a6992ed57a34c1391940513, 0x000000000000000000000000ba71b56fd0b590ed2a6992ed57a34c1391940513, ffffffffffffffffffffffffffffffffffffffffffffffeea3997e719a8922a1, 00000000000000000000000000000000000000000000000000e6dbc23b389ea4, 000000000000000000000000000000000000000003a46126d60ea2b876d35c2b, 0000000000000000000000000000000000000000000001c2ef59364b5569902f, fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeb3bf )
|
| 127 |
0xa6cc3c2531fdaa6ae1a3ca84c2855806728693e8.0xc42079f94a6350d7e6235f29174924f928cc2ac818eb64fed8004e115fbcca67( 0xc42079f94a6350d7e6235f29174924f928cc2ac818eb64fed8004e115fbcca67, 0x000000000000000000000000ba71b56fd0b590ed2a6992ed57a34c1391940513, 0x000000000000000000000000ba71b56fd0b590ed2a6992ed57a34c1391940513, fffffffffffffffffffffffffffffffffffffffffffffff9dd14c799f08da709, 00000000000000000000000000000000000000000000000007103ad6c894de87, 00000000000000000000000000000000000000001123f0d4e5dbc8f48bc68707, 000000000000000000000000000000000000000000006a1da8b5fc3fb627b96d, ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff2cc2 )
|
| 128 |
0x8661ae7918c0115af9e3691662f605e9c550ddc9.0xc42079f94a6350d7e6235f29174924f928cc2ac818eb64fed8004e115fbcca67( 0xc42079f94a6350d7e6235f29174924f928cc2ac818eb64fed8004e115fbcca67, 0x000000000000000000000000ba71b56fd0b590ed2a6992ed57a34c1391940513, 0x000000000000000000000000ba71b56fd0b590ed2a6992ed57a34c1391940513, ffffffffffffffffffffffffffffffffffffffffffffffe817f9e90af8ac9d99, 00000000000000000000000000000000000000000000000002c5661f6df18300, 00000000000000000000000000000000000000000570b557e78984a85359349c, 000000000000000000000000000000000000000000000521c812e23d4baf6ab4, fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed319 )
|
| 129 |
UniswapV2Pair.Sync( reserve0=1221465894697469095108, reserve1=61349962990556296559 )
|
| 130 |
UniswapV2Pair.Swap( sender=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, amount0In=0, amount1In=179485135524796809, amount0Out=3573247657992057937, amount1Out=0, to=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513 )
|
| 131 |
0xede8dd046586d22625ae7ff2708f879ef7bdb8cf.0xc42079f94a6350d7e6235f29174924f928cc2ac818eb64fed8004e115fbcca67( 0xc42079f94a6350d7e6235f29174924f928cc2ac818eb64fed8004e115fbcca67, 0x000000000000000000000000ba71b56fd0b590ed2a6992ed57a34c1391940513, 0x000000000000000000000000ba71b56fd0b590ed2a6992ed57a34c1391940513, fffffffffffffffffffffffffffffffffffffffffffffffcc3347a37c74aa501, 000000000000000000000000000000000000000000000000015aaf31d85c7a76, 00000000000000000000000000000000000000000a55fc5e3653d61b1f80826c, 0000000000000000000000000000000000000000000000d01e5c638e2d227c89, ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff053d )
|
| 132 |
UniswapV2Pair.Sync( reserve0=155592856119111622186, reserve1=241979209299210135375655 )
|
| 133 |
UniswapV2Pair.Swap( sender=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, amount0In=57570102360687107, amount1In=0, amount0Out=0, amount1Out=89297907250913419380, to=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513 )
|
| 134 |
0xf8a95b2409c27678a6d18d950c5d913d5c38ab03.0xc42079f94a6350d7e6235f29174924f928cc2ac818eb64fed8004e115fbcca67( 0xc42079f94a6350d7e6235f29174924f928cc2ac818eb64fed8004e115fbcca67, 0x000000000000000000000000ba71b56fd0b590ed2a6992ed57a34c1391940513, 0x000000000000000000000000ba71b56fd0b590ed2a6992ed57a34c1391940513, ffffffffffffffffffffffffffffffffffffffffffffffffffffffda4881e0eb, 00000000000000000000000000000000000000000000000000a9c8351d94d404, 000000000000000000000000000000000000021e58a4e1358adf533599b7bf60, 000000000000000000000000000000000000000000000000195804762a899f07, 000000000000000000000000000000000000000000000000000000000001ebe4 )
|
| 135 |
0xac4b3dacb91461209ae9d41ec517c2b9cb1b7daf.0xc42079f94a6350d7e6235f29174924f928cc2ac818eb64fed8004e115fbcca67( 0xc42079f94a6350d7e6235f29174924f928cc2ac818eb64fed8004e115fbcca67, 0x000000000000000000000000ba71b56fd0b590ed2a6992ed57a34c1391940513, 0x000000000000000000000000ba71b56fd0b590ed2a6992ed57a34c1391940513, fffffffffffffffffffffffffffffffffffffffffffffffbe451f94ecc27ee58, 00000000000000000000000000000000000000000000000003485c4873049964, 00000000000000000000000000000000000000000e47f7d660fa5f187a0b3de7, 0000000000000000000000000000000000000000000032cee5d0212befde958a, ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff1e80 )
|
| 136 |
0xe8c6c9227491c0a8156a0106a0204d881bb7e531.0xc42079f94a6350d7e6235f29174924f928cc2ac818eb64fed8004e115fbcca67( 0xc42079f94a6350d7e6235f29174924f928cc2ac818eb64fed8004e115fbcca67, 0x000000000000000000000000ba71b56fd0b590ed2a6992ed57a34c1391940513, 0x000000000000000000000000ba71b56fd0b590ed2a6992ed57a34c1391940513, fffffffffffffffffffffffffffffffffffffffffffffffffceeffee5b760899, 0000000000000000000000000000000000000000000000000150853d52a04824, 0000000000000000000000000000000000000000a75da4dbdc612c63993a4911, 0000000000000000000000000000000000000000000000cc3946540b558c2762, ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffdecb )
|
| 137 |
0x5859ebe6fd3bbc6bd646b73a5dbb09a5d7b6e7b7.0xc42079f94a6350d7e6235f29174924f928cc2ac818eb64fed8004e115fbcca67( 0xc42079f94a6350d7e6235f29174924f928cc2ac818eb64fed8004e115fbcca67, 0x000000000000000000000000ba71b56fd0b590ed2a6992ed57a34c1391940513, 0x000000000000000000000000ba71b56fd0b590ed2a6992ed57a34c1391940513, ffffffffffffffffffffffffffffffffffffffffffffffee3a22bce31d7931b0, 000000000000000000000000000000000000000000000000027a21cb4bf4fe9a, 000000000000000000000000000000000000000005f7f9f3e07480c893611f59, 00000000000000000000000000000000000000000000011a4f192aa43180a897, fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeda57 )
|
| 138 |
UniswapV2Pair.Sync( reserve0=88452302909654056836778, reserve1=264544487812881715304 )
|
| 139 |
UniswapV2Pair.Swap( sender=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513, amount0In=0, amount1In=47198085869298833, amount0Out=15736475236471210158, amount1Out=0, to=[Receiver] 0xba71b56fd0b590ed2a6992ed57a34c1391940513 )
|
| 140 |
0xa3f558aebaecaf0e11ca4b2199cc5ed341edfd74.0xc42079f94a6350d7e6235f29174924f928cc2ac818eb64fed8004e115fbcca67( 0xc42079f94a6350d7e6235f29174924f928cc2ac818eb64fed8004e115fbcca67, 0x000000000000000000000000ba71b56fd0b590ed2a6992ed57a34c1391940513, 0x000000000000000000000000ba71b56fd0b590ed2a6992ed57a34c1391940513, fffffffffffffffffffffffffffffffffffffffffffffff8d5cd2e32d7a08c68, 00000000000000000000000000000000000000000000000001f4be6076d27144, 00000000000000000000000000000000000000000858f56d08ff997cb561161c, 00000000000000000000000000000000000000000000310d7e62485887dd4696, fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffef48c )
|
| 141 |
0x6147c54106dc2e3d7f5d4b5afd2804f2d30db0b5.0xc42079f94a6350d7e6235f29174924f928cc2ac818eb64fed8004e115fbcca67( 0xc42079f94a6350d7e6235f29174924f928cc2ac818eb64fed8004e115fbcca67, 0x000000000000000000000000ba71b56fd0b590ed2a6992ed57a34c1391940513, 0x000000000000000000000000ba71b56fd0b590ed2a6992ed57a34c1391940513, ffffffffffffffffffffffffffffffffffffffffffffffffda754374bf9a0f85, 00000000000000000000000000000000000000000000008b36484ab3780e382c, 000000000000000000000000000000000000001ee1c2bd4962c488e4a06ba70c, 00000000000000000000000000000000000000000000024f8d8eb3184ea67d1f, 0000000000000000000000000000000000000000000000000000000000010bfe )
|
Account State Difference:
Execution Trace
MEV Bot: 0xBA7...513.32dfc647( )
Uniswap V3: WEB3.128acb08( )-
WETH9.transfer( dst=0xBA71B56fD0B590ED2a6992eD57a34C1391940513, wad=2705181832456302715 ) => ( True )
-
SetToken.balanceOf( account=0x6147C54106dc2e3d7f5d4b5aFD2804F2D30dB0b5 ) => ( 46993029434872773775896 )
MEV Bot: 0xBA7...513.fa461e33( )Uniswap V3: LDO 2.128acb08( )MiniMeToken.transfer( _to=0xBA71B56fD0B590ED2a6992eD57a34C1391940513, _amount=132167931893471212440 ) => ( success=True )
AppProxyUpgradeable.4a393149( )-
KernelProxy.be00bbd8( ) -
TokenManager.onTransfer( _from=0xa3f558aebAecAf0e11cA4b2199cC5Ed341edfd74, _to=0xBA71B56fD0B590ED2a6992eD57a34C1391940513, _amount=132167931893471212440 ) => ( True )
-
-
WETH9.balanceOf( 0xa3f558aebAecAf0e11cA4b2199cC5Ed341edfd74 ) => ( 377544477401943344138 )
MEV Bot: 0xBA7...513.fa461e33( )
UniswapV2Pair.swap( amount0Out=15736475236471210158, amount1Out=0, to=0xBA71B56fD0B590ED2a6992eD57a34C1391940513, data=0x0000000000000000000000005859EBE6FD3BBC6BD646B73A5DBB09A5D7B6E7B7000000000000000000000000000000000000000000000000000000000000004000000000000000000000000000000000000000000000000000000000000024E4128ACB08000000000000000000000000BA71B56FD0B590ED2A6992ED57A34C13919405130000000000000000000000000000000000000000000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEE3A22BCE31D7931B0000000000000000000000000FFFD8963EFD1FC6A506488495D951D5263988D2500000000000000000000000000000000000000000000000000000000000000A00000000000000000000000000000000000000000000000000000000000002420000000000000000000000000E8C6C9227491C0A8156A0106A0204D881BB7E531000000000000000000000000000000000000000000000000000000000000004000000000000000000000000000000000000000000000000000000000000023A4128ACB08000000000000000000000000BA71B56FD0B590ED2A6992ED57A34C13919405130000000000000000000000000000000000000000000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCEEFFEE5B760899000000000000000000000000FFFD8963EFD1FC6A506488495D951D5263988D2500000000000000000000000000000000000000000000000000000000000000A000000000000000000000000000000000000000000000000000000000000022E0000000000000000000000000AC4B3DACB91461209AE9D41EC517C2B9CB1B7DAF00000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000002264128ACB08000000000000000000000000BA71B56FD0B590ED2A6992ED57A34C13919405130000000000000000000000000000000000000000000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBE451F94ECC27EE58000000000000000000000000FFFD8963EFD1FC6A506488495D951D5263988D2500000000000000000000000000000000000000000000000000000000000000A000000000000000000000000000000000000000000000000000000000000021A0000000000000000000000000F8A95B2409C27678A6D18D950C5D913D5C38AB0300000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000002124128ACB08000000000000000000000000BA71B56FD0B590ED2A6992ED57A34C13919405130000000000000000000000000000000000000000000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDA4881E0EB000000000000000000000000FFFD8963EFD1FC6A506488495D951D5263988D2500000000000000000000000000000000000000000000000000000000000000A000000000000000000000000000000000000000000000000000000000000020600000000000000000000000003DA1313AE46132A397D90D95B1424A9A7E3E0FCE00000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000001FE4022C0D9F0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000004D741E5862C792074000000000000000000000000BA71B56FD0B590ED2A6992ED57A34C139194051300000000000000000000000000000000000000000000000000000000000000800000000000000000000000000000000000000000000000000000000000001F40000000000000000000000000EDE8DD046586D22625AE7FF2708F879EF7BDB8CF00000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000001EC4128ACB08000000000000000000000000BA71B56FD0B590ED2A6992ED57A34C13919405130000000000000000000000000000000000000000000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCC3347A37C74AA501000000000000000000000000FFFD8963EFD1FC6A506488495D951D5263988D2500000000000000000000000000000000000000000000000000000000000000A00000000000000000000000000000000000000000000000000000000000001E00000000000000000000000000DFC14D2AF169B0D36C4EFF567ADA9B2E0CAE044F00000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000001D84022C0D9F0000000000000000000000000000000000000000000000003196B9D0251CF4510000000000000000000000000000000000000000000000000000000000000000000000000000000000000000BA71B56FD0B590ED2A6992ED57A34C139194051300000000000000000000000000000000000000000000000000000000000000800000000000000000000000000000000000000000000000000000000000001CE00000000000000000000000008661AE7918C0115AF9E3691662F605E9C550DDC900000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000001C64128ACB08000000000000000000000000BA71B56FD0B590ED2A6992ED57A34C13919405130000000000000000000000000000000000000000000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE817F9E90AF8AC9D99000000000000000000000000FFFD8963EFD1FC6A506488495D951D5263988D2500000000000000000000000000000000000000000000000000000000000000A00000000000000000000000000000000000000000000000000000000000001BA0000000000000000000000000A6CC3C2531FDAA6AE1A3CA84C2855806728693E800000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000001B24128ACB08000000000000000000000000BA71B56FD0B590ED2A6992ED57A34C13919405130000000000000000000000000000000000000000000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9DD14C799F08DA709000000000000000000000000FFFD8963EFD1FC6A506488495D951D5263988D2500000000000000000000000000000000000000000000000000000000000000A00000000000000000000000000000000000000000000000000000000000001A60000000000000000000000000E1D92F1DE49CAEC73514F696FEA2A7D5441498E5000000000000000000000000000000000000000000000000000000000000004000000000000000000000000000000000000000000000000000000000000019E4128ACB08000000000000000000000000BA71B56FD0B590ED2A6992ED57A34C13919405130000000000000000000000000000000000000000000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEEA3997E719A8922A1000000000000000000000000FFFD8963EFD1FC6A506488495D951D5263988D2500000000000000000000000000000000000000000000000000000000000000A00000000000000000000000000000000000000000000000000000000000001920000000000000000000000000E16BE1798F860BC1EB0FEB64CD67CA00AE9B6E58000000000000000000000000000000000000000000000000000000000000004000000000000000000000000000000000000000000000000000000000000018A4128ACB08000000000000000000000000BA71B56FD0B590ED2A6992ED57A34C13919405130000000000000000000000000000000000000000000000000000000000000001FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF38FA537C30D7FD38B00000000000000000000000000000000000000000000000000000001000276A400000000000000000000000000000000000000000000000000000000000000A000000000000000000000000000000000000000000000000000000000000017E00000000000000000000000001D42064FC4BEB5F8AAF85F4617AE8B3B5B8BD80100000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000001764128ACB08000000000000000000000000BA71B56FD0B590ED2A6992ED57A34C13919405130000000000000000000000000000000000000000000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA09AB86B458B961A1000000000000000000000000FFFD8963EFD1FC6A506488495D951D5263988D2500000000000000000000000000000000000000000000000000000000000000A000000000000000000000000000000000000000000000000000000000000016A00000000000000000000000005C128D25A21F681E678CB050E551A895C930994500000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000001624128ACB08000000000000000000000000BA71B56FD0B590ED2A6992ED57A34C13919405130000000000000000000000000000000000000000000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF143E2F6B75F0C9637000000000000000000000000FFFD8963EFD1FC6A506488495D951D5263988D2500000000000000000000000000000000000000000000000000000000000000A00000000000000000000000000000000000000000000000000000000000001560000000000000000000000000AE614A7A56CB79C04DF2AEBA6F5DAB80A39CA78E000000000000000000000000000000000000000000000000000000000000004000000000000000000000000000000000000000000000000000000000000014E4128ACB08000000000000000000000000BA71B56FD0B590ED2A6992ED57A34C13919405130000000000000000000000000000000000000000000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFED848D06D775F65058000000000000000000000000FFFD8963EFD1FC6A506488495D951D5263988D2500000000000000000000000000000000000000000000000000000000000000A000000000000000000000000000000000000000000000000000000000000014200000000000000000000000007B504A15EF05F4EED1C07208C5815C49022A0C19000000000000000000000000000000000000000000000000000000000000004000000000000000000000000000000000000000000000000000000000000013A4022C0D9F000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000006362F0197F321E8C1A000000000000000000000000BA71B56FD0B590ED2A6992ED57A34C139194051300000000000000000000000000000000000000000000000000000000000000800000000000000000000000000000000000000000000000000000000000001300000000000000000000000000BA71B56FD0B590ED2A6992ED57A34C139194051300000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000001284A7996FA50000000000000000000000000000000000000000000000000000000000000060000000000000000000000000000000000000000000000000000000000000030000000000000000000000000000000000000000000000000000000000000005A00000000000000000000000000000000000000000000000000000000000000014000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2000000000000000000000000941EB6F616114E4ECAA85377945EA306002612FE000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2000000000000000000000000D8EF3CACE8B4907117A45B0B125C68560532F94D000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC200000000000000000000000000000000000000000000000000000000000000140000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000140000000000000000000000000000000000000000000000000000000000000280000000000000000000000000000000000000000000000000000000000000030000000000000000000000000000000000000000000000000000000000000003800000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000000048000000000000000000000000000000000000000000000000000000000000005000000000000000000000000000000000000000000000000000000000000000580000000000000000000000000000000000000000000000000000000000000060000000000000000000000000000000000000000000000000000000000000006800000000000000000000000000000000000000000000000000000000000000700000000000000000000000000000000000000000000000000000000000000078000000000000000000000000000000000000000000000000000000000000008000000000000000000000000000000000000000000000000000000000000000880000000000000000000000000000000000000000000000000000000000000094000000000000000000000000000000000000000000000000000000000000009C00000000000000000000000000000000000000000000000000000000000000A400000000000000000000000000000000000000000000000000000000000000AC00000000000000000000000000000000000000000000000000000000000000B400000000000000000000000000000000000000000000000000000000000000BC00000000000000000000000000000000000000000000000000000000000000C600000000000000000000000000000000000000000000000000000000000000044A9059CBB0000000000000000000000007B504A15EF05F4EED1C07208C5815C49022A0C1900000000000000000000000000000000000000000000000001BB3AB0A89EDE8F000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000044A9059CBB000000000000000000000000AE614A7A56CB79C04DF2AEBA6F5DAB80A39CA78E00000000000000000000000000000000000000000000000000EF91DF882C0ECD000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000044A9059CBB0000000000000000000000005C128D25A21F681E678CB050E551A895C9309945000000000000000000000000000000000000000000000000015453D3AA041A47000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000044A9059CBB0000000000000000000000001D42064FC4BEB5F8AAF85F4617AE8B3B5B8BD80100000000000000000000000000000000000000000000000005AFB371982FBCDB000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000044A9059CBB000000000000000000000000E16BE1798F860BC1EB0FEB64CD67CA00AE9B6E5800000000000000000000000000000000000000000000000000FA94FE6FE805ED000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000044A9059CBB000000000000000000000000E1D92F1DE49CAEC73514F696FEA2A7D5441498E500000000000000000000000000000000000000000000000000E6DBC23B389EA4000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000044A9059CBB000000000000000000000000A6CC3C2531FDAA6AE1A3CA84C2855806728693E800000000000000000000000000000000000000000000000007103AD6C894DE87000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000044A9059CBB0000000000000000000000008661AE7918C0115AF9E3691662F605E9C550DDC900000000000000000000000000000000000000000000000002C5661F6DF18300000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000044A9059CBB000000000000000000000000DFC14D2AF169B0D36C4EFF567ADA9B2E0CAE044F000000000000000000000000000000000000000000000000027DA8C7A16B1989000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000044A9059CBB000000000000000000000000EDE8DD046586D22625AE7FF2708F879EF7BDB8CF000000000000000000000000000000000000000000000000015AAF31D85C7A76000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000044A9059CBB0000000000000000000000003DA1313AE46132A397D90D95B1424A9A7E3E0FCE00000000000000000000000000000000000000000000000000CC87B3FCE44203000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000044A9059CBB000000000000000000000000F8A95B2409C27678A6D18D950C5D913D5C38AB0300000000000000000000000000000000000000000000000000A9C8351D94D4040000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000845B41B9080000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000C5D39D1A6870E90000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000044A9059CBB000000000000000000000000AC4B3DACB91461209AE9D41EC517C2B9CB1B7DAF00000000000000000000000000000000000000000000000003485C4873049964000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000044A9059CBB000000000000000000000000E8C6C9227491C0A8156A0106A0204D881BB7E5310000000000000000000000000000000000000000000000000150853D52A04824000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000044A9059CBB0000000000000000000000005859EBE6FD3BBC6BD646B73A5DBB09A5D7B6E7B7000000000000000000000000000000000000000000000000027A21CB4BF4FE9A000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000044A9059CBB00000000000000000000000005767D9EF41DC40689678FFCA0608878FB3DE90600000000000000000000000000000000000000000000000000A7AE68B6516491000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000044A9059CBB000000000000000000000000A3F558AEBAECAF0E11CA4B2199CC5ED341EDFD7400000000000000000000000000000000000000000000000001F4BE6076D271440000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000646D78F47A000000000000000000000000E8E8486228753E01DBC222DA262AA706BD67E60100000000000000000000000000000000000000000000008B36484AB3780E3BBE0000000000000000000000006147C54106DC2E3D7F5D4B5AFD2804F2D30DB0B50000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000242E1A7D4D0000000000000000000000000000000000000000000000000060EB64FE5954FF0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 )
-
ConvexToken.transfer( recipient=0xBA71B56fD0B590ED2a6992eD57a34C1391940513, amount=15736475236471210158 ) => ( True )
-
MEV Bot: 0xBA7...513.10d1e85c( ) -
ConvexToken.balanceOf( account=0x05767d9EF41dC40689678fFca0608878fb3dE906 ) => ( 88452302909654056836778 )
-
WETH9.balanceOf( 0x05767d9EF41dC40689678fFca0608878fb3dE906 ) => ( 264544487812881715304 )
-
-
WETH9.balanceOf( 0xa3f558aebAecAf0e11cA4b2199cC5Ed341edfd74 ) => ( 377685424211818313038 )
-
SetToken.balanceOf( account=0x6147C54106dc2e3d7f5d4b5aFD2804F2D30dB0b5 ) => ( 49561038319529446526422 )
-
- ETH 0.00569627962336308
Poolin 3.CALL( ) - ETH 0.021584137137384183
0xfb91715172b52a56c968d95acc6eb01dd0517441.CALL( )
File 1 of 30: WETH9
File 2 of 30: MiniMeToken
File 3 of 30: UniswapV2Pair
File 4 of 30: ConvexToken
File 5 of 30: Sand
File 6 of 30: DSToken
File 7 of 30: SimpleToken
File 8 of 30: Gala
File 9 of 30: UniswapV2Pair
File 10 of 30: Vyper_contract
File 11 of 30: ProxyERC20
File 12 of 30: InitializableAdminUpgradeabilityProxy
File 13 of 30: MANAToken
File 14 of 30: LinkToken
File 15 of 30: LRC_v2
File 16 of 30: ENJToken
File 17 of 30: UniswapV3Pool
File 18 of 30: Uni
File 19 of 30: BitDAO
File 20 of 30: BAToken
File 21 of 30: UniswapV2Pair
File 22 of 30: GraphToken
File 23 of 30: UniswapV2Pair
File 24 of 30: Vyper_contract
File 25 of 30: FRAXShares
File 26 of 30: SetToken
File 27 of 30: BasicIssuanceModule
File 28 of 30: AppProxyUpgradeable
File 29 of 30: KernelProxy
File 30 of 30: TokenManager
// Copyright (C) 2015, 2016, 2017 Dapphub
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.4.18;
contract WETH9 {
string public name = "Wrapped Ether";
string public symbol = "WETH";
uint8 public decimals = 18;
event Approval(address indexed src, address indexed guy, uint wad);
event Transfer(address indexed src, address indexed dst, uint wad);
event Deposit(address indexed dst, uint wad);
event Withdrawal(address indexed src, uint wad);
mapping (address => uint) public balanceOf;
mapping (address => mapping (address => uint)) public allowance;
function() public payable {
deposit();
}
function deposit() public payable {
balanceOf[msg.sender] += msg.value;
Deposit(msg.sender, msg.value);
}
function withdraw(uint wad) public {
require(balanceOf[msg.sender] >= wad);
balanceOf[msg.sender] -= wad;
msg.sender.transfer(wad);
Withdrawal(msg.sender, wad);
}
function totalSupply() public view returns (uint) {
return this.balance;
}
function approve(address guy, uint wad) public returns (bool) {
allowance[msg.sender][guy] = wad;
Approval(msg.sender, guy, wad);
return true;
}
function transfer(address dst, uint wad) public returns (bool) {
return transferFrom(msg.sender, dst, wad);
}
function transferFrom(address src, address dst, uint wad)
public
returns (bool)
{
require(balanceOf[src] >= wad);
if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) {
require(allowance[src][msg.sender] >= wad);
allowance[src][msg.sender] -= wad;
}
balanceOf[src] -= wad;
balanceOf[dst] += wad;
Transfer(src, dst, wad);
return true;
}
}
/*
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.
*/File 2 of 30: MiniMeToken
pragma solidity ^0.4.24;
// File: @aragon/apps-shared-minime/contracts/ITokenController.sol
/// @dev The token controller contract must implement these functions
interface ITokenController {
/// @notice Called when `_owner` sends ether to the MiniMe Token contract
/// @param _owner The address that sent the ether to create tokens
/// @return True if the ether is accepted, false if it throws
function proxyPayment(address _owner) external payable returns(bool);
/// @notice Notifies the controller about a token transfer allowing the
/// controller to react if desired
/// @param _from The origin of the transfer
/// @param _to The destination of the transfer
/// @param _amount The amount of the transfer
/// @return False if the controller does not authorize the transfer
function onTransfer(address _from, address _to, uint _amount) external returns(bool);
/// @notice Notifies the controller about an approval allowing the
/// controller to react if desired
/// @param _owner The address that calls `approve()`
/// @param _spender The spender in the `approve()` call
/// @param _amount The amount in the `approve()` call
/// @return False if the controller does not authorize the approval
function onApprove(address _owner, address _spender, uint _amount) external returns(bool);
}
// File: @aragon/apps-shared-minime/contracts/MiniMeToken.sol
/*
Copyright 2016, Jordi Baylina
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/// @title MiniMeToken Contract
/// @author Jordi Baylina
/// @dev This token contract's goal is to make it easy for anyone to clone this
/// token using the token distribution at a given block, this will allow DAO's
/// and DApps to upgrade their features in a decentralized manner without
/// affecting the original token
/// @dev It is ERC20 compliant, but still needs to under go further testing.
contract Controlled {
/// @notice The address of the controller is the only address that can call
/// a function with this modifier
modifier onlyController {
require(msg.sender == controller);
_;
}
address public controller;
function Controlled() public { controller = msg.sender;}
/// @notice Changes the controller of the contract
/// @param _newController The new controller of the contract
function changeController(address _newController) onlyController public {
controller = _newController;
}
}
contract ApproveAndCallFallBack {
function receiveApproval(
address from,
uint256 _amount,
address _token,
bytes _data
) public;
}
/// @dev The actual token contract, the default controller is the msg.sender
/// that deploys the contract, so usually this token will be deployed by a
/// token controller contract, which Giveth will call a "Campaign"
contract MiniMeToken is Controlled {
string public name; //The Token's name: e.g. DigixDAO Tokens
uint8 public decimals; //Number of decimals of the smallest unit
string public symbol; //An identifier: e.g. REP
string public version = "MMT_0.1"; //An arbitrary versioning scheme
/// @dev `Checkpoint` is the structure that attaches a block number to a
/// given value, the block number attached is the one that last changed the
/// value
struct Checkpoint {
// `fromBlock` is the block number that the value was generated from
uint128 fromBlock;
// `value` is the amount of tokens at a specific block number
uint128 value;
}
// `parentToken` is the Token address that was cloned to produce this token;
// it will be 0x0 for a token that was not cloned
MiniMeToken public parentToken;
// `parentSnapShotBlock` is the block number from the Parent Token that was
// used to determine the initial distribution of the Clone Token
uint public parentSnapShotBlock;
// `creationBlock` is the block number that the Clone Token was created
uint public creationBlock;
// `balances` is the map that tracks the balance of each address, in this
// contract when the balance changes the block number that the change
// occurred is also included in the map
mapping (address => Checkpoint[]) balances;
// `allowed` tracks any extra transfer rights as in all ERC20 tokens
mapping (address => mapping (address => uint256)) allowed;
// Tracks the history of the `totalSupply` of the token
Checkpoint[] totalSupplyHistory;
// Flag that determines if the token is transferable or not.
bool public transfersEnabled;
// The factory used to create new clone tokens
MiniMeTokenFactory public tokenFactory;
////////////////
// Constructor
////////////////
/// @notice Constructor to create a MiniMeToken
/// @param _tokenFactory The address of the MiniMeTokenFactory contract that
/// will create the Clone token contracts, the token factory needs to be
/// deployed first
/// @param _parentToken Address of the parent token, set to 0x0 if it is a
/// new token
/// @param _parentSnapShotBlock Block of the parent token that will
/// determine the initial distribution of the clone token, set to 0 if it
/// is a new token
/// @param _tokenName Name of the new token
/// @param _decimalUnits Number of decimals of the new token
/// @param _tokenSymbol Token Symbol for the new token
/// @param _transfersEnabled If true, tokens will be able to be transferred
function MiniMeToken(
MiniMeTokenFactory _tokenFactory,
MiniMeToken _parentToken,
uint _parentSnapShotBlock,
string _tokenName,
uint8 _decimalUnits,
string _tokenSymbol,
bool _transfersEnabled
) public
{
tokenFactory = _tokenFactory;
name = _tokenName; // Set the name
decimals = _decimalUnits; // Set the decimals
symbol = _tokenSymbol; // Set the symbol
parentToken = _parentToken;
parentSnapShotBlock = _parentSnapShotBlock;
transfersEnabled = _transfersEnabled;
creationBlock = block.number;
}
///////////////////
// ERC20 Methods
///////////////////
/// @notice Send `_amount` tokens to `_to` from `msg.sender`
/// @param _to The address of the recipient
/// @param _amount The amount of tokens to be transferred
/// @return Whether the transfer was successful or not
function transfer(address _to, uint256 _amount) public returns (bool success) {
require(transfersEnabled);
return doTransfer(msg.sender, _to, _amount);
}
/// @notice Send `_amount` tokens to `_to` from `_from` on the condition it
/// is approved by `_from`
/// @param _from The address holding the tokens being transferred
/// @param _to The address of the recipient
/// @param _amount The amount of tokens to be transferred
/// @return True if the transfer was successful
function transferFrom(address _from, address _to, uint256 _amount) public returns (bool success) {
// The controller of this contract can move tokens around at will,
// this is important to recognize! Confirm that you trust the
// controller of this contract, which in most situations should be
// another open source smart contract or 0x0
if (msg.sender != controller) {
require(transfersEnabled);
// The standard ERC 20 transferFrom functionality
if (allowed[_from][msg.sender] < _amount)
return false;
allowed[_from][msg.sender] -= _amount;
}
return doTransfer(_from, _to, _amount);
}
/// @dev This is the actual transfer function in the token contract, it can
/// only be called by other functions in this contract.
/// @param _from The address holding the tokens being transferred
/// @param _to The address of the recipient
/// @param _amount The amount of tokens to be transferred
/// @return True if the transfer was successful
function doTransfer(address _from, address _to, uint _amount) internal returns(bool) {
if (_amount == 0) {
return true;
}
require(parentSnapShotBlock < block.number);
// Do not allow transfer to 0x0 or the token contract itself
require((_to != 0) && (_to != address(this)));
// If the amount being transfered is more than the balance of the
// account the transfer returns false
var previousBalanceFrom = balanceOfAt(_from, block.number);
if (previousBalanceFrom < _amount) {
return false;
}
// Alerts the token controller of the transfer
if (isContract(controller)) {
// Adding the ` == true` makes the linter shut up so...
require(ITokenController(controller).onTransfer(_from, _to, _amount) == true);
}
// First update the balance array with the new value for the address
// sending the tokens
updateValueAtNow(balances[_from], previousBalanceFrom - _amount);
// Then update the balance array with the new value for the address
// receiving the tokens
var previousBalanceTo = balanceOfAt(_to, block.number);
require(previousBalanceTo + _amount >= previousBalanceTo); // Check for overflow
updateValueAtNow(balances[_to], previousBalanceTo + _amount);
// An event to make the transfer easy to find on the blockchain
Transfer(_from, _to, _amount);
return true;
}
/// @param _owner The address that's balance is being requested
/// @return The balance of `_owner` at the current block
function balanceOf(address _owner) public constant returns (uint256 balance) {
return balanceOfAt(_owner, block.number);
}
/// @notice `msg.sender` approves `_spender` to spend `_amount` tokens on
/// its behalf. This is a modified version of the ERC20 approve function
/// to be a little bit safer
/// @param _spender The address of the account able to transfer the tokens
/// @param _amount The amount of tokens to be approved for transfer
/// @return True if the approval was successful
function approve(address _spender, uint256 _amount) public returns (bool success) {
require(transfersEnabled);
// To change the approve amount you first have to reduce the addresses`
// allowance to zero by calling `approve(_spender,0)` if it is not
// already 0 to mitigate the race condition described here:
// https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
require((_amount == 0) || (allowed[msg.sender][_spender] == 0));
// Alerts the token controller of the approve function call
if (isContract(controller)) {
// Adding the ` == true` makes the linter shut up so...
require(ITokenController(controller).onApprove(msg.sender, _spender, _amount) == true);
}
allowed[msg.sender][_spender] = _amount;
Approval(msg.sender, _spender, _amount);
return true;
}
/// @dev This function makes it easy to read the `allowed[]` map
/// @param _owner The address of the account that owns the token
/// @param _spender The address of the account able to transfer the tokens
/// @return Amount of remaining tokens of _owner that _spender is allowed
/// to spend
function allowance(address _owner, address _spender) public constant returns (uint256 remaining) {
return allowed[_owner][_spender];
}
/// @notice `msg.sender` approves `_spender` to send `_amount` tokens on
/// its behalf, and then a function is triggered in the contract that is
/// being approved, `_spender`. This allows users to use their tokens to
/// interact with contracts in one function call instead of two
/// @param _spender The address of the contract able to transfer the tokens
/// @param _amount The amount of tokens to be approved for transfer
/// @return True if the function call was successful
function approveAndCall(ApproveAndCallFallBack _spender, uint256 _amount, bytes _extraData) public returns (bool success) {
require(approve(_spender, _amount));
_spender.receiveApproval(
msg.sender,
_amount,
this,
_extraData
);
return true;
}
/// @dev This function makes it easy to get the total number of tokens
/// @return The total number of tokens
function totalSupply() public constant returns (uint) {
return totalSupplyAt(block.number);
}
////////////////
// Query balance and totalSupply in History
////////////////
/// @dev Queries the balance of `_owner` at a specific `_blockNumber`
/// @param _owner The address from which the balance will be retrieved
/// @param _blockNumber The block number when the balance is queried
/// @return The balance at `_blockNumber`
function balanceOfAt(address _owner, uint _blockNumber) public constant returns (uint) {
// These next few lines are used when the balance of the token is
// requested before a check point was ever created for this token, it
// requires that the `parentToken.balanceOfAt` be queried at the
// genesis block for that token as this contains initial balance of
// this token
if ((balances[_owner].length == 0) || (balances[_owner][0].fromBlock > _blockNumber)) {
if (address(parentToken) != 0) {
return parentToken.balanceOfAt(_owner, min(_blockNumber, parentSnapShotBlock));
} else {
// Has no parent
return 0;
}
// This will return the expected balance during normal situations
} else {
return getValueAt(balances[_owner], _blockNumber);
}
}
/// @notice Total amount of tokens at a specific `_blockNumber`.
/// @param _blockNumber The block number when the totalSupply is queried
/// @return The total amount of tokens at `_blockNumber`
function totalSupplyAt(uint _blockNumber) public constant returns(uint) {
// These next few lines are used when the totalSupply of the token is
// requested before a check point was ever created for this token, it
// requires that the `parentToken.totalSupplyAt` be queried at the
// genesis block for this token as that contains totalSupply of this
// token at this block number.
if ((totalSupplyHistory.length == 0) || (totalSupplyHistory[0].fromBlock > _blockNumber)) {
if (address(parentToken) != 0) {
return parentToken.totalSupplyAt(min(_blockNumber, parentSnapShotBlock));
} else {
return 0;
}
// This will return the expected totalSupply during normal situations
} else {
return getValueAt(totalSupplyHistory, _blockNumber);
}
}
////////////////
// Clone Token Method
////////////////
/// @notice Creates a new clone token with the initial distribution being
/// this token at `_snapshotBlock`
/// @param _cloneTokenName Name of the clone token
/// @param _cloneDecimalUnits Number of decimals of the smallest unit
/// @param _cloneTokenSymbol Symbol of the clone token
/// @param _snapshotBlock Block when the distribution of the parent token is
/// copied to set the initial distribution of the new clone token;
/// if the block is zero than the actual block, the current block is used
/// @param _transfersEnabled True if transfers are allowed in the clone
/// @return The address of the new MiniMeToken Contract
function createCloneToken(
string _cloneTokenName,
uint8 _cloneDecimalUnits,
string _cloneTokenSymbol,
uint _snapshotBlock,
bool _transfersEnabled
) public returns(MiniMeToken)
{
uint256 snapshot = _snapshotBlock == 0 ? block.number - 1 : _snapshotBlock;
MiniMeToken cloneToken = tokenFactory.createCloneToken(
this,
snapshot,
_cloneTokenName,
_cloneDecimalUnits,
_cloneTokenSymbol,
_transfersEnabled
);
cloneToken.changeController(msg.sender);
// An event to make the token easy to find on the blockchain
NewCloneToken(address(cloneToken), snapshot);
return cloneToken;
}
////////////////
// Generate and destroy tokens
////////////////
/// @notice Generates `_amount` tokens that are assigned to `_owner`
/// @param _owner The address that will be assigned the new tokens
/// @param _amount The quantity of tokens generated
/// @return True if the tokens are generated correctly
function generateTokens(address _owner, uint _amount) onlyController public returns (bool) {
uint curTotalSupply = totalSupply();
require(curTotalSupply + _amount >= curTotalSupply); // Check for overflow
uint previousBalanceTo = balanceOf(_owner);
require(previousBalanceTo + _amount >= previousBalanceTo); // Check for overflow
updateValueAtNow(totalSupplyHistory, curTotalSupply + _amount);
updateValueAtNow(balances[_owner], previousBalanceTo + _amount);
Transfer(0, _owner, _amount);
return true;
}
/// @notice Burns `_amount` tokens from `_owner`
/// @param _owner The address that will lose the tokens
/// @param _amount The quantity of tokens to burn
/// @return True if the tokens are burned correctly
function destroyTokens(address _owner, uint _amount) onlyController public returns (bool) {
uint curTotalSupply = totalSupply();
require(curTotalSupply >= _amount);
uint previousBalanceFrom = balanceOf(_owner);
require(previousBalanceFrom >= _amount);
updateValueAtNow(totalSupplyHistory, curTotalSupply - _amount);
updateValueAtNow(balances[_owner], previousBalanceFrom - _amount);
Transfer(_owner, 0, _amount);
return true;
}
////////////////
// Enable tokens transfers
////////////////
/// @notice Enables token holders to transfer their tokens freely if true
/// @param _transfersEnabled True if transfers are allowed in the clone
function enableTransfers(bool _transfersEnabled) onlyController public {
transfersEnabled = _transfersEnabled;
}
////////////////
// Internal helper functions to query and set a value in a snapshot array
////////////////
/// @dev `getValueAt` retrieves the number of tokens at a given block number
/// @param checkpoints The history of values being queried
/// @param _block The block number to retrieve the value at
/// @return The number of tokens being queried
function getValueAt(Checkpoint[] storage checkpoints, uint _block) constant internal returns (uint) {
if (checkpoints.length == 0)
return 0;
// Shortcut for the actual value
if (_block >= checkpoints[checkpoints.length-1].fromBlock)
return checkpoints[checkpoints.length-1].value;
if (_block < checkpoints[0].fromBlock)
return 0;
// Binary search of the value in the array
uint min = 0;
uint max = checkpoints.length-1;
while (max > min) {
uint mid = (max + min + 1) / 2;
if (checkpoints[mid].fromBlock<=_block) {
min = mid;
} else {
max = mid-1;
}
}
return checkpoints[min].value;
}
/// @dev `updateValueAtNow` used to update the `balances` map and the
/// `totalSupplyHistory`
/// @param checkpoints The history of data being updated
/// @param _value The new number of tokens
function updateValueAtNow(Checkpoint[] storage checkpoints, uint _value) internal {
if ((checkpoints.length == 0) || (checkpoints[checkpoints.length - 1].fromBlock < block.number)) {
Checkpoint storage newCheckPoint = checkpoints[checkpoints.length++];
newCheckPoint.fromBlock = uint128(block.number);
newCheckPoint.value = uint128(_value);
} else {
Checkpoint storage oldCheckPoint = checkpoints[checkpoints.length - 1];
oldCheckPoint.value = uint128(_value);
}
}
/// @dev Internal function to determine if an address is a contract
/// @param _addr The address being queried
/// @return True if `_addr` is a contract
function isContract(address _addr) constant internal returns(bool) {
uint size;
if (_addr == 0)
return false;
assembly {
size := extcodesize(_addr)
}
return size>0;
}
/// @dev Helper function to return a min betwen the two uints
function min(uint a, uint b) pure internal returns (uint) {
return a < b ? a : b;
}
/// @notice The fallback function: If the contract's controller has not been
/// set to 0, then the `proxyPayment` method is called which relays the
/// ether and creates tokens as described in the token controller contract
function () external payable {
require(isContract(controller));
// Adding the ` == true` makes the linter shut up so...
require(ITokenController(controller).proxyPayment.value(msg.value)(msg.sender) == true);
}
//////////
// Safety Methods
//////////
/// @notice This method can be used by the controller to extract mistakenly
/// sent tokens to this contract.
/// @param _token The address of the token contract that you want to recover
/// set to 0 in case you want to extract ether.
function claimTokens(address _token) onlyController public {
if (_token == 0x0) {
controller.transfer(this.balance);
return;
}
MiniMeToken token = MiniMeToken(_token);
uint balance = token.balanceOf(this);
token.transfer(controller, balance);
ClaimedTokens(_token, controller, balance);
}
////////////////
// Events
////////////////
event ClaimedTokens(address indexed _token, address indexed _controller, uint _amount);
event Transfer(address indexed _from, address indexed _to, uint256 _amount);
event NewCloneToken(address indexed _cloneToken, uint _snapshotBlock);
event Approval(
address indexed _owner,
address indexed _spender,
uint256 _amount
);
}
////////////////
// MiniMeTokenFactory
////////////////
/// @dev This contract is used to generate clone contracts from a contract.
/// In solidity this is the way to create a contract from a contract of the
/// same class
contract MiniMeTokenFactory {
/// @notice Update the DApp by creating a new token with new functionalities
/// the msg.sender becomes the controller of this clone token
/// @param _parentToken Address of the token being cloned
/// @param _snapshotBlock Block of the parent token that will
/// determine the initial distribution of the clone token
/// @param _tokenName Name of the new token
/// @param _decimalUnits Number of decimals of the new token
/// @param _tokenSymbol Token Symbol for the new token
/// @param _transfersEnabled If true, tokens will be able to be transferred
/// @return The address of the new token contract
function createCloneToken(
MiniMeToken _parentToken,
uint _snapshotBlock,
string _tokenName,
uint8 _decimalUnits,
string _tokenSymbol,
bool _transfersEnabled
) public returns (MiniMeToken)
{
MiniMeToken newToken = new MiniMeToken(
this,
_parentToken,
_snapshotBlock,
_tokenName,
_decimalUnits,
_tokenSymbol,
_transfersEnabled
);
newToken.changeController(msg.sender);
return newToken;
}
}File 3 of 30: UniswapV2Pair
// File: contracts/uniswapv2/interfaces/IUniswapV2Factory.sol
pragma solidity >=0.5.0;
interface IUniswapV2Factory {
event PairCreated(address indexed token0, address indexed token1, address pair, uint);
function feeTo() external view returns (address);
function feeToSetter() external view returns (address);
function migrator() external view returns (address);
function getPair(address tokenA, address tokenB) external view returns (address pair);
function allPairs(uint) external view returns (address pair);
function allPairsLength() external view returns (uint);
function createPair(address tokenA, address tokenB) external returns (address pair);
function setFeeTo(address) external;
function setFeeToSetter(address) external;
function setMigrator(address) external;
}
// File: contracts/uniswapv2/libraries/SafeMath.sol
pragma solidity =0.6.12;
// a library for performing overflow-safe math, courtesy of DappHub (https://github.com/dapphub/ds-math)
library SafeMathUniswap {
function add(uint x, uint y) internal pure returns (uint z) {
require((z = x + y) >= x, 'ds-math-add-overflow');
}
function sub(uint x, uint y) internal pure returns (uint z) {
require((z = x - y) <= x, 'ds-math-sub-underflow');
}
function mul(uint x, uint y) internal pure returns (uint z) {
require(y == 0 || (z = x * y) / y == x, 'ds-math-mul-overflow');
}
}
// File: contracts/uniswapv2/UniswapV2ERC20.sol
pragma solidity =0.6.12;
contract UniswapV2ERC20 {
using SafeMathUniswap for uint;
string public constant name = 'SushiSwap LP Token';
string public constant symbol = 'SLP';
uint8 public constant decimals = 18;
uint public totalSupply;
mapping(address => uint) public balanceOf;
mapping(address => mapping(address => uint)) public allowance;
bytes32 public DOMAIN_SEPARATOR;
// keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
bytes32 public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;
mapping(address => uint) public nonces;
event Approval(address indexed owner, address indexed spender, uint value);
event Transfer(address indexed from, address indexed to, uint value);
constructor() public {
uint chainId;
assembly {
chainId := chainid()
}
DOMAIN_SEPARATOR = keccak256(
abi.encode(
keccak256('EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)'),
keccak256(bytes(name)),
keccak256(bytes('1')),
chainId,
address(this)
)
);
}
function _mint(address to, uint value) internal {
totalSupply = totalSupply.add(value);
balanceOf[to] = balanceOf[to].add(value);
emit Transfer(address(0), to, value);
}
function _burn(address from, uint value) internal {
balanceOf[from] = balanceOf[from].sub(value);
totalSupply = totalSupply.sub(value);
emit Transfer(from, address(0), value);
}
function _approve(address owner, address spender, uint value) private {
allowance[owner][spender] = value;
emit Approval(owner, spender, value);
}
function _transfer(address from, address to, uint value) private {
balanceOf[from] = balanceOf[from].sub(value);
balanceOf[to] = balanceOf[to].add(value);
emit Transfer(from, to, value);
}
function approve(address spender, uint value) external returns (bool) {
_approve(msg.sender, spender, value);
return true;
}
function transfer(address to, uint value) external returns (bool) {
_transfer(msg.sender, to, value);
return true;
}
function transferFrom(address from, address to, uint value) external returns (bool) {
if (allowance[from][msg.sender] != uint(-1)) {
allowance[from][msg.sender] = allowance[from][msg.sender].sub(value);
}
_transfer(from, to, value);
return true;
}
function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external {
require(deadline >= block.timestamp, 'UniswapV2: EXPIRED');
bytes32 digest = keccak256(
abi.encodePacked(
'\x19\x01',
DOMAIN_SEPARATOR,
keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[owner]++, deadline))
)
);
address recoveredAddress = ecrecover(digest, v, r, s);
require(recoveredAddress != address(0) && recoveredAddress == owner, 'UniswapV2: INVALID_SIGNATURE');
_approve(owner, spender, value);
}
}
// File: contracts/uniswapv2/libraries/Math.sol
pragma solidity =0.6.12;
// a library for performing various math operations
library Math {
function min(uint x, uint y) internal pure returns (uint z) {
z = x < y ? x : y;
}
// babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method)
function sqrt(uint y) internal pure returns (uint z) {
if (y > 3) {
z = y;
uint x = y / 2 + 1;
while (x < z) {
z = x;
x = (y / x + x) / 2;
}
} else if (y != 0) {
z = 1;
}
}
}
// File: contracts/uniswapv2/libraries/UQ112x112.sol
pragma solidity =0.6.12;
// a library for handling binary fixed point numbers (https://en.wikipedia.org/wiki/Q_(number_format))
// range: [0, 2**112 - 1]
// resolution: 1 / 2**112
library UQ112x112 {
uint224 constant Q112 = 2**112;
// encode a uint112 as a UQ112x112
function encode(uint112 y) internal pure returns (uint224 z) {
z = uint224(y) * Q112; // never overflows
}
// divide a UQ112x112 by a uint112, returning a UQ112x112
function uqdiv(uint224 x, uint112 y) internal pure returns (uint224 z) {
z = x / uint224(y);
}
}
// File: contracts/uniswapv2/interfaces/IERC20.sol
pragma solidity >=0.5.0;
interface IERC20Uniswap {
event Approval(address indexed owner, address indexed spender, uint value);
event Transfer(address indexed from, address indexed to, uint value);
function name() external view returns (string memory);
function symbol() external view returns (string memory);
function decimals() external view returns (uint8);
function totalSupply() external view returns (uint);
function balanceOf(address owner) external view returns (uint);
function allowance(address owner, address spender) external view returns (uint);
function approve(address spender, uint value) external returns (bool);
function transfer(address to, uint value) external returns (bool);
function transferFrom(address from, address to, uint value) external returns (bool);
}
// File: contracts/uniswapv2/interfaces/IUniswapV2Callee.sol
pragma solidity >=0.5.0;
interface IUniswapV2Callee {
function uniswapV2Call(address sender, uint amount0, uint amount1, bytes calldata data) external;
}
// File: contracts/uniswapv2/UniswapV2Pair.sol
pragma solidity =0.6.12;
interface IMigrator {
// Return the desired amount of liquidity token that the migrator wants.
function desiredLiquidity() external view returns (uint256);
}
contract UniswapV2Pair is UniswapV2ERC20 {
using SafeMathUniswap for uint;
using UQ112x112 for uint224;
uint public constant MINIMUM_LIQUIDITY = 10**3;
bytes4 private constant SELECTOR = bytes4(keccak256(bytes('transfer(address,uint256)')));
address public factory;
address public token0;
address public token1;
uint112 private reserve0; // uses single storage slot, accessible via getReserves
uint112 private reserve1; // uses single storage slot, accessible via getReserves
uint32 private blockTimestampLast; // uses single storage slot, accessible via getReserves
uint public price0CumulativeLast;
uint public price1CumulativeLast;
uint public kLast; // reserve0 * reserve1, as of immediately after the most recent liquidity event
uint private unlocked = 1;
modifier lock() {
require(unlocked == 1, 'UniswapV2: LOCKED');
unlocked = 0;
_;
unlocked = 1;
}
function getReserves() public view returns (uint112 _reserve0, uint112 _reserve1, uint32 _blockTimestampLast) {
_reserve0 = reserve0;
_reserve1 = reserve1;
_blockTimestampLast = blockTimestampLast;
}
function _safeTransfer(address token, address to, uint value) private {
(bool success, bytes memory data) = token.call(abi.encodeWithSelector(SELECTOR, to, value));
require(success && (data.length == 0 || abi.decode(data, (bool))), 'UniswapV2: TRANSFER_FAILED');
}
event Mint(address indexed sender, uint amount0, uint amount1);
event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
event Swap(
address indexed sender,
uint amount0In,
uint amount1In,
uint amount0Out,
uint amount1Out,
address indexed to
);
event Sync(uint112 reserve0, uint112 reserve1);
constructor() public {
factory = msg.sender;
}
// called once by the factory at time of deployment
function initialize(address _token0, address _token1) external {
require(msg.sender == factory, 'UniswapV2: FORBIDDEN'); // sufficient check
token0 = _token0;
token1 = _token1;
}
// update reserves and, on the first call per block, price accumulators
function _update(uint balance0, uint balance1, uint112 _reserve0, uint112 _reserve1) private {
require(balance0 <= uint112(-1) && balance1 <= uint112(-1), 'UniswapV2: OVERFLOW');
uint32 blockTimestamp = uint32(block.timestamp % 2**32);
uint32 timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired
if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) {
// * never overflows, and + overflow is desired
price0CumulativeLast += uint(UQ112x112.encode(_reserve1).uqdiv(_reserve0)) * timeElapsed;
price1CumulativeLast += uint(UQ112x112.encode(_reserve0).uqdiv(_reserve1)) * timeElapsed;
}
reserve0 = uint112(balance0);
reserve1 = uint112(balance1);
blockTimestampLast = blockTimestamp;
emit Sync(reserve0, reserve1);
}
// if fee is on, mint liquidity equivalent to 1/6th of the growth in sqrt(k)
function _mintFee(uint112 _reserve0, uint112 _reserve1) private returns (bool feeOn) {
address feeTo = IUniswapV2Factory(factory).feeTo();
feeOn = feeTo != address(0);
uint _kLast = kLast; // gas savings
if (feeOn) {
if (_kLast != 0) {
uint rootK = Math.sqrt(uint(_reserve0).mul(_reserve1));
uint rootKLast = Math.sqrt(_kLast);
if (rootK > rootKLast) {
uint numerator = totalSupply.mul(rootK.sub(rootKLast));
uint denominator = rootK.mul(5).add(rootKLast);
uint liquidity = numerator / denominator;
if (liquidity > 0) _mint(feeTo, liquidity);
}
}
} else if (_kLast != 0) {
kLast = 0;
}
}
// this low-level function should be called from a contract which performs important safety checks
function mint(address to) external lock returns (uint liquidity) {
(uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
uint balance0 = IERC20Uniswap(token0).balanceOf(address(this));
uint balance1 = IERC20Uniswap(token1).balanceOf(address(this));
uint amount0 = balance0.sub(_reserve0);
uint amount1 = balance1.sub(_reserve1);
bool feeOn = _mintFee(_reserve0, _reserve1);
uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
if (_totalSupply == 0) {
address migrator = IUniswapV2Factory(factory).migrator();
if (msg.sender == migrator) {
liquidity = IMigrator(migrator).desiredLiquidity();
require(liquidity > 0 && liquidity != uint256(-1), "Bad desired liquidity");
} else {
require(migrator == address(0), "Must not have migrator");
liquidity = Math.sqrt(amount0.mul(amount1)).sub(MINIMUM_LIQUIDITY);
_mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY tokens
}
} else {
liquidity = Math.min(amount0.mul(_totalSupply) / _reserve0, amount1.mul(_totalSupply) / _reserve1);
}
require(liquidity > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_MINTED');
_mint(to, liquidity);
_update(balance0, balance1, _reserve0, _reserve1);
if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
emit Mint(msg.sender, amount0, amount1);
}
// this low-level function should be called from a contract which performs important safety checks
function burn(address to) external lock returns (uint amount0, uint amount1) {
(uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
address _token0 = token0; // gas savings
address _token1 = token1; // gas savings
uint balance0 = IERC20Uniswap(_token0).balanceOf(address(this));
uint balance1 = IERC20Uniswap(_token1).balanceOf(address(this));
uint liquidity = balanceOf[address(this)];
bool feeOn = _mintFee(_reserve0, _reserve1);
uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata distribution
amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata distribution
require(amount0 > 0 && amount1 > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_BURNED');
_burn(address(this), liquidity);
_safeTransfer(_token0, to, amount0);
_safeTransfer(_token1, to, amount1);
balance0 = IERC20Uniswap(_token0).balanceOf(address(this));
balance1 = IERC20Uniswap(_token1).balanceOf(address(this));
_update(balance0, balance1, _reserve0, _reserve1);
if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
emit Burn(msg.sender, amount0, amount1, to);
}
// this low-level function should be called from a contract which performs important safety checks
function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external lock {
require(amount0Out > 0 || amount1Out > 0, 'UniswapV2: INSUFFICIENT_OUTPUT_AMOUNT');
(uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
require(amount0Out < _reserve0 && amount1Out < _reserve1, 'UniswapV2: INSUFFICIENT_LIQUIDITY');
uint balance0;
uint balance1;
{ // scope for _token{0,1}, avoids stack too deep errors
address _token0 = token0;
address _token1 = token1;
require(to != _token0 && to != _token1, 'UniswapV2: INVALID_TO');
if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens
if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens
if (data.length > 0) IUniswapV2Callee(to).uniswapV2Call(msg.sender, amount0Out, amount1Out, data);
balance0 = IERC20Uniswap(_token0).balanceOf(address(this));
balance1 = IERC20Uniswap(_token1).balanceOf(address(this));
}
uint amount0In = balance0 > _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0;
uint amount1In = balance1 > _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0;
require(amount0In > 0 || amount1In > 0, 'UniswapV2: INSUFFICIENT_INPUT_AMOUNT');
{ // scope for reserve{0,1}Adjusted, avoids stack too deep errors
uint balance0Adjusted = balance0.mul(1000).sub(amount0In.mul(3));
uint balance1Adjusted = balance1.mul(1000).sub(amount1In.mul(3));
require(balance0Adjusted.mul(balance1Adjusted) >= uint(_reserve0).mul(_reserve1).mul(1000**2), 'UniswapV2: K');
}
_update(balance0, balance1, _reserve0, _reserve1);
emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to);
}
// force balances to match reserves
function skim(address to) external lock {
address _token0 = token0; // gas savings
address _token1 = token1; // gas savings
_safeTransfer(_token0, to, IERC20Uniswap(_token0).balanceOf(address(this)).sub(reserve0));
_safeTransfer(_token1, to, IERC20Uniswap(_token1).balanceOf(address(this)).sub(reserve1));
}
// force reserves to match balances
function sync() external lock {
_update(IERC20Uniswap(token0).balanceOf(address(this)), IERC20Uniswap(token1).balanceOf(address(this)), reserve0, reserve1);
}
}File 4 of 30: ConvexToken
// SPDX-License-Identifier: MIT
// File: contracts\Interfaces.sol
pragma solidity 0.6.12;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library MathUtil {
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
}
contract ReentrancyGuard {
uint256 private _guardCounter;
constructor () internal {
_guardCounter = 1;
}
modifier nonReentrant() {
_guardCounter += 1;
uint256 localCounter = _guardCounter;
_;
require(localCounter == _guardCounter, "ReentrancyGuard: reentrant call");
}
}
interface ICurveGauge {
function deposit(uint256) external;
function balanceOf(address) external view returns (uint256);
function withdraw(uint256) external;
function claim_rewards() external;
function reward_tokens(uint256) external view returns(address);//v2
function rewarded_token() external view returns(address);//v1
}
interface ICurveVoteEscrow {
function create_lock(uint256, uint256) external;
function increase_amount(uint256) external;
function increase_unlock_time(uint256) external;
function withdraw() external;
function smart_wallet_checker() external view returns (address);
}
interface IWalletChecker {
function check(address) external view returns (bool);
}
interface IVoting{
function vote(uint256, bool, bool) external; //voteId, support, executeIfDecided
function getVote(uint256) external view returns(bool,bool,uint64,uint64,uint64,uint64,uint256,uint256,uint256,bytes memory);
function vote_for_gauge_weights(address,uint256) external;
}
interface IMinter{
function mint(address) external;
}
interface IRegistry{
function get_registry() external view returns(address);
function get_address(uint256 _id) external view returns(address);
function gauge_controller() external view returns(address);
function get_lp_token(address) external view returns(address);
function get_gauges(address) external view returns(address[10] memory,uint128[10] memory);
}
interface IStaker{
function deposit(address, address) external;
function withdraw(address) external;
function withdraw(address, address, uint256) external;
function withdrawAll(address, address) external;
function createLock(uint256, uint256) external;
function increaseAmount(uint256) external;
function increaseTime(uint256) external;
function release() external;
function claimCrv(address) external returns (uint256);
function claimRewards(address) external;
function claimFees(address,address) external;
function setStashAccess(address, bool) external;
function vote(uint256,address,bool) external;
function voteGaugeWeight(address,uint256) external;
function balanceOfPool(address) external view returns (uint256);
function operator() external view returns (address);
function execute(address _to, uint256 _value, bytes calldata _data) external returns (bool, bytes memory);
}
interface IRewards{
function stake(address, uint256) external;
function stakeFor(address, uint256) external;
function withdraw(address, uint256) external;
function exit(address) external;
function getReward(address) external;
function queueNewRewards(uint256) external;
function notifyRewardAmount(uint256) external;
function addExtraReward(address) external;
function stakingToken() external returns (address);
}
interface IStash{
function stashRewards() external returns (bool);
function processStash() external returns (bool);
function claimRewards() external returns (bool);
}
interface IFeeDistro{
function claim() external;
function token() external view returns(address);
}
interface ITokenMinter{
function mint(address,uint256) external;
function burn(address,uint256) external;
}
interface IDeposit{
function isShutdown() external view returns(bool);
function balanceOf(address _account) external view returns(uint256);
function totalSupply() external view returns(uint256);
function poolInfo(uint256) external view returns(address,address,address,address,address, bool);
function rewardClaimed(uint256,address,uint256) external;
function withdrawTo(uint256,uint256,address) external;
function claimRewards(uint256,address) external returns(bool);
function rewardArbitrator() external returns(address);
}
interface ICrvDeposit{
function deposit(uint256, bool) external;
function lockIncentive() external view returns(uint256);
}
interface IRewardFactory{
function setAccess(address,bool) external;
function CreateCrvRewards(uint256,address) external returns(address);
function CreateTokenRewards(address,address,address) external returns(address);
function activeRewardCount(address) external view returns(uint256);
function addActiveReward(address,uint256) external returns(bool);
function removeActiveReward(address,uint256) external returns(bool);
}
interface IStashFactory{
function CreateStash(uint256,address,address,uint256) external returns(address);
}
interface ITokenFactory{
function CreateDepositToken(address) external returns(address);
}
interface IPools{
function addPool(address _lptoken, address _gauge, uint256 _stashVersion) external returns(bool);
function shutdownPool(uint256 _pid) external returns(bool);
function poolInfo(uint256) external view returns(address,address,address,address,address,bool);
function poolLength() external view returns (uint256);
function gaugeMap(address) external view returns(bool);
function setPoolManager(address _poolM) external;
}
interface IVestedEscrow{
function fund(address[] calldata _recipient, uint256[] calldata _amount) external returns(bool);
}
// File: @openzeppelin\contracts\math\SafeMath.sol
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
/**
* @dev Returns the substraction of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b > a) return (false, 0);
return (true, a - b);
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b == 0) return (false, 0);
return (true, a / b);
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b == 0) return (false, 0);
return (true, a % b);
}
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
require(b <= a, "SafeMath: subtraction overflow");
return a - b;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) return 0;
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: division by zero");
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: modulo by zero");
return a % b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {trySub}.
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
return a - b;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting with custom message on
* division by zero. The result is rounded towards zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryDiv}.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting with custom message when dividing by zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryMod}.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
return a % b;
}
}
// File: @openzeppelin\contracts\token\ERC20\IERC20.sol
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// File: @openzeppelin\contracts\utils\Address.sol
pragma solidity >=0.6.2 <0.8.0;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize, which returns 0 for contracts in
// construction, since the code is only stored at the end of the
// constructor execution.
uint256 size;
// solhint-disable-next-line no-inline-assembly
assembly { size := extcodesize(account) }
return size > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain`call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.call{ value: value }(data);
return _verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.staticcall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
require(isContract(target), "Address: delegate call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.delegatecall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
// solhint-disable-next-line no-inline-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
// File: @openzeppelin\contracts\token\ERC20\SafeERC20.sol
pragma solidity >=0.6.0 <0.8.0;
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
// solhint-disable-next-line max-line-length
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(value);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) { // Return data is optional
// solhint-disable-next-line max-line-length
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// File: node_modules\@openzeppelin\contracts\utils\Context.sol
pragma solidity >=0.6.0 <0.8.0;
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address payable) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}
// File: @openzeppelin\contracts\token\ERC20\ERC20.sol
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin guidelines: functions revert instead
* of returning `false` on failure. This behavior is nonetheless conventional
* and does not conflict with the expectations of ERC20 applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20 {
using SafeMath for uint256;
mapping (address => uint256) private _balances;
mapping (address => mapping (address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
uint8 private _decimals;
/**
* @dev Sets the values for {name} and {symbol}, initializes {decimals} with
* a default value of 18.
*
* To select a different value for {decimals}, use {_setupDecimals}.
*
* All three of these values are immutable: they can only be set once during
* construction.
*/
constructor (string memory name_, string memory symbol_) public {
_name = name_;
_symbol = symbol_;
_decimals = 18;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5,05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
* called.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual returns (uint8) {
return _decimals;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `recipient` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
_approve(_msgSender(), spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* Requirements:
*
* - `sender` and `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
* - the caller must have allowance for ``sender``'s tokens of at least
* `amount`.
*/
function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
/**
* @dev Moves tokens `amount` from `sender` to `recipient`.
*
* This is internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `sender` cannot be the zero address.
* - `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
*/
function _transfer(address sender, address recipient, uint256 amount) internal virtual {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(sender, recipient, amount);
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `to` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Sets {decimals} to a value other than the default one of 18.
*
* WARNING: This function should only be called from the constructor. Most
* applications that interact with token contracts will not expect
* {decimals} to ever change, and may work incorrectly if it does.
*/
function _setupDecimals(uint8 decimals_) internal virtual {
_decimals = decimals_;
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be to transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
}
// File: contracts\Cvx.sol
pragma solidity 0.6.12;
contract ConvexToken is ERC20{
using SafeERC20 for IERC20;
using Address for address;
using SafeMath for uint256;
address public operator;
address public vecrvProxy;
uint256 public maxSupply = 100 * 1000000 * 1e18; //100mil
uint256 public totalCliffs = 1000;
uint256 public reductionPerCliff;
constructor(address _proxy)
public
ERC20(
"Convex Token",
"CVX"
)
{
operator = msg.sender;
vecrvProxy = _proxy;
reductionPerCliff = maxSupply.div(totalCliffs);
}
//get current operator off proxy incase there was a change
function updateOperator() public {
operator = IStaker(vecrvProxy).operator();
}
function mint(address _to, uint256 _amount) external {
if(msg.sender != operator){
//dont error just return. if a shutdown happens, rewards on old system
//can still be claimed, just wont mint cvx
return;
}
uint256 supply = totalSupply();
if(supply == 0){
//premine, one time only
_mint(_to,_amount);
//automatically switch operators
updateOperator();
return;
}
//use current supply to gauge cliff
//this will cause a bit of overflow into the next cliff range
//but should be within reasonable levels.
//requires a max supply check though
uint256 cliff = supply.div(reductionPerCliff);
//mint if below total cliffs
if(cliff < totalCliffs){
//for reduction% take inverse of current cliff
uint256 reduction = totalCliffs.sub(cliff);
//reduce
_amount = _amount.mul(reduction).div(totalCliffs);
//supply cap check
uint256 amtTillMax = maxSupply.sub(supply);
if(_amount > amtTillMax){
_amount = amtTillMax;
}
//mint
_mint(_to, _amount);
}
}
}File 5 of 30: Sand
pragma solidity ^0.5.2;
contract Admin {
address internal _admin;
event AdminChanged(address oldAdmin, address newAdmin);
/// @notice gives the current administrator of this contract.
/// @return the current administrator of this contract.
function getAdmin() external view returns (address) {
return _admin;
}
/// @notice change the administrator to be `newAdmin`.
/// @param newAdmin address of the new administrator.
function changeAdmin(address newAdmin) external {
require(msg.sender == _admin, "only admin can change admin");
emit AdminChanged(_admin, newAdmin);
_admin = newAdmin;
}
}
pragma solidity ^0.5.2;
import "./Admin.sol";
contract SuperOperators is Admin {
mapping(address => bool) internal _superOperators;
event SuperOperator(address superOperator, bool enabled);
/// @notice Enable or disable the ability of `superOperator` to transfer tokens of all (superOperator rights).
/// @param superOperator address that will be given/removed superOperator right.
/// @param enabled set whether the superOperator is enabled or disabled.
function setSuperOperator(address superOperator, bool enabled) external {
require(
msg.sender == _admin,
"only admin is allowed to add super operators"
);
_superOperators[superOperator] = enabled;
emit SuperOperator(superOperator, enabled);
}
/// @notice check whether address `who` is given superOperator rights.
/// @param who The address to query.
/// @return whether the address has superOperator rights.
function isSuperOperator(address who) public view returns (bool) {
return _superOperators[who];
}
}
pragma solidity ^0.5.2;
/* interface */
contract ERC20Events {
event Transfer(address indexed from, address indexed to, uint256 value);
event Approval(
address indexed owner,
address indexed spender,
uint256 value
);
}
pragma solidity ^0.5.2;
library BytesUtil {
function memcpy(uint256 dest, uint256 src, uint256 len) internal pure {
// Copy word-length chunks while possible
for (; len >= 32; len -= 32) {
assembly {
mstore(dest, mload(src))
}
dest += 32;
src += 32;
}
// Copy remaining bytes
uint256 mask = 256**(32 - len) - 1;
assembly {
let srcpart := and(mload(src), not(mask))
let destpart := and(mload(dest), mask)
mstore(dest, or(destpart, srcpart))
}
}
function pointerToBytes(uint256 src, uint256 len)
internal
pure
returns (bytes memory)
{
bytes memory ret = new bytes(len);
uint256 retptr;
assembly {
retptr := add(ret, 32)
}
memcpy(retptr, src, len);
return ret;
}
function addressToBytes(address a) internal pure returns (bytes memory b) {
assembly {
let m := mload(0x40)
mstore(
add(m, 20),
xor(0x140000000000000000000000000000000000000000, a)
)
mstore(0x40, add(m, 52))
b := m
}
}
function uint256ToBytes(uint256 a) internal pure returns (bytes memory b) {
assembly {
let m := mload(0x40)
mstore(add(m, 32), a)
mstore(0x40, add(m, 64))
b := m
}
}
function doFirstParamEqualsAddress(bytes memory data, address _address)
internal
pure
returns (bool)
{
if (data.length < (36 + 32)) {
return false;
}
uint256 value;
assembly {
value := mload(add(data, 36))
}
return value == uint256(_address);
}
function doParamEqualsUInt256(bytes memory data, uint256 i, uint256 value)
internal
pure
returns (bool)
{
if (data.length < (36 + (i + 1) * 32)) {
return false;
}
uint256 offset = 36 + i * 32;
uint256 valuePresent;
assembly {
valuePresent := mload(add(data, offset))
}
return valuePresent == value;
}
function overrideFirst32BytesWithAddress(
bytes memory data,
address _address
) internal pure returns (bytes memory) {
uint256 dest;
assembly {
dest := add(data, 48)
} // 48 = 32 (offset) + 4 (func sig) + 12 (address is only 20 bytes)
bytes memory addressBytes = addressToBytes(_address);
uint256 src;
assembly {
src := add(addressBytes, 32)
}
memcpy(dest, src, 20);
return data;
}
function overrideFirstTwo32BytesWithAddressAndInt(
bytes memory data,
address _address,
uint256 _value
) internal pure returns (bytes memory) {
uint256 dest;
uint256 src;
assembly {
dest := add(data, 48)
} // 48 = 32 (offset) + 4 (func sig) + 12 (address is only 20 bytes)
bytes memory bbytes = addressToBytes(_address);
assembly {
src := add(bbytes, 32)
}
memcpy(dest, src, 20);
assembly {
dest := add(data, 68)
} // 48 = 32 (offset) + 4 (func sig) + 32 (next slot)
bbytes = uint256ToBytes(_value);
assembly {
src := add(bbytes, 32)
}
memcpy(dest, src, 32);
return data;
}
}
pragma solidity 0.5.9;
import "./Sand/erc20/ERC20ExecuteExtension.sol";
import "./Sand/erc20/ERC20BaseToken.sol";
import "./Sand/erc20/ERC20BasicApproveExtension.sol";
contract Sand is ERC20ExecuteExtension, ERC20BasicApproveExtension, ERC20BaseToken {
constructor(address sandAdmin, address executionAdmin, address beneficiary) public {
_admin = sandAdmin;
_executionAdmin = executionAdmin;
_mint(beneficiary, 3000000000000000000000000000);
}
/// @notice A descriptive name for the tokens
/// @return name of the tokens
function name() public view returns (string memory) {
return "SAND";
}
/// @notice An abbreviated name for the tokens
/// @return symbol of the tokens
function symbol() public view returns (string memory) {
return "SAND";
}
}
pragma solidity 0.5.9;
import "../../../contracts_common/src/Interfaces/ERC20Events.sol";
import "../../../contracts_common/src/BaseWithStorage/SuperOperators.sol";
contract ERC20BaseToken is SuperOperators, ERC20Events {
uint256 internal _totalSupply;
mapping(address => uint256) internal _balances;
mapping(address => mapping(address => uint256)) internal _allowances;
/// @notice Gets the total number of tokens in existence.
/// @return the total number of tokens in existence.
function totalSupply() public view returns (uint256) {
return _totalSupply;
}
/// @notice Gets the balance of `owner`.
/// @param owner The address to query the balance of.
/// @return The amount owned by `owner`.
function balanceOf(address owner) public view returns (uint256) {
return _balances[owner];
}
/// @notice gets allowance of `spender` for `owner`'s tokens.
/// @param owner address whose token is allowed.
/// @param spender address allowed to transfer.
/// @return the amount of token `spender` is allowed to transfer on behalf of `owner`.
function allowance(address owner, address spender)
public
view
returns (uint256 remaining)
{
return _allowances[owner][spender];
}
/// @notice returns the number of decimals for that token.
/// @return the number of decimals.
function decimals() public view returns (uint8) {
return uint8(18);
}
/// @notice Transfer `amount` tokens to `to`.
/// @param to the recipient address of the tokens transfered.
/// @param amount the number of tokens transfered.
/// @return true if success.
function transfer(address to, uint256 amount)
public
returns (bool success)
{
_transfer(msg.sender, to, amount);
return true;
}
/// @notice Transfer `amount` tokens from `from` to `to`.
/// @param from whose token it is transferring from.
/// @param to the recipient address of the tokens transfered.
/// @param amount the number of tokens transfered.
/// @return true if success.
function transferFrom(address from, address to, uint256 amount)
public
returns (bool success)
{
if (msg.sender != from && !_superOperators[msg.sender]) {
uint256 currentAllowance = _allowances[from][msg.sender];
if (currentAllowance != (2**256) - 1) {
// save gas when allowance is maximal by not reducing it (see https://github.com/ethereum/EIPs/issues/717)
require(currentAllowance >= amount, "Not enough funds allowed");
_allowances[from][msg.sender] = currentAllowance - amount;
}
}
_transfer(from, to, amount);
return true;
}
/// @notice burn `amount` tokens.
/// @param amount the number of tokens to burn.
/// @return true if success.
function burn(uint256 amount) external returns (bool) {
_burn(msg.sender, amount);
return true;
}
/// @notice burn `amount` tokens from `owner`.
/// @param owner address whose token is to burn.
/// @param amount the number of token to burn.
/// @return true if success.
function burnFor(address owner, uint256 amount) external returns (bool) {
_burn(owner, amount);
return true;
}
/// @notice approve `spender` to transfer `amount` tokens.
/// @param spender address to be given rights to transfer.
/// @param amount the number of tokens allowed.
/// @return true if success.
function approve(address spender, uint256 amount)
public
returns (bool success)
{
_approveFor(msg.sender, spender, amount);
return true;
}
/// @notice approve `spender` to transfer `amount` tokens from `owner`.
/// @param owner address whose token is allowed.
/// @param spender address to be given rights to transfer.
/// @param amount the number of tokens allowed.
/// @return true if success.
function approveFor(address owner, address spender, uint256 amount)
public
returns (bool success)
{
require(
msg.sender == owner || _superOperators[msg.sender],
"msg.sender != owner && !superOperator"
);
_approveFor(owner, spender, amount);
return true;
}
function addAllowanceIfNeeded(address owner, address spender, uint256 amountNeeded)
public
returns (bool success)
{
require(
msg.sender == owner || _superOperators[msg.sender],
"msg.sender != owner && !superOperator"
);
_addAllowanceIfNeeded(owner, spender, amountNeeded);
return true;
}
function _addAllowanceIfNeeded(address owner, address spender, uint256 amountNeeded)
internal
{
if(amountNeeded > 0 && !isSuperOperator(spender)) {
uint256 currentAllowance = _allowances[owner][spender];
if(currentAllowance < amountNeeded) {
_approveFor(owner, spender, amountNeeded);
}
}
}
function _approveFor(address owner, address spender, uint256 amount)
internal
{
require(
owner != address(0) && spender != address(0),
"Cannot approve with 0x0"
);
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
function _transfer(address from, address to, uint256 amount) internal {
require(to != address(0), "Cannot send to 0x0");
uint256 currentBalance = _balances[from];
require(currentBalance >= amount, "not enough fund");
_balances[from] = currentBalance - amount;
_balances[to] += amount;
emit Transfer(from, to, amount);
}
function _mint(address to, uint256 amount) internal {
require(to != address(0), "Cannot mint to 0x0");
require(amount > 0, "cannot mint 0 tokens");
uint256 currentTotalSupply = _totalSupply;
uint256 newTotalSupply = currentTotalSupply + amount;
require(newTotalSupply > currentTotalSupply, "overflow");
_totalSupply = newTotalSupply;
_balances[to] += amount;
emit Transfer(address(0), to, amount);
}
function _burn(address from, uint256 amount) internal {
require(amount > 0, "cannot burn 0 tokens");
if (msg.sender != from && !_superOperators[msg.sender]) {
uint256 currentAllowance = _allowances[from][msg.sender];
require(
currentAllowance >= amount,
"Not enough funds allowed"
);
if (currentAllowance != (2**256) - 1) {
// save gas when allowance is maximal by not reducing it (see https://github.com/ethereum/EIPs/issues/717)
_allowances[from][msg.sender] = currentAllowance - amount;
}
}
uint256 currentBalance = _balances[from];
require(currentBalance >= amount, "Not enough funds");
_balances[from] = currentBalance - amount;
_totalSupply -= amount;
emit Transfer(from, address(0), amount);
}
}
pragma solidity 0.5.9;
import "../../../contracts_common/src/Libraries/BytesUtil.sol";
contract ERC20BasicApproveExtension {
/// @notice approve `target` to spend `amount` and call it with data.
/// @param target address to be given rights to transfer and destination of the call.
/// @param amount the number of tokens allowed.
/// @param data bytes for the call.
/// @return data of the call.
function approveAndCall(
address target,
uint256 amount,
bytes calldata data
) external payable returns (bytes memory) {
require(
BytesUtil.doFirstParamEqualsAddress(data, msg.sender),
"first param != sender"
);
_approveFor(msg.sender, target, amount);
// solium-disable-next-line security/no-call-value
(bool success, bytes memory returnData) = target.call.value(msg.value)(data);
require(success, string(returnData));
return returnData;
}
/// @notice temporarly approve `target` to spend `amount` and call it with data. Previous approvals remains unchanged.
/// @param target destination of the call, allowed to spend the amount specified
/// @param amount the number of tokens allowed to spend.
/// @param data bytes for the call.
/// @return data of the call.
function paidCall(
address target,
uint256 amount,
bytes calldata data
) external payable returns (bytes memory) {
require(
BytesUtil.doFirstParamEqualsAddress(data, msg.sender),
"first param != sender"
);
if (amount > 0) {
_addAllowanceIfNeeded(msg.sender, target, amount);
}
// solium-disable-next-line security/no-call-value
(bool success, bytes memory returnData) = target.call.value(msg.value)(data);
require(success, string(returnData));
return returnData;
}
function _approveFor(address owner, address target, uint256 amount) internal;
function _addAllowanceIfNeeded(address owner, address spender, uint256 amountNeeded) internal;
}
pragma solidity 0.5.9;
contract ERC20ExecuteExtension {
/// @dev _executionAdmin != _admin so that this super power can be disabled independently
address internal _executionAdmin;
event ExecutionAdminAdminChanged(address oldAdmin, address newAdmin);
/// @notice give the address responsible for adding execution rights.
/// @return address of the execution administrator.
function getExecutionAdmin() external view returns (address) {
return _executionAdmin;
}
/// @notice change the execution adminstrator to be `newAdmin`.
/// @param newAdmin address of the new administrator.
function changeExecutionAdmin(address newAdmin) external {
require(msg.sender == _executionAdmin, "only executionAdmin can change executionAdmin");
emit ExecutionAdminAdminChanged(_executionAdmin, newAdmin);
_executionAdmin = newAdmin;
}
mapping(address => bool) internal _executionOperators;
event ExecutionOperator(address executionOperator, bool enabled);
/// @notice set `executionOperator` as executionOperator: `enabled`.
/// @param executionOperator address that will be given/removed executionOperator right.
/// @param enabled set whether the executionOperator is enabled or disabled.
function setExecutionOperator(address executionOperator, bool enabled) external {
require(
msg.sender == _executionAdmin,
"only execution admin is allowed to add execution operators"
);
_executionOperators[executionOperator] = enabled;
emit ExecutionOperator(executionOperator, enabled);
}
/// @notice check whether address `who` is given executionOperator rights.
/// @param who The address to query.
/// @return whether the address has executionOperator rights.
function isExecutionOperator(address who) public view returns (bool) {
return _executionOperators[who];
}
/// @notice execute on behalf of the contract.
/// @param to destination address fo the call.
/// @param gasLimit exact amount of gas to be passed to the call.
/// @param data the bytes sent to the destination address.
/// @return success whether the execution was successful.
/// @return returnData data resulting from the execution.
function executeWithSpecificGas(address to, uint256 gasLimit, bytes calldata data) external returns (bool success, bytes memory returnData) {
require(_executionOperators[msg.sender], "only execution operators allowed to execute on SAND behalf");
(success, returnData) = to.call.gas(gasLimit)(data);
assert(gasleft() > gasLimit / 63); // not enough gas provided, assert to throw all gas // TODO use EIP-1930
}
/// @notice approve a specific amount of token for `from` and execute on behalf of the contract.
/// @param from address of which token will be transfered.
/// @param to destination address fo the call.
/// @param amount number of tokens allowed that can be transfer by the code at `to`.
/// @param gasLimit exact amount of gas to be passed to the call.
/// @param data the bytes sent to the destination address.
/// @return success whether the execution was successful.
/// @return returnData data resulting from the execution.
function approveAndExecuteWithSpecificGas(
address from,
address to,
uint256 amount,
uint256 gasLimit,
bytes calldata data
) external returns (bool success, bytes memory returnData) {
require(_executionOperators[msg.sender], "only execution operators allowed to execute on SAND behalf");
return _approveAndExecuteWithSpecificGas(from, to, amount, gasLimit, data);
}
/// @dev the reason for this function is that charging for gas here is more gas-efficient than doing it in the caller.
/// @notice approve a specific amount of token for `from` and execute on behalf of the contract. Plus charge the gas required to perform it.
/// @param from address of which token will be transfered.
/// @param to destination address fo the call.
/// @param amount number of tokens allowed that can be transfer by the code at `to`.
/// @param gasLimit exact amount of gas to be passed to the call.
/// @param tokenGasPrice price in token for the gas to be charged.
/// @param baseGasCharge amount of gas charged on top of the gas used for the call.
/// @param tokenReceiver recipient address of the token charged for the gas used.
/// @param data the bytes sent to the destination address.
/// @return success whether the execution was successful.
/// @return returnData data resulting from the execution.
function approveAndExecuteWithSpecificGasAndChargeForIt(
address from,
address to,
uint256 amount,
uint256 gasLimit,
uint256 tokenGasPrice,
uint256 baseGasCharge,
address tokenReceiver,
bytes calldata data
) external returns (bool success, bytes memory returnData) {
uint256 initialGas = gasleft();
require(_executionOperators[msg.sender], "only execution operators allowed to execute on SAND behalf");
(success, returnData) = _approveAndExecuteWithSpecificGas(from, to, amount, gasLimit, data);
if (tokenGasPrice > 0) {
_charge(from, gasLimit, tokenGasPrice, initialGas, baseGasCharge, tokenReceiver);
}
}
/// @notice transfer 1amount1 token from `from` to `to` and charge the gas required to perform that transfer.
/// @param from address of which token will be transfered.
/// @param to destination address fo the call.
/// @param amount number of tokens allowed that can be transfer by the code at `to`.
/// @param gasLimit exact amount of gas to be passed to the call.
/// @param tokenGasPrice price in token for the gas to be charged.
/// @param baseGasCharge amount of gas charged on top of the gas used for the call.
/// @param tokenReceiver recipient address of the token charged for the gas used.
/// @return whether the transfer was successful.
function transferAndChargeForGas(
address from,
address to,
uint256 amount,
uint256 gasLimit,
uint256 tokenGasPrice,
uint256 baseGasCharge,
address tokenReceiver
) external returns (bool) {
uint256 initialGas = gasleft();
require(_executionOperators[msg.sender], "only execution operators allowed to perfrom transfer and charge");
_transfer(from, to, amount);
if (tokenGasPrice > 0) {
_charge(from, gasLimit, tokenGasPrice, initialGas, baseGasCharge, tokenReceiver);
}
return true;
}
function _charge(
address from,
uint256 gasLimit,
uint256 tokenGasPrice,
uint256 initialGas,
uint256 baseGasCharge,
address tokenReceiver
) internal {
uint256 gasCharge = initialGas - gasleft();
if(gasCharge > gasLimit) {
gasCharge = gasLimit;
}
gasCharge += baseGasCharge;
uint256 tokensToCharge = gasCharge * tokenGasPrice;
require(tokensToCharge / gasCharge == tokenGasPrice, "overflow");
_transfer(from, tokenReceiver, tokensToCharge);
}
function _approveAndExecuteWithSpecificGas(
address from,
address to,
uint256 amount,
uint256 gasLimit,
bytes memory data
) internal returns (bool success, bytes memory returnData) {
if (amount > 0) {
_addAllowanceIfNeeded(from, to, amount);
}
(success, returnData) = to.call.gas(gasLimit)(data);
assert(gasleft() > gasLimit / 63); // not enough gas provided, assert to throw all gas // TODO use EIP-1930
}
function _transfer(address from, address to, uint256 amount) internal;
function _addAllowanceIfNeeded(address owner, address spender, uint256 amountNeeded) internal;
}File 6 of 30: DSToken
// MKR Token
// hevm: flattened sources of src/mkr-499.sol
pragma solidity ^0.4.15;
////// lib/ds-roles/lib/ds-auth/src/auth.sol
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
/* pragma solidity ^0.4.13; */
contract DSAuthority {
function canCall(
address src, address dst, bytes4 sig
) public view returns (bool);
}
contract DSAuthEvents {
event LogSetAuthority (address indexed authority);
event LogSetOwner (address indexed owner);
}
contract DSAuth is DSAuthEvents {
DSAuthority public authority;
address public owner;
function DSAuth() public {
owner = msg.sender;
LogSetOwner(msg.sender);
}
function setOwner(address owner_)
public
auth
{
owner = owner_;
LogSetOwner(owner);
}
function setAuthority(DSAuthority authority_)
public
auth
{
authority = authority_;
LogSetAuthority(authority);
}
modifier auth {
require(isAuthorized(msg.sender, msg.sig));
_;
}
function isAuthorized(address src, bytes4 sig) internal view returns (bool) {
if (src == address(this)) {
return true;
} else if (src == owner) {
return true;
} else if (authority == DSAuthority(0)) {
return false;
} else {
return authority.canCall(src, this, sig);
}
}
}
////// lib/ds-thing/lib/ds-math/src/math.sol
/// math.sol -- mixin for inline numerical wizardry
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
/* pragma solidity ^0.4.13; */
contract DSMath {
function add(uint x, uint y) internal pure returns (uint z) {
require((z = x + y) >= x);
}
function sub(uint x, uint y) internal pure returns (uint z) {
require((z = x - y) <= x);
}
function mul(uint x, uint y) internal pure returns (uint z) {
require(y == 0 || (z = x * y) / y == x);
}
function min(uint x, uint y) internal pure returns (uint z) {
return x <= y ? x : y;
}
function max(uint x, uint y) internal pure returns (uint z) {
return x >= y ? x : y;
}
function imin(int x, int y) internal pure returns (int z) {
return x <= y ? x : y;
}
function imax(int x, int y) internal pure returns (int z) {
return x >= y ? x : y;
}
uint constant WAD = 10 ** 18;
uint constant RAY = 10 ** 27;
function wmul(uint x, uint y) internal pure returns (uint z) {
z = add(mul(x, y), WAD / 2) / WAD;
}
function rmul(uint x, uint y) internal pure returns (uint z) {
z = add(mul(x, y), RAY / 2) / RAY;
}
function wdiv(uint x, uint y) internal pure returns (uint z) {
z = add(mul(x, WAD), y / 2) / y;
}
function rdiv(uint x, uint y) internal pure returns (uint z) {
z = add(mul(x, RAY), y / 2) / y;
}
// This famous algorithm is called "exponentiation by squaring"
// and calculates x^n with x as fixed-point and n as regular unsigned.
//
// It's O(log n), instead of O(n) for naive repeated multiplication.
//
// These facts are why it works:
//
// If n is even, then x^n = (x^2)^(n/2).
// If n is odd, then x^n = x * x^(n-1),
// and applying the equation for even x gives
// x^n = x * (x^2)^((n-1) / 2).
//
// Also, EVM division is flooring and
// floor[(n-1) / 2] = floor[n / 2].
//
function rpow(uint x, uint n) internal pure returns (uint z) {
z = n % 2 != 0 ? x : RAY;
for (n /= 2; n != 0; n /= 2) {
x = rmul(x, x);
if (n % 2 != 0) {
z = rmul(z, x);
}
}
}
}
////// lib/ds-thing/lib/ds-note/src/note.sol
/// note.sol -- the `note' modifier, for logging calls as events
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
/* pragma solidity ^0.4.13; */
contract DSNote {
event LogNote(
bytes4 indexed sig,
address indexed guy,
bytes32 indexed foo,
bytes32 indexed bar,
uint wad,
bytes fax
) anonymous;
modifier note {
bytes32 foo;
bytes32 bar;
assembly {
foo := calldataload(4)
bar := calldataload(36)
}
LogNote(msg.sig, msg.sender, foo, bar, msg.value, msg.data);
_;
}
}
////// lib/ds-thing/src/thing.sol
// thing.sol - `auth` with handy mixins. your things should be DSThings
// Copyright (C) 2017 DappHub, LLC
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
/* pragma solidity ^0.4.13; */
/* import 'ds-auth/auth.sol'; */
/* import 'ds-note/note.sol'; */
/* import 'ds-math/math.sol'; */
contract DSThing is DSAuth, DSNote, DSMath {
}
////// lib/ds-token/lib/ds-stop/src/stop.sol
/// stop.sol -- mixin for enable/disable functionality
// Copyright (C) 2017 DappHub, LLC
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
/* pragma solidity ^0.4.13; */
/* import "ds-auth/auth.sol"; */
/* import "ds-note/note.sol"; */
contract DSStop is DSNote, DSAuth {
bool public stopped;
modifier stoppable {
require(!stopped);
_;
}
function stop() public auth note {
stopped = true;
}
function start() public auth note {
stopped = false;
}
}
////// lib/ds-token/lib/erc20/src/erc20.sol
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
/* pragma solidity ^0.4.8; */
// Token standard API
// https://github.com/ethereum/EIPs/issues/20
contract ERC20 {
function totalSupply() public view returns (uint supply);
function balanceOf( address who ) public view returns (uint value);
function allowance( address owner, address spender ) public view returns (uint _allowance);
function transfer( address to, uint value) public returns (bool ok);
function transferFrom( address from, address to, uint value) public returns (bool ok);
function approve( address spender, uint value ) public returns (bool ok);
event Transfer( address indexed from, address indexed to, uint value);
event Approval( address indexed owner, address indexed spender, uint value);
}
////// lib/ds-token/src/base.sol
/// base.sol -- basic ERC20 implementation
// Copyright (C) 2015, 2016, 2017 DappHub, LLC
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
/* pragma solidity ^0.4.13; */
/* import "erc20/erc20.sol"; */
/* import "ds-math/math.sol"; */
contract DSTokenBase is ERC20, DSMath {
uint256 _supply;
mapping (address => uint256) _balances;
mapping (address => mapping (address => uint256)) _approvals;
function DSTokenBase(uint supply) public {
_balances[msg.sender] = supply;
_supply = supply;
}
function totalSupply() public view returns (uint) {
return _supply;
}
function balanceOf(address src) public view returns (uint) {
return _balances[src];
}
function allowance(address src, address guy) public view returns (uint) {
return _approvals[src][guy];
}
function transfer(address dst, uint wad) public returns (bool) {
return transferFrom(msg.sender, dst, wad);
}
function transferFrom(address src, address dst, uint wad)
public
returns (bool)
{
if (src != msg.sender) {
_approvals[src][msg.sender] = sub(_approvals[src][msg.sender], wad);
}
_balances[src] = sub(_balances[src], wad);
_balances[dst] = add(_balances[dst], wad);
Transfer(src, dst, wad);
return true;
}
function approve(address guy, uint wad) public returns (bool) {
_approvals[msg.sender][guy] = wad;
Approval(msg.sender, guy, wad);
return true;
}
}
////// lib/ds-token/src/token.sol
/// token.sol -- ERC20 implementation with minting and burning
// Copyright (C) 2015, 2016, 2017 DappHub, LLC
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
/* pragma solidity ^0.4.13; */
/* import "ds-stop/stop.sol"; */
/* import "./base.sol"; */
contract DSToken is DSTokenBase(0), DSStop {
bytes32 public symbol;
uint256 public decimals = 18; // standard token precision. override to customize
function DSToken(bytes32 symbol_) public {
symbol = symbol_;
}
event Mint(address indexed guy, uint wad);
event Burn(address indexed guy, uint wad);
function approve(address guy) public stoppable returns (bool) {
return super.approve(guy, uint(-1));
}
function approve(address guy, uint wad) public stoppable returns (bool) {
return super.approve(guy, wad);
}
function transferFrom(address src, address dst, uint wad)
public
stoppable
returns (bool)
{
if (src != msg.sender && _approvals[src][msg.sender] != uint(-1)) {
_approvals[src][msg.sender] = sub(_approvals[src][msg.sender], wad);
}
_balances[src] = sub(_balances[src], wad);
_balances[dst] = add(_balances[dst], wad);
Transfer(src, dst, wad);
return true;
}
function push(address dst, uint wad) public {
transferFrom(msg.sender, dst, wad);
}
function pull(address src, uint wad) public {
transferFrom(src, msg.sender, wad);
}
function move(address src, address dst, uint wad) public {
transferFrom(src, dst, wad);
}
function mint(uint wad) public {
mint(msg.sender, wad);
}
function burn(uint wad) public {
burn(msg.sender, wad);
}
function mint(address guy, uint wad) public auth stoppable {
_balances[guy] = add(_balances[guy], wad);
_supply = add(_supply, wad);
Mint(guy, wad);
}
function burn(address guy, uint wad) public auth stoppable {
if (guy != msg.sender && _approvals[guy][msg.sender] != uint(-1)) {
_approvals[guy][msg.sender] = sub(_approvals[guy][msg.sender], wad);
}
_balances[guy] = sub(_balances[guy], wad);
_supply = sub(_supply, wad);
Burn(guy, wad);
}
// Optional token name
bytes32 public name = "";
function setName(bytes32 name_) public auth {
name = name_;
}
}File 7 of 30: SimpleToken
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
contract SimpleToken is ERC20 {
constructor(
string memory name,
string memory symbol,
uint256 totalSupply_
) ERC20(name, symbol) {
_mint(msg.sender, totalSupply_);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/ERC20.sol)
pragma solidity ^0.8.0;
import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20, IERC20Metadata {
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* The default value of {decimals} is 18. To select a different value for
* {decimals} you should overload it.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless this function is
* overridden;
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual override returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `recipient` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
_approve(_msgSender(), spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* Requirements:
*
* - `sender` and `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
* - the caller must have allowance for ``sender``'s tokens of at least
* `amount`.
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) public virtual override returns (bool) {
_transfer(sender, recipient, amount);
uint256 currentAllowance = _allowances[sender][_msgSender()];
require(currentAllowance >= amount, "ERC20: transfer amount exceeds allowance");
unchecked {
_approve(sender, _msgSender(), currentAllowance - amount);
}
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
uint256 currentAllowance = _allowances[_msgSender()][spender];
require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
unchecked {
_approve(_msgSender(), spender, currentAllowance - subtractedValue);
}
return true;
}
/**
* @dev Moves `amount` of tokens from `sender` to `recipient`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `sender` cannot be the zero address.
* - `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
*/
function _transfer(
address sender,
address recipient,
uint256 amount
) internal virtual {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(sender, recipient, amount);
uint256 senderBalance = _balances[sender];
require(senderBalance >= amount, "ERC20: transfer amount exceeds balance");
unchecked {
_balances[sender] = senderBalance - amount;
}
_balances[recipient] += amount;
emit Transfer(sender, recipient, amount);
_afterTokenTransfer(sender, recipient, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply += amount;
_balances[account] += amount;
emit Transfer(address(0), account, amount);
_afterTokenTransfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
unchecked {
_balances[account] = accountBalance - amount;
}
_totalSupply -= amount;
emit Transfer(account, address(0), amount);
_afterTokenTransfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(
address owner,
address spender,
uint256 amount
) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}
/**
* @dev Hook that is called after any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* has been transferred to `to`.
* - when `from` is zero, `amount` tokens have been minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens have been burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}
}
File 8 of 30: Gala
{"Address.sol":{"content":"// SPDX-License-Identifier: MIT\n\npragma solidity ^0.6.2;\n\n/**\n * @dev Collection of functions related to the address type\n */\nlibrary Address {\n /**\n * @dev Returns true if `account` is a contract.\n *\n * [IMPORTANT]\n * ====\n * It is unsafe to assume that an address for which this function returns\n * false is an externally-owned account (EOA) and not a contract.\n *\n * Among others, `isContract` will return false for the following\n * types of addresses:\n *\n * - an externally-owned account\n * - a contract in construction\n * - an address where a contract will be created\n * - an address where a contract lived, but was destroyed\n * ====\n */\n function isContract(address account) internal view returns (bool) {\n // According to EIP-1052, 0x0 is the value returned for not-yet created accounts\n // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned\n // for accounts without code, i.e. `keccak256(\u0027\u0027)`\n bytes32 codehash;\n\n bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;\n // solhint-disable-next-line no-inline-assembly\n assembly {\n codehash := extcodehash(account)\n }\n return (codehash != accountHash \u0026\u0026 codehash != 0x0);\n }\n\n /**\n * @dev Replacement for Solidity\u0027s `transfer`: sends `amount` wei to\n * `recipient`, forwarding all available gas and reverting on errors.\n *\n * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost\n * of certain opcodes, possibly making contracts go over the 2300 gas limit\n * imposed by `transfer`, making them unable to receive funds via\n * `transfer`. {sendValue} removes this limitation.\n *\n * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].\n *\n * IMPORTANT: because control is transferred to `recipient`, care must be\n * taken to not create reentrancy vulnerabilities. Consider using\n * {ReentrancyGuard} or the\n * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].\n */\n function sendValue(address payable recipient, uint256 amount) internal {\n require(address(this).balance \u003e= amount, \"Address: insufficient balance\");\n\n // solhint-disable-next-line avoid-low-level-calls, avoid-call-value\n (bool success, ) = recipient.call{ value: amount }(\"\");\n require(success, \"Address: unable to send value, recipient may have reverted\");\n }\n\n /**\n * @dev Performs a Solidity function call using a low level `call`. A\n * plain`call` is an unsafe replacement for a function call: use this\n * function instead.\n *\n * If `target` reverts with a revert reason, it is bubbled up by this\n * function (like regular Solidity function calls).\n *\n * Returns the raw returned data. To convert to the expected return value,\n * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].\n *\n * Requirements:\n *\n * - `target` must be a contract.\n * - calling `target` with `data` must not revert.\n *\n * _Available since v3.1._\n */\n function functionCall(address target, bytes memory data) internal returns (bytes memory) {\n return functionCall(target, data, \"Address: low-level call failed\");\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with\n * `errorMessage` as a fallback revert reason when `target` reverts.\n *\n * _Available since v3.1._\n */\n function functionCall(\n address target,\n bytes memory data,\n string memory errorMessage\n ) internal returns (bytes memory) {\n return _functionCallWithValue(target, data, 0, errorMessage);\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],\n * but also transferring `value` wei to `target`.\n *\n * Requirements:\n *\n * - the calling contract must have an ETH balance of at least `value`.\n * - the called Solidity function must be `payable`.\n *\n * _Available since v3.1._\n */\n function functionCallWithValue(\n address target,\n bytes memory data,\n uint256 value\n ) internal returns (bytes memory) {\n return\n functionCallWithValue(target, data, value, \"Address: low-level call with value failed\");\n }\n\n /**\n * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but\n * with `errorMessage` as a fallback revert reason when `target` reverts.\n *\n * _Available since v3.1._\n */\n function functionCallWithValue(\n address target,\n bytes memory data,\n uint256 value,\n string memory errorMessage\n ) internal returns (bytes memory) {\n require(address(this).balance \u003e= value, \"Address: insufficient balance for call\");\n return _functionCallWithValue(target, data, value, errorMessage);\n }\n\n function _functionCallWithValue(\n address target,\n bytes memory data,\n uint256 weiValue,\n string memory errorMessage\n ) private returns (bytes memory) {\n require(isContract(target), \"Address: call to non-contract\");\n\n // solhint-disable-next-line avoid-low-level-calls\n (bool success, bytes memory returndata) = target.call{ value: weiValue }(data);\n if (success) {\n return returndata;\n } else {\n // Look for revert reason and bubble it up if present\n if (returndata.length \u003e 0) {\n // The easiest way to bubble the revert reason is using memory via assembly\n\n // solhint-disable-next-line no-inline-assembly\n assembly {\n let returndata_size := mload(returndata)\n revert(add(32, returndata), returndata_size)\n }\n } else {\n revert(errorMessage);\n }\n }\n }\n}\n"},"Context.sol":{"content":"// SPDX-License-Identifier: MIT\n\npragma solidity ^0.6.0;\n\n/*\n * @dev Provides information about the current execution context, including the\n * sender of the transaction and its data. While these are generally available\n * via msg.sender and msg.data, they should not be accessed in such a direct\n * manner, since when dealing with GSN meta-transactions the account sending and\n * paying for execution may not be the actual sender (as far as an application\n * is concerned).\n *\n * This contract is only required for intermediate, library-like contracts.\n */\nabstract contract Context {\n function _msgSender() internal virtual view returns (address payable) {\n return msg.sender;\n }\n\n function _msgData() internal virtual view returns (bytes memory) {\n this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691\n return msg.data;\n }\n}\n"},"ERC20.sol":{"content":"// SPDX-License-Identifier: MIT\n\npragma solidity ^0.6.0;\n\nimport \"./Context.sol\";\nimport \"./IERC20.sol\";\nimport \"./SafeMath.sol\";\nimport \"./Address.sol\";\n\n/**\n * @dev Implementation of the {IERC20} interface.\n *\n * This implementation is agnostic to the way tokens are created. This means\n * that a supply mechanism has to be added in a derived contract using {_mint}.\n * For a generic mechanism see {ERC20PresetMinterPauser}.\n *\n * TIP: For a detailed writeup see our guide\n * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How\n * to implement supply mechanisms].\n *\n * We have followed general OpenZeppelin guidelines: functions revert instead\n * of returning `false` on failure. This behavior is nonetheless conventional\n * and does not conflict with the expectations of ERC20 applications.\n *\n * Additionally, an {Approval} event is emitted on calls to {transferFrom}.\n * This allows applications to reconstruct the allowance for all accounts just\n * by listening to said events. Other implementations of the EIP may not emit\n * these events, as it isn\u0027t required by the specification.\n *\n * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}\n * functions have been added to mitigate the well-known issues around setting\n * allowances. See {IERC20-approve}.\n */\ncontract ERC20 is Context, IERC20 {\n using SafeMath for uint256;\n using Address for address;\n\n mapping(address =\u003e uint256) private _balances;\n\n mapping(address =\u003e mapping(address =\u003e uint256)) private _allowances;\n\n uint256 private _totalSupply;\n\n string private _name;\n string private _symbol;\n uint8 private _decimals;\n\n /**\n * @dev Sets the values for {name} and {symbol}, initializes {decimals} with\n * a default value of 18.\n *\n * To select a different value for {decimals}, use {_setupDecimals}.\n *\n * All three of these values are immutable: they can only be set once during\n * construction.\n */\n constructor(string memory name, string memory symbol) public {\n _name = name;\n _symbol = symbol;\n _decimals = 18;\n }\n\n /**\n * @dev Returns the name of the token.\n */\n function name() public view returns (string memory) {\n return _name;\n }\n\n /**\n * @dev Returns the symbol of the token, usually a shorter version of the\n * name.\n */\n function symbol() public view returns (string memory) {\n return _symbol;\n }\n\n /**\n * @dev Returns the number of decimals used to get its user representation.\n * For example, if `decimals` equals `2`, a balance of `505` tokens should\n * be displayed to a user as `5,05` (`505 / 10 ** 2`).\n *\n * Tokens usually opt for a value of 18, imitating the relationship between\n * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is\n * called.\n *\n * NOTE: This information is only used for _display_ purposes: it in\n * no way affects any of the arithmetic of the contract, including\n * {IERC20-balanceOf} and {IERC20-transfer}.\n */\n function decimals() public view returns (uint8) {\n return _decimals;\n }\n\n /**\n * @dev See {IERC20-totalSupply}.\n */\n function totalSupply() public override view returns (uint256) {\n return _totalSupply;\n }\n\n /**\n * @dev See {IERC20-balanceOf}.\n */\n function balanceOf(address account) public override view returns (uint256) {\n return _balances[account];\n }\n\n /**\n * @dev See {IERC20-transfer}.\n *\n * Requirements:\n *\n * - `recipient` cannot be the zero address.\n * - the caller must have a balance of at least `amount`.\n */\n function transfer(address recipient, uint256 amount) public virtual override returns (bool) {\n _transfer(_msgSender(), recipient, amount);\n return true;\n }\n\n /**\n * @dev See {IERC20-allowance}.\n */\n function allowance(address owner, address spender)\n public\n virtual\n override\n view\n returns (uint256)\n {\n return _allowances[owner][spender];\n }\n\n /**\n * @dev See {IERC20-approve}.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.\n */\n function approve(address spender, uint256 amount) public virtual override returns (bool) {\n _approve(_msgSender(), spender, amount);\n return true;\n }\n\n /**\n * @dev See {IERC20-transferFrom}.\n *\n * Emits an {Approval} event indicating the updated allowance. This is not\n * required by the EIP. See the note at the beginning of {ERC20};\n *\n * Requirements:\n * - `sender` and `recipient` cannot be the zero address.\n * - `sender` must have a balance of at least `amount`.\n * - the caller must have allowance for ``sender``\u0027s tokens of at least\n * `amount`.\n */\n function transferFrom(\n address sender,\n address recipient,\n uint256 amount\n ) public virtual override returns (bool) {\n _transfer(sender, recipient, amount);\n _approve(\n sender,\n _msgSender(),\n _allowances[sender][_msgSender()].sub(\n amount,\n \"ERC20: transfer amount exceeds allowance\"\n )\n );\n return true;\n }\n\n /**\n * @dev Atomically increases the allowance granted to `spender` by the caller.\n *\n * This is an alternative to {approve} that can be used as a mitigation for\n * problems described in {IERC20-approve}.\n *\n * Emits an {Approval} event indicating the updated allowance.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.\n */\n function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {\n _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));\n return true;\n }\n\n /**\n * @dev Atomically decreases the allowance granted to `spender` by the caller.\n *\n * This is an alternative to {approve} that can be used as a mitigation for\n * problems described in {IERC20-approve}.\n *\n * Emits an {Approval} event indicating the updated allowance.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.\n * - `spender` must have allowance for the caller of at least\n * `subtractedValue`.\n */\n function decreaseAllowance(address spender, uint256 subtractedValue)\n public\n virtual\n returns (bool)\n {\n _approve(\n _msgSender(),\n spender,\n _allowances[_msgSender()][spender].sub(\n subtractedValue,\n \"ERC20: decreased allowance below zero\"\n )\n );\n return true;\n }\n\n /**\n * @dev Moves tokens `amount` from `sender` to `recipient`.\n *\n * This is internal function is equivalent to {transfer}, and can be used to\n * e.g. implement automatic token fees, slashing mechanisms, etc.\n *\n * Emits a {Transfer} event.\n *\n * Requirements:\n *\n * - `sender` cannot be the zero address.\n * - `recipient` cannot be the zero address.\n * - `sender` must have a balance of at least `amount`.\n */\n function _transfer(\n address sender,\n address recipient,\n uint256 amount\n ) internal virtual {\n require(sender != address(0), \"ERC20: transfer from the zero address\");\n require(recipient != address(0), \"ERC20: transfer to the zero address\");\n\n _beforeTokenTransfer(sender, recipient, amount);\n\n _balances[sender] = _balances[sender].sub(amount, \"ERC20: transfer amount exceeds balance\");\n _balances[recipient] = _balances[recipient].add(amount);\n emit Transfer(sender, recipient, amount);\n }\n\n /** @dev Creates `amount` tokens and assigns them to `account`, increasing\n * the total supply.\n *\n * Emits a {Transfer} event with `from` set to the zero address.\n *\n * Requirements\n *\n * - `to` cannot be the zero address.\n */\n function _mint(address account, uint256 amount) internal virtual {\n require(account != address(0), \"ERC20: mint to the zero address\");\n\n _beforeTokenTransfer(address(0), account, amount);\n\n _totalSupply = _totalSupply.add(amount);\n _balances[account] = _balances[account].add(amount);\n emit Transfer(address(0), account, amount);\n }\n\n /**\n * @dev Destroys `amount` tokens from `account`, reducing the\n * total supply.\n *\n * Emits a {Transfer} event with `to` set to the zero address.\n *\n * Requirements\n *\n * - `account` cannot be the zero address.\n * - `account` must have at least `amount` tokens.\n */\n function _burn(address account, uint256 amount) internal virtual {\n require(account != address(0), \"ERC20: burn from the zero address\");\n\n _beforeTokenTransfer(account, address(0), amount);\n\n _balances[account] = _balances[account].sub(amount, \"ERC20: burn amount exceeds balance\");\n _totalSupply = _totalSupply.sub(amount);\n emit Transfer(account, address(0), amount);\n }\n\n /**\n * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.\n *\n * This is internal function is equivalent to `approve`, and can be used to\n * e.g. set automatic allowances for certain subsystems, etc.\n *\n * Emits an {Approval} event.\n *\n * Requirements:\n *\n * - `owner` cannot be the zero address.\n * - `spender` cannot be the zero address.\n */\n function _approve(\n address owner,\n address spender,\n uint256 amount\n ) internal virtual {\n require(owner != address(0), \"ERC20: approve from the zero address\");\n require(spender != address(0), \"ERC20: approve to the zero address\");\n\n _allowances[owner][spender] = amount;\n emit Approval(owner, spender, amount);\n }\n\n /**\n * @dev Sets {decimals} to a value other than the default one of 18.\n *\n * WARNING: This function should only be called from the constructor. Most\n * applications that interact with token contracts will not expect\n * {decimals} to ever change, and may work incorrectly if it does.\n */\n function _setupDecimals(uint8 decimals_) internal {\n _decimals = decimals_;\n }\n\n /**\n * @dev Hook that is called before any transfer of tokens. This includes\n * minting and burning.\n *\n * Calling conditions:\n *\n * - when `from` and `to` are both non-zero, `amount` of ``from``\u0027s tokens\n * will be to transferred to `to`.\n * - when `from` is zero, `amount` tokens will be minted for `to`.\n * - when `to` is zero, `amount` of ``from``\u0027s tokens will be burned.\n * - `from` and `to` are never both zero.\n *\n * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].\n */\n function _beforeTokenTransfer(\n address from,\n address to,\n uint256 amount\n ) internal virtual {}\n}\n"},"ERC20Burnable.sol":{"content":"// SPDX-License-Identifier: MIT\n\npragma solidity ^0.6.0;\n\nimport \"./Context.sol\";\nimport \"./ERC20.sol\";\n\n/**\n * @dev Extension of {ERC20} that allows token holders to destroy both their own\n * tokens and those that they have an allowance for, in a way that can be\n * recognized off-chain (via event analysis).\n */\nabstract contract ERC20Burnable is Context, ERC20 {\n /**\n * @dev Destroys `amount` tokens from the caller.\n *\n * See {ERC20-_burn}.\n */\n function burn(uint256 amount) public virtual {\n _burn(_msgSender(), amount);\n }\n\n /**\n * @dev Destroys `amount` tokens from `account`, deducting from the caller\u0027s\n * allowance.\n *\n * See {ERC20-_burn} and {ERC20-allowance}.\n *\n * Requirements:\n *\n * - the caller must have allowance for ``accounts``\u0027s tokens of at least\n * `amount`.\n */\n function burnFrom(address account, uint256 amount) public virtual {\n uint256 decreasedAllowance = allowance(account, _msgSender()).sub(\n amount,\n \"ERC20: burn amount exceeds allowance\"\n );\n\n _approve(account, _msgSender(), decreasedAllowance);\n _burn(account, amount);\n }\n}\n"},"Gala.sol":{"content":"// SPDX-License-Identifier: UNLICENSED\npragma solidity ^0.6.2;\n\nimport \"./ERC20.sol\";\nimport \"./ERC20Burnable.sol\";\nimport \"./MinterRole.sol\";\n\ncontract Gala is ERC20(\"Gala\", \"GALA\"), ERC20Burnable, MinterRole {\n address public owner;\n uint256 private _totalMinted;\n uint256 private _cap;\n\n constructor() public {\n owner = msg.sender;\n _setupDecimals(8);\n _cap = 5000000000000000000;\n }\n\n modifier onlyOwner() {\n require(msg.sender == owner, \"caller not owner\");\n _;\n }\n\n function _mint(address account, uint256 amount) internal override {\n super._mint(account, amount);\n _totalMinted = _totalMinted.add(amount);\n }\n\n function cap() public view returns (uint256) {\n return _cap;\n }\n\n function totalMinted() public view returns (uint256) {\n return _totalMinted;\n }\n\n function mintBulk(address[] memory accounts, uint256[] memory amounts)\n public\n onlyMinter\n returns (bool)\n {\n require(accounts.length == amounts.length, \"arrays must have same length\");\n for (uint256 i = 0; i \u003c accounts.length; i++) {\n require(amounts[i] \u003e 0, \"amount must be greater than 0\");\n _mint(accounts[i], amounts[i]);\n }\n return true;\n }\n\n function _beforeTokenTransfer(\n address from,\n address to,\n uint256 amount\n ) internal override {\n super._beforeTokenTransfer(from, to, amount);\n\n if (from == address(0)) {\n // When minting tokens\n require(totalMinted().add(amount) \u003c= cap(), \"ERC20Capped: cap exceeded\");\n }\n }\n\n function addMinter(address account) public override onlyOwner {\n _addMinter(account);\n }\n\n function removeMinter(address account) public onlyOwner {\n _removeMinter(account);\n }\n}\n"},"IERC20.sol":{"content":"// SPDX-License-Identifier: MIT\n\npragma solidity ^0.6.0;\n\n/**\n * @dev Interface of the ERC20 standard as defined in the EIP.\n */\ninterface IERC20 {\n /**\n * @dev Returns the amount of tokens in existence.\n */\n function totalSupply() external view returns (uint256);\n\n /**\n * @dev Returns the amount of tokens owned by `account`.\n */\n function balanceOf(address account) external view returns (uint256);\n\n /**\n * @dev Moves `amount` tokens from the caller\u0027s account to `recipient`.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * Emits a {Transfer} event.\n */\n function transfer(address recipient, uint256 amount) external returns (bool);\n\n /**\n * @dev Returns the remaining number of tokens that `spender` will be\n * allowed to spend on behalf of `owner` through {transferFrom}. This is\n * zero by default.\n *\n * This value changes when {approve} or {transferFrom} are called.\n */\n function allowance(address owner, address spender) external view returns (uint256);\n\n /**\n * @dev Sets `amount` as the allowance of `spender` over the caller\u0027s tokens.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * IMPORTANT: Beware that changing an allowance with this method brings the risk\n * that someone may use both the old and the new allowance by unfortunate\n * transaction ordering. One possible solution to mitigate this race\n * condition is to first reduce the spender\u0027s allowance to 0 and set the\n * desired value afterwards:\n * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729\n *\n * Emits an {Approval} event.\n */\n function approve(address spender, uint256 amount) external returns (bool);\n\n /**\n * @dev Moves `amount` tokens from `sender` to `recipient` using the\n * allowance mechanism. `amount` is then deducted from the caller\u0027s\n * allowance.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * Emits a {Transfer} event.\n */\n function transferFrom(\n address sender,\n address recipient,\n uint256 amount\n ) external returns (bool);\n\n /**\n * @dev Emitted when `value` tokens are moved from one account (`from`) to\n * another (`to`).\n *\n * Note that `value` may be zero.\n */\n event Transfer(address indexed from, address indexed to, uint256 value);\n\n /**\n * @dev Emitted when the allowance of a `spender` for an `owner` is set by\n * a call to {approve}. `value` is the new allowance.\n */\n event Approval(address indexed owner, address indexed spender, uint256 value);\n}\n"},"MinterRole.sol":{"content":"// SPDX-License-Identifier: UNLICENSED\npragma solidity ^0.6.2;\n\nimport \"./Roles.sol\";\n\ncontract MinterRole {\n using Roles for Roles.Role;\n\n event MinterAdded(address indexed account);\n event MinterRemoved(address indexed account);\n\n Roles.Role private _minters;\n\n constructor() internal {\n _addMinter(msg.sender);\n }\n\n modifier onlyMinter() {\n require(isMinter(msg.sender), \"caller is not Minter\");\n _;\n }\n\n function isMinter(address account) public view returns (bool) {\n return _minters.has(account);\n }\n\n function addMinter(address account) public virtual onlyMinter {\n _addMinter(account);\n }\n\n function renounceMinter() public {\n _removeMinter(msg.sender);\n }\n\n function _addMinter(address account) internal {\n _minters.add(account);\n emit MinterAdded(account);\n }\n\n function _removeMinter(address account) internal {\n _minters.remove(account);\n emit MinterRemoved(account);\n }\n}\n"},"Roles.sol":{"content":"// SPDX-License-Identifier: UNLICENSED\npragma solidity ^0.6.2;\n\n/**\n * @title Roles\n * @dev Library for managing addresses assigned to a Role.\n */\nlibrary Roles {\n struct Role {\n mapping(address =\u003e bool) bearer;\n }\n\n /**\n * @dev Give an account access to this role.\n */\n function add(Role storage role, address account) internal {\n require(!has(role, account), \"Roles: account already has role\");\n role.bearer[account] = true;\n }\n\n /**\n * @dev Remove an account\u0027s access to this role.\n */\n function remove(Role storage role, address account) internal {\n require(has(role, account), \"Roles: account does not have role\");\n role.bearer[account] = false;\n }\n\n /**\n * @dev Check if an account has this role.\n * @return bool\n */\n function has(Role storage role, address account) internal view returns (bool) {\n require(account != address(0), \"Roles: account is the zero address\");\n return role.bearer[account];\n }\n}\n"},"SafeMath.sol":{"content":"// SPDX-License-Identifier: MIT\n\npragma solidity ^0.6.0;\n\n/**\n * @dev Wrappers over Solidity\u0027s arithmetic operations with added overflow\n * checks.\n *\n * Arithmetic operations in Solidity wrap on overflow. This can easily result\n * in bugs, because programmers usually assume that an overflow raises an\n * error, which is the standard behavior in high level programming languages.\n * `SafeMath` restores this intuition by reverting the transaction when an\n * operation overflows.\n *\n * Using this library instead of the unchecked operations eliminates an entire\n * class of bugs, so it\u0027s recommended to use it always.\n */\nlibrary SafeMath {\n /**\n * @dev Returns the addition of two unsigned integers, reverting on\n * overflow.\n *\n * Counterpart to Solidity\u0027s `+` operator.\n *\n * Requirements:\n *\n * - Addition cannot overflow.\n */\n function add(uint256 a, uint256 b) internal pure returns (uint256) {\n uint256 c = a + b;\n require(c \u003e= a, \"SafeMath: addition overflow\");\n\n return c;\n }\n\n /**\n * @dev Returns the subtraction of two unsigned integers, reverting on\n * overflow (when the result is negative).\n *\n * Counterpart to Solidity\u0027s `-` operator.\n *\n * Requirements:\n *\n * - Subtraction cannot overflow.\n */\n function sub(uint256 a, uint256 b) internal pure returns (uint256) {\n return sub(a, b, \"SafeMath: subtraction overflow\");\n }\n\n /**\n * @dev Returns the subtraction of two unsigned integers, reverting with custom message on\n * overflow (when the result is negative).\n *\n * Counterpart to Solidity\u0027s `-` operator.\n *\n * Requirements:\n *\n * - Subtraction cannot overflow.\n */\n function sub(\n uint256 a,\n uint256 b,\n string memory errorMessage\n ) internal pure returns (uint256) {\n require(b \u003c= a, errorMessage);\n uint256 c = a - b;\n\n return c;\n }\n\n /**\n * @dev Returns the multiplication of two unsigned integers, reverting on\n * overflow.\n *\n * Counterpart to Solidity\u0027s `*` operator.\n *\n * Requirements:\n *\n * - Multiplication cannot overflow.\n */\n function mul(uint256 a, uint256 b) internal pure returns (uint256) {\n // Gas optimization: this is cheaper than requiring \u0027a\u0027 not being zero, but the\n // benefit is lost if \u0027b\u0027 is also tested.\n // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522\n if (a == 0) {\n return 0;\n }\n\n uint256 c = a * b;\n require(c / a == b, \"SafeMath: multiplication overflow\");\n\n return c;\n }\n\n /**\n * @dev Returns the integer division of two unsigned integers. Reverts on\n * division by zero. The result is rounded towards zero.\n *\n * Counterpart to Solidity\u0027s `/` operator. Note: this function uses a\n * `revert` opcode (which leaves remaining gas untouched) while Solidity\n * uses an invalid opcode to revert (consuming all remaining gas).\n *\n * Requirements:\n *\n * - The divisor cannot be zero.\n */\n function div(uint256 a, uint256 b) internal pure returns (uint256) {\n return div(a, b, \"SafeMath: division by zero\");\n }\n\n /**\n * @dev Returns the integer division of two unsigned integers. Reverts with custom message on\n * division by zero. The result is rounded towards zero.\n *\n * Counterpart to Solidity\u0027s `/` operator. Note: this function uses a\n * `revert` opcode (which leaves remaining gas untouched) while Solidity\n * uses an invalid opcode to revert (consuming all remaining gas).\n *\n * Requirements:\n *\n * - The divisor cannot be zero.\n */\n function div(\n uint256 a,\n uint256 b,\n string memory errorMessage\n ) internal pure returns (uint256) {\n require(b \u003e 0, errorMessage);\n uint256 c = a / b;\n // assert(a == b * c + a % b); // There is no case in which this doesn\u0027t hold\n\n return c;\n }\n\n /**\n * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),\n * Reverts when dividing by zero.\n *\n * Counterpart to Solidity\u0027s `%` operator. This function uses a `revert`\n * opcode (which leaves remaining gas untouched) while Solidity uses an\n * invalid opcode to revert (consuming all remaining gas).\n *\n * Requirements:\n *\n * - The divisor cannot be zero.\n */\n function mod(uint256 a, uint256 b) internal pure returns (uint256) {\n return mod(a, b, \"SafeMath: modulo by zero\");\n }\n\n /**\n * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),\n * Reverts with custom message when dividing by zero.\n *\n * Counterpart to Solidity\u0027s `%` operator. This function uses a `revert`\n * opcode (which leaves remaining gas untouched) while Solidity uses an\n * invalid opcode to revert (consuming all remaining gas).\n *\n * Requirements:\n *\n * - The divisor cannot be zero.\n */\n function mod(\n uint256 a,\n uint256 b,\n string memory errorMessage\n ) internal pure returns (uint256) {\n require(b != 0, errorMessage);\n return a % b;\n }\n}\n"}}File 9 of 30: UniswapV2Pair
// File: contracts/interfaces/IUniswapV2Pair.sol
pragma solidity >=0.5.0;
interface IUniswapV2Pair {
event Approval(address indexed owner, address indexed spender, uint value);
event Transfer(address indexed from, address indexed to, uint value);
function name() external pure returns (string memory);
function symbol() external pure returns (string memory);
function decimals() external pure returns (uint8);
function totalSupply() external view returns (uint);
function balanceOf(address owner) external view returns (uint);
function allowance(address owner, address spender) external view returns (uint);
function approve(address spender, uint value) external returns (bool);
function transfer(address to, uint value) external returns (bool);
function transferFrom(address from, address to, uint value) external returns (bool);
function DOMAIN_SEPARATOR() external view returns (bytes32);
function PERMIT_TYPEHASH() external pure returns (bytes32);
function nonces(address owner) external view returns (uint);
function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
event Mint(address indexed sender, uint amount0, uint amount1);
event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
event Swap(
address indexed sender,
uint amount0In,
uint amount1In,
uint amount0Out,
uint amount1Out,
address indexed to
);
event Sync(uint112 reserve0, uint112 reserve1);
function MINIMUM_LIQUIDITY() external pure returns (uint);
function factory() external view returns (address);
function token0() external view returns (address);
function token1() external view returns (address);
function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
function price0CumulativeLast() external view returns (uint);
function price1CumulativeLast() external view returns (uint);
function kLast() external view returns (uint);
function mint(address to) external returns (uint liquidity);
function burn(address to) external returns (uint amount0, uint amount1);
function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
function skim(address to) external;
function sync() external;
function initialize(address, address) external;
}
// File: contracts/interfaces/IUniswapV2ERC20.sol
pragma solidity >=0.5.0;
interface IUniswapV2ERC20 {
event Approval(address indexed owner, address indexed spender, uint value);
event Transfer(address indexed from, address indexed to, uint value);
function name() external pure returns (string memory);
function symbol() external pure returns (string memory);
function decimals() external pure returns (uint8);
function totalSupply() external view returns (uint);
function balanceOf(address owner) external view returns (uint);
function allowance(address owner, address spender) external view returns (uint);
function approve(address spender, uint value) external returns (bool);
function transfer(address to, uint value) external returns (bool);
function transferFrom(address from, address to, uint value) external returns (bool);
function DOMAIN_SEPARATOR() external view returns (bytes32);
function PERMIT_TYPEHASH() external pure returns (bytes32);
function nonces(address owner) external view returns (uint);
function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
}
// File: contracts/libraries/SafeMath.sol
pragma solidity =0.5.16;
// a library for performing overflow-safe math, courtesy of DappHub (https://github.com/dapphub/ds-math)
library SafeMath {
function add(uint x, uint y) internal pure returns (uint z) {
require((z = x + y) >= x, 'ds-math-add-overflow');
}
function sub(uint x, uint y) internal pure returns (uint z) {
require((z = x - y) <= x, 'ds-math-sub-underflow');
}
function mul(uint x, uint y) internal pure returns (uint z) {
require(y == 0 || (z = x * y) / y == x, 'ds-math-mul-overflow');
}
}
// File: contracts/UniswapV2ERC20.sol
pragma solidity =0.5.16;
contract UniswapV2ERC20 is IUniswapV2ERC20 {
using SafeMath for uint;
string public constant name = 'Uniswap V2';
string public constant symbol = 'UNI-V2';
uint8 public constant decimals = 18;
uint public totalSupply;
mapping(address => uint) public balanceOf;
mapping(address => mapping(address => uint)) public allowance;
bytes32 public DOMAIN_SEPARATOR;
// keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
bytes32 public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;
mapping(address => uint) public nonces;
event Approval(address indexed owner, address indexed spender, uint value);
event Transfer(address indexed from, address indexed to, uint value);
constructor() public {
uint chainId;
assembly {
chainId := chainid
}
DOMAIN_SEPARATOR = keccak256(
abi.encode(
keccak256('EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)'),
keccak256(bytes(name)),
keccak256(bytes('1')),
chainId,
address(this)
)
);
}
function _mint(address to, uint value) internal {
totalSupply = totalSupply.add(value);
balanceOf[to] = balanceOf[to].add(value);
emit Transfer(address(0), to, value);
}
function _burn(address from, uint value) internal {
balanceOf[from] = balanceOf[from].sub(value);
totalSupply = totalSupply.sub(value);
emit Transfer(from, address(0), value);
}
function _approve(address owner, address spender, uint value) private {
allowance[owner][spender] = value;
emit Approval(owner, spender, value);
}
function _transfer(address from, address to, uint value) private {
balanceOf[from] = balanceOf[from].sub(value);
balanceOf[to] = balanceOf[to].add(value);
emit Transfer(from, to, value);
}
function approve(address spender, uint value) external returns (bool) {
_approve(msg.sender, spender, value);
return true;
}
function transfer(address to, uint value) external returns (bool) {
_transfer(msg.sender, to, value);
return true;
}
function transferFrom(address from, address to, uint value) external returns (bool) {
if (allowance[from][msg.sender] != uint(-1)) {
allowance[from][msg.sender] = allowance[from][msg.sender].sub(value);
}
_transfer(from, to, value);
return true;
}
function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external {
require(deadline >= block.timestamp, 'UniswapV2: EXPIRED');
bytes32 digest = keccak256(
abi.encodePacked(
'\x19\x01',
DOMAIN_SEPARATOR,
keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[owner]++, deadline))
)
);
address recoveredAddress = ecrecover(digest, v, r, s);
require(recoveredAddress != address(0) && recoveredAddress == owner, 'UniswapV2: INVALID_SIGNATURE');
_approve(owner, spender, value);
}
}
// File: contracts/libraries/Math.sol
pragma solidity =0.5.16;
// a library for performing various math operations
library Math {
function min(uint x, uint y) internal pure returns (uint z) {
z = x < y ? x : y;
}
// babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method)
function sqrt(uint y) internal pure returns (uint z) {
if (y > 3) {
z = y;
uint x = y / 2 + 1;
while (x < z) {
z = x;
x = (y / x + x) / 2;
}
} else if (y != 0) {
z = 1;
}
}
}
// File: contracts/libraries/UQ112x112.sol
pragma solidity =0.5.16;
// a library for handling binary fixed point numbers (https://en.wikipedia.org/wiki/Q_(number_format))
// range: [0, 2**112 - 1]
// resolution: 1 / 2**112
library UQ112x112 {
uint224 constant Q112 = 2**112;
// encode a uint112 as a UQ112x112
function encode(uint112 y) internal pure returns (uint224 z) {
z = uint224(y) * Q112; // never overflows
}
// divide a UQ112x112 by a uint112, returning a UQ112x112
function uqdiv(uint224 x, uint112 y) internal pure returns (uint224 z) {
z = x / uint224(y);
}
}
// File: contracts/interfaces/IERC20.sol
pragma solidity >=0.5.0;
interface IERC20 {
event Approval(address indexed owner, address indexed spender, uint value);
event Transfer(address indexed from, address indexed to, uint value);
function name() external view returns (string memory);
function symbol() external view returns (string memory);
function decimals() external view returns (uint8);
function totalSupply() external view returns (uint);
function balanceOf(address owner) external view returns (uint);
function allowance(address owner, address spender) external view returns (uint);
function approve(address spender, uint value) external returns (bool);
function transfer(address to, uint value) external returns (bool);
function transferFrom(address from, address to, uint value) external returns (bool);
}
// File: contracts/interfaces/IUniswapV2Factory.sol
pragma solidity >=0.5.0;
interface IUniswapV2Factory {
event PairCreated(address indexed token0, address indexed token1, address pair, uint);
function feeTo() external view returns (address);
function feeToSetter() external view returns (address);
function getPair(address tokenA, address tokenB) external view returns (address pair);
function allPairs(uint) external view returns (address pair);
function allPairsLength() external view returns (uint);
function createPair(address tokenA, address tokenB) external returns (address pair);
function setFeeTo(address) external;
function setFeeToSetter(address) external;
}
// File: contracts/interfaces/IUniswapV2Callee.sol
pragma solidity >=0.5.0;
interface IUniswapV2Callee {
function uniswapV2Call(address sender, uint amount0, uint amount1, bytes calldata data) external;
}
// File: contracts/UniswapV2Pair.sol
pragma solidity =0.5.16;
contract UniswapV2Pair is IUniswapV2Pair, UniswapV2ERC20 {
using SafeMath for uint;
using UQ112x112 for uint224;
uint public constant MINIMUM_LIQUIDITY = 10**3;
bytes4 private constant SELECTOR = bytes4(keccak256(bytes('transfer(address,uint256)')));
address public factory;
address public token0;
address public token1;
uint112 private reserve0; // uses single storage slot, accessible via getReserves
uint112 private reserve1; // uses single storage slot, accessible via getReserves
uint32 private blockTimestampLast; // uses single storage slot, accessible via getReserves
uint public price0CumulativeLast;
uint public price1CumulativeLast;
uint public kLast; // reserve0 * reserve1, as of immediately after the most recent liquidity event
uint private unlocked = 1;
modifier lock() {
require(unlocked == 1, 'UniswapV2: LOCKED');
unlocked = 0;
_;
unlocked = 1;
}
function getReserves() public view returns (uint112 _reserve0, uint112 _reserve1, uint32 _blockTimestampLast) {
_reserve0 = reserve0;
_reserve1 = reserve1;
_blockTimestampLast = blockTimestampLast;
}
function _safeTransfer(address token, address to, uint value) private {
(bool success, bytes memory data) = token.call(abi.encodeWithSelector(SELECTOR, to, value));
require(success && (data.length == 0 || abi.decode(data, (bool))), 'UniswapV2: TRANSFER_FAILED');
}
event Mint(address indexed sender, uint amount0, uint amount1);
event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
event Swap(
address indexed sender,
uint amount0In,
uint amount1In,
uint amount0Out,
uint amount1Out,
address indexed to
);
event Sync(uint112 reserve0, uint112 reserve1);
constructor() public {
factory = msg.sender;
}
// called once by the factory at time of deployment
function initialize(address _token0, address _token1) external {
require(msg.sender == factory, 'UniswapV2: FORBIDDEN'); // sufficient check
token0 = _token0;
token1 = _token1;
}
// update reserves and, on the first call per block, price accumulators
function _update(uint balance0, uint balance1, uint112 _reserve0, uint112 _reserve1) private {
require(balance0 <= uint112(-1) && balance1 <= uint112(-1), 'UniswapV2: OVERFLOW');
uint32 blockTimestamp = uint32(block.timestamp % 2**32);
uint32 timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired
if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) {
// * never overflows, and + overflow is desired
price0CumulativeLast += uint(UQ112x112.encode(_reserve1).uqdiv(_reserve0)) * timeElapsed;
price1CumulativeLast += uint(UQ112x112.encode(_reserve0).uqdiv(_reserve1)) * timeElapsed;
}
reserve0 = uint112(balance0);
reserve1 = uint112(balance1);
blockTimestampLast = blockTimestamp;
emit Sync(reserve0, reserve1);
}
// if fee is on, mint liquidity equivalent to 1/6th of the growth in sqrt(k)
function _mintFee(uint112 _reserve0, uint112 _reserve1) private returns (bool feeOn) {
address feeTo = IUniswapV2Factory(factory).feeTo();
feeOn = feeTo != address(0);
uint _kLast = kLast; // gas savings
if (feeOn) {
if (_kLast != 0) {
uint rootK = Math.sqrt(uint(_reserve0).mul(_reserve1));
uint rootKLast = Math.sqrt(_kLast);
if (rootK > rootKLast) {
uint numerator = totalSupply.mul(rootK.sub(rootKLast));
uint denominator = rootK.mul(5).add(rootKLast);
uint liquidity = numerator / denominator;
if (liquidity > 0) _mint(feeTo, liquidity);
}
}
} else if (_kLast != 0) {
kLast = 0;
}
}
// this low-level function should be called from a contract which performs important safety checks
function mint(address to) external lock returns (uint liquidity) {
(uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
uint balance0 = IERC20(token0).balanceOf(address(this));
uint balance1 = IERC20(token1).balanceOf(address(this));
uint amount0 = balance0.sub(_reserve0);
uint amount1 = balance1.sub(_reserve1);
bool feeOn = _mintFee(_reserve0, _reserve1);
uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
if (_totalSupply == 0) {
liquidity = Math.sqrt(amount0.mul(amount1)).sub(MINIMUM_LIQUIDITY);
_mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY tokens
} else {
liquidity = Math.min(amount0.mul(_totalSupply) / _reserve0, amount1.mul(_totalSupply) / _reserve1);
}
require(liquidity > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_MINTED');
_mint(to, liquidity);
_update(balance0, balance1, _reserve0, _reserve1);
if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
emit Mint(msg.sender, amount0, amount1);
}
// this low-level function should be called from a contract which performs important safety checks
function burn(address to) external lock returns (uint amount0, uint amount1) {
(uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
address _token0 = token0; // gas savings
address _token1 = token1; // gas savings
uint balance0 = IERC20(_token0).balanceOf(address(this));
uint balance1 = IERC20(_token1).balanceOf(address(this));
uint liquidity = balanceOf[address(this)];
bool feeOn = _mintFee(_reserve0, _reserve1);
uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata distribution
amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata distribution
require(amount0 > 0 && amount1 > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_BURNED');
_burn(address(this), liquidity);
_safeTransfer(_token0, to, amount0);
_safeTransfer(_token1, to, amount1);
balance0 = IERC20(_token0).balanceOf(address(this));
balance1 = IERC20(_token1).balanceOf(address(this));
_update(balance0, balance1, _reserve0, _reserve1);
if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
emit Burn(msg.sender, amount0, amount1, to);
}
// this low-level function should be called from a contract which performs important safety checks
function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external lock {
require(amount0Out > 0 || amount1Out > 0, 'UniswapV2: INSUFFICIENT_OUTPUT_AMOUNT');
(uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
require(amount0Out < _reserve0 && amount1Out < _reserve1, 'UniswapV2: INSUFFICIENT_LIQUIDITY');
uint balance0;
uint balance1;
{ // scope for _token{0,1}, avoids stack too deep errors
address _token0 = token0;
address _token1 = token1;
require(to != _token0 && to != _token1, 'UniswapV2: INVALID_TO');
if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens
if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens
if (data.length > 0) IUniswapV2Callee(to).uniswapV2Call(msg.sender, amount0Out, amount1Out, data);
balance0 = IERC20(_token0).balanceOf(address(this));
balance1 = IERC20(_token1).balanceOf(address(this));
}
uint amount0In = balance0 > _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0;
uint amount1In = balance1 > _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0;
require(amount0In > 0 || amount1In > 0, 'UniswapV2: INSUFFICIENT_INPUT_AMOUNT');
{ // scope for reserve{0,1}Adjusted, avoids stack too deep errors
uint balance0Adjusted = balance0.mul(1000).sub(amount0In.mul(3));
uint balance1Adjusted = balance1.mul(1000).sub(amount1In.mul(3));
require(balance0Adjusted.mul(balance1Adjusted) >= uint(_reserve0).mul(_reserve1).mul(1000**2), 'UniswapV2: K');
}
_update(balance0, balance1, _reserve0, _reserve1);
emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to);
}
// force balances to match reserves
function skim(address to) external lock {
address _token0 = token0; // gas savings
address _token1 = token1; // gas savings
_safeTransfer(_token0, to, IERC20(_token0).balanceOf(address(this)).sub(reserve0));
_safeTransfer(_token1, to, IERC20(_token1).balanceOf(address(this)).sub(reserve1));
}
// force reserves to match balances
function sync() external lock {
_update(IERC20(token0).balanceOf(address(this)), IERC20(token1).balanceOf(address(this)), reserve0, reserve1);
}
}File 10 of 30: Vyper_contract
# @version 0.2.4
"""
@title Curve DAO Token
@author Curve Finance
@license MIT
@notice ERC20 with piecewise-linear mining supply.
@dev Based on the ERC-20 token standard as defined at
https://eips.ethereum.org/EIPS/eip-20
"""
from vyper.interfaces import ERC20
implements: ERC20
event Transfer:
_from: indexed(address)
_to: indexed(address)
_value: uint256
event Approval:
_owner: indexed(address)
_spender: indexed(address)
_value: uint256
event UpdateMiningParameters:
time: uint256
rate: uint256
supply: uint256
event SetMinter:
minter: address
event SetAdmin:
admin: address
name: public(String[64])
symbol: public(String[32])
decimals: public(uint256)
balanceOf: public(HashMap[address, uint256])
allowances: HashMap[address, HashMap[address, uint256]]
total_supply: uint256
minter: public(address)
admin: public(address)
# General constants
YEAR: constant(uint256) = 86400 * 365
# Allocation:
# =========
# * shareholders - 30%
# * emplyees - 3%
# * DAO-controlled reserve - 5%
# * Early users - 5%
# == 43% ==
# left for inflation: 57%
# Supply parameters
INITIAL_SUPPLY: constant(uint256) = 1_303_030_303
INITIAL_RATE: constant(uint256) = 274_815_283 * 10 ** 18 / YEAR # leading to 43% premine
RATE_REDUCTION_TIME: constant(uint256) = YEAR
RATE_REDUCTION_COEFFICIENT: constant(uint256) = 1189207115002721024 # 2 ** (1/4) * 1e18
RATE_DENOMINATOR: constant(uint256) = 10 ** 18
INFLATION_DELAY: constant(uint256) = 86400
# Supply variables
mining_epoch: public(int128)
start_epoch_time: public(uint256)
rate: public(uint256)
start_epoch_supply: uint256
@external
def __init__(_name: String[64], _symbol: String[32], _decimals: uint256):
"""
@notice Contract constructor
@param _name Token full name
@param _symbol Token symbol
@param _decimals Number of decimals for token
"""
init_supply: uint256 = INITIAL_SUPPLY * 10 ** _decimals
self.name = _name
self.symbol = _symbol
self.decimals = _decimals
self.balanceOf[msg.sender] = init_supply
self.total_supply = init_supply
self.admin = msg.sender
log Transfer(ZERO_ADDRESS, msg.sender, init_supply)
self.start_epoch_time = block.timestamp + INFLATION_DELAY - RATE_REDUCTION_TIME
self.mining_epoch = -1
self.rate = 0
self.start_epoch_supply = init_supply
@internal
def _update_mining_parameters():
"""
@dev Update mining rate and supply at the start of the epoch
Any modifying mining call must also call this
"""
_rate: uint256 = self.rate
_start_epoch_supply: uint256 = self.start_epoch_supply
self.start_epoch_time += RATE_REDUCTION_TIME
self.mining_epoch += 1
if _rate == 0:
_rate = INITIAL_RATE
else:
_start_epoch_supply += _rate * RATE_REDUCTION_TIME
self.start_epoch_supply = _start_epoch_supply
_rate = _rate * RATE_DENOMINATOR / RATE_REDUCTION_COEFFICIENT
self.rate = _rate
log UpdateMiningParameters(block.timestamp, _rate, _start_epoch_supply)
@external
def update_mining_parameters():
"""
@notice Update mining rate and supply at the start of the epoch
@dev Callable by any address, but only once per epoch
Total supply becomes slightly larger if this function is called late
"""
assert block.timestamp >= self.start_epoch_time + RATE_REDUCTION_TIME # dev: too soon!
self._update_mining_parameters()
@external
def start_epoch_time_write() -> uint256:
"""
@notice Get timestamp of the current mining epoch start
while simultaneously updating mining parameters
@return Timestamp of the epoch
"""
_start_epoch_time: uint256 = self.start_epoch_time
if block.timestamp >= _start_epoch_time + RATE_REDUCTION_TIME:
self._update_mining_parameters()
return self.start_epoch_time
else:
return _start_epoch_time
@external
def future_epoch_time_write() -> uint256:
"""
@notice Get timestamp of the next mining epoch start
while simultaneously updating mining parameters
@return Timestamp of the next epoch
"""
_start_epoch_time: uint256 = self.start_epoch_time
if block.timestamp >= _start_epoch_time + RATE_REDUCTION_TIME:
self._update_mining_parameters()
return self.start_epoch_time + RATE_REDUCTION_TIME
else:
return _start_epoch_time + RATE_REDUCTION_TIME
@internal
@view
def _available_supply() -> uint256:
return self.start_epoch_supply + (block.timestamp - self.start_epoch_time) * self.rate
@external
@view
def available_supply() -> uint256:
"""
@notice Current number of tokens in existence (claimed or unclaimed)
"""
return self._available_supply()
@external
@view
def mintable_in_timeframe(start: uint256, end: uint256) -> uint256:
"""
@notice How much supply is mintable from start timestamp till end timestamp
@param start Start of the time interval (timestamp)
@param end End of the time interval (timestamp)
@return Tokens mintable from `start` till `end`
"""
assert start <= end # dev: start > end
to_mint: uint256 = 0
current_epoch_time: uint256 = self.start_epoch_time
current_rate: uint256 = self.rate
# Special case if end is in future (not yet minted) epoch
if end > current_epoch_time + RATE_REDUCTION_TIME:
current_epoch_time += RATE_REDUCTION_TIME
current_rate = current_rate * RATE_DENOMINATOR / RATE_REDUCTION_COEFFICIENT
assert end <= current_epoch_time + RATE_REDUCTION_TIME # dev: too far in future
for i in range(999): # Curve will not work in 1000 years. Darn!
if end >= current_epoch_time:
current_end: uint256 = end
if current_end > current_epoch_time + RATE_REDUCTION_TIME:
current_end = current_epoch_time + RATE_REDUCTION_TIME
current_start: uint256 = start
if current_start >= current_epoch_time + RATE_REDUCTION_TIME:
break # We should never get here but what if...
elif current_start < current_epoch_time:
current_start = current_epoch_time
to_mint += current_rate * (current_end - current_start)
if start >= current_epoch_time:
break
current_epoch_time -= RATE_REDUCTION_TIME
current_rate = current_rate * RATE_REDUCTION_COEFFICIENT / RATE_DENOMINATOR # double-division with rounding made rate a bit less => good
assert current_rate <= INITIAL_RATE # This should never happen
return to_mint
@external
def set_minter(_minter: address):
"""
@notice Set the minter address
@dev Only callable once, when minter has not yet been set
@param _minter Address of the minter
"""
assert msg.sender == self.admin # dev: admin only
assert self.minter == ZERO_ADDRESS # dev: can set the minter only once, at creation
self.minter = _minter
log SetMinter(_minter)
@external
def set_admin(_admin: address):
"""
@notice Set the new admin.
@dev After all is set up, admin only can change the token name
@param _admin New admin address
"""
assert msg.sender == self.admin # dev: admin only
self.admin = _admin
log SetAdmin(_admin)
@external
@view
def totalSupply() -> uint256:
"""
@notice Total number of tokens in existence.
"""
return self.total_supply
@external
@view
def allowance(_owner : address, _spender : address) -> uint256:
"""
@notice Check the amount of tokens that an owner allowed to a spender
@param _owner The address which owns the funds
@param _spender The address which will spend the funds
@return uint256 specifying the amount of tokens still available for the spender
"""
return self.allowances[_owner][_spender]
@external
def transfer(_to : address, _value : uint256) -> bool:
"""
@notice Transfer `_value` tokens from `msg.sender` to `_to`
@dev Vyper does not allow underflows, so the subtraction in
this function will revert on an insufficient balance
@param _to The address to transfer to
@param _value The amount to be transferred
@return bool success
"""
assert _to != ZERO_ADDRESS # dev: transfers to 0x0 are not allowed
self.balanceOf[msg.sender] -= _value
self.balanceOf[_to] += _value
log Transfer(msg.sender, _to, _value)
return True
@external
def transferFrom(_from : address, _to : address, _value : uint256) -> bool:
"""
@notice Transfer `_value` tokens from `_from` to `_to`
@param _from address The address which you want to send tokens from
@param _to address The address which you want to transfer to
@param _value uint256 the amount of tokens to be transferred
@return bool success
"""
assert _to != ZERO_ADDRESS # dev: transfers to 0x0 are not allowed
# NOTE: vyper does not allow underflows
# so the following subtraction would revert on insufficient balance
self.balanceOf[_from] -= _value
self.balanceOf[_to] += _value
self.allowances[_from][msg.sender] -= _value
log Transfer(_from, _to, _value)
return True
@external
def approve(_spender : address, _value : uint256) -> bool:
"""
@notice Approve `_spender` to transfer `_value` tokens on behalf of `msg.sender`
@dev Approval may only be from zero -> nonzero or from nonzero -> zero in order
to mitigate the potential race condition described here:
https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
@param _spender The address which will spend the funds
@param _value The amount of tokens to be spent
@return bool success
"""
assert _value == 0 or self.allowances[msg.sender][_spender] == 0
self.allowances[msg.sender][_spender] = _value
log Approval(msg.sender, _spender, _value)
return True
@external
def mint(_to: address, _value: uint256) -> bool:
"""
@notice Mint `_value` tokens and assign them to `_to`
@dev Emits a Transfer event originating from 0x00
@param _to The account that will receive the created tokens
@param _value The amount that will be created
@return bool success
"""
assert msg.sender == self.minter # dev: minter only
assert _to != ZERO_ADDRESS # dev: zero address
if block.timestamp >= self.start_epoch_time + RATE_REDUCTION_TIME:
self._update_mining_parameters()
_total_supply: uint256 = self.total_supply + _value
assert _total_supply <= self._available_supply() # dev: exceeds allowable mint amount
self.total_supply = _total_supply
self.balanceOf[_to] += _value
log Transfer(ZERO_ADDRESS, _to, _value)
return True
@external
def burn(_value: uint256) -> bool:
"""
@notice Burn `_value` tokens belonging to `msg.sender`
@dev Emits a Transfer event with a destination of 0x00
@param _value The amount that will be burned
@return bool success
"""
self.balanceOf[msg.sender] -= _value
self.total_supply -= _value
log Transfer(msg.sender, ZERO_ADDRESS, _value)
return True
@external
def set_name(_name: String[64], _symbol: String[32]):
"""
@notice Change the token name and symbol to `_name` and `_symbol`
@dev Only callable by the admin account
@param _name New token name
@param _symbol New token symbol
"""
assert msg.sender == self.admin, "Only admin is allowed to change name"
self.name = _name
self.symbol = _symbolFile 11 of 30: ProxyERC20
/* ===============================================
* Flattened with Solidifier by Coinage
*
* https://solidifier.coina.ge
* ===============================================
*/
/*
-----------------------------------------------------------------
FILE INFORMATION
-----------------------------------------------------------------
file: Owned.sol
version: 1.1
author: Anton Jurisevic
Dominic Romanowski
date: 2018-2-26
-----------------------------------------------------------------
MODULE DESCRIPTION
-----------------------------------------------------------------
An Owned contract, to be inherited by other contracts.
Requires its owner to be explicitly set in the constructor.
Provides an onlyOwner access modifier.
To change owner, the current owner must nominate the next owner,
who then has to accept the nomination. The nomination can be
cancelled before it is accepted by the new owner by having the
previous owner change the nomination (setting it to 0).
-----------------------------------------------------------------
*/
pragma solidity 0.4.25;
/**
* @title A contract with an owner.
* @notice Contract ownership can be transferred by first nominating the new owner,
* who must then accept the ownership, which prevents accidental incorrect ownership transfers.
*/
contract Owned {
address public owner;
address public nominatedOwner;
/**
* @dev Owned Constructor
*/
constructor(address _owner)
public
{
require(_owner != address(0), "Owner address cannot be 0");
owner = _owner;
emit OwnerChanged(address(0), _owner);
}
/**
* @notice Nominate a new owner of this contract.
* @dev Only the current owner may nominate a new owner.
*/
function nominateNewOwner(address _owner)
external
onlyOwner
{
nominatedOwner = _owner;
emit OwnerNominated(_owner);
}
/**
* @notice Accept the nomination to be owner.
*/
function acceptOwnership()
external
{
require(msg.sender == nominatedOwner, "You must be nominated before you can accept ownership");
emit OwnerChanged(owner, nominatedOwner);
owner = nominatedOwner;
nominatedOwner = address(0);
}
modifier onlyOwner
{
require(msg.sender == owner, "Only the contract owner may perform this action");
_;
}
event OwnerNominated(address newOwner);
event OwnerChanged(address oldOwner, address newOwner);
}
/*
-----------------------------------------------------------------
FILE INFORMATION
-----------------------------------------------------------------
file: Proxy.sol
version: 1.3
author: Anton Jurisevic
date: 2018-05-29
-----------------------------------------------------------------
MODULE DESCRIPTION
-----------------------------------------------------------------
A proxy contract that, if it does not recognise the function
being called on it, passes all value and call data to an
underlying target contract.
This proxy has the capacity to toggle between DELEGATECALL
and CALL style proxy functionality.
The former executes in the proxy's context, and so will preserve
msg.sender and store data at the proxy address. The latter will not.
Therefore, any contract the proxy wraps in the CALL style must
implement the Proxyable interface, in order that it can pass msg.sender
into the underlying contract as the state parameter, messageSender.
-----------------------------------------------------------------
*/
contract Proxy is Owned {
Proxyable public target;
bool public useDELEGATECALL;
constructor(address _owner)
Owned(_owner)
public
{}
function setTarget(Proxyable _target)
external
onlyOwner
{
target = _target;
emit TargetUpdated(_target);
}
function setUseDELEGATECALL(bool value)
external
onlyOwner
{
useDELEGATECALL = value;
}
function _emit(bytes callData, uint numTopics, bytes32 topic1, bytes32 topic2, bytes32 topic3, bytes32 topic4)
external
onlyTarget
{
uint size = callData.length;
bytes memory _callData = callData;
assembly {
/* The first 32 bytes of callData contain its length (as specified by the abi).
* Length is assumed to be a uint256 and therefore maximum of 32 bytes
* in length. It is also leftpadded to be a multiple of 32 bytes.
* This means moving call_data across 32 bytes guarantees we correctly access
* the data itself. */
switch numTopics
case 0 {
log0(add(_callData, 32), size)
}
case 1 {
log1(add(_callData, 32), size, topic1)
}
case 2 {
log2(add(_callData, 32), size, topic1, topic2)
}
case 3 {
log3(add(_callData, 32), size, topic1, topic2, topic3)
}
case 4 {
log4(add(_callData, 32), size, topic1, topic2, topic3, topic4)
}
}
}
function()
external
payable
{
if (useDELEGATECALL) {
assembly {
/* Copy call data into free memory region. */
let free_ptr := mload(0x40)
calldatacopy(free_ptr, 0, calldatasize)
/* Forward all gas and call data to the target contract. */
let result := delegatecall(gas, sload(target_slot), free_ptr, calldatasize, 0, 0)
returndatacopy(free_ptr, 0, returndatasize)
/* Revert if the call failed, otherwise return the result. */
if iszero(result) { revert(free_ptr, returndatasize) }
return(free_ptr, returndatasize)
}
} else {
/* Here we are as above, but must send the messageSender explicitly
* since we are using CALL rather than DELEGATECALL. */
target.setMessageSender(msg.sender);
assembly {
let free_ptr := mload(0x40)
calldatacopy(free_ptr, 0, calldatasize)
/* We must explicitly forward ether to the underlying contract as well. */
let result := call(gas, sload(target_slot), callvalue, free_ptr, calldatasize, 0, 0)
returndatacopy(free_ptr, 0, returndatasize)
if iszero(result) { revert(free_ptr, returndatasize) }
return(free_ptr, returndatasize)
}
}
}
modifier onlyTarget {
require(Proxyable(msg.sender) == target, "Must be proxy target");
_;
}
event TargetUpdated(Proxyable newTarget);
}
/*
-----------------------------------------------------------------
FILE INFORMATION
-----------------------------------------------------------------
file: Proxyable.sol
version: 1.1
author: Anton Jurisevic
date: 2018-05-15
checked: Mike Spain
approved: Samuel Brooks
-----------------------------------------------------------------
MODULE DESCRIPTION
-----------------------------------------------------------------
A proxyable contract that works hand in hand with the Proxy contract
to allow for anyone to interact with the underlying contract both
directly and through the proxy.
-----------------------------------------------------------------
*/
// This contract should be treated like an abstract contract
contract Proxyable is Owned {
/* The proxy this contract exists behind. */
Proxy public proxy;
Proxy public integrationProxy;
/* The caller of the proxy, passed through to this contract.
* Note that every function using this member must apply the onlyProxy or
* optionalProxy modifiers, otherwise their invocations can use stale values. */
address messageSender;
constructor(address _proxy, address _owner)
Owned(_owner)
public
{
proxy = Proxy(_proxy);
emit ProxyUpdated(_proxy);
}
function setProxy(address _proxy)
external
onlyOwner
{
proxy = Proxy(_proxy);
emit ProxyUpdated(_proxy);
}
function setIntegrationProxy(address _integrationProxy)
external
onlyOwner
{
integrationProxy = Proxy(_integrationProxy);
}
function setMessageSender(address sender)
external
onlyProxy
{
messageSender = sender;
}
modifier onlyProxy {
require(Proxy(msg.sender) == proxy || Proxy(msg.sender) == integrationProxy, "Only the proxy can call");
_;
}
modifier optionalProxy
{
if (Proxy(msg.sender) != proxy && Proxy(msg.sender) != integrationProxy) {
messageSender = msg.sender;
}
_;
}
modifier optionalProxy_onlyOwner
{
if (Proxy(msg.sender) != proxy && Proxy(msg.sender) != integrationProxy) {
messageSender = msg.sender;
}
require(messageSender == owner, "Owner only function");
_;
}
event ProxyUpdated(address proxyAddress);
}
/**
* @title ERC20 interface
* @dev see https://github.com/ethereum/EIPs/issues/20
*/
contract IERC20 {
function totalSupply() public view returns (uint);
function balanceOf(address owner) public view returns (uint);
function allowance(address owner, address spender) public view returns (uint);
function transfer(address to, uint value) public returns (bool);
function approve(address spender, uint value) public returns (bool);
function transferFrom(address from, address to, uint value) public returns (bool);
// ERC20 Optional
function name() public view returns (string);
function symbol() public view returns (string);
function decimals() public view returns (uint8);
event Transfer(
address indexed from,
address indexed to,
uint value
);
event Approval(
address indexed owner,
address indexed spender,
uint value
);
}
/*
-----------------------------------------------------------------
FILE INFORMATION
-----------------------------------------------------------------
file: ProxyERC20.sol
version: 1.0
author: Jackson Chan, Clinton Ennis
date: 2019-06-19
-----------------------------------------------------------------
MODULE DESCRIPTION
-----------------------------------------------------------------
A proxy contract that is ERC20 compliant for the Synthetix Network.
If it does not recognise a function being called on it, passes all
value and call data to an underlying target contract.
The ERC20 standard has been explicitly implemented to ensure
contract to contract calls are compatable on MAINNET
-----------------------------------------------------------------
*/
contract ProxyERC20 is Proxy, IERC20 {
constructor(address _owner)
Proxy(_owner)
public
{}
// ------------- ERC20 Details ------------- //
function name() public view returns (string){
// Immutable static call from target contract
return IERC20(target).name();
}
function symbol() public view returns (string){
// Immutable static call from target contract
return IERC20(target).symbol();
}
function decimals() public view returns (uint8){
// Immutable static call from target contract
return IERC20(target).decimals();
}
// ------------- ERC20 Interface ------------- //
/**
* @dev Total number of tokens in existence
*/
function totalSupply() public view returns (uint256) {
// Immutable static call from target contract
return IERC20(target).totalSupply();
}
/**
* @dev Gets the balance of the specified address.
* @param owner The address to query the balance of.
* @return An uint256 representing the amount owned by the passed address.
*/
function balanceOf(address owner) public view returns (uint256) {
// Immutable static call from target contract
return IERC20(target).balanceOf(owner);
}
/**
* @dev Function to check the amount of tokens that an owner allowed to a spender.
* @param owner address The address which owns the funds.
* @param spender address The address which will spend the funds.
* @return A uint256 specifying the amount of tokens still available for the spender.
*/
function allowance(
address owner,
address spender
)
public
view
returns (uint256)
{
// Immutable static call from target contract
return IERC20(target).allowance(owner, spender);
}
/**
* @dev Transfer token for a specified address
* @param to The address to transfer to.
* @param value The amount to be transferred.
*/
function transfer(address to, uint256 value) public returns (bool) {
// Mutable state call requires the proxy to tell the target who the msg.sender is.
target.setMessageSender(msg.sender);
// Forward the ERC20 call to the target contract
IERC20(target).transfer(to, value);
// Event emitting will occur via Synthetix.Proxy._emit()
return true;
}
/**
* @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender.
* Beware that changing an allowance with this method brings the risk that someone may use both the old
* and the new allowance by unfortunate transaction ordering. One possible solution to mitigate this
* race condition is to first reduce the spender's allowance to 0 and set the desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
*/
function approve(address spender, uint256 value) public returns (bool) {
// Mutable state call requires the proxy to tell the target who the msg.sender is.
target.setMessageSender(msg.sender);
// Forward the ERC20 call to the target contract
IERC20(target).approve(spender, value);
// Event emitting will occur via Synthetix.Proxy._emit()
return true;
}
/**
* @dev Transfer tokens from one address to another
* @param from address The address which you want to send tokens from
* @param to address The address which you want to transfer to
* @param value uint256 the amount of tokens to be transferred
*/
function transferFrom(
address from,
address to,
uint256 value
)
public
returns (bool)
{
// Mutable state call requires the proxy to tell the target who the msg.sender is.
target.setMessageSender(msg.sender);
// Forward the ERC20 call to the target contract
IERC20(target).transferFrom(from, to, value);
// Event emitting will occur via Synthetix.Proxy._emit()
return true;
}
}
File 12 of 30: InitializableAdminUpgradeabilityProxy
// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.6.10;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.6.10;
import {IERC20} from "./IERC20.sol";
interface IERC20Detailed is IERC20 {
function name() external view returns(string memory);
function symbol() external view returns(string memory);
function decimals() external view returns(uint8);
}
// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.6.10;
interface ITransferHook {
function onTransfer(address from, address to, uint256 amount) external;
}pragma solidity ^0.6.2;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// According to EIP-1052, 0x0 is the value returned for not-yet created accounts
// and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
// for accounts without code, i.e. `keccak256('')`
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
// solhint-disable-next-line no-inline-assembly
assembly { codehash := extcodehash(account) }
return (codehash != accountHash && codehash != 0x0);
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
}pragma solidity ^0.6.0;
import './UpgradeabilityProxy.sol';
/**
* @title BaseAdminUpgradeabilityProxy
* @dev This contract combines an upgradeability proxy with an authorization
* mechanism for administrative tasks.
* All external functions in this contract must be guarded by the
* `ifAdmin` modifier. See ethereum/solidity#3864 for a Solidity
* feature proposal that would enable this to be done automatically.
*/
contract BaseAdminUpgradeabilityProxy is BaseUpgradeabilityProxy {
/**
* @dev Emitted when the administration has been transferred.
* @param previousAdmin Address of the previous admin.
* @param newAdmin Address of the new admin.
*/
event AdminChanged(address previousAdmin, address newAdmin);
/**
* @dev Storage slot with the admin of the contract.
* This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
* validated in the constructor.
*/
bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
/**
* @dev Modifier to check whether the `msg.sender` is the admin.
* If it is, it will run the function. Otherwise, it will delegate the call
* to the implementation.
*/
modifier ifAdmin() {
if (msg.sender == _admin()) {
_;
} else {
_fallback();
}
}
/**
* @return The address of the proxy admin.
*/
function admin() external ifAdmin returns (address) {
return _admin();
}
/**
* @return The address of the implementation.
*/
function implementation() external ifAdmin returns (address) {
return _implementation();
}
/**
* @dev Changes the admin of the proxy.
* Only the current admin can call this function.
* @param newAdmin Address to transfer proxy administration to.
*/
function changeAdmin(address newAdmin) external ifAdmin {
require(newAdmin != address(0), "Cannot change the admin of a proxy to the zero address");
emit AdminChanged(_admin(), newAdmin);
_setAdmin(newAdmin);
}
/**
* @dev Upgrade the backing implementation of the proxy.
* Only the admin can call this function.
* @param newImplementation Address of the new implementation.
*/
function upgradeTo(address newImplementation) external ifAdmin {
_upgradeTo(newImplementation);
}
/**
* @dev Upgrade the backing implementation of the proxy and call a function
* on the new implementation.
* This is useful to initialize the proxied contract.
* @param newImplementation Address of the new implementation.
* @param data Data to send as msg.data in the low level call.
* It should include the signature and the parameters of the function to be called, as described in
* https://solidity.readthedocs.io/en/v0.4.24/abi-spec.html#function-selector-and-argument-encoding.
*/
function upgradeToAndCall(address newImplementation, bytes calldata data) payable external ifAdmin {
_upgradeTo(newImplementation);
(bool success,) = newImplementation.delegatecall(data);
require(success);
}
/**
* @return adm The admin slot.
*/
function _admin() internal view returns (address adm) {
bytes32 slot = ADMIN_SLOT;
assembly {
adm := sload(slot)
}
}
/**
* @dev Sets the address of the proxy admin.
* @param newAdmin Address of the new proxy admin.
*/
function _setAdmin(address newAdmin) internal {
bytes32 slot = ADMIN_SLOT;
assembly {
sstore(slot, newAdmin)
}
}
/**
* @dev Only fall back when the sender is not the admin.
*/
function _willFallback() internal override virtual {
require(msg.sender != _admin(), "Cannot call fallback function from the proxy admin");
super._willFallback();
}
}pragma solidity ^0.6.0;
import './BaseUpgradeabilityProxy.sol';
/**
* @title UpgradeabilityProxy
* @dev Extends BaseUpgradeabilityProxy with a constructor for initializing
* implementation and init data.
*/
contract UpgradeabilityProxy is BaseUpgradeabilityProxy {
/**
* @dev Contract constructor.
* @param _logic Address of the initial implementation.
* @param _data Data to send as msg.data to the implementation to initialize the proxied contract.
* It should include the signature and the parameters of the function to be called, as described in
* https://solidity.readthedocs.io/en/v0.4.24/abi-spec.html#function-selector-and-argument-encoding.
* This parameter is optional, if no data is given the initialization call to proxied contract will be skipped.
*/
constructor(address _logic, bytes memory _data) public payable {
assert(IMPLEMENTATION_SLOT == bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1));
_setImplementation(_logic);
if(_data.length > 0) {
(bool success,) = _logic.delegatecall(_data);
require(success);
}
}
}pragma solidity ^0.6.0;
import './Proxy.sol';
import './Address.sol';
/**
* @title BaseUpgradeabilityProxy
* @dev This contract implements a proxy that allows to change the
* implementation address to which it will delegate.
* Such a change is called an implementation upgrade.
*/
contract BaseUpgradeabilityProxy is Proxy {
/**
* @dev Emitted when the implementation is upgraded.
* @param implementation Address of the new implementation.
*/
event Upgraded(address indexed implementation);
/**
* @dev Storage slot with the address of the current implementation.
* This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
* validated in the constructor.
*/
bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
/**
* @dev Returns the current implementation.
* @return impl Address of the current implementation
*/
function _implementation() internal override view returns (address impl) {
bytes32 slot = IMPLEMENTATION_SLOT;
assembly {
impl := sload(slot)
}
}
/**
* @dev Upgrades the proxy to a new implementation.
* @param newImplementation Address of the new implementation.
*/
function _upgradeTo(address newImplementation) internal {
_setImplementation(newImplementation);
emit Upgraded(newImplementation);
}
/**
* @dev Sets the implementation address of the proxy.
* @param newImplementation Address of the new implementation.
*/
function _setImplementation(address newImplementation) internal {
require(Address.isContract(newImplementation), "Cannot set a proxy implementation to a non-contract address");
bytes32 slot = IMPLEMENTATION_SLOT;
assembly {
sstore(slot, newImplementation)
}
}
}pragma solidity ^0.6.0;
/**
* @title Proxy
* @dev Implements delegation of calls to other contracts, with proper
* forwarding of return values and bubbling of failures.
* It defines a fallback function that delegates all calls to the address
* returned by the abstract _implementation() internal function.
*/
abstract contract Proxy {
/**
* @dev Fallback function.
* Implemented entirely in `_fallback`.
*/
fallback () payable external {
_fallback();
}
/**
* @return The Address of the implementation.
*/
function _implementation() internal virtual view returns (address);
/**
* @dev Delegates execution to an implementation contract.
* This is a low level function that doesn't return to its internal call site.
* It will return to the external caller whatever the implementation returns.
* @param implementation Address to delegate.
*/
function _delegate(address implementation) internal {
assembly {
// Copy msg.data. We take full control of memory in this inline assembly
// block because it will not return to Solidity code. We overwrite the
// Solidity scratch pad at memory position 0.
calldatacopy(0, 0, calldatasize())
// Call the implementation.
// out and outsize are 0 because we don't know the size yet.
let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
// Copy the returned data.
returndatacopy(0, 0, returndatasize())
switch result
// delegatecall returns 0 on error.
case 0 { revert(0, returndatasize()) }
default { return(0, returndatasize()) }
}
}
/**
* @dev Function that is run as the first thing in the fallback function.
* Can be redefined in derived contracts to add functionality.
* Redefinitions must call super._willFallback().
*/
function _willFallback() internal virtual {
}
/**
* @dev fallback implementation.
* Extracted to enable manual triggering.
*/
function _fallback() internal {
_willFallback();
_delegate(_implementation());
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.6.0;
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address payable) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.6.0;
import "./Context.sol";
import "../interfaces/IERC20.sol";
import "./SafeMath.sol";
import "./Address.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin guidelines: functions revert instead
* of returning `false` on failure. This behavior is nonetheless conventional
* and does not conflict with the expectations of ERC20 applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20 {
using SafeMath for uint256;
using Address for address;
mapping (address => uint256) private _balances;
mapping (address => mapping (address => uint256)) private _allowances;
uint256 private _totalSupply;
string internal _name;
string internal _symbol;
uint8 private _decimals;
/**
* @dev Sets the values for {name} and {symbol}, initializes {decimals} with
* a default value of 18.
*
* To select a different value for {decimals}, use {_setupDecimals}.
*
* All three of these values are immutable: they can only be set once during
* construction.
*/
constructor (string memory name, string memory symbol) public {
_name = name;
_symbol = symbol;
_decimals = 18;
}
/**
* @dev Returns the name of the token.
*/
function name() public view returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5,05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
* called.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view returns (uint8) {
return _decimals;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `recipient` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
_approve(_msgSender(), spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20};
*
* Requirements:
* - `sender` and `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
* - the caller must have allowance for ``sender``'s tokens of at least
* `amount`.
*/
function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
/**
* @dev Moves tokens `amount` from `sender` to `recipient`.
*
* This is internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `sender` cannot be the zero address.
* - `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
*/
function _transfer(address sender, address recipient, uint256 amount) internal virtual {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(sender, recipient, amount);
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements
*
* - `to` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.
*
* This is internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Sets {decimals} to a value other than the default one of 18.
*
* WARNING: This function should only be called from the constructor. Most
* applications that interact with token contracts will not expect
* {decimals} to ever change, and may work incorrectly if it does.
*/
function _setupDecimals(uint8 decimals_) internal {
_decimals = decimals_;
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be to transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
}pragma solidity ^0.6.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
// Solidity only automatically asserts when dividing by 0
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}// SPDX-License-Identifier: agpl-3.0
pragma solidity ^0.6.10;
import "./BaseAdminUpgradeabilityProxy.sol";
import "./InitializableUpgradeabilityProxy.sol";
/**
* @title InitializableAdminUpgradeabilityProxy
* @dev Extends from BaseAdminUpgradeabilityProxy with an initializer for
* initializing the implementation, admin, and init data.
*/
contract InitializableAdminUpgradeabilityProxy is BaseAdminUpgradeabilityProxy, InitializableUpgradeabilityProxy {
/**
* Contract initializer.
* @param _logic address of the initial implementation.
* @param _admin Address of the proxy administrator.
* @param _data Data to send as msg.data to the implementation to initialize the proxied contract.
* It should include the signature and the parameters of the function to be called, as described in
* https://solidity.readthedocs.io/en/v0.4.24/abi-spec.html#function-selector-and-argument-encoding.
* This parameter is optional, if no data is given the initialization call to proxied contract will be skipped.
*/
function initialize(address _logic, address _admin, bytes memory _data) public payable {
require(_implementation() == address(0));
InitializableUpgradeabilityProxy.initialize(_logic, _data);
assert(ADMIN_SLOT == bytes32(uint256(keccak256("eip1967.proxy.admin")) - 1));
_setAdmin(_admin);
}
/**
* @dev Only fall back when the sender is not the admin.
*/
function _willFallback() internal override(BaseAdminUpgradeabilityProxy, Proxy) {
BaseAdminUpgradeabilityProxy._willFallback();
}
}
// SPDX-License-Identifier: agpl-3.0
pragma solidity ^0.6.10;
import "./BaseUpgradeabilityProxy.sol";
/**
* @title InitializableUpgradeabilityProxy
* @dev Extends BaseUpgradeabilityProxy with an initializer for initializing
* implementation and init data.
*/
contract InitializableUpgradeabilityProxy is BaseUpgradeabilityProxy {
/**
* @dev Contract initializer.
* @param _logic Address of the initial implementation.
* @param _data Data to send as msg.data to the implementation to initialize the proxied contract.
* It should include the signature and the parameters of the function to be called, as described in
* https://solidity.readthedocs.io/en/v0.4.24/abi-spec.html#function-selector-and-argument-encoding.
* This parameter is optional, if no data is given the initialization call to proxied contract will be skipped.
*/
function initialize(address _logic, bytes memory _data) public payable {
require(_implementation() == address(0));
assert(IMPLEMENTATION_SLOT == bytes32(uint256(keccak256("eip1967.proxy.implementation")) - 1));
_setImplementation(_logic);
if (_data.length > 0) {
(bool success, ) = _logic.delegatecall(_data);
require(success);
}
}
}
// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.6.10;
import {ERC20} from "../open-zeppelin/ERC20.sol";
import {ITransferHook} from "../interfaces/ITransferHook.sol";
import {VersionedInitializable} from "../utils/VersionedInitializable.sol";
/**
* @notice implementation of the AAVE token contract
* @author Aave
*/
contract AaveToken is ERC20, VersionedInitializable {
/// @dev snapshot of a value on a specific block, used for balances
struct Snapshot {
uint128 blockNumber;
uint128 value;
}
string internal constant NAME = "Aave Token";
string internal constant SYMBOL = "AAVE";
uint8 internal constant DECIMALS = 18;
/// @dev the amount being distributed for the LEND -> AAVE migration
uint256 internal constant MIGRATION_AMOUNT = 13000000 ether;
/// @dev the amount being distributed for the PSI and PEI
uint256 internal constant DISTRIBUTION_AMOUNT = 3000000 ether;
uint256 public constant REVISION = 1;
/// @dev owner => next valid nonce to submit with permit()
mapping (address => uint256) public _nonces;
mapping (address => mapping (uint256 => Snapshot)) public _snapshots;
mapping (address => uint256) public _countsSnapshots;
/// @dev reference to the Aave governance contract to call (if initialized) on _beforeTokenTransfer
/// !!! IMPORTANT The Aave governance is considered a trustable contract, being its responsibility
/// to control all potential reentrancies by calling back the AaveToken
ITransferHook public _aaveGovernance;
bytes32 public DOMAIN_SEPARATOR;
bytes public constant EIP712_REVISION = bytes("1");
bytes32 internal constant EIP712_DOMAIN = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
bytes32 public constant PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
event SnapshotDone(address owner, uint128 oldValue, uint128 newValue);
constructor() ERC20(NAME, SYMBOL) public {}
/**
* @dev initializes the contract upon assignment to the InitializableAdminUpgradeabilityProxy
* @param migrator the address of the LEND -> AAVE migration contract
* @param distributor the address of the AAVE distribution contract
*/
function initialize(
address migrator,
address distributor,
ITransferHook aaveGovernance
) external initializer {
uint256 chainId;
//solium-disable-next-line
assembly {
chainId := chainid()
}
DOMAIN_SEPARATOR = keccak256(abi.encode(
EIP712_DOMAIN,
keccak256(bytes(NAME)),
keccak256(EIP712_REVISION),
chainId,
address(this)
));
_name = NAME;
_symbol = SYMBOL;
_setupDecimals(DECIMALS);
_aaveGovernance = aaveGovernance;
_mint(migrator, MIGRATION_AMOUNT);
_mint(distributor, DISTRIBUTION_AMOUNT);
}
/**
* @dev implements the permit function as for https://github.com/ethereum/EIPs/blob/8a34d644aacf0f9f8f00815307fd7dd5da07655f/EIPS/eip-2612.md
* @param owner the owner of the funds
* @param spender the spender
* @param value the amount
* @param deadline the deadline timestamp, type(uint256).max for no deadline
* @param v signature param
* @param s signature param
* @param r signature param
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external {
require(owner != address(0), "INVALID_OWNER");
//solium-disable-next-line
require(block.timestamp <= deadline, "INVALID_EXPIRATION");
uint256 currentValidNonce = _nonces[owner];
bytes32 digest = keccak256(
abi.encodePacked(
"\\x19\\x01",
DOMAIN_SEPARATOR,
keccak256(
abi.encode(PERMIT_TYPEHASH, owner, spender, value, currentValidNonce, deadline))
)
);
require(owner == ecrecover(digest, v, r, s), "INVALID_SIGNATURE");
_nonces[owner] = currentValidNonce.add(1);
_approve(owner, spender, value);
}
/**
* @dev returns the revision of the implementation contract
*/
function getRevision() internal pure override returns (uint256) {
return REVISION;
}
/**
* @dev Writes a snapshot for an owner of tokens
* @param owner The owner of the tokens
* @param oldValue The value before the operation that is gonna be executed after the snapshot
* @param newValue The value after the operation
*/
function _writeSnapshot(address owner, uint128 oldValue, uint128 newValue) internal {
uint128 currentBlock = uint128(block.number);
uint256 ownerCountOfSnapshots = _countsSnapshots[owner];
mapping (uint256 => Snapshot) storage snapshotsOwner = _snapshots[owner];
// Doing multiple operations in the same block
if (ownerCountOfSnapshots != 0 && snapshotsOwner[ownerCountOfSnapshots.sub(1)].blockNumber == currentBlock) {
snapshotsOwner[ownerCountOfSnapshots.sub(1)].value = newValue;
} else {
snapshotsOwner[ownerCountOfSnapshots] = Snapshot(currentBlock, newValue);
_countsSnapshots[owner] = ownerCountOfSnapshots.add(1);
}
emit SnapshotDone(owner, oldValue, newValue);
}
/**
* @dev Writes a snapshot before any operation involving transfer of value: _transfer, _mint and _burn
* - On _transfer, it writes snapshots for both "from" and "to"
* - On _mint, only for _to
* - On _burn, only for _from
* @param from the from address
* @param to the to address
* @param amount the amount to transfer
*/
function _beforeTokenTransfer(address from, address to, uint256 amount) internal override {
if (from == to) {
return;
}
if (from != address(0)) {
uint256 fromBalance = balanceOf(from);
_writeSnapshot(from, uint128(fromBalance), uint128(fromBalance.sub(amount)));
}
if (to != address(0)) {
uint256 toBalance = balanceOf(to);
_writeSnapshot(to, uint128(toBalance), uint128(toBalance.add(amount)));
}
// caching the aave governance address to avoid multiple state loads
ITransferHook aaveGovernance = _aaveGovernance;
if (aaveGovernance != ITransferHook(0)) {
aaveGovernance.onTransfer(from, to, amount);
}
}
}// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.6.10;
/**
* @title VersionedInitializable
*
* @dev Helper contract to support initializer functions. To use it, replace
* the constructor with a function that has the `initializer` modifier.
* WARNING: Unlike constructors, initializer functions must be manually
* invoked. This applies both to deploying an Initializable contract, as well
* as extending an Initializable contract via inheritance.
* WARNING: When used with inheritance, manual care must be taken to not invoke
* a parent initializer twice, or ensure that all initializers are idempotent,
* because this is not dealt with automatically as with constructors.
*
* @author Aave, inspired by the OpenZeppelin Initializable contract
*/
abstract contract VersionedInitializable {
/**
* @dev Indicates that the contract has been initialized.
*/
uint256 internal lastInitializedRevision = 0;
/**
* @dev Modifier to use in the initializer function of a contract.
*/
modifier initializer() {
uint256 revision = getRevision();
require(revision > lastInitializedRevision, "Contract instance has already been initialized");
lastInitializedRevision = revision;
_;
}
/// @dev returns the revision number of the contract.
/// Needs to be defined in the inherited class as a constant.
function getRevision() internal pure virtual returns(uint256);
// Reserved storage space to allow for layout changes in the future.
uint256[50] private ______gap;
}
// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.6.10;
import {IERC20} from "../interfaces/IERC20.sol";
import {SafeMath} from "../open-zeppelin/SafeMath.sol";
import {VersionedInitializable} from "../utils/VersionedInitializable.sol";
/**
* @title LendToAaveMigrator
* @notice This contract implements the migration from LEND to AAVE token
* @author Aave
*/
contract LendToAaveMigrator is VersionedInitializable {
using SafeMath for uint256;
IERC20 public immutable AAVE;
IERC20 public immutable LEND;
uint256 public immutable LEND_AAVE_RATIO;
uint256 public constant REVISION = 1;
uint256 public _totalLendMigrated;
/**
* @dev emitted on migration
* @param sender the caller of the migration
* @param amount the amount being migrated
*/
event LendMigrated(address indexed sender, uint256 indexed amount);
/**
* @param aave the address of the AAVE token
* @param lend the address of the LEND token
* @param lendAaveRatio the exchange rate between LEND and AAVE
*/
constructor(IERC20 aave, IERC20 lend, uint256 lendAaveRatio) public {
AAVE = aave;
LEND = lend;
LEND_AAVE_RATIO = lendAaveRatio;
}
/**
* @dev initializes the implementation
*/
function initialize() public initializer {
}
/**
* @dev returns true if the migration started
*/
function migrationStarted() external view returns(bool) {
return lastInitializedRevision != 0;
}
/**
* @dev executes the migration from LEND to AAVE. Users need to give allowance to this contract to transfer LEND before executing
* this transaction.
* @param amount the amount of LEND to be migrated
*/
function migrateFromLEND(uint256 amount) external {
require(lastInitializedRevision != 0, "MIGRATION_NOT_STARTED");
_totalLendMigrated = _totalLendMigrated.add(amount);
LEND.transferFrom(msg.sender, address(this), amount);
AAVE.transfer(msg.sender, amount.div(LEND_AAVE_RATIO));
emit LendMigrated(msg.sender, amount);
}
/**
* @dev returns the implementation revision
* @return the implementation revision
*/
function getRevision() internal pure override returns (uint256) {
return REVISION;
}
}// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.6.10;
import "../interfaces/IERC20.sol";
contract DoubleTransferHelper {
IERC20 public immutable AAVE;
constructor(IERC20 aave) public {
AAVE = aave;
}
function doubleSend(address to, uint256 amount1, uint256 amount2) external {
AAVE.transfer(to, amount1);
AAVE.transfer(to, amount2);
}
}// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.6.10;
import "../open-zeppelin/ERC20.sol";
/**
* @title ERC20Mintable
* @dev ERC20 minting logic
*/
contract MintableErc20 is ERC20 {
constructor(string memory name, string memory symbol, uint8 decimals) ERC20(name, symbol) public {
_setupDecimals(decimals);
}
/**
* @dev Function to mint tokens
* @param value The amount of tokens to mint.
* @return A boolean that indicates if the operation was successful.
*/
function mint(uint256 value) public returns (bool) {
_mint(msg.sender, value);
return true;
}
}
// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.6.10;
import {ITransferHook} from "../interfaces/ITransferHook.sol";
contract MockTransferHook is ITransferHook {
event MockHookEvent();
function onTransfer(address from, address to, uint256 amount) external override {
emit MockHookEvent();
}
}File 13 of 30: MANAToken
pragma solidity ^0.4.11;
contract ERC20Basic {
uint256 public totalSupply;
function balanceOf(address who) constant returns (uint256);
function transfer(address to, uint256 value) returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
}
contract Ownable {
address public owner;
/**
* @dev The Ownable constructor sets the original `owner` of the contract to the sender
* account.
*/
function Ownable() {
owner = msg.sender;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(msg.sender == owner);
_;
}
/**
* @dev Allows the current owner to transfer control of the contract to a newOwner.
* @param newOwner The address to transfer ownership to.
*/
function transferOwnership(address newOwner) onlyOwner {
if (newOwner != address(0)) {
owner = newOwner;
}
}
}
contract Pausable is Ownable {
event Pause();
event Unpause();
bool public paused = false;
/**
* @dev modifier to allow actions only when the contract IS paused
*/
modifier whenNotPaused() {
require(!paused);
_;
}
/**
* @dev modifier to allow actions only when the contract IS NOT paused
*/
modifier whenPaused {
require(paused);
_;
}
/**
* @dev called by the owner to pause, triggers stopped state
*/
function pause() onlyOwner whenNotPaused returns (bool) {
paused = true;
Pause();
return true;
}
/**
* @dev called by the owner to unpause, returns to normal state
*/
function unpause() onlyOwner whenPaused returns (bool) {
paused = false;
Unpause();
return true;
}
}
contract ERC20 is ERC20Basic {
function allowance(address owner, address spender) constant returns (uint256);
function transferFrom(address from, address to, uint256 value) returns (bool);
function approve(address spender, uint256 value) returns (bool);
event Approval(address indexed owner, address indexed spender, uint256 value);
}
library SafeMath {
function mul(uint256 a, uint256 b) internal constant returns (uint256) {
uint256 c = a * b;
assert(a == 0 || c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal constant returns (uint256) {
// assert(b > 0); // Solidity automatically throws when dividing by 0
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
function sub(uint256 a, uint256 b) internal constant returns (uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal constant returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;
}
}
contract BasicToken is ERC20Basic {
using SafeMath for uint256;
mapping(address => uint256) balances;
/**
* @dev transfer token for a specified address
* @param _to The address to transfer to.
* @param _value The amount to be transferred.
*/
function transfer(address _to, uint256 _value) returns (bool) {
balances[msg.sender] = balances[msg.sender].sub(_value);
balances[_to] = balances[_to].add(_value);
Transfer(msg.sender, _to, _value);
return true;
}
/**
* @dev Gets the balance of the specified address.
* @param _owner The address to query the the balance of.
* @return An uint256 representing the amount owned by the passed address.
*/
function balanceOf(address _owner) constant returns (uint256 balance) {
return balances[_owner];
}
}
contract StandardToken is ERC20, BasicToken {
mapping (address => mapping (address => uint256)) allowed;
/**
* @dev Transfer tokens from one address to another
* @param _from address The address which you want to send tokens from
* @param _to address The address which you want to transfer to
* @param _value uint256 the amout of tokens to be transfered
*/
function transferFrom(address _from, address _to, uint256 _value) returns (bool) {
var _allowance = allowed[_from][msg.sender];
// Check is not needed because sub(_allowance, _value) will already throw if this condition is not met
// require (_value <= _allowance);
balances[_to] = balances[_to].add(_value);
balances[_from] = balances[_from].sub(_value);
allowed[_from][msg.sender] = _allowance.sub(_value);
Transfer(_from, _to, _value);
return true;
}
/**
* @dev Aprove the passed address to spend the specified amount of tokens on behalf of msg.sender.
* @param _spender The address which will spend the funds.
* @param _value The amount of tokens to be spent.
*/
function approve(address _spender, uint256 _value) returns (bool) {
// To change the approve amount you first have to reduce the addresses`
// allowance to zero by calling `approve(_spender, 0)` if it is not
// already 0 to mitigate the race condition described here:
// https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
require((_value == 0) || (allowed[msg.sender][_spender] == 0));
allowed[msg.sender][_spender] = _value;
Approval(msg.sender, _spender, _value);
return true;
}
/**
* @dev Function to check the amount of tokens that an owner allowed to a spender.
* @param _owner address The address which owns the funds.
* @param _spender address The address which will spend the funds.
* @return A uint256 specifing the amount of tokens still avaible for the spender.
*/
function allowance(address _owner, address _spender) constant returns (uint256 remaining) {
return allowed[_owner][_spender];
}
}
contract MintableToken is StandardToken, Ownable {
event Mint(address indexed to, uint256 amount);
event MintFinished();
bool public mintingFinished = false;
modifier canMint() {
require(!mintingFinished);
_;
}
/**
* @dev Function to mint tokens
* @param _to The address that will recieve the minted tokens.
* @param _amount The amount of tokens to mint.
* @return A boolean that indicates if the operation was successful.
*/
function mint(address _to, uint256 _amount) onlyOwner canMint returns (bool) {
totalSupply = totalSupply.add(_amount);
balances[_to] = balances[_to].add(_amount);
Mint(_to, _amount);
return true;
}
/**
* @dev Function to stop minting new tokens.
* @return True if the operation was successful.
*/
function finishMinting() onlyOwner returns (bool) {
mintingFinished = true;
MintFinished();
return true;
}
}
contract PausableToken is StandardToken, Pausable {
function transfer(address _to, uint _value) whenNotPaused returns (bool) {
return super.transfer(_to, _value);
}
function transferFrom(address _from, address _to, uint _value) whenNotPaused returns (bool) {
return super.transferFrom(_from, _to, _value);
}
}
contract BurnableToken is StandardToken {
event Burn(address indexed burner, uint256 value);
/**
* @dev Burns a specified amount of tokens.
* @param _value The amount of tokens to burn.
*/
function burn(uint256 _value) public {
require(_value > 0);
address burner = msg.sender;
balances[burner] = balances[burner].sub(_value);
totalSupply = totalSupply.sub(_value);
Burn(msg.sender, _value);
}
}
contract MANAToken is BurnableToken, PausableToken, MintableToken {
string public constant symbol = "MANA";
string public constant name = "Decentraland MANA";
uint8 public constant decimals = 18;
function burn(uint256 _value) whenNotPaused public {
super.burn(_value);
}
}File 14 of 30: LinkToken
pragma solidity ^0.4.16;
/**
* @title SafeMath
* @dev Math operations with safety checks that throw on error
*/
library SafeMath {
function mul(uint256 a, uint256 b) internal constant returns (uint256) {
uint256 c = a * b;
assert(a == 0 || c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal constant returns (uint256) {
// assert(b > 0); // Solidity automatically throws when dividing by 0
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
function sub(uint256 a, uint256 b) internal constant returns (uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal constant returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;
}
}
/**
* @title ERC20Basic
* @dev Simpler version of ERC20 interface
* @dev see https://github.com/ethereum/EIPs/issues/179
*/
contract ERC20Basic {
uint256 public totalSupply;
function balanceOf(address who) constant returns (uint256);
function transfer(address to, uint256 value) returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
}
/**
* @title ERC20 interface
* @dev see https://github.com/ethereum/EIPs/issues/20
*/
contract ERC20 is ERC20Basic {
function allowance(address owner, address spender) constant returns (uint256);
function transferFrom(address from, address to, uint256 value) returns (bool);
function approve(address spender, uint256 value) returns (bool);
event Approval(address indexed owner, address indexed spender, uint256 value);
}
contract ERC677 is ERC20 {
function transferAndCall(address to, uint value, bytes data) returns (bool success);
event Transfer(address indexed from, address indexed to, uint value, bytes data);
}
contract ERC677Receiver {
function onTokenTransfer(address _sender, uint _value, bytes _data);
}
/**
* @title Basic token
* @dev Basic version of StandardToken, with no allowances.
*/
contract BasicToken is ERC20Basic {
using SafeMath for uint256;
mapping(address => uint256) balances;
/**
* @dev transfer token for a specified address
* @param _to The address to transfer to.
* @param _value The amount to be transferred.
*/
function transfer(address _to, uint256 _value) returns (bool) {
balances[msg.sender] = balances[msg.sender].sub(_value);
balances[_to] = balances[_to].add(_value);
Transfer(msg.sender, _to, _value);
return true;
}
/**
* @dev Gets the balance of the specified address.
* @param _owner The address to query the the balance of.
* @return An uint256 representing the amount owned by the passed address.
*/
function balanceOf(address _owner) constant returns (uint256 balance) {
return balances[_owner];
}
}
/**
* @title Standard ERC20 token
*
* @dev Implementation of the basic standard token.
* @dev https://github.com/ethereum/EIPs/issues/20
* @dev Based on code by FirstBlood: https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol
*/
contract StandardToken is ERC20, BasicToken {
mapping (address => mapping (address => uint256)) allowed;
/**
* @dev Transfer tokens from one address to another
* @param _from address The address which you want to send tokens from
* @param _to address The address which you want to transfer to
* @param _value uint256 the amount of tokens to be transferred
*/
function transferFrom(address _from, address _to, uint256 _value) returns (bool) {
var _allowance = allowed[_from][msg.sender];
// Check is not needed because sub(_allowance, _value) will already throw if this condition is not met
// require (_value <= _allowance);
balances[_from] = balances[_from].sub(_value);
balances[_to] = balances[_to].add(_value);
allowed[_from][msg.sender] = _allowance.sub(_value);
Transfer(_from, _to, _value);
return true;
}
/**
* @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender.
* @param _spender The address which will spend the funds.
* @param _value The amount of tokens to be spent.
*/
function approve(address _spender, uint256 _value) returns (bool) {
allowed[msg.sender][_spender] = _value;
Approval(msg.sender, _spender, _value);
return true;
}
/**
* @dev Function to check the amount of tokens that an owner allowed to a spender.
* @param _owner address The address which owns the funds.
* @param _spender address The address which will spend the funds.
* @return A uint256 specifying the amount of tokens still available for the spender.
*/
function allowance(address _owner, address _spender) constant returns (uint256 remaining) {
return allowed[_owner][_spender];
}
/*
* approve should be called when allowed[_spender] == 0. To increment
* allowed value is better to use this function to avoid 2 calls (and wait until
* the first transaction is mined)
* From MonolithDAO Token.sol
*/
function increaseApproval (address _spender, uint _addedValue)
returns (bool success) {
allowed[msg.sender][_spender] = allowed[msg.sender][_spender].add(_addedValue);
Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;
}
function decreaseApproval (address _spender, uint _subtractedValue)
returns (bool success) {
uint oldValue = allowed[msg.sender][_spender];
if (_subtractedValue > oldValue) {
allowed[msg.sender][_spender] = 0;
} else {
allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue);
}
Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;
}
}
contract ERC677Token is ERC677 {
/**
* @dev transfer token to a contract address with additional data if the recipient is a contact.
* @param _to The address to transfer to.
* @param _value The amount to be transferred.
* @param _data The extra data to be passed to the receiving contract.
*/
function transferAndCall(address _to, uint _value, bytes _data)
public
returns (bool success)
{
super.transfer(_to, _value);
Transfer(msg.sender, _to, _value, _data);
if (isContract(_to)) {
contractFallback(_to, _value, _data);
}
return true;
}
// PRIVATE
function contractFallback(address _to, uint _value, bytes _data)
private
{
ERC677Receiver receiver = ERC677Receiver(_to);
receiver.onTokenTransfer(msg.sender, _value, _data);
}
function isContract(address _addr)
private
returns (bool hasCode)
{
uint length;
assembly { length := extcodesize(_addr) }
return length > 0;
}
}
contract LinkToken is StandardToken, ERC677Token {
uint public constant totalSupply = 10**27;
string public constant name = 'ChainLink Token';
uint8 public constant decimals = 18;
string public constant symbol = 'LINK';
function LinkToken()
public
{
balances[msg.sender] = totalSupply;
}
/**
* @dev transfer token to a specified address with additional data if the recipient is a contract.
* @param _to The address to transfer to.
* @param _value The amount to be transferred.
* @param _data The extra data to be passed to the receiving contract.
*/
function transferAndCall(address _to, uint _value, bytes _data)
public
validRecipient(_to)
returns (bool success)
{
return super.transferAndCall(_to, _value, _data);
}
/**
* @dev transfer token to a specified address.
* @param _to The address to transfer to.
* @param _value The amount to be transferred.
*/
function transfer(address _to, uint _value)
public
validRecipient(_to)
returns (bool success)
{
return super.transfer(_to, _value);
}
/**
* @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender.
* @param _spender The address which will spend the funds.
* @param _value The amount of tokens to be spent.
*/
function approve(address _spender, uint256 _value)
public
validRecipient(_spender)
returns (bool)
{
return super.approve(_spender, _value);
}
/**
* @dev Transfer tokens from one address to another
* @param _from address The address which you want to send tokens from
* @param _to address The address which you want to transfer to
* @param _value uint256 the amount of tokens to be transferred
*/
function transferFrom(address _from, address _to, uint256 _value)
public
validRecipient(_to)
returns (bool)
{
return super.transferFrom(_from, _to, _value);
}
// MODIFIERS
modifier validRecipient(address _recipient) {
require(_recipient != address(0) && _recipient != address(this));
_;
}
}File 15 of 30: LRC_v2
/**
*Submitted for verification at Etherscan.io on 2019-04-09
*/
pragma solidity 0.5.7;
/**
* @title ERC20Basic
* @dev Simpler version of ERC20 interface
* @dev see https://github.com/ethereum/EIPs/issues/179
*/
contract ERC20Basic {
function totalSupply() public view returns (uint256);
function balanceOf(address who) public view returns (uint256);
function transfer(address to, uint256 value) public returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
event Burn(address indexed burner, uint256 value);
}
/**
* @title SafeMath
* @dev Math operations with safety checks that throw on error
*/
library SafeMath {
/**
* @dev Multiplies two numbers, throws on overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
uint256 c = a * b;
assert(c / a == b);
return c;
}
/**
* @dev Integer division of two numbers, truncating the quotient.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
// assert(b > 0); // Solidity automatically throws when dividing by 0
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Subtracts two numbers, throws on overflow (i.e. if subtrahend is greater than minuend).
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
assert(b <= a);
return a - b;
}
/**
* @dev Adds two numbers, throws on overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;
}
}
/**
* @title Basic token
* @dev Basic version of StandardToken, with no allowances.
*/
contract BasicToken is ERC20Basic {
using SafeMath for uint256;
mapping(address => uint256) balances;
uint256 totalSupply_;
uint256 burnedTotalNum_;
/**
* @dev total number of tokens in existence
*/
function totalSupply() public view returns (uint256) {
return totalSupply_;
}
/**
* @dev total number of tokens already burned
*/
function totalBurned() public view returns (uint256) {
return burnedTotalNum_;
}
function burn(uint256 _value) public returns (bool) {
require(_value <= balances[msg.sender]);
address burner = msg.sender;
balances[burner] = balances[burner].sub(_value);
totalSupply_ = totalSupply_.sub(_value);
burnedTotalNum_ = burnedTotalNum_.add(_value);
emit Burn(burner, _value);
return true;
}
/**
* @dev transfer token for a specified address
* @param _to The address to transfer to.
* @param _value The amount to be transferred.
*/
function transfer(address _to, uint256 _value) public returns (bool) {
// if _to is address(0), invoke burn function.
if (_to == address(0)) {
return burn(_value);
}
require(_value <= balances[msg.sender]);
// SafeMath.sub will throw if there is not enough balance.
balances[msg.sender] = balances[msg.sender].sub(_value);
balances[_to] = balances[_to].add(_value);
emit Transfer(msg.sender, _to, _value);
return true;
}
/**
* @dev Gets the balance of the specified address.
* @param _owner The address to query the the balance of.
* @return An uint256 representing the amount owned by the passed address.
*/
function balanceOf(address _owner) public view returns (uint256) {
return balances[_owner];
}
}
/**
* @title ERC20 interface
* @dev see https://github.com/ethereum/EIPs/issues/20
*/
contract ERC20 is ERC20Basic {
function allowance(address owner, address spender) public view returns (uint256);
function transferFrom(address from, address to, uint256 value) public returns (bool);
function approve(address spender, uint256 value) public returns (bool);
event Approval(address indexed owner, address indexed spender, uint256 value);
}
/**
* @title Standard ERC20 token
*
* @dev Implementation of the basic standard token.
* @dev https://github.com/ethereum/EIPs/issues/20
* @dev Based on code by FirstBlood: https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol
*/
contract StandardToken is ERC20, BasicToken {
uint private constant MAX_UINT = 2**256 - 1;
mapping (address => mapping (address => uint256)) internal allowed;
function burnFrom(address _owner, uint256 _value) public returns (bool) {
require(_owner != address(0));
require(_value <= balances[_owner]);
require(_value <= allowed[_owner][msg.sender]);
balances[_owner] = balances[_owner].sub(_value);
if (allowed[_owner][msg.sender] < MAX_UINT) {
allowed[_owner][msg.sender] = allowed[_owner][msg.sender].sub(_value);
}
totalSupply_ = totalSupply_.sub(_value);
burnedTotalNum_ = burnedTotalNum_.add(_value);
emit Burn(_owner, _value);
return true;
}
/**
* @dev Transfer tokens from one address to another
* @param _from address The address which you want to send tokens from
* @param _to address The address which you want to transfer to
* @param _value uint256 the amount of tokens to be transferred
*/
function transferFrom(address _from, address _to, uint256 _value) public returns (bool) {
if (_to == address(0)) {
return burnFrom(_from, _value);
}
require(_value <= balances[_from]);
require(_value <= allowed[_from][msg.sender]);
balances[_from] = balances[_from].sub(_value);
balances[_to] = balances[_to].add(_value);
/// an allowance of MAX_UINT represents an unlimited allowance.
/// @dev see https://github.com/ethereum/EIPs/issues/717
if (allowed[_from][msg.sender] < MAX_UINT) {
allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_value);
}
emit Transfer(_from, _to, _value);
return true;
}
/**
* @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender.
*
* Beware that changing an allowance with this method brings the risk that someone may use both the old
* and the new allowance by unfortunate transaction ordering. One possible solution to mitigate this
* race condition is to first reduce the spender's allowance to 0 and set the desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
* @param _spender The address which will spend the funds.
* @param _value The amount of tokens to be spent.
*/
function approve(address _spender, uint256 _value) public returns (bool) {
allowed[msg.sender][_spender] = _value;
emit Approval(msg.sender, _spender, _value);
return true;
}
/**
* @dev Function to check the amount of tokens that an owner allowed to a spender.
* @param _owner address The address which owns the funds.
* @param _spender address The address which will spend the funds.
* @return A uint256 specifying the amount of tokens still available for the spender.
*/
function allowance(address _owner, address _spender) public view returns (uint256) {
return allowed[_owner][_spender];
}
/**
* @dev Increase the amount of tokens that an owner allowed to a spender.
*
* approve should be called when allowed[_spender] == 0. To increment
* allowed value is better to use this function to avoid 2 calls (and wait until
* the first transaction is mined)
* From MonolithDAO Token.sol
* @param _spender The address which will spend the funds.
* @param _addedValue The amount of tokens to increase the allowance by.
*/
function increaseApproval(address _spender, uint _addedValue) public returns (bool) {
allowed[msg.sender][_spender] = allowed[msg.sender][_spender].add(_addedValue);
emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;
}
/**
* @dev Decrease the amount of tokens that an owner allowed to a spender.
*
* approve should be called when allowed[_spender] == 0. To decrement
* allowed value is better to use this function to avoid 2 calls (and wait until
* the first transaction is mined)
* From MonolithDAO Token.sol
* @param _spender The address which will spend the funds.
* @param _subtractedValue The amount of tokens to decrease the allowance by.
*/
function decreaseApproval(address _spender, uint _subtractedValue) public returns (bool) {
uint oldValue = allowed[msg.sender][_spender];
if (_subtractedValue > oldValue) {
allowed[msg.sender][_spender] = 0;
} else {
allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue);
}
emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;
}
}
contract LRC_v2 is StandardToken {
using SafeMath for uint256;
string public name = "LoopringCoin V2";
string public symbol = "LRC";
uint8 public decimals = 18;
constructor() public {
// @See https://etherscan.io/address/0xEF68e7C694F40c8202821eDF525dE3782458639f#readContract
totalSupply_ = 1395076054523857892274603100;
balances[msg.sender] = totalSupply_;
}
function batchTransfer(address[] calldata accounts, uint256[] calldata amounts)
external
returns (bool)
{
require(accounts.length == amounts.length);
for (uint i = 0; i < accounts.length; i++) {
require(transfer(accounts[i], amounts[i]), "transfer failed");
}
return true;
}
function () payable external {
revert();
}
}File 16 of 30: ENJToken
pragma solidity ^0.4.15;
/*
Utilities & Common Modifiers
*/
contract Utils {
/**
constructor
*/
function Utils() {
}
// validates an address - currently only checks that it isn't null
modifier validAddress(address _address) {
require(_address != 0x0);
_;
}
// verifies that the address is different than this contract address
modifier notThis(address _address) {
require(_address != address(this));
_;
}
// Overflow protected math functions
/**
@dev returns the sum of _x and _y, asserts if the calculation overflows
@param _x value 1
@param _y value 2
@return sum
*/
function safeAdd(uint256 _x, uint256 _y) internal returns (uint256) {
uint256 z = _x + _y;
assert(z >= _x);
return z;
}
/**
@dev returns the difference of _x minus _y, asserts if the subtraction results in a negative number
@param _x minuend
@param _y subtrahend
@return difference
*/
function safeSub(uint256 _x, uint256 _y) internal returns (uint256) {
assert(_x >= _y);
return _x - _y;
}
/**
@dev returns the product of multiplying _x by _y, asserts if the calculation overflows
@param _x factor 1
@param _y factor 2
@return product
*/
function safeMul(uint256 _x, uint256 _y) internal returns (uint256) {
uint256 z = _x * _y;
assert(_x == 0 || z / _x == _y);
return z;
}
}
/*
ERC20 Standard Token interface
*/
contract IERC20Token {
// these functions aren't abstract since the compiler emits automatically generated getter functions as external
function name() public constant returns (string) { name; }
function symbol() public constant returns (string) { symbol; }
function decimals() public constant returns (uint8) { decimals; }
function totalSupply() public constant returns (uint256) { totalSupply; }
function balanceOf(address _owner) public constant returns (uint256 balance) { _owner; balance; }
function allowance(address _owner, address _spender) public constant returns (uint256 remaining) { _owner; _spender; remaining; }
function transfer(address _to, uint256 _value) public returns (bool success);
function transferFrom(address _from, address _to, uint256 _value) public returns (bool success);
function approve(address _spender, uint256 _value) public returns (bool success);
}
/**
ERC20 Standard Token implementation
*/
contract ERC20Token is IERC20Token, Utils {
string public standard = "Token 0.1";
string public name = "";
string public symbol = "";
uint8 public decimals = 0;
uint256 public totalSupply = 0;
mapping (address => uint256) public balanceOf;
mapping (address => mapping (address => uint256)) public allowance;
event Transfer(address indexed _from, address indexed _to, uint256 _value);
event Approval(address indexed _owner, address indexed _spender, uint256 _value);
/**
@dev constructor
@param _name token name
@param _symbol token symbol
@param _decimals decimal points, for display purposes
*/
function ERC20Token(string _name, string _symbol, uint8 _decimals) {
require(bytes(_name).length > 0 && bytes(_symbol).length > 0); // validate input
name = _name;
symbol = _symbol;
decimals = _decimals;
}
/**
@dev send coins
throws on any error rather then return a false flag to minimize user errors
@param _to target address
@param _value transfer amount
@return true if the transfer was successful, false if it wasn't
*/
function transfer(address _to, uint256 _value)
public
validAddress(_to)
returns (bool success)
{
balanceOf[msg.sender] = safeSub(balanceOf[msg.sender], _value);
balanceOf[_to] = safeAdd(balanceOf[_to], _value);
Transfer(msg.sender, _to, _value);
return true;
}
/**
@dev an account/contract attempts to get the coins
throws on any error rather then return a false flag to minimize user errors
@param _from source address
@param _to target address
@param _value transfer amount
@return true if the transfer was successful, false if it wasn't
*/
function transferFrom(address _from, address _to, uint256 _value)
public
validAddress(_from)
validAddress(_to)
returns (bool success)
{
allowance[_from][msg.sender] = safeSub(allowance[_from][msg.sender], _value);
balanceOf[_from] = safeSub(balanceOf[_from], _value);
balanceOf[_to] = safeAdd(balanceOf[_to], _value);
Transfer(_from, _to, _value);
return true;
}
/**
@dev allow another account/contract to spend some tokens on your behalf
throws on any error rather then return a false flag to minimize user errors
also, to minimize the risk of the approve/transferFrom attack vector
(see https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/), approve has to be called twice
in 2 separate transactions - once to change the allowance to 0 and secondly to change it to the new allowance value
@param _spender approved address
@param _value allowance amount
@return true if the approval was successful, false if it wasn't
*/
function approve(address _spender, uint256 _value)
public
validAddress(_spender)
returns (bool success)
{
// if the allowance isn't 0, it can only be updated to 0 to prevent an allowance change immediately after withdrawal
require(_value == 0 || allowance[msg.sender][_spender] == 0);
allowance[msg.sender][_spender] = _value;
Approval(msg.sender, _spender, _value);
return true;
}
}
/*
Owned contract interface
*/
contract IOwned {
// this function isn't abstract since the compiler emits automatically generated getter functions as external
function owner() public constant returns (address) { owner; }
function transferOwnership(address _newOwner) public;
function acceptOwnership() public;
}
/*
Provides support and utilities for contract ownership
*/
contract Owned is IOwned {
address public owner;
address public newOwner;
event OwnerUpdate(address _prevOwner, address _newOwner);
/**
@dev constructor
*/
function Owned() {
owner = msg.sender;
}
// allows execution by the owner only
modifier ownerOnly {
assert(msg.sender == owner);
_;
}
/**
@dev allows transferring the contract ownership
the new owner still needs to accept the transfer
can only be called by the contract owner
@param _newOwner new contract owner
*/
function transferOwnership(address _newOwner) public ownerOnly {
require(_newOwner != owner);
newOwner = _newOwner;
}
/**
@dev used by a new owner to accept an ownership transfer
*/
function acceptOwnership() public {
require(msg.sender == newOwner);
OwnerUpdate(owner, newOwner);
owner = newOwner;
newOwner = 0x0;
}
}
/*
Token Holder interface
*/
contract ITokenHolder is IOwned {
function withdrawTokens(IERC20Token _token, address _to, uint256 _amount) public;
}
/*
We consider every contract to be a 'token holder' since it's currently not possible
for a contract to deny receiving tokens.
The TokenHolder's contract sole purpose is to provide a safety mechanism that allows
the owner to send tokens that were sent to the contract by mistake back to their sender.
*/
contract TokenHolder is ITokenHolder, Owned, Utils {
/**
@dev constructor
*/
function TokenHolder() {
}
/**
@dev withdraws tokens held by the contract and sends them to an account
can only be called by the owner
@param _token ERC20 token contract address
@param _to account to receive the new amount
@param _amount amount to withdraw
*/
function withdrawTokens(IERC20Token _token, address _to, uint256 _amount)
public
ownerOnly
validAddress(_token)
validAddress(_to)
notThis(_to)
{
assert(_token.transfer(_to, _amount));
}
}
contract ENJToken is ERC20Token, TokenHolder {
///////////////////////////////////////// VARIABLE INITIALIZATION /////////////////////////////////////////
uint256 constant public ENJ_UNIT = 10 ** 18;
uint256 public totalSupply = 1 * (10**9) * ENJ_UNIT;
// Constants
uint256 constant public maxPresaleSupply = 600 * 10**6 * ENJ_UNIT; // Total presale supply at max bonus
uint256 constant public minCrowdsaleAllocation = 200 * 10**6 * ENJ_UNIT; // Min amount for crowdsale
uint256 constant public incentivisationAllocation = 100 * 10**6 * ENJ_UNIT; // Incentivisation Allocation
uint256 constant public advisorsAllocation = 26 * 10**6 * ENJ_UNIT; // Advisors Allocation
uint256 constant public enjinTeamAllocation = 74 * 10**6 * ENJ_UNIT; // Enjin Team allocation
address public crowdFundAddress; // Address of the crowdfund
address public advisorAddress; // Enjin advisor's address
address public incentivisationFundAddress; // Address that holds the incentivization funds
address public enjinTeamAddress; // Enjin Team address
// Variables
uint256 public totalAllocatedToAdvisors = 0; // Counter to keep track of advisor token allocation
uint256 public totalAllocatedToTeam = 0; // Counter to keep track of team token allocation
uint256 public totalAllocated = 0; // Counter to keep track of overall token allocation
uint256 constant public endTime = 1509494340; // 10/31/2017 @ 11:59pm (UTC) crowdsale end time (in seconds)
bool internal isReleasedToPublic = false; // Flag to allow transfer/transferFrom before the end of the crowdfund
uint256 internal teamTranchesReleased = 0; // Track how many tranches (allocations of 12.5% team tokens) have been released
uint256 internal maxTeamTranches = 8; // The number of tranches allowed to the team until depleted
///////////////////////////////////////// MODIFIERS /////////////////////////////////////////
// Enjin Team timelock
modifier safeTimelock() {
require(now >= endTime + 6 * 4 weeks);
_;
}
// Advisor Team timelock
modifier advisorTimelock() {
require(now >= endTime + 2 * 4 weeks);
_;
}
// Function only accessible by the Crowdfund contract
modifier crowdfundOnly() {
require(msg.sender == crowdFundAddress);
_;
}
///////////////////////////////////////// CONSTRUCTOR /////////////////////////////////////////
/**
@dev constructor
@param _crowdFundAddress Crowdfund address
@param _advisorAddress Advisor address
*/
function ENJToken(address _crowdFundAddress, address _advisorAddress, address _incentivisationFundAddress, address _enjinTeamAddress)
ERC20Token("Enjin Coin", "ENJ", 18)
{
crowdFundAddress = _crowdFundAddress;
advisorAddress = _advisorAddress;
enjinTeamAddress = _enjinTeamAddress;
incentivisationFundAddress = _incentivisationFundAddress;
balanceOf[_crowdFundAddress] = minCrowdsaleAllocation + maxPresaleSupply; // Total presale + crowdfund tokens
balanceOf[_incentivisationFundAddress] = incentivisationAllocation; // 10% Allocated for Marketing and Incentivisation
totalAllocated += incentivisationAllocation; // Add to total Allocated funds
}
///////////////////////////////////////// ERC20 OVERRIDE /////////////////////////////////////////
/**
@dev send coins
throws on any error rather then return a false flag to minimize user errors
in addition to the standard checks, the function throws if transfers are disabled
@param _to target address
@param _value transfer amount
@return true if the transfer was successful, throws if it wasn't
*/
function transfer(address _to, uint256 _value) public returns (bool success) {
if (isTransferAllowed() == true || msg.sender == crowdFundAddress || msg.sender == incentivisationFundAddress) {
assert(super.transfer(_to, _value));
return true;
}
revert();
}
/**
@dev an account/contract attempts to get the coins
throws on any error rather then return a false flag to minimize user errors
in addition to the standard checks, the function throws if transfers are disabled
@param _from source address
@param _to target address
@param _value transfer amount
@return true if the transfer was successful, throws if it wasn't
*/
function transferFrom(address _from, address _to, uint256 _value) public returns (bool success) {
if (isTransferAllowed() == true || msg.sender == crowdFundAddress || msg.sender == incentivisationFundAddress) {
assert(super.transferFrom(_from, _to, _value));
return true;
}
revert();
}
///////////////////////////////////////// ALLOCATION FUNCTIONS /////////////////////////////////////////
/**
@dev Release one single tranche of the Enjin Team Token allocation
throws if before timelock (6 months) ends and if not initiated by the owner of the contract
returns true if valid
Schedule goes as follows:
3 months: 12.5% (this tranche can only be released after the initial 6 months has passed)
6 months: 12.5%
9 months: 12.5%
12 months: 12.5%
15 months: 12.5%
18 months: 12.5%
21 months: 12.5%
24 months: 12.5%
@return true if successful, throws if not
*/
function releaseEnjinTeamTokens() safeTimelock ownerOnly returns(bool success) {
require(totalAllocatedToTeam < enjinTeamAllocation);
uint256 enjinTeamAlloc = enjinTeamAllocation / 1000;
uint256 currentTranche = uint256(now - endTime) / 12 weeks; // "months" after crowdsale end time (division floored)
if(teamTranchesReleased < maxTeamTranches && currentTranche > teamTranchesReleased) {
teamTranchesReleased++;
uint256 amount = safeMul(enjinTeamAlloc, 125);
balanceOf[enjinTeamAddress] = safeAdd(balanceOf[enjinTeamAddress], amount);
Transfer(0x0, enjinTeamAddress, amount);
totalAllocated = safeAdd(totalAllocated, amount);
totalAllocatedToTeam = safeAdd(totalAllocatedToTeam, amount);
return true;
}
revert();
}
/**
@dev release Advisors Token allocation
throws if before timelock (2 months) ends or if no initiated by the advisors address
or if there is no more allocation to give out
returns true if valid
@return true if successful, throws if not
*/
function releaseAdvisorTokens() advisorTimelock ownerOnly returns(bool success) {
require(totalAllocatedToAdvisors == 0);
balanceOf[advisorAddress] = safeAdd(balanceOf[advisorAddress], advisorsAllocation);
totalAllocated = safeAdd(totalAllocated, advisorsAllocation);
totalAllocatedToAdvisors = advisorsAllocation;
Transfer(0x0, advisorAddress, advisorsAllocation);
return true;
}
/**
@dev Retrieve unsold tokens from the crowdfund
throws if before timelock (6 months from end of Crowdfund) ends and if no initiated by the owner of the contract
returns true if valid
@return true if successful, throws if not
*/
function retrieveUnsoldTokens() safeTimelock ownerOnly returns(bool success) {
uint256 amountOfTokens = balanceOf[crowdFundAddress];
balanceOf[crowdFundAddress] = 0;
balanceOf[incentivisationFundAddress] = safeAdd(balanceOf[incentivisationFundAddress], amountOfTokens);
totalAllocated = safeAdd(totalAllocated, amountOfTokens);
Transfer(crowdFundAddress, incentivisationFundAddress, amountOfTokens);
return true;
}
/**
@dev Keep track of token allocations
can only be called by the crowdfund contract
*/
function addToAllocation(uint256 _amount) crowdfundOnly {
totalAllocated = safeAdd(totalAllocated, _amount);
}
/**
@dev Function to allow transfers
can only be called by the owner of the contract
Transfers will be allowed regardless after the crowdfund end time.
*/
function allowTransfers() ownerOnly {
isReleasedToPublic = true;
}
/**
@dev User transfers are allowed/rejected
Transfers are forbidden before the end of the crowdfund
*/
function isTransferAllowed() internal constant returns(bool) {
if (now > endTime || isReleasedToPublic == true) {
return true;
}
return false;
}
}File 17 of 30: UniswapV3Pool
// SPDX-License-Identifier: BUSL-1.1
pragma solidity =0.7.6;
import './interfaces/IUniswapV3Pool.sol';
import './NoDelegateCall.sol';
import './libraries/LowGasSafeMath.sol';
import './libraries/SafeCast.sol';
import './libraries/Tick.sol';
import './libraries/TickBitmap.sol';
import './libraries/Position.sol';
import './libraries/Oracle.sol';
import './libraries/FullMath.sol';
import './libraries/FixedPoint128.sol';
import './libraries/TransferHelper.sol';
import './libraries/TickMath.sol';
import './libraries/LiquidityMath.sol';
import './libraries/SqrtPriceMath.sol';
import './libraries/SwapMath.sol';
import './interfaces/IUniswapV3PoolDeployer.sol';
import './interfaces/IUniswapV3Factory.sol';
import './interfaces/IERC20Minimal.sol';
import './interfaces/callback/IUniswapV3MintCallback.sol';
import './interfaces/callback/IUniswapV3SwapCallback.sol';
import './interfaces/callback/IUniswapV3FlashCallback.sol';
contract UniswapV3Pool is IUniswapV3Pool, NoDelegateCall {
using LowGasSafeMath for uint256;
using LowGasSafeMath for int256;
using SafeCast for uint256;
using SafeCast for int256;
using Tick for mapping(int24 => Tick.Info);
using TickBitmap for mapping(int16 => uint256);
using Position for mapping(bytes32 => Position.Info);
using Position for Position.Info;
using Oracle for Oracle.Observation[65535];
/// @inheritdoc IUniswapV3PoolImmutables
address public immutable override factory;
/// @inheritdoc IUniswapV3PoolImmutables
address public immutable override token0;
/// @inheritdoc IUniswapV3PoolImmutables
address public immutable override token1;
/// @inheritdoc IUniswapV3PoolImmutables
uint24 public immutable override fee;
/// @inheritdoc IUniswapV3PoolImmutables
int24 public immutable override tickSpacing;
/// @inheritdoc IUniswapV3PoolImmutables
uint128 public immutable override maxLiquidityPerTick;
struct Slot0 {
// the current price
uint160 sqrtPriceX96;
// the current tick
int24 tick;
// the most-recently updated index of the observations array
uint16 observationIndex;
// the current maximum number of observations that are being stored
uint16 observationCardinality;
// the next maximum number of observations to store, triggered in observations.write
uint16 observationCardinalityNext;
// the current protocol fee as a percentage of the swap fee taken on withdrawal
// represented as an integer denominator (1/x)%
uint8 feeProtocol;
// whether the pool is locked
bool unlocked;
}
/// @inheritdoc IUniswapV3PoolState
Slot0 public override slot0;
/// @inheritdoc IUniswapV3PoolState
uint256 public override feeGrowthGlobal0X128;
/// @inheritdoc IUniswapV3PoolState
uint256 public override feeGrowthGlobal1X128;
// accumulated protocol fees in token0/token1 units
struct ProtocolFees {
uint128 token0;
uint128 token1;
}
/// @inheritdoc IUniswapV3PoolState
ProtocolFees public override protocolFees;
/// @inheritdoc IUniswapV3PoolState
uint128 public override liquidity;
/// @inheritdoc IUniswapV3PoolState
mapping(int24 => Tick.Info) public override ticks;
/// @inheritdoc IUniswapV3PoolState
mapping(int16 => uint256) public override tickBitmap;
/// @inheritdoc IUniswapV3PoolState
mapping(bytes32 => Position.Info) public override positions;
/// @inheritdoc IUniswapV3PoolState
Oracle.Observation[65535] public override observations;
/// @dev Mutually exclusive reentrancy protection into the pool to/from a method. This method also prevents entrance
/// to a function before the pool is initialized. The reentrancy guard is required throughout the contract because
/// we use balance checks to determine the payment status of interactions such as mint, swap and flash.
modifier lock() {
require(slot0.unlocked, 'LOK');
slot0.unlocked = false;
_;
slot0.unlocked = true;
}
/// @dev Prevents calling a function from anyone except the address returned by IUniswapV3Factory#owner()
modifier onlyFactoryOwner() {
require(msg.sender == IUniswapV3Factory(factory).owner());
_;
}
constructor() {
int24 _tickSpacing;
(factory, token0, token1, fee, _tickSpacing) = IUniswapV3PoolDeployer(msg.sender).parameters();
tickSpacing = _tickSpacing;
maxLiquidityPerTick = Tick.tickSpacingToMaxLiquidityPerTick(_tickSpacing);
}
/// @dev Common checks for valid tick inputs.
function checkTicks(int24 tickLower, int24 tickUpper) private pure {
require(tickLower < tickUpper, 'TLU');
require(tickLower >= TickMath.MIN_TICK, 'TLM');
require(tickUpper <= TickMath.MAX_TICK, 'TUM');
}
/// @dev Returns the block timestamp truncated to 32 bits, i.e. mod 2**32. This method is overridden in tests.
function _blockTimestamp() internal view virtual returns (uint32) {
return uint32(block.timestamp); // truncation is desired
}
/// @dev Get the pool's balance of token0
/// @dev This function is gas optimized to avoid a redundant extcodesize check in addition to the returndatasize
/// check
function balance0() private view returns (uint256) {
(bool success, bytes memory data) =
token0.staticcall(abi.encodeWithSelector(IERC20Minimal.balanceOf.selector, address(this)));
require(success && data.length >= 32);
return abi.decode(data, (uint256));
}
/// @dev Get the pool's balance of token1
/// @dev This function is gas optimized to avoid a redundant extcodesize check in addition to the returndatasize
/// check
function balance1() private view returns (uint256) {
(bool success, bytes memory data) =
token1.staticcall(abi.encodeWithSelector(IERC20Minimal.balanceOf.selector, address(this)));
require(success && data.length >= 32);
return abi.decode(data, (uint256));
}
/// @inheritdoc IUniswapV3PoolDerivedState
function snapshotCumulativesInside(int24 tickLower, int24 tickUpper)
external
view
override
noDelegateCall
returns (
int56 tickCumulativeInside,
uint160 secondsPerLiquidityInsideX128,
uint32 secondsInside
)
{
checkTicks(tickLower, tickUpper);
int56 tickCumulativeLower;
int56 tickCumulativeUpper;
uint160 secondsPerLiquidityOutsideLowerX128;
uint160 secondsPerLiquidityOutsideUpperX128;
uint32 secondsOutsideLower;
uint32 secondsOutsideUpper;
{
Tick.Info storage lower = ticks[tickLower];
Tick.Info storage upper = ticks[tickUpper];
bool initializedLower;
(tickCumulativeLower, secondsPerLiquidityOutsideLowerX128, secondsOutsideLower, initializedLower) = (
lower.tickCumulativeOutside,
lower.secondsPerLiquidityOutsideX128,
lower.secondsOutside,
lower.initialized
);
require(initializedLower);
bool initializedUpper;
(tickCumulativeUpper, secondsPerLiquidityOutsideUpperX128, secondsOutsideUpper, initializedUpper) = (
upper.tickCumulativeOutside,
upper.secondsPerLiquidityOutsideX128,
upper.secondsOutside,
upper.initialized
);
require(initializedUpper);
}
Slot0 memory _slot0 = slot0;
if (_slot0.tick < tickLower) {
return (
tickCumulativeLower - tickCumulativeUpper,
secondsPerLiquidityOutsideLowerX128 - secondsPerLiquidityOutsideUpperX128,
secondsOutsideLower - secondsOutsideUpper
);
} else if (_slot0.tick < tickUpper) {
uint32 time = _blockTimestamp();
(int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) =
observations.observeSingle(
time,
0,
_slot0.tick,
_slot0.observationIndex,
liquidity,
_slot0.observationCardinality
);
return (
tickCumulative - tickCumulativeLower - tickCumulativeUpper,
secondsPerLiquidityCumulativeX128 -
secondsPerLiquidityOutsideLowerX128 -
secondsPerLiquidityOutsideUpperX128,
time - secondsOutsideLower - secondsOutsideUpper
);
} else {
return (
tickCumulativeUpper - tickCumulativeLower,
secondsPerLiquidityOutsideUpperX128 - secondsPerLiquidityOutsideLowerX128,
secondsOutsideUpper - secondsOutsideLower
);
}
}
/// @inheritdoc IUniswapV3PoolDerivedState
function observe(uint32[] calldata secondsAgos)
external
view
override
noDelegateCall
returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s)
{
return
observations.observe(
_blockTimestamp(),
secondsAgos,
slot0.tick,
slot0.observationIndex,
liquidity,
slot0.observationCardinality
);
}
/// @inheritdoc IUniswapV3PoolActions
function increaseObservationCardinalityNext(uint16 observationCardinalityNext)
external
override
lock
noDelegateCall
{
uint16 observationCardinalityNextOld = slot0.observationCardinalityNext; // for the event
uint16 observationCardinalityNextNew =
observations.grow(observationCardinalityNextOld, observationCardinalityNext);
slot0.observationCardinalityNext = observationCardinalityNextNew;
if (observationCardinalityNextOld != observationCardinalityNextNew)
emit IncreaseObservationCardinalityNext(observationCardinalityNextOld, observationCardinalityNextNew);
}
/// @inheritdoc IUniswapV3PoolActions
/// @dev not locked because it initializes unlocked
function initialize(uint160 sqrtPriceX96) external override {
require(slot0.sqrtPriceX96 == 0, 'AI');
int24 tick = TickMath.getTickAtSqrtRatio(sqrtPriceX96);
(uint16 cardinality, uint16 cardinalityNext) = observations.initialize(_blockTimestamp());
slot0 = Slot0({
sqrtPriceX96: sqrtPriceX96,
tick: tick,
observationIndex: 0,
observationCardinality: cardinality,
observationCardinalityNext: cardinalityNext,
feeProtocol: 0,
unlocked: true
});
emit Initialize(sqrtPriceX96, tick);
}
struct ModifyPositionParams {
// the address that owns the position
address owner;
// the lower and upper tick of the position
int24 tickLower;
int24 tickUpper;
// any change in liquidity
int128 liquidityDelta;
}
/// @dev Effect some changes to a position
/// @param params the position details and the change to the position's liquidity to effect
/// @return position a storage pointer referencing the position with the given owner and tick range
/// @return amount0 the amount of token0 owed to the pool, negative if the pool should pay the recipient
/// @return amount1 the amount of token1 owed to the pool, negative if the pool should pay the recipient
function _modifyPosition(ModifyPositionParams memory params)
private
noDelegateCall
returns (
Position.Info storage position,
int256 amount0,
int256 amount1
)
{
checkTicks(params.tickLower, params.tickUpper);
Slot0 memory _slot0 = slot0; // SLOAD for gas optimization
position = _updatePosition(
params.owner,
params.tickLower,
params.tickUpper,
params.liquidityDelta,
_slot0.tick
);
if (params.liquidityDelta != 0) {
if (_slot0.tick < params.tickLower) {
// current tick is below the passed range; liquidity can only become in range by crossing from left to
// right, when we'll need _more_ token0 (it's becoming more valuable) so user must provide it
amount0 = SqrtPriceMath.getAmount0Delta(
TickMath.getSqrtRatioAtTick(params.tickLower),
TickMath.getSqrtRatioAtTick(params.tickUpper),
params.liquidityDelta
);
} else if (_slot0.tick < params.tickUpper) {
// current tick is inside the passed range
uint128 liquidityBefore = liquidity; // SLOAD for gas optimization
// write an oracle entry
(slot0.observationIndex, slot0.observationCardinality) = observations.write(
_slot0.observationIndex,
_blockTimestamp(),
_slot0.tick,
liquidityBefore,
_slot0.observationCardinality,
_slot0.observationCardinalityNext
);
amount0 = SqrtPriceMath.getAmount0Delta(
_slot0.sqrtPriceX96,
TickMath.getSqrtRatioAtTick(params.tickUpper),
params.liquidityDelta
);
amount1 = SqrtPriceMath.getAmount1Delta(
TickMath.getSqrtRatioAtTick(params.tickLower),
_slot0.sqrtPriceX96,
params.liquidityDelta
);
liquidity = LiquidityMath.addDelta(liquidityBefore, params.liquidityDelta);
} else {
// current tick is above the passed range; liquidity can only become in range by crossing from right to
// left, when we'll need _more_ token1 (it's becoming more valuable) so user must provide it
amount1 = SqrtPriceMath.getAmount1Delta(
TickMath.getSqrtRatioAtTick(params.tickLower),
TickMath.getSqrtRatioAtTick(params.tickUpper),
params.liquidityDelta
);
}
}
}
/// @dev Gets and updates a position with the given liquidity delta
/// @param owner the owner of the position
/// @param tickLower the lower tick of the position's tick range
/// @param tickUpper the upper tick of the position's tick range
/// @param tick the current tick, passed to avoid sloads
function _updatePosition(
address owner,
int24 tickLower,
int24 tickUpper,
int128 liquidityDelta,
int24 tick
) private returns (Position.Info storage position) {
position = positions.get(owner, tickLower, tickUpper);
uint256 _feeGrowthGlobal0X128 = feeGrowthGlobal0X128; // SLOAD for gas optimization
uint256 _feeGrowthGlobal1X128 = feeGrowthGlobal1X128; // SLOAD for gas optimization
// if we need to update the ticks, do it
bool flippedLower;
bool flippedUpper;
if (liquidityDelta != 0) {
uint32 time = _blockTimestamp();
(int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) =
observations.observeSingle(
time,
0,
slot0.tick,
slot0.observationIndex,
liquidity,
slot0.observationCardinality
);
flippedLower = ticks.update(
tickLower,
tick,
liquidityDelta,
_feeGrowthGlobal0X128,
_feeGrowthGlobal1X128,
secondsPerLiquidityCumulativeX128,
tickCumulative,
time,
false,
maxLiquidityPerTick
);
flippedUpper = ticks.update(
tickUpper,
tick,
liquidityDelta,
_feeGrowthGlobal0X128,
_feeGrowthGlobal1X128,
secondsPerLiquidityCumulativeX128,
tickCumulative,
time,
true,
maxLiquidityPerTick
);
if (flippedLower) {
tickBitmap.flipTick(tickLower, tickSpacing);
}
if (flippedUpper) {
tickBitmap.flipTick(tickUpper, tickSpacing);
}
}
(uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128) =
ticks.getFeeGrowthInside(tickLower, tickUpper, tick, _feeGrowthGlobal0X128, _feeGrowthGlobal1X128);
position.update(liquidityDelta, feeGrowthInside0X128, feeGrowthInside1X128);
// clear any tick data that is no longer needed
if (liquidityDelta < 0) {
if (flippedLower) {
ticks.clear(tickLower);
}
if (flippedUpper) {
ticks.clear(tickUpper);
}
}
}
/// @inheritdoc IUniswapV3PoolActions
/// @dev noDelegateCall is applied indirectly via _modifyPosition
function mint(
address recipient,
int24 tickLower,
int24 tickUpper,
uint128 amount,
bytes calldata data
) external override lock returns (uint256 amount0, uint256 amount1) {
require(amount > 0);
(, int256 amount0Int, int256 amount1Int) =
_modifyPosition(
ModifyPositionParams({
owner: recipient,
tickLower: tickLower,
tickUpper: tickUpper,
liquidityDelta: int256(amount).toInt128()
})
);
amount0 = uint256(amount0Int);
amount1 = uint256(amount1Int);
uint256 balance0Before;
uint256 balance1Before;
if (amount0 > 0) balance0Before = balance0();
if (amount1 > 0) balance1Before = balance1();
IUniswapV3MintCallback(msg.sender).uniswapV3MintCallback(amount0, amount1, data);
if (amount0 > 0) require(balance0Before.add(amount0) <= balance0(), 'M0');
if (amount1 > 0) require(balance1Before.add(amount1) <= balance1(), 'M1');
emit Mint(msg.sender, recipient, tickLower, tickUpper, amount, amount0, amount1);
}
/// @inheritdoc IUniswapV3PoolActions
function collect(
address recipient,
int24 tickLower,
int24 tickUpper,
uint128 amount0Requested,
uint128 amount1Requested
) external override lock returns (uint128 amount0, uint128 amount1) {
// we don't need to checkTicks here, because invalid positions will never have non-zero tokensOwed{0,1}
Position.Info storage position = positions.get(msg.sender, tickLower, tickUpper);
amount0 = amount0Requested > position.tokensOwed0 ? position.tokensOwed0 : amount0Requested;
amount1 = amount1Requested > position.tokensOwed1 ? position.tokensOwed1 : amount1Requested;
if (amount0 > 0) {
position.tokensOwed0 -= amount0;
TransferHelper.safeTransfer(token0, recipient, amount0);
}
if (amount1 > 0) {
position.tokensOwed1 -= amount1;
TransferHelper.safeTransfer(token1, recipient, amount1);
}
emit Collect(msg.sender, recipient, tickLower, tickUpper, amount0, amount1);
}
/// @inheritdoc IUniswapV3PoolActions
/// @dev noDelegateCall is applied indirectly via _modifyPosition
function burn(
int24 tickLower,
int24 tickUpper,
uint128 amount
) external override lock returns (uint256 amount0, uint256 amount1) {
(Position.Info storage position, int256 amount0Int, int256 amount1Int) =
_modifyPosition(
ModifyPositionParams({
owner: msg.sender,
tickLower: tickLower,
tickUpper: tickUpper,
liquidityDelta: -int256(amount).toInt128()
})
);
amount0 = uint256(-amount0Int);
amount1 = uint256(-amount1Int);
if (amount0 > 0 || amount1 > 0) {
(position.tokensOwed0, position.tokensOwed1) = (
position.tokensOwed0 + uint128(amount0),
position.tokensOwed1 + uint128(amount1)
);
}
emit Burn(msg.sender, tickLower, tickUpper, amount, amount0, amount1);
}
struct SwapCache {
// the protocol fee for the input token
uint8 feeProtocol;
// liquidity at the beginning of the swap
uint128 liquidityStart;
// the timestamp of the current block
uint32 blockTimestamp;
// the current value of the tick accumulator, computed only if we cross an initialized tick
int56 tickCumulative;
// the current value of seconds per liquidity accumulator, computed only if we cross an initialized tick
uint160 secondsPerLiquidityCumulativeX128;
// whether we've computed and cached the above two accumulators
bool computedLatestObservation;
}
// the top level state of the swap, the results of which are recorded in storage at the end
struct SwapState {
// the amount remaining to be swapped in/out of the input/output asset
int256 amountSpecifiedRemaining;
// the amount already swapped out/in of the output/input asset
int256 amountCalculated;
// current sqrt(price)
uint160 sqrtPriceX96;
// the tick associated with the current price
int24 tick;
// the global fee growth of the input token
uint256 feeGrowthGlobalX128;
// amount of input token paid as protocol fee
uint128 protocolFee;
// the current liquidity in range
uint128 liquidity;
}
struct StepComputations {
// the price at the beginning of the step
uint160 sqrtPriceStartX96;
// the next tick to swap to from the current tick in the swap direction
int24 tickNext;
// whether tickNext is initialized or not
bool initialized;
// sqrt(price) for the next tick (1/0)
uint160 sqrtPriceNextX96;
// how much is being swapped in in this step
uint256 amountIn;
// how much is being swapped out
uint256 amountOut;
// how much fee is being paid in
uint256 feeAmount;
}
/// @inheritdoc IUniswapV3PoolActions
function swap(
address recipient,
bool zeroForOne,
int256 amountSpecified,
uint160 sqrtPriceLimitX96,
bytes calldata data
) external override noDelegateCall returns (int256 amount0, int256 amount1) {
require(amountSpecified != 0, 'AS');
Slot0 memory slot0Start = slot0;
require(slot0Start.unlocked, 'LOK');
require(
zeroForOne
? sqrtPriceLimitX96 < slot0Start.sqrtPriceX96 && sqrtPriceLimitX96 > TickMath.MIN_SQRT_RATIO
: sqrtPriceLimitX96 > slot0Start.sqrtPriceX96 && sqrtPriceLimitX96 < TickMath.MAX_SQRT_RATIO,
'SPL'
);
slot0.unlocked = false;
SwapCache memory cache =
SwapCache({
liquidityStart: liquidity,
blockTimestamp: _blockTimestamp(),
feeProtocol: zeroForOne ? (slot0Start.feeProtocol % 16) : (slot0Start.feeProtocol >> 4),
secondsPerLiquidityCumulativeX128: 0,
tickCumulative: 0,
computedLatestObservation: false
});
bool exactInput = amountSpecified > 0;
SwapState memory state =
SwapState({
amountSpecifiedRemaining: amountSpecified,
amountCalculated: 0,
sqrtPriceX96: slot0Start.sqrtPriceX96,
tick: slot0Start.tick,
feeGrowthGlobalX128: zeroForOne ? feeGrowthGlobal0X128 : feeGrowthGlobal1X128,
protocolFee: 0,
liquidity: cache.liquidityStart
});
// continue swapping as long as we haven't used the entire input/output and haven't reached the price limit
while (state.amountSpecifiedRemaining != 0 && state.sqrtPriceX96 != sqrtPriceLimitX96) {
StepComputations memory step;
step.sqrtPriceStartX96 = state.sqrtPriceX96;
(step.tickNext, step.initialized) = tickBitmap.nextInitializedTickWithinOneWord(
state.tick,
tickSpacing,
zeroForOne
);
// ensure that we do not overshoot the min/max tick, as the tick bitmap is not aware of these bounds
if (step.tickNext < TickMath.MIN_TICK) {
step.tickNext = TickMath.MIN_TICK;
} else if (step.tickNext > TickMath.MAX_TICK) {
step.tickNext = TickMath.MAX_TICK;
}
// get the price for the next tick
step.sqrtPriceNextX96 = TickMath.getSqrtRatioAtTick(step.tickNext);
// compute values to swap to the target tick, price limit, or point where input/output amount is exhausted
(state.sqrtPriceX96, step.amountIn, step.amountOut, step.feeAmount) = SwapMath.computeSwapStep(
state.sqrtPriceX96,
(zeroForOne ? step.sqrtPriceNextX96 < sqrtPriceLimitX96 : step.sqrtPriceNextX96 > sqrtPriceLimitX96)
? sqrtPriceLimitX96
: step.sqrtPriceNextX96,
state.liquidity,
state.amountSpecifiedRemaining,
fee
);
if (exactInput) {
state.amountSpecifiedRemaining -= (step.amountIn + step.feeAmount).toInt256();
state.amountCalculated = state.amountCalculated.sub(step.amountOut.toInt256());
} else {
state.amountSpecifiedRemaining += step.amountOut.toInt256();
state.amountCalculated = state.amountCalculated.add((step.amountIn + step.feeAmount).toInt256());
}
// if the protocol fee is on, calculate how much is owed, decrement feeAmount, and increment protocolFee
if (cache.feeProtocol > 0) {
uint256 delta = step.feeAmount / cache.feeProtocol;
step.feeAmount -= delta;
state.protocolFee += uint128(delta);
}
// update global fee tracker
if (state.liquidity > 0)
state.feeGrowthGlobalX128 += FullMath.mulDiv(step.feeAmount, FixedPoint128.Q128, state.liquidity);
// shift tick if we reached the next price
if (state.sqrtPriceX96 == step.sqrtPriceNextX96) {
// if the tick is initialized, run the tick transition
if (step.initialized) {
// check for the placeholder value, which we replace with the actual value the first time the swap
// crosses an initialized tick
if (!cache.computedLatestObservation) {
(cache.tickCumulative, cache.secondsPerLiquidityCumulativeX128) = observations.observeSingle(
cache.blockTimestamp,
0,
slot0Start.tick,
slot0Start.observationIndex,
cache.liquidityStart,
slot0Start.observationCardinality
);
cache.computedLatestObservation = true;
}
int128 liquidityNet =
ticks.cross(
step.tickNext,
(zeroForOne ? state.feeGrowthGlobalX128 : feeGrowthGlobal0X128),
(zeroForOne ? feeGrowthGlobal1X128 : state.feeGrowthGlobalX128),
cache.secondsPerLiquidityCumulativeX128,
cache.tickCumulative,
cache.blockTimestamp
);
// if we're moving leftward, we interpret liquidityNet as the opposite sign
// safe because liquidityNet cannot be type(int128).min
if (zeroForOne) liquidityNet = -liquidityNet;
state.liquidity = LiquidityMath.addDelta(state.liquidity, liquidityNet);
}
state.tick = zeroForOne ? step.tickNext - 1 : step.tickNext;
} else if (state.sqrtPriceX96 != step.sqrtPriceStartX96) {
// recompute unless we're on a lower tick boundary (i.e. already transitioned ticks), and haven't moved
state.tick = TickMath.getTickAtSqrtRatio(state.sqrtPriceX96);
}
}
// update tick and write an oracle entry if the tick change
if (state.tick != slot0Start.tick) {
(uint16 observationIndex, uint16 observationCardinality) =
observations.write(
slot0Start.observationIndex,
cache.blockTimestamp,
slot0Start.tick,
cache.liquidityStart,
slot0Start.observationCardinality,
slot0Start.observationCardinalityNext
);
(slot0.sqrtPriceX96, slot0.tick, slot0.observationIndex, slot0.observationCardinality) = (
state.sqrtPriceX96,
state.tick,
observationIndex,
observationCardinality
);
} else {
// otherwise just update the price
slot0.sqrtPriceX96 = state.sqrtPriceX96;
}
// update liquidity if it changed
if (cache.liquidityStart != state.liquidity) liquidity = state.liquidity;
// update fee growth global and, if necessary, protocol fees
// overflow is acceptable, protocol has to withdraw before it hits type(uint128).max fees
if (zeroForOne) {
feeGrowthGlobal0X128 = state.feeGrowthGlobalX128;
if (state.protocolFee > 0) protocolFees.token0 += state.protocolFee;
} else {
feeGrowthGlobal1X128 = state.feeGrowthGlobalX128;
if (state.protocolFee > 0) protocolFees.token1 += state.protocolFee;
}
(amount0, amount1) = zeroForOne == exactInput
? (amountSpecified - state.amountSpecifiedRemaining, state.amountCalculated)
: (state.amountCalculated, amountSpecified - state.amountSpecifiedRemaining);
// do the transfers and collect payment
if (zeroForOne) {
if (amount1 < 0) TransferHelper.safeTransfer(token1, recipient, uint256(-amount1));
uint256 balance0Before = balance0();
IUniswapV3SwapCallback(msg.sender).uniswapV3SwapCallback(amount0, amount1, data);
require(balance0Before.add(uint256(amount0)) <= balance0(), 'IIA');
} else {
if (amount0 < 0) TransferHelper.safeTransfer(token0, recipient, uint256(-amount0));
uint256 balance1Before = balance1();
IUniswapV3SwapCallback(msg.sender).uniswapV3SwapCallback(amount0, amount1, data);
require(balance1Before.add(uint256(amount1)) <= balance1(), 'IIA');
}
emit Swap(msg.sender, recipient, amount0, amount1, state.sqrtPriceX96, state.liquidity, state.tick);
slot0.unlocked = true;
}
/// @inheritdoc IUniswapV3PoolActions
function flash(
address recipient,
uint256 amount0,
uint256 amount1,
bytes calldata data
) external override lock noDelegateCall {
uint128 _liquidity = liquidity;
require(_liquidity > 0, 'L');
uint256 fee0 = FullMath.mulDivRoundingUp(amount0, fee, 1e6);
uint256 fee1 = FullMath.mulDivRoundingUp(amount1, fee, 1e6);
uint256 balance0Before = balance0();
uint256 balance1Before = balance1();
if (amount0 > 0) TransferHelper.safeTransfer(token0, recipient, amount0);
if (amount1 > 0) TransferHelper.safeTransfer(token1, recipient, amount1);
IUniswapV3FlashCallback(msg.sender).uniswapV3FlashCallback(fee0, fee1, data);
uint256 balance0After = balance0();
uint256 balance1After = balance1();
require(balance0Before.add(fee0) <= balance0After, 'F0');
require(balance1Before.add(fee1) <= balance1After, 'F1');
// sub is safe because we know balanceAfter is gt balanceBefore by at least fee
uint256 paid0 = balance0After - balance0Before;
uint256 paid1 = balance1After - balance1Before;
if (paid0 > 0) {
uint8 feeProtocol0 = slot0.feeProtocol % 16;
uint256 fees0 = feeProtocol0 == 0 ? 0 : paid0 / feeProtocol0;
if (uint128(fees0) > 0) protocolFees.token0 += uint128(fees0);
feeGrowthGlobal0X128 += FullMath.mulDiv(paid0 - fees0, FixedPoint128.Q128, _liquidity);
}
if (paid1 > 0) {
uint8 feeProtocol1 = slot0.feeProtocol >> 4;
uint256 fees1 = feeProtocol1 == 0 ? 0 : paid1 / feeProtocol1;
if (uint128(fees1) > 0) protocolFees.token1 += uint128(fees1);
feeGrowthGlobal1X128 += FullMath.mulDiv(paid1 - fees1, FixedPoint128.Q128, _liquidity);
}
emit Flash(msg.sender, recipient, amount0, amount1, paid0, paid1);
}
/// @inheritdoc IUniswapV3PoolOwnerActions
function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external override lock onlyFactoryOwner {
require(
(feeProtocol0 == 0 || (feeProtocol0 >= 4 && feeProtocol0 <= 10)) &&
(feeProtocol1 == 0 || (feeProtocol1 >= 4 && feeProtocol1 <= 10))
);
uint8 feeProtocolOld = slot0.feeProtocol;
slot0.feeProtocol = feeProtocol0 + (feeProtocol1 << 4);
emit SetFeeProtocol(feeProtocolOld % 16, feeProtocolOld >> 4, feeProtocol0, feeProtocol1);
}
/// @inheritdoc IUniswapV3PoolOwnerActions
function collectProtocol(
address recipient,
uint128 amount0Requested,
uint128 amount1Requested
) external override lock onlyFactoryOwner returns (uint128 amount0, uint128 amount1) {
amount0 = amount0Requested > protocolFees.token0 ? protocolFees.token0 : amount0Requested;
amount1 = amount1Requested > protocolFees.token1 ? protocolFees.token1 : amount1Requested;
if (amount0 > 0) {
if (amount0 == protocolFees.token0) amount0--; // ensure that the slot is not cleared, for gas savings
protocolFees.token0 -= amount0;
TransferHelper.safeTransfer(token0, recipient, amount0);
}
if (amount1 > 0) {
if (amount1 == protocolFees.token1) amount1--; // ensure that the slot is not cleared, for gas savings
protocolFees.token1 -= amount1;
TransferHelper.safeTransfer(token1, recipient, amount1);
}
emit CollectProtocol(msg.sender, recipient, amount0, amount1);
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
import './pool/IUniswapV3PoolImmutables.sol';
import './pool/IUniswapV3PoolState.sol';
import './pool/IUniswapV3PoolDerivedState.sol';
import './pool/IUniswapV3PoolActions.sol';
import './pool/IUniswapV3PoolOwnerActions.sol';
import './pool/IUniswapV3PoolEvents.sol';
/// @title The interface for a Uniswap V3 Pool
/// @notice A Uniswap pool facilitates swapping and automated market making between any two assets that strictly conform
/// to the ERC20 specification
/// @dev The pool interface is broken up into many smaller pieces
interface IUniswapV3Pool is
IUniswapV3PoolImmutables,
IUniswapV3PoolState,
IUniswapV3PoolDerivedState,
IUniswapV3PoolActions,
IUniswapV3PoolOwnerActions,
IUniswapV3PoolEvents
{
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity =0.7.6;
/// @title Prevents delegatecall to a contract
/// @notice Base contract that provides a modifier for preventing delegatecall to methods in a child contract
abstract contract NoDelegateCall {
/// @dev The original address of this contract
address private immutable original;
constructor() {
// Immutables are computed in the init code of the contract, and then inlined into the deployed bytecode.
// In other words, this variable won't change when it's checked at runtime.
original = address(this);
}
/// @dev Private method is used instead of inlining into modifier because modifiers are copied into each method,
/// and the use of immutable means the address bytes are copied in every place the modifier is used.
function checkNotDelegateCall() private view {
require(address(this) == original);
}
/// @notice Prevents delegatecall into the modified method
modifier noDelegateCall() {
checkNotDelegateCall();
_;
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.0;
/// @title Optimized overflow and underflow safe math operations
/// @notice Contains methods for doing math operations that revert on overflow or underflow for minimal gas cost
library LowGasSafeMath {
/// @notice Returns x + y, reverts if sum overflows uint256
/// @param x The augend
/// @param y The addend
/// @return z The sum of x and y
function add(uint256 x, uint256 y) internal pure returns (uint256 z) {
require((z = x + y) >= x);
}
/// @notice Returns x - y, reverts if underflows
/// @param x The minuend
/// @param y The subtrahend
/// @return z The difference of x and y
function sub(uint256 x, uint256 y) internal pure returns (uint256 z) {
require((z = x - y) <= x);
}
/// @notice Returns x * y, reverts if overflows
/// @param x The multiplicand
/// @param y The multiplier
/// @return z The product of x and y
function mul(uint256 x, uint256 y) internal pure returns (uint256 z) {
require(x == 0 || (z = x * y) / x == y);
}
/// @notice Returns x + y, reverts if overflows or underflows
/// @param x The augend
/// @param y The addend
/// @return z The sum of x and y
function add(int256 x, int256 y) internal pure returns (int256 z) {
require((z = x + y) >= x == (y >= 0));
}
/// @notice Returns x - y, reverts if overflows or underflows
/// @param x The minuend
/// @param y The subtrahend
/// @return z The difference of x and y
function sub(int256 x, int256 y) internal pure returns (int256 z) {
require((z = x - y) <= x == (y >= 0));
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Safe casting methods
/// @notice Contains methods for safely casting between types
library SafeCast {
/// @notice Cast a uint256 to a uint160, revert on overflow
/// @param y The uint256 to be downcasted
/// @return z The downcasted integer, now type uint160
function toUint160(uint256 y) internal pure returns (uint160 z) {
require((z = uint160(y)) == y);
}
/// @notice Cast a int256 to a int128, revert on overflow or underflow
/// @param y The int256 to be downcasted
/// @return z The downcasted integer, now type int128
function toInt128(int256 y) internal pure returns (int128 z) {
require((z = int128(y)) == y);
}
/// @notice Cast a uint256 to a int256, revert on overflow
/// @param y The uint256 to be casted
/// @return z The casted integer, now type int256
function toInt256(uint256 y) internal pure returns (int256 z) {
require(y < 2**255);
z = int256(y);
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.5.0;
import './LowGasSafeMath.sol';
import './SafeCast.sol';
import './TickMath.sol';
import './LiquidityMath.sol';
/// @title Tick
/// @notice Contains functions for managing tick processes and relevant calculations
library Tick {
using LowGasSafeMath for int256;
using SafeCast for int256;
// info stored for each initialized individual tick
struct Info {
// the total position liquidity that references this tick
uint128 liquidityGross;
// amount of net liquidity added (subtracted) when tick is crossed from left to right (right to left),
int128 liquidityNet;
// fee growth per unit of liquidity on the _other_ side of this tick (relative to the current tick)
// only has relative meaning, not absolute — the value depends on when the tick is initialized
uint256 feeGrowthOutside0X128;
uint256 feeGrowthOutside1X128;
// the cumulative tick value on the other side of the tick
int56 tickCumulativeOutside;
// the seconds per unit of liquidity on the _other_ side of this tick (relative to the current tick)
// only has relative meaning, not absolute — the value depends on when the tick is initialized
uint160 secondsPerLiquidityOutsideX128;
// the seconds spent on the other side of the tick (relative to the current tick)
// only has relative meaning, not absolute — the value depends on when the tick is initialized
uint32 secondsOutside;
// true iff the tick is initialized, i.e. the value is exactly equivalent to the expression liquidityGross != 0
// these 8 bits are set to prevent fresh sstores when crossing newly initialized ticks
bool initialized;
}
/// @notice Derives max liquidity per tick from given tick spacing
/// @dev Executed within the pool constructor
/// @param tickSpacing The amount of required tick separation, realized in multiples of `tickSpacing`
/// e.g., a tickSpacing of 3 requires ticks to be initialized every 3rd tick i.e., ..., -6, -3, 0, 3, 6, ...
/// @return The max liquidity per tick
function tickSpacingToMaxLiquidityPerTick(int24 tickSpacing) internal pure returns (uint128) {
int24 minTick = (TickMath.MIN_TICK / tickSpacing) * tickSpacing;
int24 maxTick = (TickMath.MAX_TICK / tickSpacing) * tickSpacing;
uint24 numTicks = uint24((maxTick - minTick) / tickSpacing) + 1;
return type(uint128).max / numTicks;
}
/// @notice Retrieves fee growth data
/// @param self The mapping containing all tick information for initialized ticks
/// @param tickLower The lower tick boundary of the position
/// @param tickUpper The upper tick boundary of the position
/// @param tickCurrent The current tick
/// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
/// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
/// @return feeGrowthInside0X128 The all-time fee growth in token0, per unit of liquidity, inside the position's tick boundaries
/// @return feeGrowthInside1X128 The all-time fee growth in token1, per unit of liquidity, inside the position's tick boundaries
function getFeeGrowthInside(
mapping(int24 => Tick.Info) storage self,
int24 tickLower,
int24 tickUpper,
int24 tickCurrent,
uint256 feeGrowthGlobal0X128,
uint256 feeGrowthGlobal1X128
) internal view returns (uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128) {
Info storage lower = self[tickLower];
Info storage upper = self[tickUpper];
// calculate fee growth below
uint256 feeGrowthBelow0X128;
uint256 feeGrowthBelow1X128;
if (tickCurrent >= tickLower) {
feeGrowthBelow0X128 = lower.feeGrowthOutside0X128;
feeGrowthBelow1X128 = lower.feeGrowthOutside1X128;
} else {
feeGrowthBelow0X128 = feeGrowthGlobal0X128 - lower.feeGrowthOutside0X128;
feeGrowthBelow1X128 = feeGrowthGlobal1X128 - lower.feeGrowthOutside1X128;
}
// calculate fee growth above
uint256 feeGrowthAbove0X128;
uint256 feeGrowthAbove1X128;
if (tickCurrent < tickUpper) {
feeGrowthAbove0X128 = upper.feeGrowthOutside0X128;
feeGrowthAbove1X128 = upper.feeGrowthOutside1X128;
} else {
feeGrowthAbove0X128 = feeGrowthGlobal0X128 - upper.feeGrowthOutside0X128;
feeGrowthAbove1X128 = feeGrowthGlobal1X128 - upper.feeGrowthOutside1X128;
}
feeGrowthInside0X128 = feeGrowthGlobal0X128 - feeGrowthBelow0X128 - feeGrowthAbove0X128;
feeGrowthInside1X128 = feeGrowthGlobal1X128 - feeGrowthBelow1X128 - feeGrowthAbove1X128;
}
/// @notice Updates a tick and returns true if the tick was flipped from initialized to uninitialized, or vice versa
/// @param self The mapping containing all tick information for initialized ticks
/// @param tick The tick that will be updated
/// @param tickCurrent The current tick
/// @param liquidityDelta A new amount of liquidity to be added (subtracted) when tick is crossed from left to right (right to left)
/// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
/// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
/// @param secondsPerLiquidityCumulativeX128 The all-time seconds per max(1, liquidity) of the pool
/// @param time The current block timestamp cast to a uint32
/// @param upper true for updating a position's upper tick, or false for updating a position's lower tick
/// @param maxLiquidity The maximum liquidity allocation for a single tick
/// @return flipped Whether the tick was flipped from initialized to uninitialized, or vice versa
function update(
mapping(int24 => Tick.Info) storage self,
int24 tick,
int24 tickCurrent,
int128 liquidityDelta,
uint256 feeGrowthGlobal0X128,
uint256 feeGrowthGlobal1X128,
uint160 secondsPerLiquidityCumulativeX128,
int56 tickCumulative,
uint32 time,
bool upper,
uint128 maxLiquidity
) internal returns (bool flipped) {
Tick.Info storage info = self[tick];
uint128 liquidityGrossBefore = info.liquidityGross;
uint128 liquidityGrossAfter = LiquidityMath.addDelta(liquidityGrossBefore, liquidityDelta);
require(liquidityGrossAfter <= maxLiquidity, 'LO');
flipped = (liquidityGrossAfter == 0) != (liquidityGrossBefore == 0);
if (liquidityGrossBefore == 0) {
// by convention, we assume that all growth before a tick was initialized happened _below_ the tick
if (tick <= tickCurrent) {
info.feeGrowthOutside0X128 = feeGrowthGlobal0X128;
info.feeGrowthOutside1X128 = feeGrowthGlobal1X128;
info.secondsPerLiquidityOutsideX128 = secondsPerLiquidityCumulativeX128;
info.tickCumulativeOutside = tickCumulative;
info.secondsOutside = time;
}
info.initialized = true;
}
info.liquidityGross = liquidityGrossAfter;
// when the lower (upper) tick is crossed left to right (right to left), liquidity must be added (removed)
info.liquidityNet = upper
? int256(info.liquidityNet).sub(liquidityDelta).toInt128()
: int256(info.liquidityNet).add(liquidityDelta).toInt128();
}
/// @notice Clears tick data
/// @param self The mapping containing all initialized tick information for initialized ticks
/// @param tick The tick that will be cleared
function clear(mapping(int24 => Tick.Info) storage self, int24 tick) internal {
delete self[tick];
}
/// @notice Transitions to next tick as needed by price movement
/// @param self The mapping containing all tick information for initialized ticks
/// @param tick The destination tick of the transition
/// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
/// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
/// @param secondsPerLiquidityCumulativeX128 The current seconds per liquidity
/// @param time The current block.timestamp
/// @return liquidityNet The amount of liquidity added (subtracted) when tick is crossed from left to right (right to left)
function cross(
mapping(int24 => Tick.Info) storage self,
int24 tick,
uint256 feeGrowthGlobal0X128,
uint256 feeGrowthGlobal1X128,
uint160 secondsPerLiquidityCumulativeX128,
int56 tickCumulative,
uint32 time
) internal returns (int128 liquidityNet) {
Tick.Info storage info = self[tick];
info.feeGrowthOutside0X128 = feeGrowthGlobal0X128 - info.feeGrowthOutside0X128;
info.feeGrowthOutside1X128 = feeGrowthGlobal1X128 - info.feeGrowthOutside1X128;
info.secondsPerLiquidityOutsideX128 = secondsPerLiquidityCumulativeX128 - info.secondsPerLiquidityOutsideX128;
info.tickCumulativeOutside = tickCumulative - info.tickCumulativeOutside;
info.secondsOutside = time - info.secondsOutside;
liquidityNet = info.liquidityNet;
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.5.0;
import './BitMath.sol';
/// @title Packed tick initialized state library
/// @notice Stores a packed mapping of tick index to its initialized state
/// @dev The mapping uses int16 for keys since ticks are represented as int24 and there are 256 (2^8) values per word.
library TickBitmap {
/// @notice Computes the position in the mapping where the initialized bit for a tick lives
/// @param tick The tick for which to compute the position
/// @return wordPos The key in the mapping containing the word in which the bit is stored
/// @return bitPos The bit position in the word where the flag is stored
function position(int24 tick) private pure returns (int16 wordPos, uint8 bitPos) {
wordPos = int16(tick >> 8);
bitPos = uint8(tick % 256);
}
/// @notice Flips the initialized state for a given tick from false to true, or vice versa
/// @param self The mapping in which to flip the tick
/// @param tick The tick to flip
/// @param tickSpacing The spacing between usable ticks
function flipTick(
mapping(int16 => uint256) storage self,
int24 tick,
int24 tickSpacing
) internal {
require(tick % tickSpacing == 0); // ensure that the tick is spaced
(int16 wordPos, uint8 bitPos) = position(tick / tickSpacing);
uint256 mask = 1 << bitPos;
self[wordPos] ^= mask;
}
/// @notice Returns the next initialized tick contained in the same word (or adjacent word) as the tick that is either
/// to the left (less than or equal to) or right (greater than) of the given tick
/// @param self The mapping in which to compute the next initialized tick
/// @param tick The starting tick
/// @param tickSpacing The spacing between usable ticks
/// @param lte Whether to search for the next initialized tick to the left (less than or equal to the starting tick)
/// @return next The next initialized or uninitialized tick up to 256 ticks away from the current tick
/// @return initialized Whether the next tick is initialized, as the function only searches within up to 256 ticks
function nextInitializedTickWithinOneWord(
mapping(int16 => uint256) storage self,
int24 tick,
int24 tickSpacing,
bool lte
) internal view returns (int24 next, bool initialized) {
int24 compressed = tick / tickSpacing;
if (tick < 0 && tick % tickSpacing != 0) compressed--; // round towards negative infinity
if (lte) {
(int16 wordPos, uint8 bitPos) = position(compressed);
// all the 1s at or to the right of the current bitPos
uint256 mask = (1 << bitPos) - 1 + (1 << bitPos);
uint256 masked = self[wordPos] & mask;
// if there are no initialized ticks to the right of or at the current tick, return rightmost in the word
initialized = masked != 0;
// overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick
next = initialized
? (compressed - int24(bitPos - BitMath.mostSignificantBit(masked))) * tickSpacing
: (compressed - int24(bitPos)) * tickSpacing;
} else {
// start from the word of the next tick, since the current tick state doesn't matter
(int16 wordPos, uint8 bitPos) = position(compressed + 1);
// all the 1s at or to the left of the bitPos
uint256 mask = ~((1 << bitPos) - 1);
uint256 masked = self[wordPos] & mask;
// if there are no initialized ticks to the left of the current tick, return leftmost in the word
initialized = masked != 0;
// overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick
next = initialized
? (compressed + 1 + int24(BitMath.leastSignificantBit(masked) - bitPos)) * tickSpacing
: (compressed + 1 + int24(type(uint8).max - bitPos)) * tickSpacing;
}
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.5.0;
import './FullMath.sol';
import './FixedPoint128.sol';
import './LiquidityMath.sol';
/// @title Position
/// @notice Positions represent an owner address' liquidity between a lower and upper tick boundary
/// @dev Positions store additional state for tracking fees owed to the position
library Position {
// info stored for each user's position
struct Info {
// the amount of liquidity owned by this position
uint128 liquidity;
// fee growth per unit of liquidity as of the last update to liquidity or fees owed
uint256 feeGrowthInside0LastX128;
uint256 feeGrowthInside1LastX128;
// the fees owed to the position owner in token0/token1
uint128 tokensOwed0;
uint128 tokensOwed1;
}
/// @notice Returns the Info struct of a position, given an owner and position boundaries
/// @param self The mapping containing all user positions
/// @param owner The address of the position owner
/// @param tickLower The lower tick boundary of the position
/// @param tickUpper The upper tick boundary of the position
/// @return position The position info struct of the given owners' position
function get(
mapping(bytes32 => Info) storage self,
address owner,
int24 tickLower,
int24 tickUpper
) internal view returns (Position.Info storage position) {
position = self[keccak256(abi.encodePacked(owner, tickLower, tickUpper))];
}
/// @notice Credits accumulated fees to a user's position
/// @param self The individual position to update
/// @param liquidityDelta The change in pool liquidity as a result of the position update
/// @param feeGrowthInside0X128 The all-time fee growth in token0, per unit of liquidity, inside the position's tick boundaries
/// @param feeGrowthInside1X128 The all-time fee growth in token1, per unit of liquidity, inside the position's tick boundaries
function update(
Info storage self,
int128 liquidityDelta,
uint256 feeGrowthInside0X128,
uint256 feeGrowthInside1X128
) internal {
Info memory _self = self;
uint128 liquidityNext;
if (liquidityDelta == 0) {
require(_self.liquidity > 0, 'NP'); // disallow pokes for 0 liquidity positions
liquidityNext = _self.liquidity;
} else {
liquidityNext = LiquidityMath.addDelta(_self.liquidity, liquidityDelta);
}
// calculate accumulated fees
uint128 tokensOwed0 =
uint128(
FullMath.mulDiv(
feeGrowthInside0X128 - _self.feeGrowthInside0LastX128,
_self.liquidity,
FixedPoint128.Q128
)
);
uint128 tokensOwed1 =
uint128(
FullMath.mulDiv(
feeGrowthInside1X128 - _self.feeGrowthInside1LastX128,
_self.liquidity,
FixedPoint128.Q128
)
);
// update the position
if (liquidityDelta != 0) self.liquidity = liquidityNext;
self.feeGrowthInside0LastX128 = feeGrowthInside0X128;
self.feeGrowthInside1LastX128 = feeGrowthInside1X128;
if (tokensOwed0 > 0 || tokensOwed1 > 0) {
// overflow is acceptable, have to withdraw before you hit type(uint128).max fees
self.tokensOwed0 += tokensOwed0;
self.tokensOwed1 += tokensOwed1;
}
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.5.0;
/// @title Oracle
/// @notice Provides price and liquidity data useful for a wide variety of system designs
/// @dev Instances of stored oracle data, "observations", are collected in the oracle array
/// Every pool is initialized with an oracle array length of 1. Anyone can pay the SSTOREs to increase the
/// maximum length of the oracle array. New slots will be added when the array is fully populated.
/// Observations are overwritten when the full length of the oracle array is populated.
/// The most recent observation is available, independent of the length of the oracle array, by passing 0 to observe()
library Oracle {
struct Observation {
// the block timestamp of the observation
uint32 blockTimestamp;
// the tick accumulator, i.e. tick * time elapsed since the pool was first initialized
int56 tickCumulative;
// the seconds per liquidity, i.e. seconds elapsed / max(1, liquidity) since the pool was first initialized
uint160 secondsPerLiquidityCumulativeX128;
// whether or not the observation is initialized
bool initialized;
}
/// @notice Transforms a previous observation into a new observation, given the passage of time and the current tick and liquidity values
/// @dev blockTimestamp _must_ be chronologically equal to or greater than last.blockTimestamp, safe for 0 or 1 overflows
/// @param last The specified observation to be transformed
/// @param blockTimestamp The timestamp of the new observation
/// @param tick The active tick at the time of the new observation
/// @param liquidity The total in-range liquidity at the time of the new observation
/// @return Observation The newly populated observation
function transform(
Observation memory last,
uint32 blockTimestamp,
int24 tick,
uint128 liquidity
) private pure returns (Observation memory) {
uint32 delta = blockTimestamp - last.blockTimestamp;
return
Observation({
blockTimestamp: blockTimestamp,
tickCumulative: last.tickCumulative + int56(tick) * delta,
secondsPerLiquidityCumulativeX128: last.secondsPerLiquidityCumulativeX128 +
((uint160(delta) << 128) / (liquidity > 0 ? liquidity : 1)),
initialized: true
});
}
/// @notice Initialize the oracle array by writing the first slot. Called once for the lifecycle of the observations array
/// @param self The stored oracle array
/// @param time The time of the oracle initialization, via block.timestamp truncated to uint32
/// @return cardinality The number of populated elements in the oracle array
/// @return cardinalityNext The new length of the oracle array, independent of population
function initialize(Observation[65535] storage self, uint32 time)
internal
returns (uint16 cardinality, uint16 cardinalityNext)
{
self[0] = Observation({
blockTimestamp: time,
tickCumulative: 0,
secondsPerLiquidityCumulativeX128: 0,
initialized: true
});
return (1, 1);
}
/// @notice Writes an oracle observation to the array
/// @dev Writable at most once per block. Index represents the most recently written element. cardinality and index must be tracked externally.
/// If the index is at the end of the allowable array length (according to cardinality), and the next cardinality
/// is greater than the current one, cardinality may be increased. This restriction is created to preserve ordering.
/// @param self The stored oracle array
/// @param index The index of the observation that was most recently written to the observations array
/// @param blockTimestamp The timestamp of the new observation
/// @param tick The active tick at the time of the new observation
/// @param liquidity The total in-range liquidity at the time of the new observation
/// @param cardinality The number of populated elements in the oracle array
/// @param cardinalityNext The new length of the oracle array, independent of population
/// @return indexUpdated The new index of the most recently written element in the oracle array
/// @return cardinalityUpdated The new cardinality of the oracle array
function write(
Observation[65535] storage self,
uint16 index,
uint32 blockTimestamp,
int24 tick,
uint128 liquidity,
uint16 cardinality,
uint16 cardinalityNext
) internal returns (uint16 indexUpdated, uint16 cardinalityUpdated) {
Observation memory last = self[index];
// early return if we've already written an observation this block
if (last.blockTimestamp == blockTimestamp) return (index, cardinality);
// if the conditions are right, we can bump the cardinality
if (cardinalityNext > cardinality && index == (cardinality - 1)) {
cardinalityUpdated = cardinalityNext;
} else {
cardinalityUpdated = cardinality;
}
indexUpdated = (index + 1) % cardinalityUpdated;
self[indexUpdated] = transform(last, blockTimestamp, tick, liquidity);
}
/// @notice Prepares the oracle array to store up to `next` observations
/// @param self The stored oracle array
/// @param current The current next cardinality of the oracle array
/// @param next The proposed next cardinality which will be populated in the oracle array
/// @return next The next cardinality which will be populated in the oracle array
function grow(
Observation[65535] storage self,
uint16 current,
uint16 next
) internal returns (uint16) {
require(current > 0, 'I');
// no-op if the passed next value isn't greater than the current next value
if (next <= current) return current;
// store in each slot to prevent fresh SSTOREs in swaps
// this data will not be used because the initialized boolean is still false
for (uint16 i = current; i < next; i++) self[i].blockTimestamp = 1;
return next;
}
/// @notice comparator for 32-bit timestamps
/// @dev safe for 0 or 1 overflows, a and b _must_ be chronologically before or equal to time
/// @param time A timestamp truncated to 32 bits
/// @param a A comparison timestamp from which to determine the relative position of `time`
/// @param b From which to determine the relative position of `time`
/// @return bool Whether `a` is chronologically <= `b`
function lte(
uint32 time,
uint32 a,
uint32 b
) private pure returns (bool) {
// if there hasn't been overflow, no need to adjust
if (a <= time && b <= time) return a <= b;
uint256 aAdjusted = a > time ? a : a + 2**32;
uint256 bAdjusted = b > time ? b : b + 2**32;
return aAdjusted <= bAdjusted;
}
/// @notice Fetches the observations beforeOrAt and atOrAfter a target, i.e. where [beforeOrAt, atOrAfter] is satisfied.
/// The result may be the same observation, or adjacent observations.
/// @dev The answer must be contained in the array, used when the target is located within the stored observation
/// boundaries: older than the most recent observation and younger, or the same age as, the oldest observation
/// @param self The stored oracle array
/// @param time The current block.timestamp
/// @param target The timestamp at which the reserved observation should be for
/// @param index The index of the observation that was most recently written to the observations array
/// @param cardinality The number of populated elements in the oracle array
/// @return beforeOrAt The observation recorded before, or at, the target
/// @return atOrAfter The observation recorded at, or after, the target
function binarySearch(
Observation[65535] storage self,
uint32 time,
uint32 target,
uint16 index,
uint16 cardinality
) private view returns (Observation memory beforeOrAt, Observation memory atOrAfter) {
uint256 l = (index + 1) % cardinality; // oldest observation
uint256 r = l + cardinality - 1; // newest observation
uint256 i;
while (true) {
i = (l + r) / 2;
beforeOrAt = self[i % cardinality];
// we've landed on an uninitialized tick, keep searching higher (more recently)
if (!beforeOrAt.initialized) {
l = i + 1;
continue;
}
atOrAfter = self[(i + 1) % cardinality];
bool targetAtOrAfter = lte(time, beforeOrAt.blockTimestamp, target);
// check if we've found the answer!
if (targetAtOrAfter && lte(time, target, atOrAfter.blockTimestamp)) break;
if (!targetAtOrAfter) r = i - 1;
else l = i + 1;
}
}
/// @notice Fetches the observations beforeOrAt and atOrAfter a given target, i.e. where [beforeOrAt, atOrAfter] is satisfied
/// @dev Assumes there is at least 1 initialized observation.
/// Used by observeSingle() to compute the counterfactual accumulator values as of a given block timestamp.
/// @param self The stored oracle array
/// @param time The current block.timestamp
/// @param target The timestamp at which the reserved observation should be for
/// @param tick The active tick at the time of the returned or simulated observation
/// @param index The index of the observation that was most recently written to the observations array
/// @param liquidity The total pool liquidity at the time of the call
/// @param cardinality The number of populated elements in the oracle array
/// @return beforeOrAt The observation which occurred at, or before, the given timestamp
/// @return atOrAfter The observation which occurred at, or after, the given timestamp
function getSurroundingObservations(
Observation[65535] storage self,
uint32 time,
uint32 target,
int24 tick,
uint16 index,
uint128 liquidity,
uint16 cardinality
) private view returns (Observation memory beforeOrAt, Observation memory atOrAfter) {
// optimistically set before to the newest observation
beforeOrAt = self[index];
// if the target is chronologically at or after the newest observation, we can early return
if (lte(time, beforeOrAt.blockTimestamp, target)) {
if (beforeOrAt.blockTimestamp == target) {
// if newest observation equals target, we're in the same block, so we can ignore atOrAfter
return (beforeOrAt, atOrAfter);
} else {
// otherwise, we need to transform
return (beforeOrAt, transform(beforeOrAt, target, tick, liquidity));
}
}
// now, set before to the oldest observation
beforeOrAt = self[(index + 1) % cardinality];
if (!beforeOrAt.initialized) beforeOrAt = self[0];
// ensure that the target is chronologically at or after the oldest observation
require(lte(time, beforeOrAt.blockTimestamp, target), 'OLD');
// if we've reached this point, we have to binary search
return binarySearch(self, time, target, index, cardinality);
}
/// @dev Reverts if an observation at or before the desired observation timestamp does not exist.
/// 0 may be passed as `secondsAgo' to return the current cumulative values.
/// If called with a timestamp falling between two observations, returns the counterfactual accumulator values
/// at exactly the timestamp between the two observations.
/// @param self The stored oracle array
/// @param time The current block timestamp
/// @param secondsAgo The amount of time to look back, in seconds, at which point to return an observation
/// @param tick The current tick
/// @param index The index of the observation that was most recently written to the observations array
/// @param liquidity The current in-range pool liquidity
/// @param cardinality The number of populated elements in the oracle array
/// @return tickCumulative The tick * time elapsed since the pool was first initialized, as of `secondsAgo`
/// @return secondsPerLiquidityCumulativeX128 The time elapsed / max(1, liquidity) since the pool was first initialized, as of `secondsAgo`
function observeSingle(
Observation[65535] storage self,
uint32 time,
uint32 secondsAgo,
int24 tick,
uint16 index,
uint128 liquidity,
uint16 cardinality
) internal view returns (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) {
if (secondsAgo == 0) {
Observation memory last = self[index];
if (last.blockTimestamp != time) last = transform(last, time, tick, liquidity);
return (last.tickCumulative, last.secondsPerLiquidityCumulativeX128);
}
uint32 target = time - secondsAgo;
(Observation memory beforeOrAt, Observation memory atOrAfter) =
getSurroundingObservations(self, time, target, tick, index, liquidity, cardinality);
if (target == beforeOrAt.blockTimestamp) {
// we're at the left boundary
return (beforeOrAt.tickCumulative, beforeOrAt.secondsPerLiquidityCumulativeX128);
} else if (target == atOrAfter.blockTimestamp) {
// we're at the right boundary
return (atOrAfter.tickCumulative, atOrAfter.secondsPerLiquidityCumulativeX128);
} else {
// we're in the middle
uint32 observationTimeDelta = atOrAfter.blockTimestamp - beforeOrAt.blockTimestamp;
uint32 targetDelta = target - beforeOrAt.blockTimestamp;
return (
beforeOrAt.tickCumulative +
((atOrAfter.tickCumulative - beforeOrAt.tickCumulative) / observationTimeDelta) *
targetDelta,
beforeOrAt.secondsPerLiquidityCumulativeX128 +
uint160(
(uint256(
atOrAfter.secondsPerLiquidityCumulativeX128 - beforeOrAt.secondsPerLiquidityCumulativeX128
) * targetDelta) / observationTimeDelta
)
);
}
}
/// @notice Returns the accumulator values as of each time seconds ago from the given time in the array of `secondsAgos`
/// @dev Reverts if `secondsAgos` > oldest observation
/// @param self The stored oracle array
/// @param time The current block.timestamp
/// @param secondsAgos Each amount of time to look back, in seconds, at which point to return an observation
/// @param tick The current tick
/// @param index The index of the observation that was most recently written to the observations array
/// @param liquidity The current in-range pool liquidity
/// @param cardinality The number of populated elements in the oracle array
/// @return tickCumulatives The tick * time elapsed since the pool was first initialized, as of each `secondsAgo`
/// @return secondsPerLiquidityCumulativeX128s The cumulative seconds / max(1, liquidity) since the pool was first initialized, as of each `secondsAgo`
function observe(
Observation[65535] storage self,
uint32 time,
uint32[] memory secondsAgos,
int24 tick,
uint16 index,
uint128 liquidity,
uint16 cardinality
) internal view returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s) {
require(cardinality > 0, 'I');
tickCumulatives = new int56[](secondsAgos.length);
secondsPerLiquidityCumulativeX128s = new uint160[](secondsAgos.length);
for (uint256 i = 0; i < secondsAgos.length; i++) {
(tickCumulatives[i], secondsPerLiquidityCumulativeX128s[i]) = observeSingle(
self,
time,
secondsAgos[i],
tick,
index,
liquidity,
cardinality
);
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.4.0;
/// @title Contains 512-bit math functions
/// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
/// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
library FullMath {
/// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
/// @param a The multiplicand
/// @param b The multiplier
/// @param denominator The divisor
/// @return result The 256-bit result
/// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
function mulDiv(
uint256 a,
uint256 b,
uint256 denominator
) internal pure returns (uint256 result) {
// 512-bit multiply [prod1 prod0] = a * b
// Compute the product mod 2**256 and mod 2**256 - 1
// then use the Chinese Remainder Theorem to reconstruct
// the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2**256 + prod0
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(a, b, not(0))
prod0 := mul(a, b)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division
if (prod1 == 0) {
require(denominator > 0);
assembly {
result := div(prod0, denominator)
}
return result;
}
// Make sure the result is less than 2**256.
// Also prevents denominator == 0
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0]
// Compute remainder using mulmod
uint256 remainder;
assembly {
remainder := mulmod(a, b, denominator)
}
// Subtract 256 bit number from 512 bit number
assembly {
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator
// Compute largest power of two divisor of denominator.
// Always >= 1.
uint256 twos = -denominator & denominator;
// Divide denominator by power of two
assembly {
denominator := div(denominator, twos)
}
// Divide [prod1 prod0] by the factors of two
assembly {
prod0 := div(prod0, twos)
}
// Shift in bits from prod1 into prod0. For this we need
// to flip `twos` such that it is 2**256 / twos.
// If twos is zero, then it becomes one
assembly {
twos := add(div(sub(0, twos), twos), 1)
}
prod0 |= prod1 * twos;
// Invert denominator mod 2**256
// Now that denominator is an odd number, it has an inverse
// modulo 2**256 such that denominator * inv = 1 mod 2**256.
// Compute the inverse by starting with a seed that is correct
// correct for four bits. That is, denominator * inv = 1 mod 2**4
uint256 inv = (3 * denominator) ^ 2;
// Now use Newton-Raphson iteration to improve the precision.
// Thanks to Hensel's lifting lemma, this also works in modular
// arithmetic, doubling the correct bits in each step.
inv *= 2 - denominator * inv; // inverse mod 2**8
inv *= 2 - denominator * inv; // inverse mod 2**16
inv *= 2 - denominator * inv; // inverse mod 2**32
inv *= 2 - denominator * inv; // inverse mod 2**64
inv *= 2 - denominator * inv; // inverse mod 2**128
inv *= 2 - denominator * inv; // inverse mod 2**256
// Because the division is now exact we can divide by multiplying
// with the modular inverse of denominator. This will give us the
// correct result modulo 2**256. Since the precoditions guarantee
// that the outcome is less than 2**256, this is the final result.
// We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inv;
return result;
}
/// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
/// @param a The multiplicand
/// @param b The multiplier
/// @param denominator The divisor
/// @return result The 256-bit result
function mulDivRoundingUp(
uint256 a,
uint256 b,
uint256 denominator
) internal pure returns (uint256 result) {
result = mulDiv(a, b, denominator);
if (mulmod(a, b, denominator) > 0) {
require(result < type(uint256).max);
result++;
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.4.0;
/// @title FixedPoint128
/// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format)
library FixedPoint128 {
uint256 internal constant Q128 = 0x100000000000000000000000000000000;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.6.0;
import '../interfaces/IERC20Minimal.sol';
/// @title TransferHelper
/// @notice Contains helper methods for interacting with ERC20 tokens that do not consistently return true/false
library TransferHelper {
/// @notice Transfers tokens from msg.sender to a recipient
/// @dev Calls transfer on token contract, errors with TF if transfer fails
/// @param token The contract address of the token which will be transferred
/// @param to The recipient of the transfer
/// @param value The value of the transfer
function safeTransfer(
address token,
address to,
uint256 value
) internal {
(bool success, bytes memory data) =
token.call(abi.encodeWithSelector(IERC20Minimal.transfer.selector, to, value));
require(success && (data.length == 0 || abi.decode(data, (bool))), 'TF');
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Math library for computing sqrt prices from ticks and vice versa
/// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports
/// prices between 2**-128 and 2**128
library TickMath {
/// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128
int24 internal constant MIN_TICK = -887272;
/// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128
int24 internal constant MAX_TICK = -MIN_TICK;
/// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK)
uint160 internal constant MIN_SQRT_RATIO = 4295128739;
/// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK)
uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342;
/// @notice Calculates sqrt(1.0001^tick) * 2^96
/// @dev Throws if |tick| > max tick
/// @param tick The input tick for the above formula
/// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0)
/// at the given tick
function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) {
uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick));
require(absTick <= uint256(MAX_TICK), 'T');
uint256 ratio = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000;
if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128;
if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128;
if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128;
if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128;
if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128;
if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128;
if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128;
if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128;
if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128;
if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128;
if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128;
if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128;
if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128;
if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128;
if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128;
if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128;
if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128;
if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128;
if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128;
if (tick > 0) ratio = type(uint256).max / ratio;
// this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96.
// we then downcast because we know the result always fits within 160 bits due to our tick input constraint
// we round up in the division so getTickAtSqrtRatio of the output price is always consistent
sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1));
}
/// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio
/// @dev Throws in case sqrtPriceX96 < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may
/// ever return.
/// @param sqrtPriceX96 The sqrt ratio for which to compute the tick as a Q64.96
/// @return tick The greatest tick for which the ratio is less than or equal to the input ratio
function getTickAtSqrtRatio(uint160 sqrtPriceX96) internal pure returns (int24 tick) {
// second inequality must be < because the price can never reach the price at the max tick
require(sqrtPriceX96 >= MIN_SQRT_RATIO && sqrtPriceX96 < MAX_SQRT_RATIO, 'R');
uint256 ratio = uint256(sqrtPriceX96) << 32;
uint256 r = ratio;
uint256 msb = 0;
assembly {
let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(5, gt(r, 0xFFFFFFFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(4, gt(r, 0xFFFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(3, gt(r, 0xFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(2, gt(r, 0xF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(1, gt(r, 0x3))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := gt(r, 0x1)
msb := or(msb, f)
}
if (msb >= 128) r = ratio >> (msb - 127);
else r = ratio << (127 - msb);
int256 log_2 = (int256(msb) - 128) << 64;
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(63, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(62, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(61, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(60, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(59, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(58, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(57, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(56, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(55, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(54, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(53, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(52, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(51, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(50, f))
}
int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number
int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128);
int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128);
tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow;
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Math library for liquidity
library LiquidityMath {
/// @notice Add a signed liquidity delta to liquidity and revert if it overflows or underflows
/// @param x The liquidity before change
/// @param y The delta by which liquidity should be changed
/// @return z The liquidity delta
function addDelta(uint128 x, int128 y) internal pure returns (uint128 z) {
if (y < 0) {
require((z = x - uint128(-y)) < x, 'LS');
} else {
require((z = x + uint128(y)) >= x, 'LA');
}
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.5.0;
import './LowGasSafeMath.sol';
import './SafeCast.sol';
import './FullMath.sol';
import './UnsafeMath.sol';
import './FixedPoint96.sol';
/// @title Functions based on Q64.96 sqrt price and liquidity
/// @notice Contains the math that uses square root of price as a Q64.96 and liquidity to compute deltas
library SqrtPriceMath {
using LowGasSafeMath for uint256;
using SafeCast for uint256;
/// @notice Gets the next sqrt price given a delta of token0
/// @dev Always rounds up, because in the exact output case (increasing price) we need to move the price at least
/// far enough to get the desired output amount, and in the exact input case (decreasing price) we need to move the
/// price less in order to not send too much output.
/// The most precise formula for this is liquidity * sqrtPX96 / (liquidity +- amount * sqrtPX96),
/// if this is impossible because of overflow, we calculate liquidity / (liquidity / sqrtPX96 +- amount).
/// @param sqrtPX96 The starting price, i.e. before accounting for the token0 delta
/// @param liquidity The amount of usable liquidity
/// @param amount How much of token0 to add or remove from virtual reserves
/// @param add Whether to add or remove the amount of token0
/// @return The price after adding or removing amount, depending on add
function getNextSqrtPriceFromAmount0RoundingUp(
uint160 sqrtPX96,
uint128 liquidity,
uint256 amount,
bool add
) internal pure returns (uint160) {
// we short circuit amount == 0 because the result is otherwise not guaranteed to equal the input price
if (amount == 0) return sqrtPX96;
uint256 numerator1 = uint256(liquidity) << FixedPoint96.RESOLUTION;
if (add) {
uint256 product;
if ((product = amount * sqrtPX96) / amount == sqrtPX96) {
uint256 denominator = numerator1 + product;
if (denominator >= numerator1)
// always fits in 160 bits
return uint160(FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator));
}
return uint160(UnsafeMath.divRoundingUp(numerator1, (numerator1 / sqrtPX96).add(amount)));
} else {
uint256 product;
// if the product overflows, we know the denominator underflows
// in addition, we must check that the denominator does not underflow
require((product = amount * sqrtPX96) / amount == sqrtPX96 && numerator1 > product);
uint256 denominator = numerator1 - product;
return FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator).toUint160();
}
}
/// @notice Gets the next sqrt price given a delta of token1
/// @dev Always rounds down, because in the exact output case (decreasing price) we need to move the price at least
/// far enough to get the desired output amount, and in the exact input case (increasing price) we need to move the
/// price less in order to not send too much output.
/// The formula we compute is within <1 wei of the lossless version: sqrtPX96 +- amount / liquidity
/// @param sqrtPX96 The starting price, i.e., before accounting for the token1 delta
/// @param liquidity The amount of usable liquidity
/// @param amount How much of token1 to add, or remove, from virtual reserves
/// @param add Whether to add, or remove, the amount of token1
/// @return The price after adding or removing `amount`
function getNextSqrtPriceFromAmount1RoundingDown(
uint160 sqrtPX96,
uint128 liquidity,
uint256 amount,
bool add
) internal pure returns (uint160) {
// if we're adding (subtracting), rounding down requires rounding the quotient down (up)
// in both cases, avoid a mulDiv for most inputs
if (add) {
uint256 quotient =
(
amount <= type(uint160).max
? (amount << FixedPoint96.RESOLUTION) / liquidity
: FullMath.mulDiv(amount, FixedPoint96.Q96, liquidity)
);
return uint256(sqrtPX96).add(quotient).toUint160();
} else {
uint256 quotient =
(
amount <= type(uint160).max
? UnsafeMath.divRoundingUp(amount << FixedPoint96.RESOLUTION, liquidity)
: FullMath.mulDivRoundingUp(amount, FixedPoint96.Q96, liquidity)
);
require(sqrtPX96 > quotient);
// always fits 160 bits
return uint160(sqrtPX96 - quotient);
}
}
/// @notice Gets the next sqrt price given an input amount of token0 or token1
/// @dev Throws if price or liquidity are 0, or if the next price is out of bounds
/// @param sqrtPX96 The starting price, i.e., before accounting for the input amount
/// @param liquidity The amount of usable liquidity
/// @param amountIn How much of token0, or token1, is being swapped in
/// @param zeroForOne Whether the amount in is token0 or token1
/// @return sqrtQX96 The price after adding the input amount to token0 or token1
function getNextSqrtPriceFromInput(
uint160 sqrtPX96,
uint128 liquidity,
uint256 amountIn,
bool zeroForOne
) internal pure returns (uint160 sqrtQX96) {
require(sqrtPX96 > 0);
require(liquidity > 0);
// round to make sure that we don't pass the target price
return
zeroForOne
? getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountIn, true)
: getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountIn, true);
}
/// @notice Gets the next sqrt price given an output amount of token0 or token1
/// @dev Throws if price or liquidity are 0 or the next price is out of bounds
/// @param sqrtPX96 The starting price before accounting for the output amount
/// @param liquidity The amount of usable liquidity
/// @param amountOut How much of token0, or token1, is being swapped out
/// @param zeroForOne Whether the amount out is token0 or token1
/// @return sqrtQX96 The price after removing the output amount of token0 or token1
function getNextSqrtPriceFromOutput(
uint160 sqrtPX96,
uint128 liquidity,
uint256 amountOut,
bool zeroForOne
) internal pure returns (uint160 sqrtQX96) {
require(sqrtPX96 > 0);
require(liquidity > 0);
// round to make sure that we pass the target price
return
zeroForOne
? getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountOut, false)
: getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountOut, false);
}
/// @notice Gets the amount0 delta between two prices
/// @dev Calculates liquidity / sqrt(lower) - liquidity / sqrt(upper),
/// i.e. liquidity * (sqrt(upper) - sqrt(lower)) / (sqrt(upper) * sqrt(lower))
/// @param sqrtRatioAX96 A sqrt price
/// @param sqrtRatioBX96 Another sqrt price
/// @param liquidity The amount of usable liquidity
/// @param roundUp Whether to round the amount up or down
/// @return amount0 Amount of token0 required to cover a position of size liquidity between the two passed prices
function getAmount0Delta(
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
uint128 liquidity,
bool roundUp
) internal pure returns (uint256 amount0) {
if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
uint256 numerator1 = uint256(liquidity) << FixedPoint96.RESOLUTION;
uint256 numerator2 = sqrtRatioBX96 - sqrtRatioAX96;
require(sqrtRatioAX96 > 0);
return
roundUp
? UnsafeMath.divRoundingUp(
FullMath.mulDivRoundingUp(numerator1, numerator2, sqrtRatioBX96),
sqrtRatioAX96
)
: FullMath.mulDiv(numerator1, numerator2, sqrtRatioBX96) / sqrtRatioAX96;
}
/// @notice Gets the amount1 delta between two prices
/// @dev Calculates liquidity * (sqrt(upper) - sqrt(lower))
/// @param sqrtRatioAX96 A sqrt price
/// @param sqrtRatioBX96 Another sqrt price
/// @param liquidity The amount of usable liquidity
/// @param roundUp Whether to round the amount up, or down
/// @return amount1 Amount of token1 required to cover a position of size liquidity between the two passed prices
function getAmount1Delta(
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
uint128 liquidity,
bool roundUp
) internal pure returns (uint256 amount1) {
if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
return
roundUp
? FullMath.mulDivRoundingUp(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96)
: FullMath.mulDiv(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96);
}
/// @notice Helper that gets signed token0 delta
/// @param sqrtRatioAX96 A sqrt price
/// @param sqrtRatioBX96 Another sqrt price
/// @param liquidity The change in liquidity for which to compute the amount0 delta
/// @return amount0 Amount of token0 corresponding to the passed liquidityDelta between the two prices
function getAmount0Delta(
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
int128 liquidity
) internal pure returns (int256 amount0) {
return
liquidity < 0
? -getAmount0Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(-liquidity), false).toInt256()
: getAmount0Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(liquidity), true).toInt256();
}
/// @notice Helper that gets signed token1 delta
/// @param sqrtRatioAX96 A sqrt price
/// @param sqrtRatioBX96 Another sqrt price
/// @param liquidity The change in liquidity for which to compute the amount1 delta
/// @return amount1 Amount of token1 corresponding to the passed liquidityDelta between the two prices
function getAmount1Delta(
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
int128 liquidity
) internal pure returns (int256 amount1) {
return
liquidity < 0
? -getAmount1Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(-liquidity), false).toInt256()
: getAmount1Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(liquidity), true).toInt256();
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.5.0;
import './FullMath.sol';
import './SqrtPriceMath.sol';
/// @title Computes the result of a swap within ticks
/// @notice Contains methods for computing the result of a swap within a single tick price range, i.e., a single tick.
library SwapMath {
/// @notice Computes the result of swapping some amount in, or amount out, given the parameters of the swap
/// @dev The fee, plus the amount in, will never exceed the amount remaining if the swap's `amountSpecified` is positive
/// @param sqrtRatioCurrentX96 The current sqrt price of the pool
/// @param sqrtRatioTargetX96 The price that cannot be exceeded, from which the direction of the swap is inferred
/// @param liquidity The usable liquidity
/// @param amountRemaining How much input or output amount is remaining to be swapped in/out
/// @param feePips The fee taken from the input amount, expressed in hundredths of a bip
/// @return sqrtRatioNextX96 The price after swapping the amount in/out, not to exceed the price target
/// @return amountIn The amount to be swapped in, of either token0 or token1, based on the direction of the swap
/// @return amountOut The amount to be received, of either token0 or token1, based on the direction of the swap
/// @return feeAmount The amount of input that will be taken as a fee
function computeSwapStep(
uint160 sqrtRatioCurrentX96,
uint160 sqrtRatioTargetX96,
uint128 liquidity,
int256 amountRemaining,
uint24 feePips
)
internal
pure
returns (
uint160 sqrtRatioNextX96,
uint256 amountIn,
uint256 amountOut,
uint256 feeAmount
)
{
bool zeroForOne = sqrtRatioCurrentX96 >= sqrtRatioTargetX96;
bool exactIn = amountRemaining >= 0;
if (exactIn) {
uint256 amountRemainingLessFee = FullMath.mulDiv(uint256(amountRemaining), 1e6 - feePips, 1e6);
amountIn = zeroForOne
? SqrtPriceMath.getAmount0Delta(sqrtRatioTargetX96, sqrtRatioCurrentX96, liquidity, true)
: SqrtPriceMath.getAmount1Delta(sqrtRatioCurrentX96, sqrtRatioTargetX96, liquidity, true);
if (amountRemainingLessFee >= amountIn) sqrtRatioNextX96 = sqrtRatioTargetX96;
else
sqrtRatioNextX96 = SqrtPriceMath.getNextSqrtPriceFromInput(
sqrtRatioCurrentX96,
liquidity,
amountRemainingLessFee,
zeroForOne
);
} else {
amountOut = zeroForOne
? SqrtPriceMath.getAmount1Delta(sqrtRatioTargetX96, sqrtRatioCurrentX96, liquidity, false)
: SqrtPriceMath.getAmount0Delta(sqrtRatioCurrentX96, sqrtRatioTargetX96, liquidity, false);
if (uint256(-amountRemaining) >= amountOut) sqrtRatioNextX96 = sqrtRatioTargetX96;
else
sqrtRatioNextX96 = SqrtPriceMath.getNextSqrtPriceFromOutput(
sqrtRatioCurrentX96,
liquidity,
uint256(-amountRemaining),
zeroForOne
);
}
bool max = sqrtRatioTargetX96 == sqrtRatioNextX96;
// get the input/output amounts
if (zeroForOne) {
amountIn = max && exactIn
? amountIn
: SqrtPriceMath.getAmount0Delta(sqrtRatioNextX96, sqrtRatioCurrentX96, liquidity, true);
amountOut = max && !exactIn
? amountOut
: SqrtPriceMath.getAmount1Delta(sqrtRatioNextX96, sqrtRatioCurrentX96, liquidity, false);
} else {
amountIn = max && exactIn
? amountIn
: SqrtPriceMath.getAmount1Delta(sqrtRatioCurrentX96, sqrtRatioNextX96, liquidity, true);
amountOut = max && !exactIn
? amountOut
: SqrtPriceMath.getAmount0Delta(sqrtRatioCurrentX96, sqrtRatioNextX96, liquidity, false);
}
// cap the output amount to not exceed the remaining output amount
if (!exactIn && amountOut > uint256(-amountRemaining)) {
amountOut = uint256(-amountRemaining);
}
if (exactIn && sqrtRatioNextX96 != sqrtRatioTargetX96) {
// we didn't reach the target, so take the remainder of the maximum input as fee
feeAmount = uint256(amountRemaining) - amountIn;
} else {
feeAmount = FullMath.mulDivRoundingUp(amountIn, feePips, 1e6 - feePips);
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title An interface for a contract that is capable of deploying Uniswap V3 Pools
/// @notice A contract that constructs a pool must implement this to pass arguments to the pool
/// @dev This is used to avoid having constructor arguments in the pool contract, which results in the init code hash
/// of the pool being constant allowing the CREATE2 address of the pool to be cheaply computed on-chain
interface IUniswapV3PoolDeployer {
/// @notice Get the parameters to be used in constructing the pool, set transiently during pool creation.
/// @dev Called by the pool constructor to fetch the parameters of the pool
/// Returns factory The factory address
/// Returns token0 The first token of the pool by address sort order
/// Returns token1 The second token of the pool by address sort order
/// Returns fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
/// Returns tickSpacing The minimum number of ticks between initialized ticks
function parameters()
external
view
returns (
address factory,
address token0,
address token1,
uint24 fee,
int24 tickSpacing
);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title The interface for the Uniswap V3 Factory
/// @notice The Uniswap V3 Factory facilitates creation of Uniswap V3 pools and control over the protocol fees
interface IUniswapV3Factory {
/// @notice Emitted when the owner of the factory is changed
/// @param oldOwner The owner before the owner was changed
/// @param newOwner The owner after the owner was changed
event OwnerChanged(address indexed oldOwner, address indexed newOwner);
/// @notice Emitted when a pool is created
/// @param token0 The first token of the pool by address sort order
/// @param token1 The second token of the pool by address sort order
/// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
/// @param tickSpacing The minimum number of ticks between initialized ticks
/// @param pool The address of the created pool
event PoolCreated(
address indexed token0,
address indexed token1,
uint24 indexed fee,
int24 tickSpacing,
address pool
);
/// @notice Emitted when a new fee amount is enabled for pool creation via the factory
/// @param fee The enabled fee, denominated in hundredths of a bip
/// @param tickSpacing The minimum number of ticks between initialized ticks for pools created with the given fee
event FeeAmountEnabled(uint24 indexed fee, int24 indexed tickSpacing);
/// @notice Returns the current owner of the factory
/// @dev Can be changed by the current owner via setOwner
/// @return The address of the factory owner
function owner() external view returns (address);
/// @notice Returns the tick spacing for a given fee amount, if enabled, or 0 if not enabled
/// @dev A fee amount can never be removed, so this value should be hard coded or cached in the calling context
/// @param fee The enabled fee, denominated in hundredths of a bip. Returns 0 in case of unenabled fee
/// @return The tick spacing
function feeAmountTickSpacing(uint24 fee) external view returns (int24);
/// @notice Returns the pool address for a given pair of tokens and a fee, or address 0 if it does not exist
/// @dev tokenA and tokenB may be passed in either token0/token1 or token1/token0 order
/// @param tokenA The contract address of either token0 or token1
/// @param tokenB The contract address of the other token
/// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
/// @return pool The pool address
function getPool(
address tokenA,
address tokenB,
uint24 fee
) external view returns (address pool);
/// @notice Creates a pool for the given two tokens and fee
/// @param tokenA One of the two tokens in the desired pool
/// @param tokenB The other of the two tokens in the desired pool
/// @param fee The desired fee for the pool
/// @dev tokenA and tokenB may be passed in either order: token0/token1 or token1/token0. tickSpacing is retrieved
/// from the fee. The call will revert if the pool already exists, the fee is invalid, or the token arguments
/// are invalid.
/// @return pool The address of the newly created pool
function createPool(
address tokenA,
address tokenB,
uint24 fee
) external returns (address pool);
/// @notice Updates the owner of the factory
/// @dev Must be called by the current owner
/// @param _owner The new owner of the factory
function setOwner(address _owner) external;
/// @notice Enables a fee amount with the given tickSpacing
/// @dev Fee amounts may never be removed once enabled
/// @param fee The fee amount to enable, denominated in hundredths of a bip (i.e. 1e-6)
/// @param tickSpacing The spacing between ticks to be enforced for all pools created with the given fee amount
function enableFeeAmount(uint24 fee, int24 tickSpacing) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Minimal ERC20 interface for Uniswap
/// @notice Contains a subset of the full ERC20 interface that is used in Uniswap V3
interface IERC20Minimal {
/// @notice Returns the balance of a token
/// @param account The account for which to look up the number of tokens it has, i.e. its balance
/// @return The number of tokens held by the account
function balanceOf(address account) external view returns (uint256);
/// @notice Transfers the amount of token from the `msg.sender` to the recipient
/// @param recipient The account that will receive the amount transferred
/// @param amount The number of tokens to send from the sender to the recipient
/// @return Returns true for a successful transfer, false for an unsuccessful transfer
function transfer(address recipient, uint256 amount) external returns (bool);
/// @notice Returns the current allowance given to a spender by an owner
/// @param owner The account of the token owner
/// @param spender The account of the token spender
/// @return The current allowance granted by `owner` to `spender`
function allowance(address owner, address spender) external view returns (uint256);
/// @notice Sets the allowance of a spender from the `msg.sender` to the value `amount`
/// @param spender The account which will be allowed to spend a given amount of the owners tokens
/// @param amount The amount of tokens allowed to be used by `spender`
/// @return Returns true for a successful approval, false for unsuccessful
function approve(address spender, uint256 amount) external returns (bool);
/// @notice Transfers `amount` tokens from `sender` to `recipient` up to the allowance given to the `msg.sender`
/// @param sender The account from which the transfer will be initiated
/// @param recipient The recipient of the transfer
/// @param amount The amount of the transfer
/// @return Returns true for a successful transfer, false for unsuccessful
function transferFrom(
address sender,
address recipient,
uint256 amount
) external returns (bool);
/// @notice Event emitted when tokens are transferred from one address to another, either via `#transfer` or `#transferFrom`.
/// @param from The account from which the tokens were sent, i.e. the balance decreased
/// @param to The account to which the tokens were sent, i.e. the balance increased
/// @param value The amount of tokens that were transferred
event Transfer(address indexed from, address indexed to, uint256 value);
/// @notice Event emitted when the approval amount for the spender of a given owner's tokens changes.
/// @param owner The account that approved spending of its tokens
/// @param spender The account for which the spending allowance was modified
/// @param value The new allowance from the owner to the spender
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Callback for IUniswapV3PoolActions#mint
/// @notice Any contract that calls IUniswapV3PoolActions#mint must implement this interface
interface IUniswapV3MintCallback {
/// @notice Called to `msg.sender` after minting liquidity to a position from IUniswapV3Pool#mint.
/// @dev In the implementation you must pay the pool tokens owed for the minted liquidity.
/// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
/// @param amount0Owed The amount of token0 due to the pool for the minted liquidity
/// @param amount1Owed The amount of token1 due to the pool for the minted liquidity
/// @param data Any data passed through by the caller via the IUniswapV3PoolActions#mint call
function uniswapV3MintCallback(
uint256 amount0Owed,
uint256 amount1Owed,
bytes calldata data
) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Callback for IUniswapV3PoolActions#swap
/// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface
interface IUniswapV3SwapCallback {
/// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap.
/// @dev In the implementation you must pay the pool tokens owed for the swap.
/// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
/// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
/// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
/// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
/// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
/// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
/// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call
function uniswapV3SwapCallback(
int256 amount0Delta,
int256 amount1Delta,
bytes calldata data
) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Callback for IUniswapV3PoolActions#flash
/// @notice Any contract that calls IUniswapV3PoolActions#flash must implement this interface
interface IUniswapV3FlashCallback {
/// @notice Called to `msg.sender` after transferring to the recipient from IUniswapV3Pool#flash.
/// @dev In the implementation you must repay the pool the tokens sent by flash plus the computed fee amounts.
/// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
/// @param fee0 The fee amount in token0 due to the pool by the end of the flash
/// @param fee1 The fee amount in token1 due to the pool by the end of the flash
/// @param data Any data passed through by the caller via the IUniswapV3PoolActions#flash call
function uniswapV3FlashCallback(
uint256 fee0,
uint256 fee1,
bytes calldata data
) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Pool state that never changes
/// @notice These parameters are fixed for a pool forever, i.e., the methods will always return the same values
interface IUniswapV3PoolImmutables {
/// @notice The contract that deployed the pool, which must adhere to the IUniswapV3Factory interface
/// @return The contract address
function factory() external view returns (address);
/// @notice The first of the two tokens of the pool, sorted by address
/// @return The token contract address
function token0() external view returns (address);
/// @notice The second of the two tokens of the pool, sorted by address
/// @return The token contract address
function token1() external view returns (address);
/// @notice The pool's fee in hundredths of a bip, i.e. 1e-6
/// @return The fee
function fee() external view returns (uint24);
/// @notice The pool tick spacing
/// @dev Ticks can only be used at multiples of this value, minimum of 1 and always positive
/// e.g.: a tickSpacing of 3 means ticks can be initialized every 3rd tick, i.e., ..., -6, -3, 0, 3, 6, ...
/// This value is an int24 to avoid casting even though it is always positive.
/// @return The tick spacing
function tickSpacing() external view returns (int24);
/// @notice The maximum amount of position liquidity that can use any tick in the range
/// @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and
/// also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool
/// @return The max amount of liquidity per tick
function maxLiquidityPerTick() external view returns (uint128);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Pool state that can change
/// @notice These methods compose the pool's state, and can change with any frequency including multiple times
/// per transaction
interface IUniswapV3PoolState {
/// @notice The 0th storage slot in the pool stores many values, and is exposed as a single method to save gas
/// when accessed externally.
/// @return sqrtPriceX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value
/// tick The current tick of the pool, i.e. according to the last tick transition that was run.
/// This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(sqrtPriceX96) if the price is on a tick
/// boundary.
/// observationIndex The index of the last oracle observation that was written,
/// observationCardinality The current maximum number of observations stored in the pool,
/// observationCardinalityNext The next maximum number of observations, to be updated when the observation.
/// feeProtocol The protocol fee for both tokens of the pool.
/// Encoded as two 4 bit values, where the protocol fee of token1 is shifted 4 bits and the protocol fee of token0
/// is the lower 4 bits. Used as the denominator of a fraction of the swap fee, e.g. 4 means 1/4th of the swap fee.
/// unlocked Whether the pool is currently locked to reentrancy
function slot0()
external
view
returns (
uint160 sqrtPriceX96,
int24 tick,
uint16 observationIndex,
uint16 observationCardinality,
uint16 observationCardinalityNext,
uint8 feeProtocol,
bool unlocked
);
/// @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool
/// @dev This value can overflow the uint256
function feeGrowthGlobal0X128() external view returns (uint256);
/// @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool
/// @dev This value can overflow the uint256
function feeGrowthGlobal1X128() external view returns (uint256);
/// @notice The amounts of token0 and token1 that are owed to the protocol
/// @dev Protocol fees will never exceed uint128 max in either token
function protocolFees() external view returns (uint128 token0, uint128 token1);
/// @notice The currently in range liquidity available to the pool
/// @dev This value has no relationship to the total liquidity across all ticks
function liquidity() external view returns (uint128);
/// @notice Look up information about a specific tick in the pool
/// @param tick The tick to look up
/// @return liquidityGross the total amount of position liquidity that uses the pool either as tick lower or
/// tick upper,
/// liquidityNet how much liquidity changes when the pool price crosses the tick,
/// feeGrowthOutside0X128 the fee growth on the other side of the tick from the current tick in token0,
/// feeGrowthOutside1X128 the fee growth on the other side of the tick from the current tick in token1,
/// tickCumulativeOutside the cumulative tick value on the other side of the tick from the current tick
/// secondsPerLiquidityOutsideX128 the seconds spent per liquidity on the other side of the tick from the current tick,
/// secondsOutside the seconds spent on the other side of the tick from the current tick,
/// initialized Set to true if the tick is initialized, i.e. liquidityGross is greater than 0, otherwise equal to false.
/// Outside values can only be used if the tick is initialized, i.e. if liquidityGross is greater than 0.
/// In addition, these values are only relative and must be used only in comparison to previous snapshots for
/// a specific position.
function ticks(int24 tick)
external
view
returns (
uint128 liquidityGross,
int128 liquidityNet,
uint256 feeGrowthOutside0X128,
uint256 feeGrowthOutside1X128,
int56 tickCumulativeOutside,
uint160 secondsPerLiquidityOutsideX128,
uint32 secondsOutside,
bool initialized
);
/// @notice Returns 256 packed tick initialized boolean values. See TickBitmap for more information
function tickBitmap(int16 wordPosition) external view returns (uint256);
/// @notice Returns the information about a position by the position's key
/// @param key The position's key is a hash of a preimage composed by the owner, tickLower and tickUpper
/// @return _liquidity The amount of liquidity in the position,
/// Returns feeGrowthInside0LastX128 fee growth of token0 inside the tick range as of the last mint/burn/poke,
/// Returns feeGrowthInside1LastX128 fee growth of token1 inside the tick range as of the last mint/burn/poke,
/// Returns tokensOwed0 the computed amount of token0 owed to the position as of the last mint/burn/poke,
/// Returns tokensOwed1 the computed amount of token1 owed to the position as of the last mint/burn/poke
function positions(bytes32 key)
external
view
returns (
uint128 _liquidity,
uint256 feeGrowthInside0LastX128,
uint256 feeGrowthInside1LastX128,
uint128 tokensOwed0,
uint128 tokensOwed1
);
/// @notice Returns data about a specific observation index
/// @param index The element of the observations array to fetch
/// @dev You most likely want to use #observe() instead of this method to get an observation as of some amount of time
/// ago, rather than at a specific index in the array.
/// @return blockTimestamp The timestamp of the observation,
/// Returns tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the observation timestamp,
/// Returns secondsPerLiquidityCumulativeX128 the seconds per in range liquidity for the life of the pool as of the observation timestamp,
/// Returns initialized whether the observation has been initialized and the values are safe to use
function observations(uint256 index)
external
view
returns (
uint32 blockTimestamp,
int56 tickCumulative,
uint160 secondsPerLiquidityCumulativeX128,
bool initialized
);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Pool state that is not stored
/// @notice Contains view functions to provide information about the pool that is computed rather than stored on the
/// blockchain. The functions here may have variable gas costs.
interface IUniswapV3PoolDerivedState {
/// @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp
/// @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing
/// the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick,
/// you must call it with secondsAgos = [3600, 0].
/// @dev The time weighted average tick represents the geometric time weighted average price of the pool, in
/// log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio.
/// @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned
/// @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp
/// @return secondsPerLiquidityCumulativeX128s Cumulative seconds per liquidity-in-range value as of each `secondsAgos` from the current block
/// timestamp
function observe(uint32[] calldata secondsAgos)
external
view
returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s);
/// @notice Returns a snapshot of the tick cumulative, seconds per liquidity and seconds inside a tick range
/// @dev Snapshots must only be compared to other snapshots, taken over a period for which a position existed.
/// I.e., snapshots cannot be compared if a position is not held for the entire period between when the first
/// snapshot is taken and the second snapshot is taken.
/// @param tickLower The lower tick of the range
/// @param tickUpper The upper tick of the range
/// @return tickCumulativeInside The snapshot of the tick accumulator for the range
/// @return secondsPerLiquidityInsideX128 The snapshot of seconds per liquidity for the range
/// @return secondsInside The snapshot of seconds per liquidity for the range
function snapshotCumulativesInside(int24 tickLower, int24 tickUpper)
external
view
returns (
int56 tickCumulativeInside,
uint160 secondsPerLiquidityInsideX128,
uint32 secondsInside
);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Permissionless pool actions
/// @notice Contains pool methods that can be called by anyone
interface IUniswapV3PoolActions {
/// @notice Sets the initial price for the pool
/// @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value
/// @param sqrtPriceX96 the initial sqrt price of the pool as a Q64.96
function initialize(uint160 sqrtPriceX96) external;
/// @notice Adds liquidity for the given recipient/tickLower/tickUpper position
/// @dev The caller of this method receives a callback in the form of IUniswapV3MintCallback#uniswapV3MintCallback
/// in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends
/// on tickLower, tickUpper, the amount of liquidity, and the current price.
/// @param recipient The address for which the liquidity will be created
/// @param tickLower The lower tick of the position in which to add liquidity
/// @param tickUpper The upper tick of the position in which to add liquidity
/// @param amount The amount of liquidity to mint
/// @param data Any data that should be passed through to the callback
/// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback
/// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback
function mint(
address recipient,
int24 tickLower,
int24 tickUpper,
uint128 amount,
bytes calldata data
) external returns (uint256 amount0, uint256 amount1);
/// @notice Collects tokens owed to a position
/// @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity.
/// Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or
/// amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the
/// actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity.
/// @param recipient The address which should receive the fees collected
/// @param tickLower The lower tick of the position for which to collect fees
/// @param tickUpper The upper tick of the position for which to collect fees
/// @param amount0Requested How much token0 should be withdrawn from the fees owed
/// @param amount1Requested How much token1 should be withdrawn from the fees owed
/// @return amount0 The amount of fees collected in token0
/// @return amount1 The amount of fees collected in token1
function collect(
address recipient,
int24 tickLower,
int24 tickUpper,
uint128 amount0Requested,
uint128 amount1Requested
) external returns (uint128 amount0, uint128 amount1);
/// @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position
/// @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0
/// @dev Fees must be collected separately via a call to #collect
/// @param tickLower The lower tick of the position for which to burn liquidity
/// @param tickUpper The upper tick of the position for which to burn liquidity
/// @param amount How much liquidity to burn
/// @return amount0 The amount of token0 sent to the recipient
/// @return amount1 The amount of token1 sent to the recipient
function burn(
int24 tickLower,
int24 tickUpper,
uint128 amount
) external returns (uint256 amount0, uint256 amount1);
/// @notice Swap token0 for token1, or token1 for token0
/// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback
/// @param recipient The address to receive the output of the swap
/// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0
/// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative)
/// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this
/// value after the swap. If one for zero, the price cannot be greater than this value after the swap
/// @param data Any data to be passed through to the callback
/// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive
/// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive
function swap(
address recipient,
bool zeroForOne,
int256 amountSpecified,
uint160 sqrtPriceLimitX96,
bytes calldata data
) external returns (int256 amount0, int256 amount1);
/// @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback
/// @dev The caller of this method receives a callback in the form of IUniswapV3FlashCallback#uniswapV3FlashCallback
/// @dev Can be used to donate underlying tokens pro-rata to currently in-range liquidity providers by calling
/// with 0 amount{0,1} and sending the donation amount(s) from the callback
/// @param recipient The address which will receive the token0 and token1 amounts
/// @param amount0 The amount of token0 to send
/// @param amount1 The amount of token1 to send
/// @param data Any data to be passed through to the callback
function flash(
address recipient,
uint256 amount0,
uint256 amount1,
bytes calldata data
) external;
/// @notice Increase the maximum number of price and liquidity observations that this pool will store
/// @dev This method is no-op if the pool already has an observationCardinalityNext greater than or equal to
/// the input observationCardinalityNext.
/// @param observationCardinalityNext The desired minimum number of observations for the pool to store
function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Permissioned pool actions
/// @notice Contains pool methods that may only be called by the factory owner
interface IUniswapV3PoolOwnerActions {
/// @notice Set the denominator of the protocol's % share of the fees
/// @param feeProtocol0 new protocol fee for token0 of the pool
/// @param feeProtocol1 new protocol fee for token1 of the pool
function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external;
/// @notice Collect the protocol fee accrued to the pool
/// @param recipient The address to which collected protocol fees should be sent
/// @param amount0Requested The maximum amount of token0 to send, can be 0 to collect fees in only token1
/// @param amount1Requested The maximum amount of token1 to send, can be 0 to collect fees in only token0
/// @return amount0 The protocol fee collected in token0
/// @return amount1 The protocol fee collected in token1
function collectProtocol(
address recipient,
uint128 amount0Requested,
uint128 amount1Requested
) external returns (uint128 amount0, uint128 amount1);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Events emitted by a pool
/// @notice Contains all events emitted by the pool
interface IUniswapV3PoolEvents {
/// @notice Emitted exactly once by a pool when #initialize is first called on the pool
/// @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize
/// @param sqrtPriceX96 The initial sqrt price of the pool, as a Q64.96
/// @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool
event Initialize(uint160 sqrtPriceX96, int24 tick);
/// @notice Emitted when liquidity is minted for a given position
/// @param sender The address that minted the liquidity
/// @param owner The owner of the position and recipient of any minted liquidity
/// @param tickLower The lower tick of the position
/// @param tickUpper The upper tick of the position
/// @param amount The amount of liquidity minted to the position range
/// @param amount0 How much token0 was required for the minted liquidity
/// @param amount1 How much token1 was required for the minted liquidity
event Mint(
address sender,
address indexed owner,
int24 indexed tickLower,
int24 indexed tickUpper,
uint128 amount,
uint256 amount0,
uint256 amount1
);
/// @notice Emitted when fees are collected by the owner of a position
/// @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees
/// @param owner The owner of the position for which fees are collected
/// @param tickLower The lower tick of the position
/// @param tickUpper The upper tick of the position
/// @param amount0 The amount of token0 fees collected
/// @param amount1 The amount of token1 fees collected
event Collect(
address indexed owner,
address recipient,
int24 indexed tickLower,
int24 indexed tickUpper,
uint128 amount0,
uint128 amount1
);
/// @notice Emitted when a position's liquidity is removed
/// @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect
/// @param owner The owner of the position for which liquidity is removed
/// @param tickLower The lower tick of the position
/// @param tickUpper The upper tick of the position
/// @param amount The amount of liquidity to remove
/// @param amount0 The amount of token0 withdrawn
/// @param amount1 The amount of token1 withdrawn
event Burn(
address indexed owner,
int24 indexed tickLower,
int24 indexed tickUpper,
uint128 amount,
uint256 amount0,
uint256 amount1
);
/// @notice Emitted by the pool for any swaps between token0 and token1
/// @param sender The address that initiated the swap call, and that received the callback
/// @param recipient The address that received the output of the swap
/// @param amount0 The delta of the token0 balance of the pool
/// @param amount1 The delta of the token1 balance of the pool
/// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96
/// @param liquidity The liquidity of the pool after the swap
/// @param tick The log base 1.0001 of price of the pool after the swap
event Swap(
address indexed sender,
address indexed recipient,
int256 amount0,
int256 amount1,
uint160 sqrtPriceX96,
uint128 liquidity,
int24 tick
);
/// @notice Emitted by the pool for any flashes of token0/token1
/// @param sender The address that initiated the swap call, and that received the callback
/// @param recipient The address that received the tokens from flash
/// @param amount0 The amount of token0 that was flashed
/// @param amount1 The amount of token1 that was flashed
/// @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee
/// @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee
event Flash(
address indexed sender,
address indexed recipient,
uint256 amount0,
uint256 amount1,
uint256 paid0,
uint256 paid1
);
/// @notice Emitted by the pool for increases to the number of observations that can be stored
/// @dev observationCardinalityNext is not the observation cardinality until an observation is written at the index
/// just before a mint/swap/burn.
/// @param observationCardinalityNextOld The previous value of the next observation cardinality
/// @param observationCardinalityNextNew The updated value of the next observation cardinality
event IncreaseObservationCardinalityNext(
uint16 observationCardinalityNextOld,
uint16 observationCardinalityNextNew
);
/// @notice Emitted when the protocol fee is changed by the pool
/// @param feeProtocol0Old The previous value of the token0 protocol fee
/// @param feeProtocol1Old The previous value of the token1 protocol fee
/// @param feeProtocol0New The updated value of the token0 protocol fee
/// @param feeProtocol1New The updated value of the token1 protocol fee
event SetFeeProtocol(uint8 feeProtocol0Old, uint8 feeProtocol1Old, uint8 feeProtocol0New, uint8 feeProtocol1New);
/// @notice Emitted when the collected protocol fees are withdrawn by the factory owner
/// @param sender The address that collects the protocol fees
/// @param recipient The address that receives the collected protocol fees
/// @param amount0 The amount of token0 protocol fees that is withdrawn
/// @param amount0 The amount of token1 protocol fees that is withdrawn
event CollectProtocol(address indexed sender, address indexed recipient, uint128 amount0, uint128 amount1);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title BitMath
/// @dev This library provides functionality for computing bit properties of an unsigned integer
library BitMath {
/// @notice Returns the index of the most significant bit of the number,
/// where the least significant bit is at index 0 and the most significant bit is at index 255
/// @dev The function satisfies the property:
/// x >= 2**mostSignificantBit(x) and x < 2**(mostSignificantBit(x)+1)
/// @param x the value for which to compute the most significant bit, must be greater than 0
/// @return r the index of the most significant bit
function mostSignificantBit(uint256 x) internal pure returns (uint8 r) {
require(x > 0);
if (x >= 0x100000000000000000000000000000000) {
x >>= 128;
r += 128;
}
if (x >= 0x10000000000000000) {
x >>= 64;
r += 64;
}
if (x >= 0x100000000) {
x >>= 32;
r += 32;
}
if (x >= 0x10000) {
x >>= 16;
r += 16;
}
if (x >= 0x100) {
x >>= 8;
r += 8;
}
if (x >= 0x10) {
x >>= 4;
r += 4;
}
if (x >= 0x4) {
x >>= 2;
r += 2;
}
if (x >= 0x2) r += 1;
}
/// @notice Returns the index of the least significant bit of the number,
/// where the least significant bit is at index 0 and the most significant bit is at index 255
/// @dev The function satisfies the property:
/// (x & 2**leastSignificantBit(x)) != 0 and (x & (2**(leastSignificantBit(x)) - 1)) == 0)
/// @param x the value for which to compute the least significant bit, must be greater than 0
/// @return r the index of the least significant bit
function leastSignificantBit(uint256 x) internal pure returns (uint8 r) {
require(x > 0);
r = 255;
if (x & type(uint128).max > 0) {
r -= 128;
} else {
x >>= 128;
}
if (x & type(uint64).max > 0) {
r -= 64;
} else {
x >>= 64;
}
if (x & type(uint32).max > 0) {
r -= 32;
} else {
x >>= 32;
}
if (x & type(uint16).max > 0) {
r -= 16;
} else {
x >>= 16;
}
if (x & type(uint8).max > 0) {
r -= 8;
} else {
x >>= 8;
}
if (x & 0xf > 0) {
r -= 4;
} else {
x >>= 4;
}
if (x & 0x3 > 0) {
r -= 2;
} else {
x >>= 2;
}
if (x & 0x1 > 0) r -= 1;
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Math functions that do not check inputs or outputs
/// @notice Contains methods that perform common math functions but do not do any overflow or underflow checks
library UnsafeMath {
/// @notice Returns ceil(x / y)
/// @dev division by 0 has unspecified behavior, and must be checked externally
/// @param x The dividend
/// @param y The divisor
/// @return z The quotient, ceil(x / y)
function divRoundingUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
assembly {
z := add(div(x, y), gt(mod(x, y), 0))
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.4.0;
/// @title FixedPoint96
/// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format)
/// @dev Used in SqrtPriceMath.sol
library FixedPoint96 {
uint8 internal constant RESOLUTION = 96;
uint256 internal constant Q96 = 0x1000000000000000000000000;
}
File 18 of 30: Uni
/**
*Submitted for verification at Etherscan.io on 2020-09-15
*/
pragma solidity ^0.5.16;
pragma experimental ABIEncoderV2;
// From https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/Math.sol
// Subject to the MIT license.
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the addition of two unsigned integers, reverting with custom message on overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, errorMessage);
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on underflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot underflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction underflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on underflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot underflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, errorMessage);
return c;
}
/**
* @dev Returns the integer division of two unsigned integers.
* Reverts on division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers.
* Reverts with custom message on division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
// Solidity only automatically asserts when dividing by 0
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
contract Uni {
/// @notice EIP-20 token name for this token
string public constant name = "Uniswap";
/// @notice EIP-20 token symbol for this token
string public constant symbol = "UNI";
/// @notice EIP-20 token decimals for this token
uint8 public constant decimals = 18;
/// @notice Total number of tokens in circulation
uint public totalSupply = 1_000_000_000e18; // 1 billion Uni
/// @notice Address which may mint new tokens
address public minter;
/// @notice The timestamp after which minting may occur
uint public mintingAllowedAfter;
/// @notice Minimum time between mints
uint32 public constant minimumTimeBetweenMints = 1 days * 365;
/// @notice Cap on the percentage of totalSupply that can be minted at each mint
uint8 public constant mintCap = 2;
/// @notice Allowance amounts on behalf of others
mapping (address => mapping (address => uint96)) internal allowances;
/// @notice Official record of token balances for each account
mapping (address => uint96) internal balances;
/// @notice A record of each accounts delegate
mapping (address => address) public delegates;
/// @notice A checkpoint for marking number of votes from a given block
struct Checkpoint {
uint32 fromBlock;
uint96 votes;
}
/// @notice A record of votes checkpoints for each account, by index
mapping (address => mapping (uint32 => Checkpoint)) public checkpoints;
/// @notice The number of checkpoints for each account
mapping (address => uint32) public numCheckpoints;
/// @notice The EIP-712 typehash for the contract's domain
bytes32 public constant DOMAIN_TYPEHASH = keccak256("EIP712Domain(string name,uint256 chainId,address verifyingContract)");
/// @notice The EIP-712 typehash for the delegation struct used by the contract
bytes32 public constant DELEGATION_TYPEHASH = keccak256("Delegation(address delegatee,uint256 nonce,uint256 expiry)");
/// @notice The EIP-712 typehash for the permit struct used by the contract
bytes32 public constant PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
/// @notice A record of states for signing / validating signatures
mapping (address => uint) public nonces;
/// @notice An event thats emitted when the minter address is changed
event MinterChanged(address minter, address newMinter);
/// @notice An event thats emitted when an account changes its delegate
event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate);
/// @notice An event thats emitted when a delegate account's vote balance changes
event DelegateVotesChanged(address indexed delegate, uint previousBalance, uint newBalance);
/// @notice The standard EIP-20 transfer event
event Transfer(address indexed from, address indexed to, uint256 amount);
/// @notice The standard EIP-20 approval event
event Approval(address indexed owner, address indexed spender, uint256 amount);
/**
* @notice Construct a new Uni token
* @param account The initial account to grant all the tokens
* @param minter_ The account with minting ability
* @param mintingAllowedAfter_ The timestamp after which minting may occur
*/
constructor(address account, address minter_, uint mintingAllowedAfter_) public {
require(mintingAllowedAfter_ >= block.timestamp, "Uni::constructor: minting can only begin after deployment");
balances[account] = uint96(totalSupply);
emit Transfer(address(0), account, totalSupply);
minter = minter_;
emit MinterChanged(address(0), minter);
mintingAllowedAfter = mintingAllowedAfter_;
}
/**
* @notice Change the minter address
* @param minter_ The address of the new minter
*/
function setMinter(address minter_) external {
require(msg.sender == minter, "Uni::setMinter: only the minter can change the minter address");
emit MinterChanged(minter, minter_);
minter = minter_;
}
/**
* @notice Mint new tokens
* @param dst The address of the destination account
* @param rawAmount The number of tokens to be minted
*/
function mint(address dst, uint rawAmount) external {
require(msg.sender == minter, "Uni::mint: only the minter can mint");
require(block.timestamp >= mintingAllowedAfter, "Uni::mint: minting not allowed yet");
require(dst != address(0), "Uni::mint: cannot transfer to the zero address");
// record the mint
mintingAllowedAfter = SafeMath.add(block.timestamp, minimumTimeBetweenMints);
// mint the amount
uint96 amount = safe96(rawAmount, "Uni::mint: amount exceeds 96 bits");
require(amount <= SafeMath.div(SafeMath.mul(totalSupply, mintCap), 100), "Uni::mint: exceeded mint cap");
totalSupply = safe96(SafeMath.add(totalSupply, amount), "Uni::mint: totalSupply exceeds 96 bits");
// transfer the amount to the recipient
balances[dst] = add96(balances[dst], amount, "Uni::mint: transfer amount overflows");
emit Transfer(address(0), dst, amount);
// move delegates
_moveDelegates(address(0), delegates[dst], amount);
}
/**
* @notice Get the number of tokens `spender` is approved to spend on behalf of `account`
* @param account The address of the account holding the funds
* @param spender The address of the account spending the funds
* @return The number of tokens approved
*/
function allowance(address account, address spender) external view returns (uint) {
return allowances[account][spender];
}
/**
* @notice Approve `spender` to transfer up to `amount` from `src`
* @dev This will overwrite the approval amount for `spender`
* and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve)
* @param spender The address of the account which may transfer tokens
* @param rawAmount The number of tokens that are approved (2^256-1 means infinite)
* @return Whether or not the approval succeeded
*/
function approve(address spender, uint rawAmount) external returns (bool) {
uint96 amount;
if (rawAmount == uint(-1)) {
amount = uint96(-1);
} else {
amount = safe96(rawAmount, "Uni::approve: amount exceeds 96 bits");
}
allowances[msg.sender][spender] = amount;
emit Approval(msg.sender, spender, amount);
return true;
}
/**
* @notice Triggers an approval from owner to spends
* @param owner The address to approve from
* @param spender The address to be approved
* @param rawAmount The number of tokens that are approved (2^256-1 means infinite)
* @param deadline The time at which to expire the signature
* @param v The recovery byte of the signature
* @param r Half of the ECDSA signature pair
* @param s Half of the ECDSA signature pair
*/
function permit(address owner, address spender, uint rawAmount, uint deadline, uint8 v, bytes32 r, bytes32 s) external {
uint96 amount;
if (rawAmount == uint(-1)) {
amount = uint96(-1);
} else {
amount = safe96(rawAmount, "Uni::permit: amount exceeds 96 bits");
}
bytes32 domainSeparator = keccak256(abi.encode(DOMAIN_TYPEHASH, keccak256(bytes(name)), getChainId(), address(this)));
bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, rawAmount, nonces[owner]++, deadline));
bytes32 digest = keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
address signatory = ecrecover(digest, v, r, s);
require(signatory != address(0), "Uni::permit: invalid signature");
require(signatory == owner, "Uni::permit: unauthorized");
require(now <= deadline, "Uni::permit: signature expired");
allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @notice Get the number of tokens held by the `account`
* @param account The address of the account to get the balance of
* @return The number of tokens held
*/
function balanceOf(address account) external view returns (uint) {
return balances[account];
}
/**
* @notice Transfer `amount` tokens from `msg.sender` to `dst`
* @param dst The address of the destination account
* @param rawAmount The number of tokens to transfer
* @return Whether or not the transfer succeeded
*/
function transfer(address dst, uint rawAmount) external returns (bool) {
uint96 amount = safe96(rawAmount, "Uni::transfer: amount exceeds 96 bits");
_transferTokens(msg.sender, dst, amount);
return true;
}
/**
* @notice Transfer `amount` tokens from `src` to `dst`
* @param src The address of the source account
* @param dst The address of the destination account
* @param rawAmount The number of tokens to transfer
* @return Whether or not the transfer succeeded
*/
function transferFrom(address src, address dst, uint rawAmount) external returns (bool) {
address spender = msg.sender;
uint96 spenderAllowance = allowances[src][spender];
uint96 amount = safe96(rawAmount, "Uni::approve: amount exceeds 96 bits");
if (spender != src && spenderAllowance != uint96(-1)) {
uint96 newAllowance = sub96(spenderAllowance, amount, "Uni::transferFrom: transfer amount exceeds spender allowance");
allowances[src][spender] = newAllowance;
emit Approval(src, spender, newAllowance);
}
_transferTokens(src, dst, amount);
return true;
}
/**
* @notice Delegate votes from `msg.sender` to `delegatee`
* @param delegatee The address to delegate votes to
*/
function delegate(address delegatee) public {
return _delegate(msg.sender, delegatee);
}
/**
* @notice Delegates votes from signatory to `delegatee`
* @param delegatee The address to delegate votes to
* @param nonce The contract state required to match the signature
* @param expiry The time at which to expire the signature
* @param v The recovery byte of the signature
* @param r Half of the ECDSA signature pair
* @param s Half of the ECDSA signature pair
*/
function delegateBySig(address delegatee, uint nonce, uint expiry, uint8 v, bytes32 r, bytes32 s) public {
bytes32 domainSeparator = keccak256(abi.encode(DOMAIN_TYPEHASH, keccak256(bytes(name)), getChainId(), address(this)));
bytes32 structHash = keccak256(abi.encode(DELEGATION_TYPEHASH, delegatee, nonce, expiry));
bytes32 digest = keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
address signatory = ecrecover(digest, v, r, s);
require(signatory != address(0), "Uni::delegateBySig: invalid signature");
require(nonce == nonces[signatory]++, "Uni::delegateBySig: invalid nonce");
require(now <= expiry, "Uni::delegateBySig: signature expired");
return _delegate(signatory, delegatee);
}
/**
* @notice Gets the current votes balance for `account`
* @param account The address to get votes balance
* @return The number of current votes for `account`
*/
function getCurrentVotes(address account) external view returns (uint96) {
uint32 nCheckpoints = numCheckpoints[account];
return nCheckpoints > 0 ? checkpoints[account][nCheckpoints - 1].votes : 0;
}
/**
* @notice Determine the prior number of votes for an account as of a block number
* @dev Block number must be a finalized block or else this function will revert to prevent misinformation.
* @param account The address of the account to check
* @param blockNumber The block number to get the vote balance at
* @return The number of votes the account had as of the given block
*/
function getPriorVotes(address account, uint blockNumber) public view returns (uint96) {
require(blockNumber < block.number, "Uni::getPriorVotes: not yet determined");
uint32 nCheckpoints = numCheckpoints[account];
if (nCheckpoints == 0) {
return 0;
}
// First check most recent balance
if (checkpoints[account][nCheckpoints - 1].fromBlock <= blockNumber) {
return checkpoints[account][nCheckpoints - 1].votes;
}
// Next check implicit zero balance
if (checkpoints[account][0].fromBlock > blockNumber) {
return 0;
}
uint32 lower = 0;
uint32 upper = nCheckpoints - 1;
while (upper > lower) {
uint32 center = upper - (upper - lower) / 2; // ceil, avoiding overflow
Checkpoint memory cp = checkpoints[account][center];
if (cp.fromBlock == blockNumber) {
return cp.votes;
} else if (cp.fromBlock < blockNumber) {
lower = center;
} else {
upper = center - 1;
}
}
return checkpoints[account][lower].votes;
}
function _delegate(address delegator, address delegatee) internal {
address currentDelegate = delegates[delegator];
uint96 delegatorBalance = balances[delegator];
delegates[delegator] = delegatee;
emit DelegateChanged(delegator, currentDelegate, delegatee);
_moveDelegates(currentDelegate, delegatee, delegatorBalance);
}
function _transferTokens(address src, address dst, uint96 amount) internal {
require(src != address(0), "Uni::_transferTokens: cannot transfer from the zero address");
require(dst != address(0), "Uni::_transferTokens: cannot transfer to the zero address");
balances[src] = sub96(balances[src], amount, "Uni::_transferTokens: transfer amount exceeds balance");
balances[dst] = add96(balances[dst], amount, "Uni::_transferTokens: transfer amount overflows");
emit Transfer(src, dst, amount);
_moveDelegates(delegates[src], delegates[dst], amount);
}
function _moveDelegates(address srcRep, address dstRep, uint96 amount) internal {
if (srcRep != dstRep && amount > 0) {
if (srcRep != address(0)) {
uint32 srcRepNum = numCheckpoints[srcRep];
uint96 srcRepOld = srcRepNum > 0 ? checkpoints[srcRep][srcRepNum - 1].votes : 0;
uint96 srcRepNew = sub96(srcRepOld, amount, "Uni::_moveVotes: vote amount underflows");
_writeCheckpoint(srcRep, srcRepNum, srcRepOld, srcRepNew);
}
if (dstRep != address(0)) {
uint32 dstRepNum = numCheckpoints[dstRep];
uint96 dstRepOld = dstRepNum > 0 ? checkpoints[dstRep][dstRepNum - 1].votes : 0;
uint96 dstRepNew = add96(dstRepOld, amount, "Uni::_moveVotes: vote amount overflows");
_writeCheckpoint(dstRep, dstRepNum, dstRepOld, dstRepNew);
}
}
}
function _writeCheckpoint(address delegatee, uint32 nCheckpoints, uint96 oldVotes, uint96 newVotes) internal {
uint32 blockNumber = safe32(block.number, "Uni::_writeCheckpoint: block number exceeds 32 bits");
if (nCheckpoints > 0 && checkpoints[delegatee][nCheckpoints - 1].fromBlock == blockNumber) {
checkpoints[delegatee][nCheckpoints - 1].votes = newVotes;
} else {
checkpoints[delegatee][nCheckpoints] = Checkpoint(blockNumber, newVotes);
numCheckpoints[delegatee] = nCheckpoints + 1;
}
emit DelegateVotesChanged(delegatee, oldVotes, newVotes);
}
function safe32(uint n, string memory errorMessage) internal pure returns (uint32) {
require(n < 2**32, errorMessage);
return uint32(n);
}
function safe96(uint n, string memory errorMessage) internal pure returns (uint96) {
require(n < 2**96, errorMessage);
return uint96(n);
}
function add96(uint96 a, uint96 b, string memory errorMessage) internal pure returns (uint96) {
uint96 c = a + b;
require(c >= a, errorMessage);
return c;
}
function sub96(uint96 a, uint96 b, string memory errorMessage) internal pure returns (uint96) {
require(b <= a, errorMessage);
return a - b;
}
function getChainId() internal pure returns (uint) {
uint256 chainId;
assembly { chainId := chainid() }
return chainId;
}
}File 19 of 30: BitDAO
// Dependency file: @openzeppelin/contracts/math/SafeMath.sol
// SPDX-License-Identifier: MIT
// pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
/**
* @dev Returns the substraction of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b > a) return (false, 0);
return (true, a - b);
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b == 0) return (false, 0);
return (true, a / b);
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b == 0) return (false, 0);
return (true, a % b);
}
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
require(b <= a, "SafeMath: subtraction overflow");
return a - b;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) return 0;
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: division by zero");
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: modulo by zero");
return a % b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {trySub}.
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
return a - b;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting with custom message on
* division by zero. The result is rounded towards zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryDiv}.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting with custom message when dividing by zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryMod}.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
return a % b;
}
}
// Dependency file: @openzeppelin/contracts/math/Math.sol
// pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a >= b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow, so we distribute
return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2);
}
}
// Dependency file: @openzeppelin/contracts/utils/Arrays.sol
// pragma solidity >=0.6.0 <0.8.0;
// import "@openzeppelin/contracts/math/Math.sol";
/**
* @dev Collection of functions related to array types.
*/
library Arrays {
/**
* @dev Searches a sorted `array` and returns the first index that contains
* a value greater or equal to `element`. If no such index exists (i.e. all
* values in the array are strictly less than `element`), the array length is
* returned. Time complexity O(log n).
*
* `array` is expected to be sorted in ascending order, and to contain no
* repeated elements.
*/
function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
if (array.length == 0) {
return 0;
}
uint256 low = 0;
uint256 high = array.length;
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds down (it does integer division with truncation).
if (array[mid] > element) {
high = mid;
} else {
low = mid + 1;
}
}
// At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
if (low > 0 && array[low - 1] == element) {
return low - 1;
} else {
return low;
}
}
}
// Dependency file: @openzeppelin/contracts/utils/Counters.sol
// pragma solidity >=0.6.0 <0.8.0;
// import "@openzeppelin/contracts/math/SafeMath.sol";
/**
* @title Counters
* @author Matt Condon (@shrugs)
* @dev Provides counters that can only be incremented or decremented by one. This can be used e.g. to track the number
* of elements in a mapping, issuing ERC721 ids, or counting request ids.
*
* Include with `using Counters for Counters.Counter;`
* Since it is not possible to overflow a 256 bit integer with increments of one, `increment` can skip the {SafeMath}
* overflow check, thereby saving gas. This does assume however correct usage, in that the underlying `_value` is never
* directly accessed.
*/
library Counters {
using SafeMath for uint256;
struct Counter {
// This variable should never be directly accessed by users of the library: interactions must be restricted to
// the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add
// this feature: see https://github.com/ethereum/solidity/issues/4637
uint256 _value; // default: 0
}
function current(Counter storage counter) internal view returns (uint256) {
return counter._value;
}
function increment(Counter storage counter) internal {
// The {SafeMath} overflow check can be skipped here, see the comment at the top
counter._value += 1;
}
function decrement(Counter storage counter) internal {
counter._value = counter._value.sub(1);
}
}
// Dependency file: @openzeppelin/contracts/utils/Context.sol
// pragma solidity >=0.6.0 <0.8.0;
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address payable) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}
// Dependency file: @openzeppelin/contracts/token/ERC20/IERC20.sol
// pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// Dependency file: @openzeppelin/contracts/token/ERC20/ERC20.sol
// pragma solidity >=0.6.0 <0.8.0;
// import "@openzeppelin/contracts/utils/Context.sol";
// import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
// import "@openzeppelin/contracts/math/SafeMath.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin guidelines: functions revert instead
* of returning `false` on failure. This behavior is nonetheless conventional
* and does not conflict with the expectations of ERC20 applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20 {
using SafeMath for uint256;
mapping (address => uint256) private _balances;
mapping (address => mapping (address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
uint8 private _decimals;
/**
* @dev Sets the values for {name} and {symbol}, initializes {decimals} with
* a default value of 18.
*
* To select a different value for {decimals}, use {_setupDecimals}.
*
* All three of these values are immutable: they can only be set once during
* construction.
*/
constructor (string memory name_, string memory symbol_) public {
_name = name_;
_symbol = symbol_;
_decimals = 18;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5,05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
* called.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual returns (uint8) {
return _decimals;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `recipient` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
_approve(_msgSender(), spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* Requirements:
*
* - `sender` and `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
* - the caller must have allowance for ``sender``'s tokens of at least
* `amount`.
*/
function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
/**
* @dev Moves tokens `amount` from `sender` to `recipient`.
*
* This is internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `sender` cannot be the zero address.
* - `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
*/
function _transfer(address sender, address recipient, uint256 amount) internal virtual {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(sender, recipient, amount);
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `to` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Sets {decimals} to a value other than the default one of 18.
*
* WARNING: This function should only be called from the constructor. Most
* applications that interact with token contracts will not expect
* {decimals} to ever change, and may work incorrectly if it does.
*/
function _setupDecimals(uint8 decimals_) internal virtual {
_decimals = decimals_;
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be to transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
}
// Root file: contracts/BitDAO.sol
pragma solidity >=0.6.5 <0.8.0;
// import '/Users/stone/Desktop/BitDAO/node_modules/@openzeppelin/contracts/math/SafeMath.sol';
// import '/Users/stone/Desktop/BitDAO/node_modules/@openzeppelin/contracts/utils/Arrays.sol';
// import '/Users/stone/Desktop/BitDAO/node_modules/@openzeppelin/contracts/utils/Counters.sol';
// import '/Users/stone/Desktop/BitDAO/node_modules/@openzeppelin/contracts/token/ERC20/ERC20.sol';
contract BitDAO is ERC20 {
using SafeMath for uint256;
using Arrays for uint256[];
using Counters for Counters.Counter;
uint256 public MAX_SUPPLY = 1e28; // 1e10 * 1e18
address public admin;
address public pendingAdmin;
mapping(address => address) public delegates;
struct Checkpoint {
uint256 fromBlock;
uint256 votes;
}
mapping(address => mapping(uint256 => Checkpoint)) public checkpoints;
mapping(address => uint256) public numCheckpoints;
bytes32 public constant DOMAIN_TYPEHASH =
keccak256('EIP712Domain(string name,uint256 chainId,address verifyingContract)');
bytes32 public constant DELEGATION_TYPEHASH =
keccak256('Delegation(address delegatee,uint256 nonce,uint256 expiry)');
mapping(address => uint256) public nonces;
struct Snapshots {
uint256[] ids;
uint256[] values;
}
mapping(address => Snapshots) private _accountBalanceSnapshots;
Snapshots private _totalSupplySnapshots;
Counters.Counter private _currentSnapshotId;
event Snapshot(uint256 id);
event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate);
event DelegateVotesChanged(address indexed delegate, uint256 previousBalance, uint256 newBalance);
event NewPendingAdmin(address indexed oldPendingAdmin, address indexed newPendingAdmin);
event NewAdmin(address indexed oldAdmin, address indexed newAdmin);
modifier onlyAdmin {
require(msg.sender == admin, 'Caller is not a admin');
_;
}
constructor(address _admin) ERC20('BitDAO', 'BIT') {
admin = _admin;
_mint(_admin, MAX_SUPPLY);
}
function setPendingAdmin(address newPendingAdmin) external returns (bool) {
if (msg.sender != admin) {
revert('BitDAO:setPendingAdmin:illegal address');
}
address oldPendingAdmin = pendingAdmin;
pendingAdmin = newPendingAdmin;
emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin);
return true;
}
function acceptAdmin() external returns (bool) {
if (msg.sender != pendingAdmin || msg.sender == address(0)) {
revert('BitDAO:acceptAdmin:illegal address');
}
address oldAdmin = admin;
address oldPendingAdmin = pendingAdmin;
admin = pendingAdmin;
pendingAdmin = address(0);
emit NewAdmin(oldAdmin, admin);
emit NewPendingAdmin(oldPendingAdmin, pendingAdmin);
return true;
}
function snapshot() external virtual onlyAdmin returns (uint256) {
_currentSnapshotId.increment();
uint256 currentId = _currentSnapshotId.current();
emit Snapshot(currentId);
return currentId;
}
function balanceOfAt(address account, uint256 snapshotId) public view virtual returns (uint256) {
(bool snapshotted, uint256 value) = _valueAt(snapshotId, _accountBalanceSnapshots[account]);
return snapshotted ? value : balanceOf(account);
}
function totalSupplyAt(uint256 snapshotId) public view virtual returns (uint256) {
(bool snapshotted, uint256 value) = _valueAt(snapshotId, _totalSupplySnapshots);
return snapshotted ? value : totalSupply();
}
function _beforeTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual override {
super._beforeTokenTransfer(from, to, amount);
if (from == address(0)) {
// mint
_updateAccountSnapshot(to);
_updateTotalSupplySnapshot();
} else if (to == address(0)) {
// burn
_updateAccountSnapshot(from);
_updateTotalSupplySnapshot();
} else {
// transfer
_updateAccountSnapshot(from);
_updateAccountSnapshot(to);
}
}
function _valueAt(uint256 snapshotId, Snapshots storage snapshots) private view returns (bool, uint256) {
require(snapshotId > 0, 'ERC20Snapshot: id is 0');
require(snapshotId <= _currentSnapshotId.current(), 'ERC20Snapshot: nonexistent id');
uint256 index = snapshots.ids.findUpperBound(snapshotId);
if (index == snapshots.ids.length) {
return (false, 0);
} else {
return (true, snapshots.values[index]);
}
}
function _updateAccountSnapshot(address account) private {
_updateSnapshot(_accountBalanceSnapshots[account], balanceOf(account));
}
function _updateTotalSupplySnapshot() private {
_updateSnapshot(_totalSupplySnapshots, totalSupply());
}
function _updateSnapshot(Snapshots storage snapshots, uint256 currentValue) private {
uint256 currentId = _currentSnapshotId.current();
if (_lastSnapshotId(snapshots.ids) < currentId) {
snapshots.ids.push(currentId);
snapshots.values.push(currentValue);
}
}
function _lastSnapshotId(uint256[] storage ids) private view returns (uint256) {
if (ids.length == 0) {
return 0;
} else {
return ids[ids.length - 1];
}
}
function delegate(address delegatee) external {
return _delegate(msg.sender, delegatee);
}
function delegateBySig(
address delegatee,
uint256 nonce,
uint256 expiry,
uint8 v,
bytes32 r,
bytes32 s
) external {
bytes32 domainSeparator =
keccak256(abi.encode(DOMAIN_TYPEHASH, keccak256(bytes(name())), getChainId(), address(this)));
bytes32 structHash = keccak256(abi.encode(DELEGATION_TYPEHASH, delegatee, nonce, expiry));
bytes32 digest = keccak256(abi.encodePacked('\x19\x01', domainSeparator, structHash));
address signatory = ecrecover(digest, v, r, s);
require(signatory != address(0), 'BitDAO::delegateBySig: invalid signature');
require(nonce == nonces[signatory]++, 'BitDAO::delegateBySig: invalid nonce');
require(block.timestamp <= expiry, 'BitDAO::delegateBySig: signature expired');
return _delegate(signatory, delegatee);
}
function getCurrentVotes(address account) external view returns (uint256) {
uint256 nCheckpoints = numCheckpoints[account];
return nCheckpoints > 0 ? checkpoints[account][nCheckpoints - 1].votes : 0;
}
function getPriorVotes(address account, uint256 blockNumber) public view returns (uint256) {
require(blockNumber < block.number, 'BitDAO::getPriorVotes: not yet determined');
uint256 nCheckpoints = numCheckpoints[account];
if (nCheckpoints == 0) {
return 0;
}
if (checkpoints[account][nCheckpoints - 1].fromBlock <= blockNumber) {
return checkpoints[account][nCheckpoints - 1].votes;
}
if (checkpoints[account][0].fromBlock > blockNumber) {
return 0;
}
uint256 lower = 0;
uint256 upper = nCheckpoints - 1;
while (upper > lower) {
uint256 center = upper - (upper - lower) / 2;
Checkpoint memory cp = checkpoints[account][center];
if (cp.fromBlock == blockNumber) {
return cp.votes;
} else if (cp.fromBlock < blockNumber) {
lower = center;
} else {
upper = center - 1;
}
}
return checkpoints[account][lower].votes;
}
function _delegate(address delegator, address delegatee) internal {
address currentDelegate = delegates[delegator];
uint256 delegatorBalance = balanceOf(delegator);
delegates[delegator] = delegatee;
emit DelegateChanged(delegator, currentDelegate, delegatee);
_moveDelegates(currentDelegate, delegatee, delegatorBalance);
}
function _transfer(
address sender,
address recipient,
uint256 amount
) internal virtual override {
super._transfer(sender, recipient, amount);
_moveDelegates(delegates[sender], delegates[recipient], amount);
}
function _moveDelegates(
address srcRep,
address dstRep,
uint256 amount
) internal {
if (srcRep != dstRep && amount > 0) {
if (srcRep != address(0)) {
uint256 srcRepNum = numCheckpoints[srcRep];
uint256 srcRepOld = srcRepNum > 0 ? checkpoints[srcRep][srcRepNum - 1].votes : 0;
uint256 srcRepNew = srcRepOld.sub(amount);
_writeCheckpoint(srcRep, srcRepNum, srcRepOld, srcRepNew);
}
if (dstRep != address(0)) {
uint256 dstRepNum = numCheckpoints[dstRep];
uint256 dstRepOld = dstRepNum > 0 ? checkpoints[dstRep][dstRepNum - 1].votes : 0;
uint256 dstRepNew = dstRepOld.add(amount);
_writeCheckpoint(dstRep, dstRepNum, dstRepOld, dstRepNew);
}
}
}
function _writeCheckpoint(
address delegatee,
uint256 nCheckpoints,
uint256 oldVotes,
uint256 newVotes
) internal {
uint256 blockNumber = safe32(block.number, 'BitDAO::_writeCheckpoint: block number exceeds 32 bits');
if (nCheckpoints > 0 && checkpoints[delegatee][nCheckpoints - 1].fromBlock == blockNumber) {
checkpoints[delegatee][nCheckpoints - 1].votes = newVotes;
} else {
checkpoints[delegatee][nCheckpoints] = Checkpoint(blockNumber, newVotes);
numCheckpoints[delegatee] = nCheckpoints + 1;
}
emit DelegateVotesChanged(delegatee, oldVotes, newVotes);
}
function safe32(uint256 n, string memory errorMessage) internal pure returns (uint256) {
require(n < 2**32, errorMessage);
return uint256(n);
}
function getChainId() internal pure returns (uint256) {
uint256 chainId;
assembly {
chainId := chainid()
}
return chainId;
}
}File 20 of 30: BAToken
pragma solidity ^0.4.10;
/* taking ideas from FirstBlood token */
contract SafeMath {
/* function assert(bool assertion) internal { */
/* if (!assertion) { */
/* throw; */
/* } */
/* } // assert no longer needed once solidity is on 0.4.10 */
function safeAdd(uint256 x, uint256 y) internal returns(uint256) {
uint256 z = x + y;
assert((z >= x) && (z >= y));
return z;
}
function safeSubtract(uint256 x, uint256 y) internal returns(uint256) {
assert(x >= y);
uint256 z = x - y;
return z;
}
function safeMult(uint256 x, uint256 y) internal returns(uint256) {
uint256 z = x * y;
assert((x == 0)||(z/x == y));
return z;
}
}
contract Token {
uint256 public totalSupply;
function balanceOf(address _owner) constant returns (uint256 balance);
function transfer(address _to, uint256 _value) returns (bool success);
function transferFrom(address _from, address _to, uint256 _value) returns (bool success);
function approve(address _spender, uint256 _value) returns (bool success);
function allowance(address _owner, address _spender) constant returns (uint256 remaining);
event Transfer(address indexed _from, address indexed _to, uint256 _value);
event Approval(address indexed _owner, address indexed _spender, uint256 _value);
}
/* ERC 20 token */
contract StandardToken is Token {
function transfer(address _to, uint256 _value) returns (bool success) {
if (balances[msg.sender] >= _value && _value > 0) {
balances[msg.sender] -= _value;
balances[_to] += _value;
Transfer(msg.sender, _to, _value);
return true;
} else {
return false;
}
}
function transferFrom(address _from, address _to, uint256 _value) returns (bool success) {
if (balances[_from] >= _value && allowed[_from][msg.sender] >= _value && _value > 0) {
balances[_to] += _value;
balances[_from] -= _value;
allowed[_from][msg.sender] -= _value;
Transfer(_from, _to, _value);
return true;
} else {
return false;
}
}
function balanceOf(address _owner) constant returns (uint256 balance) {
return balances[_owner];
}
function approve(address _spender, uint256 _value) returns (bool success) {
allowed[msg.sender][_spender] = _value;
Approval(msg.sender, _spender, _value);
return true;
}
function allowance(address _owner, address _spender) constant returns (uint256 remaining) {
return allowed[_owner][_spender];
}
mapping (address => uint256) balances;
mapping (address => mapping (address => uint256)) allowed;
}
contract BAToken is StandardToken, SafeMath {
// metadata
string public constant name = "Basic Attention Token";
string public constant symbol = "BAT";
uint256 public constant decimals = 18;
string public version = "1.0";
// contracts
address public ethFundDeposit; // deposit address for ETH for Brave International
address public batFundDeposit; // deposit address for Brave International use and BAT User Fund
// crowdsale parameters
bool public isFinalized; // switched to true in operational state
uint256 public fundingStartBlock;
uint256 public fundingEndBlock;
uint256 public constant batFund = 500 * (10**6) * 10**decimals; // 500m BAT reserved for Brave Intl use
uint256 public constant tokenExchangeRate = 6400; // 6400 BAT tokens per 1 ETH
uint256 public constant tokenCreationCap = 1500 * (10**6) * 10**decimals;
uint256 public constant tokenCreationMin = 675 * (10**6) * 10**decimals;
// events
event LogRefund(address indexed _to, uint256 _value);
event CreateBAT(address indexed _to, uint256 _value);
// constructor
function BAToken(
address _ethFundDeposit,
address _batFundDeposit,
uint256 _fundingStartBlock,
uint256 _fundingEndBlock)
{
isFinalized = false; //controls pre through crowdsale state
ethFundDeposit = _ethFundDeposit;
batFundDeposit = _batFundDeposit;
fundingStartBlock = _fundingStartBlock;
fundingEndBlock = _fundingEndBlock;
totalSupply = batFund;
balances[batFundDeposit] = batFund; // Deposit Brave Intl share
CreateBAT(batFundDeposit, batFund); // logs Brave Intl fund
}
/// @dev Accepts ether and creates new BAT tokens.
function createTokens() payable external {
if (isFinalized) throw;
if (block.number < fundingStartBlock) throw;
if (block.number > fundingEndBlock) throw;
if (msg.value == 0) throw;
uint256 tokens = safeMult(msg.value, tokenExchangeRate); // check that we're not over totals
uint256 checkedSupply = safeAdd(totalSupply, tokens);
// return money if something goes wrong
if (tokenCreationCap < checkedSupply) throw; // odd fractions won't be found
totalSupply = checkedSupply;
balances[msg.sender] += tokens; // safeAdd not needed; bad semantics to use here
CreateBAT(msg.sender, tokens); // logs token creation
}
/// @dev Ends the funding period and sends the ETH home
function finalize() external {
if (isFinalized) throw;
if (msg.sender != ethFundDeposit) throw; // locks finalize to the ultimate ETH owner
if(totalSupply < tokenCreationMin) throw; // have to sell minimum to move to operational
if(block.number <= fundingEndBlock && totalSupply != tokenCreationCap) throw;
// move to operational
isFinalized = true;
if(!ethFundDeposit.send(this.balance)) throw; // send the eth to Brave International
}
/// @dev Allows contributors to recover their ether in the case of a failed funding campaign.
function refund() external {
if(isFinalized) throw; // prevents refund if operational
if (block.number <= fundingEndBlock) throw; // prevents refund until sale period is over
if(totalSupply >= tokenCreationMin) throw; // no refunds if we sold enough
if(msg.sender == batFundDeposit) throw; // Brave Intl not entitled to a refund
uint256 batVal = balances[msg.sender];
if (batVal == 0) throw;
balances[msg.sender] = 0;
totalSupply = safeSubtract(totalSupply, batVal); // extra safe
uint256 ethVal = batVal / tokenExchangeRate; // should be safe; previous throws covers edges
LogRefund(msg.sender, ethVal); // log it
if (!msg.sender.send(ethVal)) throw; // if you're using a contract; make sure it works with .send gas limits
}
}File 21 of 30: UniswapV2Pair
// File: contracts/uniswapv2/interfaces/IUniswapV2Factory.sol
pragma solidity >=0.5.0;
interface IUniswapV2Factory {
event PairCreated(address indexed token0, address indexed token1, address pair, uint);
function feeTo() external view returns (address);
function feeToSetter() external view returns (address);
function migrator() external view returns (address);
function getPair(address tokenA, address tokenB) external view returns (address pair);
function allPairs(uint) external view returns (address pair);
function allPairsLength() external view returns (uint);
function createPair(address tokenA, address tokenB) external returns (address pair);
function setFeeTo(address) external;
function setFeeToSetter(address) external;
function setMigrator(address) external;
}
// File: contracts/uniswapv2/libraries/SafeMath.sol
pragma solidity =0.6.12;
// a library for performing overflow-safe math, courtesy of DappHub (https://github.com/dapphub/ds-math)
library SafeMathUniswap {
function add(uint x, uint y) internal pure returns (uint z) {
require((z = x + y) >= x, 'ds-math-add-overflow');
}
function sub(uint x, uint y) internal pure returns (uint z) {
require((z = x - y) <= x, 'ds-math-sub-underflow');
}
function mul(uint x, uint y) internal pure returns (uint z) {
require(y == 0 || (z = x * y) / y == x, 'ds-math-mul-overflow');
}
}
// File: contracts/uniswapv2/UniswapV2ERC20.sol
pragma solidity =0.6.12;
contract UniswapV2ERC20 {
using SafeMathUniswap for uint;
string public constant name = 'SushiSwap LP Token';
string public constant symbol = 'SLP';
uint8 public constant decimals = 18;
uint public totalSupply;
mapping(address => uint) public balanceOf;
mapping(address => mapping(address => uint)) public allowance;
bytes32 public DOMAIN_SEPARATOR;
// keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
bytes32 public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;
mapping(address => uint) public nonces;
event Approval(address indexed owner, address indexed spender, uint value);
event Transfer(address indexed from, address indexed to, uint value);
constructor() public {
uint chainId;
assembly {
chainId := chainid()
}
DOMAIN_SEPARATOR = keccak256(
abi.encode(
keccak256('EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)'),
keccak256(bytes(name)),
keccak256(bytes('1')),
chainId,
address(this)
)
);
}
function _mint(address to, uint value) internal {
totalSupply = totalSupply.add(value);
balanceOf[to] = balanceOf[to].add(value);
emit Transfer(address(0), to, value);
}
function _burn(address from, uint value) internal {
balanceOf[from] = balanceOf[from].sub(value);
totalSupply = totalSupply.sub(value);
emit Transfer(from, address(0), value);
}
function _approve(address owner, address spender, uint value) private {
allowance[owner][spender] = value;
emit Approval(owner, spender, value);
}
function _transfer(address from, address to, uint value) private {
balanceOf[from] = balanceOf[from].sub(value);
balanceOf[to] = balanceOf[to].add(value);
emit Transfer(from, to, value);
}
function approve(address spender, uint value) external returns (bool) {
_approve(msg.sender, spender, value);
return true;
}
function transfer(address to, uint value) external returns (bool) {
_transfer(msg.sender, to, value);
return true;
}
function transferFrom(address from, address to, uint value) external returns (bool) {
if (allowance[from][msg.sender] != uint(-1)) {
allowance[from][msg.sender] = allowance[from][msg.sender].sub(value);
}
_transfer(from, to, value);
return true;
}
function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external {
require(deadline >= block.timestamp, 'UniswapV2: EXPIRED');
bytes32 digest = keccak256(
abi.encodePacked(
'\x19\x01',
DOMAIN_SEPARATOR,
keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[owner]++, deadline))
)
);
address recoveredAddress = ecrecover(digest, v, r, s);
require(recoveredAddress != address(0) && recoveredAddress == owner, 'UniswapV2: INVALID_SIGNATURE');
_approve(owner, spender, value);
}
}
// File: contracts/uniswapv2/libraries/Math.sol
pragma solidity =0.6.12;
// a library for performing various math operations
library Math {
function min(uint x, uint y) internal pure returns (uint z) {
z = x < y ? x : y;
}
// babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method)
function sqrt(uint y) internal pure returns (uint z) {
if (y > 3) {
z = y;
uint x = y / 2 + 1;
while (x < z) {
z = x;
x = (y / x + x) / 2;
}
} else if (y != 0) {
z = 1;
}
}
}
// File: contracts/uniswapv2/libraries/UQ112x112.sol
pragma solidity =0.6.12;
// a library for handling binary fixed point numbers (https://en.wikipedia.org/wiki/Q_(number_format))
// range: [0, 2**112 - 1]
// resolution: 1 / 2**112
library UQ112x112 {
uint224 constant Q112 = 2**112;
// encode a uint112 as a UQ112x112
function encode(uint112 y) internal pure returns (uint224 z) {
z = uint224(y) * Q112; // never overflows
}
// divide a UQ112x112 by a uint112, returning a UQ112x112
function uqdiv(uint224 x, uint112 y) internal pure returns (uint224 z) {
z = x / uint224(y);
}
}
// File: contracts/uniswapv2/interfaces/IERC20.sol
pragma solidity >=0.5.0;
interface IERC20Uniswap {
event Approval(address indexed owner, address indexed spender, uint value);
event Transfer(address indexed from, address indexed to, uint value);
function name() external view returns (string memory);
function symbol() external view returns (string memory);
function decimals() external view returns (uint8);
function totalSupply() external view returns (uint);
function balanceOf(address owner) external view returns (uint);
function allowance(address owner, address spender) external view returns (uint);
function approve(address spender, uint value) external returns (bool);
function transfer(address to, uint value) external returns (bool);
function transferFrom(address from, address to, uint value) external returns (bool);
}
// File: contracts/uniswapv2/interfaces/IUniswapV2Callee.sol
pragma solidity >=0.5.0;
interface IUniswapV2Callee {
function uniswapV2Call(address sender, uint amount0, uint amount1, bytes calldata data) external;
}
// File: contracts/uniswapv2/UniswapV2Pair.sol
pragma solidity =0.6.12;
interface IMigrator {
// Return the desired amount of liquidity token that the migrator wants.
function desiredLiquidity() external view returns (uint256);
}
contract UniswapV2Pair is UniswapV2ERC20 {
using SafeMathUniswap for uint;
using UQ112x112 for uint224;
uint public constant MINIMUM_LIQUIDITY = 10**3;
bytes4 private constant SELECTOR = bytes4(keccak256(bytes('transfer(address,uint256)')));
address public factory;
address public token0;
address public token1;
uint112 private reserve0; // uses single storage slot, accessible via getReserves
uint112 private reserve1; // uses single storage slot, accessible via getReserves
uint32 private blockTimestampLast; // uses single storage slot, accessible via getReserves
uint public price0CumulativeLast;
uint public price1CumulativeLast;
uint public kLast; // reserve0 * reserve1, as of immediately after the most recent liquidity event
uint private unlocked = 1;
modifier lock() {
require(unlocked == 1, 'UniswapV2: LOCKED');
unlocked = 0;
_;
unlocked = 1;
}
function getReserves() public view returns (uint112 _reserve0, uint112 _reserve1, uint32 _blockTimestampLast) {
_reserve0 = reserve0;
_reserve1 = reserve1;
_blockTimestampLast = blockTimestampLast;
}
function _safeTransfer(address token, address to, uint value) private {
(bool success, bytes memory data) = token.call(abi.encodeWithSelector(SELECTOR, to, value));
require(success && (data.length == 0 || abi.decode(data, (bool))), 'UniswapV2: TRANSFER_FAILED');
}
event Mint(address indexed sender, uint amount0, uint amount1);
event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
event Swap(
address indexed sender,
uint amount0In,
uint amount1In,
uint amount0Out,
uint amount1Out,
address indexed to
);
event Sync(uint112 reserve0, uint112 reserve1);
constructor() public {
factory = msg.sender;
}
// called once by the factory at time of deployment
function initialize(address _token0, address _token1) external {
require(msg.sender == factory, 'UniswapV2: FORBIDDEN'); // sufficient check
token0 = _token0;
token1 = _token1;
}
// update reserves and, on the first call per block, price accumulators
function _update(uint balance0, uint balance1, uint112 _reserve0, uint112 _reserve1) private {
require(balance0 <= uint112(-1) && balance1 <= uint112(-1), 'UniswapV2: OVERFLOW');
uint32 blockTimestamp = uint32(block.timestamp % 2**32);
uint32 timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired
if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) {
// * never overflows, and + overflow is desired
price0CumulativeLast += uint(UQ112x112.encode(_reserve1).uqdiv(_reserve0)) * timeElapsed;
price1CumulativeLast += uint(UQ112x112.encode(_reserve0).uqdiv(_reserve1)) * timeElapsed;
}
reserve0 = uint112(balance0);
reserve1 = uint112(balance1);
blockTimestampLast = blockTimestamp;
emit Sync(reserve0, reserve1);
}
// if fee is on, mint liquidity equivalent to 1/6th of the growth in sqrt(k)
function _mintFee(uint112 _reserve0, uint112 _reserve1) private returns (bool feeOn) {
address feeTo = IUniswapV2Factory(factory).feeTo();
feeOn = feeTo != address(0);
uint _kLast = kLast; // gas savings
if (feeOn) {
if (_kLast != 0) {
uint rootK = Math.sqrt(uint(_reserve0).mul(_reserve1));
uint rootKLast = Math.sqrt(_kLast);
if (rootK > rootKLast) {
uint numerator = totalSupply.mul(rootK.sub(rootKLast));
uint denominator = rootK.mul(5).add(rootKLast);
uint liquidity = numerator / denominator;
if (liquidity > 0) _mint(feeTo, liquidity);
}
}
} else if (_kLast != 0) {
kLast = 0;
}
}
// this low-level function should be called from a contract which performs important safety checks
function mint(address to) external lock returns (uint liquidity) {
(uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
uint balance0 = IERC20Uniswap(token0).balanceOf(address(this));
uint balance1 = IERC20Uniswap(token1).balanceOf(address(this));
uint amount0 = balance0.sub(_reserve0);
uint amount1 = balance1.sub(_reserve1);
bool feeOn = _mintFee(_reserve0, _reserve1);
uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
if (_totalSupply == 0) {
address migrator = IUniswapV2Factory(factory).migrator();
if (msg.sender == migrator) {
liquidity = IMigrator(migrator).desiredLiquidity();
require(liquidity > 0 && liquidity != uint256(-1), "Bad desired liquidity");
} else {
require(migrator == address(0), "Must not have migrator");
liquidity = Math.sqrt(amount0.mul(amount1)).sub(MINIMUM_LIQUIDITY);
_mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY tokens
}
} else {
liquidity = Math.min(amount0.mul(_totalSupply) / _reserve0, amount1.mul(_totalSupply) / _reserve1);
}
require(liquidity > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_MINTED');
_mint(to, liquidity);
_update(balance0, balance1, _reserve0, _reserve1);
if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
emit Mint(msg.sender, amount0, amount1);
}
// this low-level function should be called from a contract which performs important safety checks
function burn(address to) external lock returns (uint amount0, uint amount1) {
(uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
address _token0 = token0; // gas savings
address _token1 = token1; // gas savings
uint balance0 = IERC20Uniswap(_token0).balanceOf(address(this));
uint balance1 = IERC20Uniswap(_token1).balanceOf(address(this));
uint liquidity = balanceOf[address(this)];
bool feeOn = _mintFee(_reserve0, _reserve1);
uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata distribution
amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata distribution
require(amount0 > 0 && amount1 > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_BURNED');
_burn(address(this), liquidity);
_safeTransfer(_token0, to, amount0);
_safeTransfer(_token1, to, amount1);
balance0 = IERC20Uniswap(_token0).balanceOf(address(this));
balance1 = IERC20Uniswap(_token1).balanceOf(address(this));
_update(balance0, balance1, _reserve0, _reserve1);
if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
emit Burn(msg.sender, amount0, amount1, to);
}
// this low-level function should be called from a contract which performs important safety checks
function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external lock {
require(amount0Out > 0 || amount1Out > 0, 'UniswapV2: INSUFFICIENT_OUTPUT_AMOUNT');
(uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
require(amount0Out < _reserve0 && amount1Out < _reserve1, 'UniswapV2: INSUFFICIENT_LIQUIDITY');
uint balance0;
uint balance1;
{ // scope for _token{0,1}, avoids stack too deep errors
address _token0 = token0;
address _token1 = token1;
require(to != _token0 && to != _token1, 'UniswapV2: INVALID_TO');
if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens
if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens
if (data.length > 0) IUniswapV2Callee(to).uniswapV2Call(msg.sender, amount0Out, amount1Out, data);
balance0 = IERC20Uniswap(_token0).balanceOf(address(this));
balance1 = IERC20Uniswap(_token1).balanceOf(address(this));
}
uint amount0In = balance0 > _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0;
uint amount1In = balance1 > _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0;
require(amount0In > 0 || amount1In > 0, 'UniswapV2: INSUFFICIENT_INPUT_AMOUNT');
{ // scope for reserve{0,1}Adjusted, avoids stack too deep errors
uint balance0Adjusted = balance0.mul(1000).sub(amount0In.mul(3));
uint balance1Adjusted = balance1.mul(1000).sub(amount1In.mul(3));
require(balance0Adjusted.mul(balance1Adjusted) >= uint(_reserve0).mul(_reserve1).mul(1000**2), 'UniswapV2: K');
}
_update(balance0, balance1, _reserve0, _reserve1);
emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to);
}
// force balances to match reserves
function skim(address to) external lock {
address _token0 = token0; // gas savings
address _token1 = token1; // gas savings
_safeTransfer(_token0, to, IERC20Uniswap(_token0).balanceOf(address(this)).sub(reserve0));
_safeTransfer(_token1, to, IERC20Uniswap(_token1).balanceOf(address(this)).sub(reserve1));
}
// force reserves to match balances
function sync() external lock {
_update(IERC20Uniswap(token0).balanceOf(address(this)), IERC20Uniswap(token1).balanceOf(address(this)), reserve0, reserve1);
}
}File 22 of 30: GraphToken
// Sources flattened with hardhat v2.0.2 https://hardhat.org
// File @openzeppelin/contracts/GSN/Context.sol@v3.3.0-solc-0.7
// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address payable) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}
// File @openzeppelin/contracts/token/ERC20/IERC20.sol@v3.3.0-solc-0.7
pragma solidity ^0.7.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// File @openzeppelin/contracts/math/SafeMath.sol@v3.3.0-solc-0.7
pragma solidity ^0.7.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
// File @openzeppelin/contracts/token/ERC20/ERC20.sol@v3.3.0-solc-0.7
pragma solidity ^0.7.0;
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin guidelines: functions revert instead
* of returning `false` on failure. This behavior is nonetheless conventional
* and does not conflict with the expectations of ERC20 applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20 {
using SafeMath for uint256;
mapping (address => uint256) private _balances;
mapping (address => mapping (address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
uint8 private _decimals;
/**
* @dev Sets the values for {name} and {symbol}, initializes {decimals} with
* a default value of 18.
*
* To select a different value for {decimals}, use {_setupDecimals}.
*
* All three of these values are immutable: they can only be set once during
* construction.
*/
constructor (string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
_decimals = 18;
}
/**
* @dev Returns the name of the token.
*/
function name() public view returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5,05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
* called.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view returns (uint8) {
return _decimals;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `recipient` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
_approve(_msgSender(), spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* Requirements:
*
* - `sender` and `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
* - the caller must have allowance for ``sender``'s tokens of at least
* `amount`.
*/
function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
/**
* @dev Moves tokens `amount` from `sender` to `recipient`.
*
* This is internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `sender` cannot be the zero address.
* - `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
*/
function _transfer(address sender, address recipient, uint256 amount) internal virtual {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(sender, recipient, amount);
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `to` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Sets {decimals} to a value other than the default one of 18.
*
* WARNING: This function should only be called from the constructor. Most
* applications that interact with token contracts will not expect
* {decimals} to ever change, and may work incorrectly if it does.
*/
function _setupDecimals(uint8 decimals_) internal {
_decimals = decimals_;
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be to transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
}
// File @openzeppelin/contracts/token/ERC20/ERC20Burnable.sol@v3.3.0-solc-0.7
pragma solidity ^0.7.0;
/**
* @dev Extension of {ERC20} that allows token holders to destroy both their own
* tokens and those that they have an allowance for, in a way that can be
* recognized off-chain (via event analysis).
*/
abstract contract ERC20Burnable is Context, ERC20 {
using SafeMath for uint256;
/**
* @dev Destroys `amount` tokens from the caller.
*
* See {ERC20-_burn}.
*/
function burn(uint256 amount) public virtual {
_burn(_msgSender(), amount);
}
/**
* @dev Destroys `amount` tokens from `account`, deducting from the caller's
* allowance.
*
* See {ERC20-_burn} and {ERC20-allowance}.
*
* Requirements:
*
* - the caller must have allowance for ``accounts``'s tokens of at least
* `amount`.
*/
function burnFrom(address account, uint256 amount) public virtual {
uint256 decreasedAllowance = allowance(account, _msgSender()).sub(amount, "ERC20: burn amount exceeds allowance");
_approve(account, _msgSender(), decreasedAllowance);
_burn(account, amount);
}
}
// File @openzeppelin/contracts/cryptography/ECDSA.sol@v3.3.0-solc-0.7
pragma solidity ^0.7.0;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
// Check the signature length
if (signature.length != 65) {
revert("ECDSA: invalid signature length");
}
// Divide the signature in r, s and v variables
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
// solhint-disable-next-line no-inline-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (281): 0 < s < secp256k1n ÷ 2 + 1, and for v in (282): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
require(uint256(s) <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0, "ECDSA: invalid signature 's' value");
require(v == 27 || v == 28, "ECDSA: invalid signature 'v' value");
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
require(signer != address(0), "ECDSA: invalid signature");
return signer;
}
/**
* @dev Returns an Ethereum Signed Message, created from a `hash`. This
* replicates the behavior of the
* https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sign[`eth_sign`]
* JSON-RPC method.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
// 32 is the length in bytes of hash,
// enforced by the type signature above
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
}
}
// File contracts/governance/Governed.sol
pragma solidity ^0.7.3;
/**
* @title Graph Governance contract
* @dev All contracts that will be owned by a Governor entity should extend this contract.
*/
contract Governed {
// -- State --
address public governor;
address public pendingGovernor;
// -- Events --
event NewPendingOwnership(address indexed from, address indexed to);
event NewOwnership(address indexed from, address indexed to);
/**
* @dev Check if the caller is the governor.
*/
modifier onlyGovernor {
require(msg.sender == governor, "Only Governor can call");
_;
}
/**
* @dev Initialize the governor to the contract caller.
*/
function _initialize(address _initGovernor) internal {
governor = _initGovernor;
}
/**
* @dev Admin function to begin change of governor. The `_newGovernor` must call
* `acceptOwnership` to finalize the transfer.
* @param _newGovernor Address of new `governor`
*/
function transferOwnership(address _newGovernor) external onlyGovernor {
require(_newGovernor != address(0), "Governor must be set");
address oldPendingGovernor = pendingGovernor;
pendingGovernor = _newGovernor;
emit NewPendingOwnership(oldPendingGovernor, pendingGovernor);
}
/**
* @dev Admin function for pending governor to accept role and update governor.
* This function must called by the pending governor.
*/
function acceptOwnership() external {
require(
pendingGovernor != address(0) && msg.sender == pendingGovernor,
"Caller must be pending governor"
);
address oldGovernor = governor;
address oldPendingGovernor = pendingGovernor;
governor = pendingGovernor;
pendingGovernor = address(0);
emit NewOwnership(oldGovernor, governor);
emit NewPendingOwnership(oldPendingGovernor, pendingGovernor);
}
}
// File contracts/token/GraphToken.sol
pragma solidity ^0.7.3;
/**
* @title GraphToken contract
* @dev This is the implementation of the ERC20 Graph Token.
* The implementation exposes a Permit() function to allow for a spender to send a signed message
* and approve funds to a spender following EIP2612 to make integration with other contracts easier.
*
* The token is initially owned by the deployer address that can mint tokens to create the initial
* distribution. For convenience, an initial supply can be passed in the constructor that will be
* assigned to the deployer.
*
* The governor can add the RewardsManager contract to mint indexing rewards.
*
*/
contract GraphToken is Governed, ERC20, ERC20Burnable {
using SafeMath for uint256;
// -- EIP712 --
// https://github.com/ethereum/EIPs/blob/master/EIPS/eip-712.md#definition-of-domainseparator
bytes32 private constant DOMAIN_TYPE_HASH = keccak256(
"EIP712Domain(string name,string version,uint256 chainId,address verifyingContract,bytes32 salt)"
);
bytes32 private constant DOMAIN_NAME_HASH = keccak256("Graph Token");
bytes32 private constant DOMAIN_VERSION_HASH = keccak256("0");
bytes32
private constant DOMAIN_SALT = 0x51f3d585afe6dfeb2af01bba0889a36c1db03beec88c6a4d0c53817069026afa; // Randomly generated salt
bytes32 private constant PERMIT_TYPEHASH = keccak256(
"Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
);
// -- State --
bytes32 private DOMAIN_SEPARATOR;
mapping(address => bool) private _minters;
mapping(address => uint256) public nonces;
// -- Events --
event MinterAdded(address indexed account);
event MinterRemoved(address indexed account);
modifier onlyMinter() {
require(isMinter(msg.sender), "Only minter can call");
_;
}
/**
* @dev Graph Token Contract Constructor.
* @param _initialSupply Initial supply of GRT
*/
constructor(uint256 _initialSupply) ERC20("Graph Token", "GRT") {
Governed._initialize(msg.sender);
// The Governor has the initial supply of tokens
_mint(msg.sender, _initialSupply);
// The Governor is the default minter
_addMinter(msg.sender);
// EIP-712 domain separator
DOMAIN_SEPARATOR = keccak256(
abi.encode(
DOMAIN_TYPE_HASH,
DOMAIN_NAME_HASH,
DOMAIN_VERSION_HASH,
_getChainID(),
address(this),
DOMAIN_SALT
)
);
}
/**
* @dev Approve token allowance by validating a message signed by the holder.
* @param _owner Address of the token holder
* @param _spender Address of the approved spender
* @param _value Amount of tokens to approve the spender
* @param _deadline Expiration time of the signed permit
* @param _v Signature version
* @param _r Signature r value
* @param _s Signature s value
*/
function permit(
address _owner,
address _spender,
uint256 _value,
uint256 _deadline,
uint8 _v,
bytes32 _r,
bytes32 _s
) external {
bytes32 digest = keccak256(
abi.encodePacked(
"\x19\x01",
DOMAIN_SEPARATOR,
keccak256(
abi.encode(
PERMIT_TYPEHASH,
_owner,
_spender,
_value,
nonces[_owner],
_deadline
)
)
)
);
nonces[_owner] = nonces[_owner].add(1);
address recoveredAddress = ECDSA.recover(digest, abi.encodePacked(_r, _s, _v));
require(_owner == recoveredAddress, "GRT: invalid permit");
require(_deadline == 0 || block.timestamp <= _deadline, "GRT: expired permit");
_approve(_owner, _spender, _value);
}
/**
* @dev Add a new minter.
* @param _account Address of the minter
*/
function addMinter(address _account) external onlyGovernor {
_addMinter(_account);
}
/**
* @dev Remove a minter.
* @param _account Address of the minter
*/
function removeMinter(address _account) external onlyGovernor {
_removeMinter(_account);
}
/**
* @dev Renounce to be a minter.
*/
function renounceMinter() external {
_removeMinter(msg.sender);
}
/**
* @dev Mint new tokens.
* @param _to Address to send the newly minted tokens
* @param _amount Amount of tokens to mint
*/
function mint(address _to, uint256 _amount) external onlyMinter {
_mint(_to, _amount);
}
/**
* @dev Return if the `_account` is a minter or not.
* @param _account Address to check
* @return True if the `_account` is minter
*/
function isMinter(address _account) public view returns (bool) {
return _minters[_account];
}
/**
* @dev Add a new minter.
* @param _account Address of the minter
*/
function _addMinter(address _account) private {
_minters[_account] = true;
emit MinterAdded(_account);
}
/**
* @dev Remove a minter.
* @param _account Address of the minter
*/
function _removeMinter(address _account) private {
_minters[_account] = false;
emit MinterRemoved(_account);
}
/**
* @dev Get the running network chain ID.
* @return The chain ID
*/
function _getChainID() private pure returns (uint256) {
uint256 id;
assembly {
id := chainid()
}
return id;
}
}File 23 of 30: UniswapV2Pair
// File: contracts/interfaces/IUniswapV2Pair.sol
pragma solidity >=0.5.0;
interface IUniswapV2Pair {
event Approval(address indexed owner, address indexed spender, uint value);
event Transfer(address indexed from, address indexed to, uint value);
function name() external pure returns (string memory);
function symbol() external pure returns (string memory);
function decimals() external pure returns (uint8);
function totalSupply() external view returns (uint);
function balanceOf(address owner) external view returns (uint);
function allowance(address owner, address spender) external view returns (uint);
function approve(address spender, uint value) external returns (bool);
function transfer(address to, uint value) external returns (bool);
function transferFrom(address from, address to, uint value) external returns (bool);
function DOMAIN_SEPARATOR() external view returns (bytes32);
function PERMIT_TYPEHASH() external pure returns (bytes32);
function nonces(address owner) external view returns (uint);
function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
event Mint(address indexed sender, uint amount0, uint amount1);
event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
event Swap(
address indexed sender,
uint amount0In,
uint amount1In,
uint amount0Out,
uint amount1Out,
address indexed to
);
event Sync(uint112 reserve0, uint112 reserve1);
function MINIMUM_LIQUIDITY() external pure returns (uint);
function factory() external view returns (address);
function token0() external view returns (address);
function token1() external view returns (address);
function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
function price0CumulativeLast() external view returns (uint);
function price1CumulativeLast() external view returns (uint);
function kLast() external view returns (uint);
function mint(address to) external returns (uint liquidity);
function burn(address to) external returns (uint amount0, uint amount1);
function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
function skim(address to) external;
function sync() external;
function initialize(address, address) external;
}
// File: contracts/interfaces/IUniswapV2ERC20.sol
pragma solidity >=0.5.0;
interface IUniswapV2ERC20 {
event Approval(address indexed owner, address indexed spender, uint value);
event Transfer(address indexed from, address indexed to, uint value);
function name() external pure returns (string memory);
function symbol() external pure returns (string memory);
function decimals() external pure returns (uint8);
function totalSupply() external view returns (uint);
function balanceOf(address owner) external view returns (uint);
function allowance(address owner, address spender) external view returns (uint);
function approve(address spender, uint value) external returns (bool);
function transfer(address to, uint value) external returns (bool);
function transferFrom(address from, address to, uint value) external returns (bool);
function DOMAIN_SEPARATOR() external view returns (bytes32);
function PERMIT_TYPEHASH() external pure returns (bytes32);
function nonces(address owner) external view returns (uint);
function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
}
// File: contracts/libraries/SafeMath.sol
pragma solidity =0.5.16;
// a library for performing overflow-safe math, courtesy of DappHub (https://github.com/dapphub/ds-math)
library SafeMath {
function add(uint x, uint y) internal pure returns (uint z) {
require((z = x + y) >= x, 'ds-math-add-overflow');
}
function sub(uint x, uint y) internal pure returns (uint z) {
require((z = x - y) <= x, 'ds-math-sub-underflow');
}
function mul(uint x, uint y) internal pure returns (uint z) {
require(y == 0 || (z = x * y) / y == x, 'ds-math-mul-overflow');
}
}
// File: contracts/UniswapV2ERC20.sol
pragma solidity =0.5.16;
contract UniswapV2ERC20 is IUniswapV2ERC20 {
using SafeMath for uint;
string public constant name = 'Uniswap V2';
string public constant symbol = 'UNI-V2';
uint8 public constant decimals = 18;
uint public totalSupply;
mapping(address => uint) public balanceOf;
mapping(address => mapping(address => uint)) public allowance;
bytes32 public DOMAIN_SEPARATOR;
// keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
bytes32 public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;
mapping(address => uint) public nonces;
event Approval(address indexed owner, address indexed spender, uint value);
event Transfer(address indexed from, address indexed to, uint value);
constructor() public {
uint chainId;
assembly {
chainId := chainid
}
DOMAIN_SEPARATOR = keccak256(
abi.encode(
keccak256('EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)'),
keccak256(bytes(name)),
keccak256(bytes('1')),
chainId,
address(this)
)
);
}
function _mint(address to, uint value) internal {
totalSupply = totalSupply.add(value);
balanceOf[to] = balanceOf[to].add(value);
emit Transfer(address(0), to, value);
}
function _burn(address from, uint value) internal {
balanceOf[from] = balanceOf[from].sub(value);
totalSupply = totalSupply.sub(value);
emit Transfer(from, address(0), value);
}
function _approve(address owner, address spender, uint value) private {
allowance[owner][spender] = value;
emit Approval(owner, spender, value);
}
function _transfer(address from, address to, uint value) private {
balanceOf[from] = balanceOf[from].sub(value);
balanceOf[to] = balanceOf[to].add(value);
emit Transfer(from, to, value);
}
function approve(address spender, uint value) external returns (bool) {
_approve(msg.sender, spender, value);
return true;
}
function transfer(address to, uint value) external returns (bool) {
_transfer(msg.sender, to, value);
return true;
}
function transferFrom(address from, address to, uint value) external returns (bool) {
if (allowance[from][msg.sender] != uint(-1)) {
allowance[from][msg.sender] = allowance[from][msg.sender].sub(value);
}
_transfer(from, to, value);
return true;
}
function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external {
require(deadline >= block.timestamp, 'UniswapV2: EXPIRED');
bytes32 digest = keccak256(
abi.encodePacked(
'\x19\x01',
DOMAIN_SEPARATOR,
keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[owner]++, deadline))
)
);
address recoveredAddress = ecrecover(digest, v, r, s);
require(recoveredAddress != address(0) && recoveredAddress == owner, 'UniswapV2: INVALID_SIGNATURE');
_approve(owner, spender, value);
}
}
// File: contracts/libraries/Math.sol
pragma solidity =0.5.16;
// a library for performing various math operations
library Math {
function min(uint x, uint y) internal pure returns (uint z) {
z = x < y ? x : y;
}
// babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method)
function sqrt(uint y) internal pure returns (uint z) {
if (y > 3) {
z = y;
uint x = y / 2 + 1;
while (x < z) {
z = x;
x = (y / x + x) / 2;
}
} else if (y != 0) {
z = 1;
}
}
}
// File: contracts/libraries/UQ112x112.sol
pragma solidity =0.5.16;
// a library for handling binary fixed point numbers (https://en.wikipedia.org/wiki/Q_(number_format))
// range: [0, 2**112 - 1]
// resolution: 1 / 2**112
library UQ112x112 {
uint224 constant Q112 = 2**112;
// encode a uint112 as a UQ112x112
function encode(uint112 y) internal pure returns (uint224 z) {
z = uint224(y) * Q112; // never overflows
}
// divide a UQ112x112 by a uint112, returning a UQ112x112
function uqdiv(uint224 x, uint112 y) internal pure returns (uint224 z) {
z = x / uint224(y);
}
}
// File: contracts/interfaces/IERC20.sol
pragma solidity >=0.5.0;
interface IERC20 {
event Approval(address indexed owner, address indexed spender, uint value);
event Transfer(address indexed from, address indexed to, uint value);
function name() external view returns (string memory);
function symbol() external view returns (string memory);
function decimals() external view returns (uint8);
function totalSupply() external view returns (uint);
function balanceOf(address owner) external view returns (uint);
function allowance(address owner, address spender) external view returns (uint);
function approve(address spender, uint value) external returns (bool);
function transfer(address to, uint value) external returns (bool);
function transferFrom(address from, address to, uint value) external returns (bool);
}
// File: contracts/interfaces/IUniswapV2Factory.sol
pragma solidity >=0.5.0;
interface IUniswapV2Factory {
event PairCreated(address indexed token0, address indexed token1, address pair, uint);
function feeTo() external view returns (address);
function feeToSetter() external view returns (address);
function getPair(address tokenA, address tokenB) external view returns (address pair);
function allPairs(uint) external view returns (address pair);
function allPairsLength() external view returns (uint);
function createPair(address tokenA, address tokenB) external returns (address pair);
function setFeeTo(address) external;
function setFeeToSetter(address) external;
}
// File: contracts/interfaces/IUniswapV2Callee.sol
pragma solidity >=0.5.0;
interface IUniswapV2Callee {
function uniswapV2Call(address sender, uint amount0, uint amount1, bytes calldata data) external;
}
// File: contracts/UniswapV2Pair.sol
pragma solidity =0.5.16;
contract UniswapV2Pair is IUniswapV2Pair, UniswapV2ERC20 {
using SafeMath for uint;
using UQ112x112 for uint224;
uint public constant MINIMUM_LIQUIDITY = 10**3;
bytes4 private constant SELECTOR = bytes4(keccak256(bytes('transfer(address,uint256)')));
address public factory;
address public token0;
address public token1;
uint112 private reserve0; // uses single storage slot, accessible via getReserves
uint112 private reserve1; // uses single storage slot, accessible via getReserves
uint32 private blockTimestampLast; // uses single storage slot, accessible via getReserves
uint public price0CumulativeLast;
uint public price1CumulativeLast;
uint public kLast; // reserve0 * reserve1, as of immediately after the most recent liquidity event
uint private unlocked = 1;
modifier lock() {
require(unlocked == 1, 'UniswapV2: LOCKED');
unlocked = 0;
_;
unlocked = 1;
}
function getReserves() public view returns (uint112 _reserve0, uint112 _reserve1, uint32 _blockTimestampLast) {
_reserve0 = reserve0;
_reserve1 = reserve1;
_blockTimestampLast = blockTimestampLast;
}
function _safeTransfer(address token, address to, uint value) private {
(bool success, bytes memory data) = token.call(abi.encodeWithSelector(SELECTOR, to, value));
require(success && (data.length == 0 || abi.decode(data, (bool))), 'UniswapV2: TRANSFER_FAILED');
}
event Mint(address indexed sender, uint amount0, uint amount1);
event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
event Swap(
address indexed sender,
uint amount0In,
uint amount1In,
uint amount0Out,
uint amount1Out,
address indexed to
);
event Sync(uint112 reserve0, uint112 reserve1);
constructor() public {
factory = msg.sender;
}
// called once by the factory at time of deployment
function initialize(address _token0, address _token1) external {
require(msg.sender == factory, 'UniswapV2: FORBIDDEN'); // sufficient check
token0 = _token0;
token1 = _token1;
}
// update reserves and, on the first call per block, price accumulators
function _update(uint balance0, uint balance1, uint112 _reserve0, uint112 _reserve1) private {
require(balance0 <= uint112(-1) && balance1 <= uint112(-1), 'UniswapV2: OVERFLOW');
uint32 blockTimestamp = uint32(block.timestamp % 2**32);
uint32 timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired
if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) {
// * never overflows, and + overflow is desired
price0CumulativeLast += uint(UQ112x112.encode(_reserve1).uqdiv(_reserve0)) * timeElapsed;
price1CumulativeLast += uint(UQ112x112.encode(_reserve0).uqdiv(_reserve1)) * timeElapsed;
}
reserve0 = uint112(balance0);
reserve1 = uint112(balance1);
blockTimestampLast = blockTimestamp;
emit Sync(reserve0, reserve1);
}
// if fee is on, mint liquidity equivalent to 1/6th of the growth in sqrt(k)
function _mintFee(uint112 _reserve0, uint112 _reserve1) private returns (bool feeOn) {
address feeTo = IUniswapV2Factory(factory).feeTo();
feeOn = feeTo != address(0);
uint _kLast = kLast; // gas savings
if (feeOn) {
if (_kLast != 0) {
uint rootK = Math.sqrt(uint(_reserve0).mul(_reserve1));
uint rootKLast = Math.sqrt(_kLast);
if (rootK > rootKLast) {
uint numerator = totalSupply.mul(rootK.sub(rootKLast));
uint denominator = rootK.mul(5).add(rootKLast);
uint liquidity = numerator / denominator;
if (liquidity > 0) _mint(feeTo, liquidity);
}
}
} else if (_kLast != 0) {
kLast = 0;
}
}
// this low-level function should be called from a contract which performs important safety checks
function mint(address to) external lock returns (uint liquidity) {
(uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
uint balance0 = IERC20(token0).balanceOf(address(this));
uint balance1 = IERC20(token1).balanceOf(address(this));
uint amount0 = balance0.sub(_reserve0);
uint amount1 = balance1.sub(_reserve1);
bool feeOn = _mintFee(_reserve0, _reserve1);
uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
if (_totalSupply == 0) {
liquidity = Math.sqrt(amount0.mul(amount1)).sub(MINIMUM_LIQUIDITY);
_mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY tokens
} else {
liquidity = Math.min(amount0.mul(_totalSupply) / _reserve0, amount1.mul(_totalSupply) / _reserve1);
}
require(liquidity > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_MINTED');
_mint(to, liquidity);
_update(balance0, balance1, _reserve0, _reserve1);
if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
emit Mint(msg.sender, amount0, amount1);
}
// this low-level function should be called from a contract which performs important safety checks
function burn(address to) external lock returns (uint amount0, uint amount1) {
(uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
address _token0 = token0; // gas savings
address _token1 = token1; // gas savings
uint balance0 = IERC20(_token0).balanceOf(address(this));
uint balance1 = IERC20(_token1).balanceOf(address(this));
uint liquidity = balanceOf[address(this)];
bool feeOn = _mintFee(_reserve0, _reserve1);
uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata distribution
amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata distribution
require(amount0 > 0 && amount1 > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_BURNED');
_burn(address(this), liquidity);
_safeTransfer(_token0, to, amount0);
_safeTransfer(_token1, to, amount1);
balance0 = IERC20(_token0).balanceOf(address(this));
balance1 = IERC20(_token1).balanceOf(address(this));
_update(balance0, balance1, _reserve0, _reserve1);
if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
emit Burn(msg.sender, amount0, amount1, to);
}
// this low-level function should be called from a contract which performs important safety checks
function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external lock {
require(amount0Out > 0 || amount1Out > 0, 'UniswapV2: INSUFFICIENT_OUTPUT_AMOUNT');
(uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
require(amount0Out < _reserve0 && amount1Out < _reserve1, 'UniswapV2: INSUFFICIENT_LIQUIDITY');
uint balance0;
uint balance1;
{ // scope for _token{0,1}, avoids stack too deep errors
address _token0 = token0;
address _token1 = token1;
require(to != _token0 && to != _token1, 'UniswapV2: INVALID_TO');
if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens
if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens
if (data.length > 0) IUniswapV2Callee(to).uniswapV2Call(msg.sender, amount0Out, amount1Out, data);
balance0 = IERC20(_token0).balanceOf(address(this));
balance1 = IERC20(_token1).balanceOf(address(this));
}
uint amount0In = balance0 > _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0;
uint amount1In = balance1 > _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0;
require(amount0In > 0 || amount1In > 0, 'UniswapV2: INSUFFICIENT_INPUT_AMOUNT');
{ // scope for reserve{0,1}Adjusted, avoids stack too deep errors
uint balance0Adjusted = balance0.mul(1000).sub(amount0In.mul(3));
uint balance1Adjusted = balance1.mul(1000).sub(amount1In.mul(3));
require(balance0Adjusted.mul(balance1Adjusted) >= uint(_reserve0).mul(_reserve1).mul(1000**2), 'UniswapV2: K');
}
_update(balance0, balance1, _reserve0, _reserve1);
emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to);
}
// force balances to match reserves
function skim(address to) external lock {
address _token0 = token0; // gas savings
address _token1 = token1; // gas savings
_safeTransfer(_token0, to, IERC20(_token0).balanceOf(address(this)).sub(reserve0));
_safeTransfer(_token1, to, IERC20(_token1).balanceOf(address(this)).sub(reserve1));
}
// force reserves to match balances
function sync() external lock {
_update(IERC20(token0).balanceOf(address(this)), IERC20(token1).balanceOf(address(this)), reserve0, reserve1);
}
}File 24 of 30: Vyper_contract
# @version 0.3.1
# (c) Curve.Fi, 2021
# Pool for two crypto assets
# Universal implementation which can use both ETH and ERC20s
from vyper.interfaces import ERC20
interface Factory:
def admin() -> address: view
def fee_receiver() -> address: view
interface CurveToken:
def totalSupply() -> uint256: view
def mint(_to: address, _value: uint256) -> bool: nonpayable
def mint_relative(_to: address, frac: uint256) -> uint256: nonpayable
def burnFrom(_to: address, _value: uint256) -> bool: nonpayable
interface WETH:
def deposit(): payable
def withdraw(_amount: uint256): nonpayable
# Events
event TokenExchange:
buyer: indexed(address)
sold_id: uint256
tokens_sold: uint256
bought_id: uint256
tokens_bought: uint256
event AddLiquidity:
provider: indexed(address)
token_amounts: uint256[N_COINS]
fee: uint256
token_supply: uint256
event RemoveLiquidity:
provider: indexed(address)
token_amounts: uint256[N_COINS]
token_supply: uint256
event RemoveLiquidityOne:
provider: indexed(address)
token_amount: uint256
coin_index: uint256
coin_amount: uint256
event CommitNewParameters:
deadline: indexed(uint256)
admin_fee: uint256
mid_fee: uint256
out_fee: uint256
fee_gamma: uint256
allowed_extra_profit: uint256
adjustment_step: uint256
ma_half_time: uint256
event NewParameters:
admin_fee: uint256
mid_fee: uint256
out_fee: uint256
fee_gamma: uint256
allowed_extra_profit: uint256
adjustment_step: uint256
ma_half_time: uint256
event RampAgamma:
initial_A: uint256
future_A: uint256
initial_gamma: uint256
future_gamma: uint256
initial_time: uint256
future_time: uint256
event StopRampA:
current_A: uint256
current_gamma: uint256
time: uint256
event ClaimAdminFee:
admin: indexed(address)
tokens: uint256
ADMIN_ACTIONS_DELAY: constant(uint256) = 3 * 86400
MIN_RAMP_TIME: constant(uint256) = 86400
MAX_ADMIN_FEE: constant(uint256) = 10 * 10 ** 9
MIN_FEE: constant(uint256) = 5 * 10 ** 5 # 0.5 bps
MAX_FEE: constant(uint256) = 10 * 10 ** 9
MAX_A_CHANGE: constant(uint256) = 10
NOISE_FEE: constant(uint256) = 10**5 # 0.1 bps
MIN_GAMMA: constant(uint256) = 10**10
MAX_GAMMA: constant(uint256) = 2 * 10**16
MIN_A: constant(uint256) = N_COINS**N_COINS * A_MULTIPLIER / 10
MAX_A: constant(uint256) = N_COINS**N_COINS * A_MULTIPLIER * 100000
EXP_PRECISION: constant(uint256) = 10**10
N_COINS: constant(int128) = 2
PRECISION: constant(uint256) = 10 ** 18 # The precision to convert to
A_MULTIPLIER: constant(uint256) = 10000
# Implementation can be changed by changing this constant
WETH20: immutable(address)
token: public(address)
coins: public(address[N_COINS])
price_scale: public(uint256) # Internal price scale
_price_oracle: uint256 # Price target given by MA
last_prices: public(uint256)
last_prices_timestamp: public(uint256)
initial_A_gamma: public(uint256)
future_A_gamma: public(uint256)
initial_A_gamma_time: public(uint256)
future_A_gamma_time: public(uint256)
allowed_extra_profit: public(uint256) # 2 * 10**12 - recommended value
future_allowed_extra_profit: public(uint256)
fee_gamma: public(uint256)
future_fee_gamma: public(uint256)
adjustment_step: public(uint256)
future_adjustment_step: public(uint256)
ma_half_time: public(uint256)
future_ma_half_time: public(uint256)
mid_fee: public(uint256)
out_fee: public(uint256)
admin_fee: public(uint256)
future_mid_fee: public(uint256)
future_out_fee: public(uint256)
future_admin_fee: public(uint256)
balances: public(uint256[N_COINS])
D: public(uint256)
factory: public(address)
xcp_profit: public(uint256)
xcp_profit_a: public(uint256) # Full profit at last claim of admin fees
virtual_price: public(uint256) # Cached (fast to read) virtual price also used internally
not_adjusted: bool
admin_actions_deadline: public(uint256)
# This must be changed for different N_COINS
# For example:
# N_COINS = 3 -> 1 (10**18 -> 10**18)
# N_COINS = 4 -> 10**8 (10**18 -> 10**10)
# PRICE_PRECISION_MUL: constant(uint256) = 1
PRECISIONS: uint256 # packed
@external
def __init__(_weth: address):
WETH20 = _weth
self.mid_fee = 22022022
@payable
@external
def __default__():
pass
# Internal Functions
@internal
@view
def _get_precisions() -> uint256[2]:
p0: uint256 = self.PRECISIONS
p1: uint256 = 10 ** shift(p0, -8)
p0 = 10 ** bitwise_and(p0, 255)
return [p0, p1]
@internal
@view
def xp() -> uint256[N_COINS]:
precisions: uint256[2] = self._get_precisions()
return [self.balances[0] * precisions[0],
self.balances[1] * precisions[1] * self.price_scale / PRECISION]
@view
@internal
def _A_gamma() -> uint256[2]:
t1: uint256 = self.future_A_gamma_time
A_gamma_1: uint256 = self.future_A_gamma
gamma1: uint256 = bitwise_and(A_gamma_1, 2**128-1)
A1: uint256 = shift(A_gamma_1, -128)
if block.timestamp < t1:
# handle ramping up and down of A
A_gamma_0: uint256 = self.initial_A_gamma
t0: uint256 = self.initial_A_gamma_time
# Less readable but more compact way of writing and converting to uint256
# gamma0: uint256 = bitwise_and(A_gamma_0, 2**128-1)
# A0: uint256 = shift(A_gamma_0, -128)
# A1 = A0 + (A1 - A0) * (block.timestamp - t0) / (t1 - t0)
# gamma1 = gamma0 + (gamma1 - gamma0) * (block.timestamp - t0) / (t1 - t0)
t1 -= t0
t0 = block.timestamp - t0
t2: uint256 = t1 - t0
A1 = (shift(A_gamma_0, -128) * t2 + A1 * t0) / t1
gamma1 = (bitwise_and(A_gamma_0, 2**128-1) * t2 + gamma1 * t0) / t1
return [A1, gamma1]
@internal
@view
def _fee(xp: uint256[N_COINS]) -> uint256:
"""
f = fee_gamma / (fee_gamma + (1 - K))
where
K = prod(x) / (sum(x) / N)**N
(all normalized to 1e18)
"""
fee_gamma: uint256 = self.fee_gamma
f: uint256 = xp[0] + xp[1] # sum
f = fee_gamma * 10**18 / (
fee_gamma + 10**18 - (10**18 * N_COINS**N_COINS) * xp[0] / f * xp[1] / f
)
return (self.mid_fee * f + self.out_fee * (10**18 - f)) / 10**18
### Math functions
@internal
@pure
def geometric_mean(unsorted_x: uint256[N_COINS], sort: bool) -> uint256:
"""
(x[0] * x[1] * ...) ** (1/N)
"""
x: uint256[N_COINS] = unsorted_x
if sort and x[0] < x[1]:
x = [unsorted_x[1], unsorted_x[0]]
D: uint256 = x[0]
diff: uint256 = 0
for i in range(255):
D_prev: uint256 = D
# tmp: uint256 = 10**18
# for _x in x:
# tmp = tmp * _x / D
# D = D * ((N_COINS - 1) * 10**18 + tmp) / (N_COINS * 10**18)
# line below makes it for 2 coins
D = (D + x[0] * x[1] / D) / N_COINS
if D > D_prev:
diff = D - D_prev
else:
diff = D_prev - D
if diff <= 1 or diff * 10**18 < D:
return D
raise "Did not converge"
@internal
@view
def newton_D(ANN: uint256, gamma: uint256, x_unsorted: uint256[N_COINS]) -> uint256:
"""
Finding the invariant using Newton method.
ANN is higher by the factor A_MULTIPLIER
ANN is already A * N**N
Currently uses 60k gas
"""
# Safety checks
assert ANN > MIN_A - 1 and ANN < MAX_A + 1 # dev: unsafe values A
assert gamma > MIN_GAMMA - 1 and gamma < MAX_GAMMA + 1 # dev: unsafe values gamma
# Initial value of invariant D is that for constant-product invariant
x: uint256[N_COINS] = x_unsorted
if x[0] < x[1]:
x = [x_unsorted[1], x_unsorted[0]]
assert x[0] > 10**9 - 1 and x[0] < 10**15 * 10**18 + 1 # dev: unsafe values x[0]
assert x[1] * 10**18 / x[0] > 10**14-1 # dev: unsafe values x[i] (input)
D: uint256 = N_COINS * self.geometric_mean(x, False)
S: uint256 = x[0] + x[1]
for i in range(255):
D_prev: uint256 = D
# K0: uint256 = 10**18
# for _x in x:
# K0 = K0 * _x * N_COINS / D
# collapsed for 2 coins
K0: uint256 = (10**18 * N_COINS**2) * x[0] / D * x[1] / D
_g1k0: uint256 = gamma + 10**18
if _g1k0 > K0:
_g1k0 = _g1k0 - K0 + 1
else:
_g1k0 = K0 - _g1k0 + 1
# D / (A * N**N) * _g1k0**2 / gamma**2
mul1: uint256 = 10**18 * D / gamma * _g1k0 / gamma * _g1k0 * A_MULTIPLIER / ANN
# 2*N*K0 / _g1k0
mul2: uint256 = (2 * 10**18) * N_COINS * K0 / _g1k0
neg_fprime: uint256 = (S + S * mul2 / 10**18) + mul1 * N_COINS / K0 - mul2 * D / 10**18
# D -= f / fprime
D_plus: uint256 = D * (neg_fprime + S) / neg_fprime
D_minus: uint256 = D*D / neg_fprime
if 10**18 > K0:
D_minus += D * (mul1 / neg_fprime) / 10**18 * (10**18 - K0) / K0
else:
D_minus -= D * (mul1 / neg_fprime) / 10**18 * (K0 - 10**18) / K0
if D_plus > D_minus:
D = D_plus - D_minus
else:
D = (D_minus - D_plus) / 2
diff: uint256 = 0
if D > D_prev:
diff = D - D_prev
else:
diff = D_prev - D
if diff * 10**14 < max(10**16, D): # Could reduce precision for gas efficiency here
# Test that we are safe with the next newton_y
for _x in x:
frac: uint256 = _x * 10**18 / D
assert (frac > 10**16 - 1) and (frac < 10**20 + 1) # dev: unsafe values x[i]
return D
raise "Did not converge"
@internal
@pure
def newton_y(ANN: uint256, gamma: uint256, x: uint256[N_COINS], D: uint256, i: uint256) -> uint256:
"""
Calculating x[i] given other balances x[0..N_COINS-1] and invariant D
ANN = A * N**N
"""
# Safety checks
assert ANN > MIN_A - 1 and ANN < MAX_A + 1 # dev: unsafe values A
assert gamma > MIN_GAMMA - 1 and gamma < MAX_GAMMA + 1 # dev: unsafe values gamma
assert D > 10**17 - 1 and D < 10**15 * 10**18 + 1 # dev: unsafe values D
x_j: uint256 = x[1 - i]
y: uint256 = D**2 / (x_j * N_COINS**2)
K0_i: uint256 = (10**18 * N_COINS) * x_j / D
# S_i = x_j
# frac = x_j * 1e18 / D => frac = K0_i / N_COINS
assert (K0_i > 10**16*N_COINS - 1) and (K0_i < 10**20*N_COINS + 1) # dev: unsafe values x[i]
# x_sorted: uint256[N_COINS] = x
# x_sorted[i] = 0
# x_sorted = self.sort(x_sorted) # From high to low
# x[not i] instead of x_sorted since x_soted has only 1 element
convergence_limit: uint256 = max(max(x_j / 10**14, D / 10**14), 100)
for j in range(255):
y_prev: uint256 = y
K0: uint256 = K0_i * y * N_COINS / D
S: uint256 = x_j + y
_g1k0: uint256 = gamma + 10**18
if _g1k0 > K0:
_g1k0 = _g1k0 - K0 + 1
else:
_g1k0 = K0 - _g1k0 + 1
# D / (A * N**N) * _g1k0**2 / gamma**2
mul1: uint256 = 10**18 * D / gamma * _g1k0 / gamma * _g1k0 * A_MULTIPLIER / ANN
# 2*K0 / _g1k0
mul2: uint256 = 10**18 + (2 * 10**18) * K0 / _g1k0
yfprime: uint256 = 10**18 * y + S * mul2 + mul1
_dyfprime: uint256 = D * mul2
if yfprime < _dyfprime:
y = y_prev / 2
continue
else:
yfprime -= _dyfprime
fprime: uint256 = yfprime / y
# y -= f / f_prime; y = (y * fprime - f) / fprime
# y = (yfprime + 10**18 * D - 10**18 * S) // fprime + mul1 // fprime * (10**18 - K0) // K0
y_minus: uint256 = mul1 / fprime
y_plus: uint256 = (yfprime + 10**18 * D) / fprime + y_minus * 10**18 / K0
y_minus += 10**18 * S / fprime
if y_plus < y_minus:
y = y_prev / 2
else:
y = y_plus - y_minus
diff: uint256 = 0
if y > y_prev:
diff = y - y_prev
else:
diff = y_prev - y
if diff < max(convergence_limit, y / 10**14):
frac: uint256 = y * 10**18 / D
assert (frac > 10**16 - 1) and (frac < 10**20 + 1) # dev: unsafe value for y
return y
raise "Did not converge"
@internal
@pure
def halfpow(power: uint256) -> uint256:
"""
1e18 * 0.5 ** (power/1e18)
Inspired by: https://github.com/balancer-labs/balancer-core/blob/master/contracts/BNum.sol#L128
"""
intpow: uint256 = power / 10**18
otherpow: uint256 = power - intpow * 10**18
if intpow > 59:
return 0
result: uint256 = 10**18 / (2**intpow)
if otherpow == 0:
return result
term: uint256 = 10**18
x: uint256 = 5 * 10**17
S: uint256 = 10**18
neg: bool = False
for i in range(1, 256):
K: uint256 = i * 10**18
c: uint256 = K - 10**18
if otherpow > c:
c = otherpow - c
neg = not neg
else:
c -= otherpow
term = term * (c * x / 10**18) / K
if neg:
S -= term
else:
S += term
if term < EXP_PRECISION:
return result * S / 10**18
raise "Did not converge"
### end of Math functions
@internal
@view
def get_xcp(D: uint256) -> uint256:
x: uint256[N_COINS] = [D / N_COINS, D * PRECISION / (self.price_scale * N_COINS)]
return self.geometric_mean(x, True)
@internal
def _claim_admin_fees():
A_gamma: uint256[2] = self._A_gamma()
xcp_profit: uint256 = self.xcp_profit
xcp_profit_a: uint256 = self.xcp_profit_a
# Gulp here
for i in range(N_COINS):
coin: address = self.coins[i]
if coin == WETH20:
self.balances[i] = self.balance
else:
self.balances[i] = ERC20(coin).balanceOf(self)
vprice: uint256 = self.virtual_price
if xcp_profit > xcp_profit_a:
fees: uint256 = (xcp_profit - xcp_profit_a) * self.admin_fee / (2 * 10**10)
if fees > 0:
receiver: address = Factory(self.factory).fee_receiver()
if receiver != ZERO_ADDRESS:
frac: uint256 = vprice * 10**18 / (vprice - fees) - 10**18
claimed: uint256 = CurveToken(self.token).mint_relative(receiver, frac)
xcp_profit -= fees*2
self.xcp_profit = xcp_profit
log ClaimAdminFee(receiver, claimed)
total_supply: uint256 = CurveToken(self.token).totalSupply()
# Recalculate D b/c we gulped
D: uint256 = self.newton_D(A_gamma[0], A_gamma[1], self.xp())
self.D = D
self.virtual_price = 10**18 * self.get_xcp(D) / total_supply
if xcp_profit > xcp_profit_a:
self.xcp_profit_a = xcp_profit
@internal
@view
def internal_price_oracle() -> uint256:
price_oracle: uint256 = self._price_oracle
last_prices_timestamp: uint256 = self.last_prices_timestamp
if last_prices_timestamp < block.timestamp:
ma_half_time: uint256 = self.ma_half_time
last_prices: uint256 = self.last_prices
alpha: uint256 = self.halfpow((block.timestamp - last_prices_timestamp) * 10**18 / ma_half_time)
return (last_prices * (10**18 - alpha) + price_oracle * alpha) / 10**18
else:
return price_oracle
@internal
def tweak_price(A_gamma: uint256[2],_xp: uint256[N_COINS], p_i: uint256, new_D: uint256):
price_oracle: uint256 = self._price_oracle
last_prices: uint256 = self.last_prices
price_scale: uint256 = self.price_scale
last_prices_timestamp: uint256 = self.last_prices_timestamp
p_new: uint256 = 0
if last_prices_timestamp < block.timestamp:
# MA update required
ma_half_time: uint256 = self.ma_half_time
alpha: uint256 = self.halfpow((block.timestamp - last_prices_timestamp) * 10**18 / ma_half_time)
price_oracle = (last_prices * (10**18 - alpha) + price_oracle * alpha) / 10**18
self._price_oracle = price_oracle
self.last_prices_timestamp = block.timestamp
D_unadjusted: uint256 = new_D # Withdrawal methods know new D already
if new_D == 0:
# We will need this a few times (35k gas)
D_unadjusted = self.newton_D(A_gamma[0], A_gamma[1], _xp)
if p_i > 0:
last_prices = p_i
else:
# calculate real prices
__xp: uint256[N_COINS] = _xp
dx_price: uint256 = __xp[0] / 10**6
__xp[0] += dx_price
last_prices = price_scale * dx_price / (_xp[1] - self.newton_y(A_gamma[0], A_gamma[1], __xp, D_unadjusted, 1))
self.last_prices = last_prices
total_supply: uint256 = CurveToken(self.token).totalSupply()
old_xcp_profit: uint256 = self.xcp_profit
old_virtual_price: uint256 = self.virtual_price
# Update profit numbers without price adjustment first
xp: uint256[N_COINS] = [D_unadjusted / N_COINS, D_unadjusted * PRECISION / (N_COINS * price_scale)]
xcp_profit: uint256 = 10**18
virtual_price: uint256 = 10**18
if old_virtual_price > 0:
xcp: uint256 = self.geometric_mean(xp, True)
virtual_price = 10**18 * xcp / total_supply
xcp_profit = old_xcp_profit * virtual_price / old_virtual_price
t: uint256 = self.future_A_gamma_time
if virtual_price < old_virtual_price and t == 0:
raise "Loss"
if t == 1:
self.future_A_gamma_time = 0
self.xcp_profit = xcp_profit
norm: uint256 = price_oracle * 10**18 / price_scale
if norm > 10**18:
norm -= 10**18
else:
norm = 10**18 - norm
adjustment_step: uint256 = max(self.adjustment_step, norm / 5)
needs_adjustment: bool = self.not_adjusted
# if not needs_adjustment and (virtual_price-10**18 > (xcp_profit-10**18)/2 + self.allowed_extra_profit):
# (re-arrange for gas efficiency)
if not needs_adjustment and (virtual_price * 2 - 10**18 > xcp_profit + 2*self.allowed_extra_profit) and (norm > adjustment_step) and (old_virtual_price > 0):
needs_adjustment = True
self.not_adjusted = True
if needs_adjustment:
if norm > adjustment_step and old_virtual_price > 0:
p_new = (price_scale * (norm - adjustment_step) + adjustment_step * price_oracle) / norm
# Calculate balances*prices
xp = [_xp[0], _xp[1] * p_new / price_scale]
# Calculate "extended constant product" invariant xCP and virtual price
D: uint256 = self.newton_D(A_gamma[0], A_gamma[1], xp)
xp = [D / N_COINS, D * PRECISION / (N_COINS * p_new)]
# We reuse old_virtual_price here but it's not old anymore
old_virtual_price = 10**18 * self.geometric_mean(xp, True) / total_supply
# Proceed if we've got enough profit
# if (old_virtual_price > 10**18) and (2 * (old_virtual_price - 10**18) > xcp_profit - 10**18):
if (old_virtual_price > 10**18) and (2 * old_virtual_price - 10**18 > xcp_profit):
self.price_scale = p_new
self.D = D
self.virtual_price = old_virtual_price
return
else:
self.not_adjusted = False
# Can instead do another flag variable if we want to save bytespace
self.D = D_unadjusted
self.virtual_price = virtual_price
self._claim_admin_fees()
return
# If we are here, the price_scale adjustment did not happen
# Still need to update the profit counter and D
self.D = D_unadjusted
self.virtual_price = virtual_price
# norm appeared < adjustment_step after
if needs_adjustment:
self.not_adjusted = False
self._claim_admin_fees()
@internal
def _exchange(sender: address, mvalue: uint256, i: uint256, j: uint256, dx: uint256, min_dy: uint256,
use_eth: bool, receiver: address, callbacker: address, callback_sig: bytes32) -> uint256:
assert i != j # dev: coin index out of range
assert i < N_COINS # dev: coin index out of range
assert j < N_COINS # dev: coin index out of range
assert dx > 0 # dev: do not exchange 0 coins
A_gamma: uint256[2] = self._A_gamma()
xp: uint256[N_COINS] = self.balances
p: uint256 = 0
dy: uint256 = 0
in_coin: address = self.coins[i]
out_coin: address = self.coins[j]
y: uint256 = xp[j]
x0: uint256 = xp[i]
xp[i] = x0 + dx
self.balances[i] = xp[i]
price_scale: uint256 = self.price_scale
precisions: uint256[2] = self._get_precisions()
xp = [xp[0] * precisions[0], xp[1] * price_scale * precisions[1] / PRECISION]
prec_i: uint256 = precisions[0]
prec_j: uint256 = precisions[1]
if i == 1:
prec_i = precisions[1]
prec_j = precisions[0]
# In case ramp is happening
t: uint256 = self.future_A_gamma_time
if t > 0:
x0 *= prec_i
if i > 0:
x0 = x0 * price_scale / PRECISION
x1: uint256 = xp[i] # Back up old value in xp
xp[i] = x0
self.D = self.newton_D(A_gamma[0], A_gamma[1], xp)
xp[i] = x1 # And restore
if block.timestamp >= t:
self.future_A_gamma_time = 1
dy = xp[j] - self.newton_y(A_gamma[0], A_gamma[1], xp, self.D, j)
# Not defining new "y" here to have less variables / make subsequent calls cheaper
xp[j] -= dy
dy -= 1
if j > 0:
dy = dy * PRECISION / price_scale
dy /= prec_j
dy -= self._fee(xp) * dy / 10**10
assert dy >= min_dy, "Slippage"
y -= dy
self.balances[j] = y
# Do transfers in and out together
# XXX coin vs ETH
if use_eth and in_coin == WETH20:
assert mvalue == dx # dev: incorrect eth amount
else:
assert mvalue == 0 # dev: nonzero eth amount
if callback_sig == EMPTY_BYTES32:
response: Bytes[32] = raw_call(
in_coin,
_abi_encode(
sender, self, dx, method_id=method_id("transferFrom(address,address,uint256)")
),
max_outsize=32,
)
if len(response) != 0:
assert convert(response, bool) # dev: failed transfer
else:
b: uint256 = ERC20(in_coin).balanceOf(self)
raw_call(
callbacker,
concat(slice(callback_sig, 0, 4), _abi_encode(sender, receiver, in_coin, dx, dy))
)
assert ERC20(in_coin).balanceOf(self) - b == dx # dev: callback didn't give us coins
if in_coin == WETH20:
WETH(WETH20).withdraw(dx)
if use_eth and out_coin == WETH20:
raw_call(receiver, b"", value=dy)
else:
if out_coin == WETH20:
WETH(WETH20).deposit(value=dy)
response: Bytes[32] = raw_call(
out_coin,
_abi_encode(receiver, dy, method_id=method_id("transfer(address,uint256)")),
max_outsize=32,
)
if len(response) != 0:
assert convert(response, bool)
y *= prec_j
if j > 0:
y = y * price_scale / PRECISION
xp[j] = y
# Calculate price
if dx > 10**5 and dy > 10**5:
_dx: uint256 = dx * prec_i
_dy: uint256 = dy * prec_j
if i == 0:
p = _dx * 10**18 / _dy
else: # j == 0
p = _dy * 10**18 / _dx
self.tweak_price(A_gamma, xp, p, 0)
log TokenExchange(sender, i, dx, j, dy)
return dy
@view
@internal
def _calc_token_fee(amounts: uint256[N_COINS], xp: uint256[N_COINS]) -> uint256:
# fee = sum(amounts_i - avg(amounts)) * fee' / sum(amounts)
fee: uint256 = self._fee(xp) * N_COINS / (4 * (N_COINS-1))
S: uint256 = 0
for _x in amounts:
S += _x
avg: uint256 = S / N_COINS
Sdiff: uint256 = 0
for _x in amounts:
if _x > avg:
Sdiff += _x - avg
else:
Sdiff += avg - _x
return fee * Sdiff / S + NOISE_FEE
@internal
@view
def _calc_withdraw_one_coin(A_gamma: uint256[2], token_amount: uint256, i: uint256, update_D: bool,
calc_price: bool) -> (uint256, uint256, uint256, uint256[N_COINS]):
token_supply: uint256 = CurveToken(self.token).totalSupply()
assert token_amount <= token_supply # dev: token amount more than supply
assert i < N_COINS # dev: coin out of range
xx: uint256[N_COINS] = self.balances
D0: uint256 = 0
precisions: uint256[2] = self._get_precisions()
price_scale_i: uint256 = self.price_scale * precisions[1]
xp: uint256[N_COINS] = [xx[0] * precisions[0], xx[1] * price_scale_i / PRECISION]
if i == 0:
price_scale_i = PRECISION * precisions[0]
if update_D:
D0 = self.newton_D(A_gamma[0], A_gamma[1], xp)
else:
D0 = self.D
D: uint256 = D0
# Charge the fee on D, not on y, e.g. reducing invariant LESS than charging the user
fee: uint256 = self._fee(xp)
dD: uint256 = token_amount * D / token_supply
D -= (dD - (fee * dD / (2 * 10**10) + 1))
y: uint256 = self.newton_y(A_gamma[0], A_gamma[1], xp, D, i)
dy: uint256 = (xp[i] - y) * PRECISION / price_scale_i
xp[i] = y
# Price calc
p: uint256 = 0
if calc_price and dy > 10**5 and token_amount > 10**5:
# p_i = dD / D0 * sum'(p_k * x_k) / (dy - dD / D0 * y0)
S: uint256 = 0
precision: uint256 = precisions[0]
if i == 1:
S = xx[0] * precisions[0]
precision = precisions[1]
else:
S = xx[1] * precisions[1]
S = S * dD / D0
p = S * PRECISION / (dy * precision - dD * xx[i] * precision / D0)
if i == 0:
p = (10**18)**2 / p
return dy, p, D, xp
@internal
@pure
def sqrt_int(x: uint256) -> uint256:
"""
Originating from: https://github.com/vyperlang/vyper/issues/1266
"""
if x == 0:
return 0
z: uint256 = (x + 10**18) / 2
y: uint256 = x
for i in range(256):
if z == y:
return y
y = z
z = (x * 10**18 / z + z) / 2
raise "Did not converge"
# External Functions
@payable
@external
@nonreentrant('lock')
def exchange(i: uint256, j: uint256, dx: uint256, min_dy: uint256,
use_eth: bool = False, receiver: address = msg.sender) -> uint256:
"""
Exchange using WETH by default
"""
return self._exchange(msg.sender, msg.value, i, j, dx, min_dy, use_eth, receiver, ZERO_ADDRESS, EMPTY_BYTES32)
@payable
@external
@nonreentrant('lock')
def exchange_underlying(i: uint256, j: uint256, dx: uint256, min_dy: uint256,
receiver: address = msg.sender) -> uint256:
"""
Exchange using ETH
"""
return self._exchange(msg.sender, msg.value, i, j, dx, min_dy, True, receiver, ZERO_ADDRESS, EMPTY_BYTES32)
@payable
@external
@nonreentrant('lock')
def exchange_extended(i: uint256, j: uint256, dx: uint256, min_dy: uint256,
use_eth: bool, sender: address, receiver: address, cb: bytes32) -> uint256:
assert cb != EMPTY_BYTES32 # dev: No callback specified
return self._exchange(sender, msg.value, i, j, dx, min_dy, use_eth, receiver, msg.sender, cb)
@payable
@external
@nonreentrant('lock')
def add_liquidity(amounts: uint256[N_COINS], min_mint_amount: uint256,
use_eth: bool = False, receiver: address = msg.sender) -> uint256:
assert amounts[0] > 0 or amounts[1] > 0 # dev: no coins to add
A_gamma: uint256[2] = self._A_gamma()
xp: uint256[N_COINS] = self.balances
amountsp: uint256[N_COINS] = empty(uint256[N_COINS])
xx: uint256[N_COINS] = empty(uint256[N_COINS])
d_token: uint256 = 0
d_token_fee: uint256 = 0
old_D: uint256 = 0
xp_old: uint256[N_COINS] = xp
for i in range(N_COINS):
bal: uint256 = xp[i] + amounts[i]
xp[i] = bal
self.balances[i] = bal
xx = xp
precisions: uint256[2] = self._get_precisions()
price_scale: uint256 = self.price_scale * precisions[1]
xp = [xp[0] * precisions[0], xp[1] * price_scale / PRECISION]
xp_old = [xp_old[0] * precisions[0], xp_old[1] * price_scale / PRECISION]
if not use_eth:
assert msg.value == 0 # dev: nonzero eth amount
for i in range(N_COINS):
coin: address = self.coins[i]
if use_eth and coin == WETH20:
assert msg.value == amounts[i] # dev: incorrect eth amount
if amounts[i] > 0:
if (not use_eth) or (coin != WETH20):
response: Bytes[32] = raw_call(
coin,
_abi_encode(
msg.sender,
self,
amounts[i],
method_id=method_id("transferFrom(address,address,uint256)"),
),
max_outsize=32,
)
if len(response) != 0:
assert convert(response, bool) # dev: failed transfer
if coin == WETH20:
WETH(WETH20).withdraw(amounts[i])
amountsp[i] = xp[i] - xp_old[i]
t: uint256 = self.future_A_gamma_time
if t > 0:
old_D = self.newton_D(A_gamma[0], A_gamma[1], xp_old)
if block.timestamp >= t:
self.future_A_gamma_time = 1
else:
old_D = self.D
D: uint256 = self.newton_D(A_gamma[0], A_gamma[1], xp)
lp_token: address = self.token
token_supply: uint256 = CurveToken(lp_token).totalSupply()
if old_D > 0:
d_token = token_supply * D / old_D - token_supply
else:
d_token = self.get_xcp(D) # making initial virtual price equal to 1
assert d_token > 0 # dev: nothing minted
if old_D > 0:
d_token_fee = self._calc_token_fee(amountsp, xp) * d_token / 10**10 + 1
d_token -= d_token_fee
token_supply += d_token
CurveToken(lp_token).mint(receiver, d_token)
# Calculate price
# p_i * (dx_i - dtoken / token_supply * xx_i) = sum{k!=i}(p_k * (dtoken / token_supply * xx_k - dx_k))
# Simplified for 2 coins
p: uint256 = 0
if d_token > 10**5:
if amounts[0] == 0 or amounts[1] == 0:
S: uint256 = 0
precision: uint256 = 0
ix: uint256 = 0
if amounts[0] == 0:
S = xx[0] * precisions[0]
precision = precisions[1]
ix = 1
else:
S = xx[1] * precisions[1]
precision = precisions[0]
S = S * d_token / token_supply
p = S * PRECISION / (amounts[ix] * precision - d_token * xx[ix] * precision / token_supply)
if ix == 0:
p = (10**18)**2 / p
self.tweak_price(A_gamma, xp, p, D)
else:
self.D = D
self.virtual_price = 10**18
self.xcp_profit = 10**18
CurveToken(lp_token).mint(receiver, d_token)
assert d_token >= min_mint_amount, "Slippage"
log AddLiquidity(receiver, amounts, d_token_fee, token_supply)
return d_token
@external
@nonreentrant('lock')
def remove_liquidity(_amount: uint256, min_amounts: uint256[N_COINS],
use_eth: bool = False, receiver: address = msg.sender):
"""
This withdrawal method is very safe, does no complex math
"""
lp_token: address = self.token
total_supply: uint256 = CurveToken(lp_token).totalSupply()
CurveToken(lp_token).burnFrom(msg.sender, _amount)
balances: uint256[N_COINS] = self.balances
amount: uint256 = _amount - 1 # Make rounding errors favoring other LPs a tiny bit
for i in range(N_COINS):
d_balance: uint256 = balances[i] * amount / total_supply
assert d_balance >= min_amounts[i]
self.balances[i] = balances[i] - d_balance
balances[i] = d_balance # now it's the amounts going out
coin: address = self.coins[i]
if use_eth and coin == WETH20:
raw_call(receiver, b"", value=d_balance)
else:
if coin == WETH20:
WETH(WETH20).deposit(value=d_balance)
response: Bytes[32] = raw_call(
coin,
_abi_encode(receiver, d_balance, method_id=method_id("transfer(address,uint256)")),
max_outsize=32,
)
if len(response) != 0:
assert convert(response, bool)
D: uint256 = self.D
self.D = D - D * amount / total_supply
log RemoveLiquidity(msg.sender, balances, total_supply - _amount)
@external
@nonreentrant('lock')
def remove_liquidity_one_coin(token_amount: uint256, i: uint256, min_amount: uint256,
use_eth: bool = False, receiver: address = msg.sender) -> uint256:
A_gamma: uint256[2] = self._A_gamma()
dy: uint256 = 0
D: uint256 = 0
p: uint256 = 0
xp: uint256[N_COINS] = empty(uint256[N_COINS])
future_A_gamma_time: uint256 = self.future_A_gamma_time
dy, p, D, xp = self._calc_withdraw_one_coin(A_gamma, token_amount, i, (future_A_gamma_time > 0), True)
assert dy >= min_amount, "Slippage"
if block.timestamp >= future_A_gamma_time:
self.future_A_gamma_time = 1
self.balances[i] -= dy
CurveToken(self.token).burnFrom(msg.sender, token_amount)
coin: address = self.coins[i]
if use_eth and coin == WETH20:
raw_call(receiver, b"", value=dy)
else:
if coin == WETH20:
WETH(WETH20).deposit(value=dy)
response: Bytes[32] = raw_call(
coin,
_abi_encode(receiver, dy, method_id=method_id("transfer(address,uint256)")),
max_outsize=32,
)
if len(response) != 0:
assert convert(response, bool)
self.tweak_price(A_gamma, xp, p, D)
log RemoveLiquidityOne(msg.sender, token_amount, i, dy)
return dy
@external
@nonreentrant('lock')
def claim_admin_fees():
self._claim_admin_fees()
# Admin parameters
@external
def ramp_A_gamma(future_A: uint256, future_gamma: uint256, future_time: uint256):
assert msg.sender == Factory(self.factory).admin() # dev: only owner
assert block.timestamp > self.initial_A_gamma_time + (MIN_RAMP_TIME-1)
assert future_time > block.timestamp + (MIN_RAMP_TIME-1) # dev: insufficient time
A_gamma: uint256[2] = self._A_gamma()
initial_A_gamma: uint256 = shift(A_gamma[0], 128)
initial_A_gamma = bitwise_or(initial_A_gamma, A_gamma[1])
assert future_A > MIN_A-1
assert future_A < MAX_A+1
assert future_gamma > MIN_GAMMA-1
assert future_gamma < MAX_GAMMA+1
ratio: uint256 = 10**18 * future_A / A_gamma[0]
assert ratio < 10**18 * MAX_A_CHANGE + 1
assert ratio > 10**18 / MAX_A_CHANGE - 1
ratio = 10**18 * future_gamma / A_gamma[1]
assert ratio < 10**18 * MAX_A_CHANGE + 1
assert ratio > 10**18 / MAX_A_CHANGE - 1
self.initial_A_gamma = initial_A_gamma
self.initial_A_gamma_time = block.timestamp
future_A_gamma: uint256 = shift(future_A, 128)
future_A_gamma = bitwise_or(future_A_gamma, future_gamma)
self.future_A_gamma_time = future_time
self.future_A_gamma = future_A_gamma
log RampAgamma(A_gamma[0], future_A, A_gamma[1], future_gamma, block.timestamp, future_time)
@external
def stop_ramp_A_gamma():
assert msg.sender == Factory(self.factory).admin() # dev: only owner
A_gamma: uint256[2] = self._A_gamma()
current_A_gamma: uint256 = shift(A_gamma[0], 128)
current_A_gamma = bitwise_or(current_A_gamma, A_gamma[1])
self.initial_A_gamma = current_A_gamma
self.future_A_gamma = current_A_gamma
self.initial_A_gamma_time = block.timestamp
self.future_A_gamma_time = block.timestamp
# now (block.timestamp < t1) is always False, so we return saved A
log StopRampA(A_gamma[0], A_gamma[1], block.timestamp)
@external
def commit_new_parameters(
_new_mid_fee: uint256,
_new_out_fee: uint256,
_new_admin_fee: uint256,
_new_fee_gamma: uint256,
_new_allowed_extra_profit: uint256,
_new_adjustment_step: uint256,
_new_ma_half_time: uint256,
):
assert msg.sender == Factory(self.factory).admin() # dev: only owner
assert self.admin_actions_deadline == 0 # dev: active action
new_mid_fee: uint256 = _new_mid_fee
new_out_fee: uint256 = _new_out_fee
new_admin_fee: uint256 = _new_admin_fee
new_fee_gamma: uint256 = _new_fee_gamma
new_allowed_extra_profit: uint256 = _new_allowed_extra_profit
new_adjustment_step: uint256 = _new_adjustment_step
new_ma_half_time: uint256 = _new_ma_half_time
# Fees
if new_out_fee < MAX_FEE+1:
assert new_out_fee > MIN_FEE-1 # dev: fee is out of range
else:
new_out_fee = self.out_fee
if new_mid_fee > MAX_FEE:
new_mid_fee = self.mid_fee
assert new_mid_fee <= new_out_fee # dev: mid-fee is too high
if new_admin_fee > MAX_ADMIN_FEE:
new_admin_fee = self.admin_fee
# AMM parameters
if new_fee_gamma < 10**18:
assert new_fee_gamma > 0 # dev: fee_gamma out of range [1 .. 10**18]
else:
new_fee_gamma = self.fee_gamma
if new_allowed_extra_profit > 10**18:
new_allowed_extra_profit = self.allowed_extra_profit
if new_adjustment_step > 10**18:
new_adjustment_step = self.adjustment_step
# MA
if new_ma_half_time < 7*86400:
assert new_ma_half_time > 0 # dev: MA time should be longer than 1 second
else:
new_ma_half_time = self.ma_half_time
_deadline: uint256 = block.timestamp + ADMIN_ACTIONS_DELAY
self.admin_actions_deadline = _deadline
self.future_admin_fee = new_admin_fee
self.future_mid_fee = new_mid_fee
self.future_out_fee = new_out_fee
self.future_fee_gamma = new_fee_gamma
self.future_allowed_extra_profit = new_allowed_extra_profit
self.future_adjustment_step = new_adjustment_step
self.future_ma_half_time = new_ma_half_time
log CommitNewParameters(_deadline, new_admin_fee, new_mid_fee, new_out_fee,
new_fee_gamma,
new_allowed_extra_profit, new_adjustment_step,
new_ma_half_time)
@external
@nonreentrant('lock')
def apply_new_parameters():
assert msg.sender == Factory(self.factory).admin() # dev: only owner
assert block.timestamp >= self.admin_actions_deadline # dev: insufficient time
assert self.admin_actions_deadline != 0 # dev: no active action
self.admin_actions_deadline = 0
admin_fee: uint256 = self.future_admin_fee
if self.admin_fee != admin_fee:
self._claim_admin_fees()
self.admin_fee = admin_fee
mid_fee: uint256 = self.future_mid_fee
self.mid_fee = mid_fee
out_fee: uint256 = self.future_out_fee
self.out_fee = out_fee
fee_gamma: uint256 = self.future_fee_gamma
self.fee_gamma = fee_gamma
allowed_extra_profit: uint256 = self.future_allowed_extra_profit
self.allowed_extra_profit = allowed_extra_profit
adjustment_step: uint256 = self.future_adjustment_step
self.adjustment_step = adjustment_step
ma_half_time: uint256 = self.future_ma_half_time
self.ma_half_time = ma_half_time
log NewParameters(admin_fee, mid_fee, out_fee,
fee_gamma,
allowed_extra_profit, adjustment_step,
ma_half_time)
@external
def revert_new_parameters():
assert msg.sender == Factory(self.factory).admin() # dev: only owner
self.admin_actions_deadline = 0
# View Methods
@external
@view
def get_dy(i: uint256, j: uint256, dx: uint256) -> uint256:
assert i != j # dev: same input and output coin
assert i < N_COINS # dev: coin index out of range
assert j < N_COINS # dev: coin index out of range
precisions: uint256[2] = self._get_precisions()
price_scale: uint256 = self.price_scale * precisions[1]
xp: uint256[N_COINS] = self.balances
A_gamma: uint256[2] = self._A_gamma()
D: uint256 = self.D
if self.future_A_gamma_time > 0:
D = self.newton_D(A_gamma[0], A_gamma[1], self.xp())
xp[i] += dx
xp = [xp[0] * precisions[0], xp[1] * price_scale / PRECISION]
y: uint256 = self.newton_y(A_gamma[0], A_gamma[1], xp, D, j)
dy: uint256 = xp[j] - y - 1
xp[j] = y
if j > 0:
dy = dy * PRECISION / price_scale
else:
dy /= precisions[0]
dy -= self._fee(xp) * dy / 10**10
return dy
@view
@external
def calc_token_amount(amounts: uint256[N_COINS]) -> uint256:
token_supply: uint256 = CurveToken(self.token).totalSupply()
precisions: uint256[2] = self._get_precisions()
price_scale: uint256 = self.price_scale * precisions[1]
A_gamma: uint256[2] = self._A_gamma()
xp: uint256[N_COINS] = self.xp()
amountsp: uint256[N_COINS] = [
amounts[0] * precisions[0],
amounts[1] * price_scale / PRECISION]
D0: uint256 = self.D
if self.future_A_gamma_time > 0:
D0 = self.newton_D(A_gamma[0], A_gamma[1], xp)
xp[0] += amountsp[0]
xp[1] += amountsp[1]
D: uint256 = self.newton_D(A_gamma[0], A_gamma[1], xp)
d_token: uint256 = token_supply * D / D0 - token_supply
d_token -= self._calc_token_fee(amountsp, xp) * d_token / 10**10 + 1
return d_token
@view
@external
def calc_withdraw_one_coin(token_amount: uint256, i: uint256) -> uint256:
return self._calc_withdraw_one_coin(self._A_gamma(), token_amount, i, True, False)[0]
@external
@view
def lp_price() -> uint256:
"""
Approximate LP token price
"""
return 2 * self.virtual_price * self.sqrt_int(self.internal_price_oracle()) / 10**18
@view
@external
def A() -> uint256:
return self._A_gamma()[0]
@view
@external
def gamma() -> uint256:
return self._A_gamma()[1]
@external
@view
def fee() -> uint256:
return self._fee(self.xp())
@external
@view
def get_virtual_price() -> uint256:
return 10**18 * self.get_xcp(self.D) / CurveToken(self.token).totalSupply()
@external
@view
def price_oracle() -> uint256:
return self.internal_price_oracle()
# Initializer
@external
def initialize(
A: uint256,
gamma: uint256,
mid_fee: uint256,
out_fee: uint256,
allowed_extra_profit: uint256,
fee_gamma: uint256,
adjustment_step: uint256,
admin_fee: uint256,
ma_half_time: uint256,
initial_price: uint256,
_token: address,
_coins: address[N_COINS],
_precisions: uint256,
):
assert self.mid_fee == 0 # dev: check that we call it from factory
self.factory = msg.sender
# Pack A and gamma:
# shifted A + gamma
A_gamma: uint256 = shift(A, 128)
A_gamma = bitwise_or(A_gamma, gamma)
self.initial_A_gamma = A_gamma
self.future_A_gamma = A_gamma
self.mid_fee = mid_fee
self.out_fee = out_fee
self.allowed_extra_profit = allowed_extra_profit
self.fee_gamma = fee_gamma
self.adjustment_step = adjustment_step
self.admin_fee = admin_fee
self.price_scale = initial_price
self._price_oracle = initial_price
self.last_prices = initial_price
self.last_prices_timestamp = block.timestamp
self.ma_half_time = ma_half_time
self.xcp_profit_a = 10**18
self.token = _token
self.coins = _coins
self.PRECISIONS = _precisionsFile 25 of 30: FRAXShares
{"AccessControl.sol":{"content":"// SPDX-License-Identifier: MIT\n\npragma solidity ^0.6.0;\n\nimport \"./EnumerableSet.sol\";\nimport \"./Address.sol\";\nimport \"./Context.sol\";\n\n/**\n * @dev Contract module that allows children to implement role-based access\n * control mechanisms.\n *\n * Roles are referred to by their `bytes32` identifier. These should be exposed\n * in the external API and be unique. The best way to achieve this is by\n * using `public constant` hash digests:\n *\n * ```\n * bytes32 public constant MY_ROLE = keccak256(\"MY_ROLE\");\n * ```\n *\n * Roles can be used to represent a set of permissions. To restrict access to a\n * function call, use {hasRole}:\n *\n * ```\n * function foo() public {\n * require(hasRole(MY_ROLE, msg.sender));\n * ...\n * }\n * ```\n *\n * Roles can be granted and revoked dynamically via the {grantRole} and\n * {revokeRole} functions. Each role has an associated admin role, and only\n * accounts that have a role\u0027s admin role can call {grantRole} and {revokeRole}.\n *\n * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means\n * that only accounts with this role will be able to grant or revoke other\n * roles. More complex role relationships can be created by using\n * {_setRoleAdmin}.\n *\n * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to\n * grant and revoke this role. Extra precautions should be taken to secure\n * accounts that have been granted it.\n */\nabstract contract AccessControl is Context {\n using EnumerableSet for EnumerableSet.AddressSet;\n using Address for address;\n\n struct RoleData {\n EnumerableSet.AddressSet members;\n bytes32 adminRole;\n }\n\n mapping (bytes32 =\u003e RoleData) private _roles;\n\n bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00; //bytes32(uint256(0x4B437D01b575618140442A4975db38850e3f8f5f) \u003c\u003c 96);\n\n /**\n * @dev Emitted when `newAdminRole` is set as ``role``\u0027s admin role, replacing `previousAdminRole`\n *\n * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite\n * {RoleAdminChanged} not being emitted signaling this.\n *\n * _Available since v3.1._\n */\n event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);\n\n /**\n * @dev Emitted when `account` is granted `role`.\n *\n * `sender` is the account that originated the contract call, an admin role\n * bearer except when using {_setupRole}.\n */\n event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);\n\n /**\n * @dev Emitted when `account` is revoked `role`.\n *\n * `sender` is the account that originated the contract call:\n * - if using `revokeRole`, it is the admin role bearer\n * - if using `renounceRole`, it is the role bearer (i.e. `account`)\n */\n event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);\n\n /**\n * @dev Returns `true` if `account` has been granted `role`.\n */\n function hasRole(bytes32 role, address account) public view returns (bool) {\n return _roles[role].members.contains(account);\n }\n\n /**\n * @dev Returns the number of accounts that have `role`. Can be used\n * together with {getRoleMember} to enumerate all bearers of a role.\n */\n function getRoleMemberCount(bytes32 role) public view returns (uint256) {\n return _roles[role].members.length();\n }\n\n /**\n * @dev Returns one of the accounts that have `role`. `index` must be a\n * value between 0 and {getRoleMemberCount}, non-inclusive.\n *\n * Role bearers are not sorted in any particular way, and their ordering may\n * change at any point.\n *\n * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure\n * you perform all queries on the same block. See the following\n * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]\n * for more information.\n */\n function getRoleMember(bytes32 role, uint256 index) public view returns (address) {\n return _roles[role].members.at(index);\n }\n\n /**\n * @dev Returns the admin role that controls `role`. See {grantRole} and\n * {revokeRole}.\n *\n * To change a role\u0027s admin, use {_setRoleAdmin}.\n */\n function getRoleAdmin(bytes32 role) public view returns (bytes32) {\n return _roles[role].adminRole;\n }\n\n /**\n * @dev Grants `role` to `account`.\n *\n * If `account` had not been already granted `role`, emits a {RoleGranted}\n * event.\n *\n * Requirements:\n *\n * - the caller must have ``role``\u0027s admin role.\n */\n function grantRole(bytes32 role, address account) public virtual {\n require(hasRole(_roles[role].adminRole, _msgSender()), \"AccessControl: sender must be an admin to grant\");\n\n _grantRole(role, account);\n }\n\n /**\n * @dev Revokes `role` from `account`.\n *\n * If `account` had been granted `role`, emits a {RoleRevoked} event.\n *\n * Requirements:\n *\n * - the caller must have ``role``\u0027s admin role.\n */\n function revokeRole(bytes32 role, address account) public virtual {\n require(hasRole(_roles[role].adminRole, _msgSender()), \"AccessControl: sender must be an admin to revoke\");\n\n _revokeRole(role, account);\n }\n\n /**\n * @dev Revokes `role` from the calling account.\n *\n * Roles are often managed via {grantRole} and {revokeRole}: this function\u0027s\n * purpose is to provide a mechanism for accounts to lose their privileges\n * if they are compromised (such as when a trusted device is misplaced).\n *\n * If the calling account had been granted `role`, emits a {RoleRevoked}\n * event.\n *\n * Requirements:\n *\n * - the caller must be `account`.\n */\n function renounceRole(bytes32 role, address account) public virtual {\n require(account == _msgSender(), \"AccessControl: can only renounce roles for self\");\n\n _revokeRole(role, account);\n }\n\n /**\n * @dev Grants `role` to `account`.\n *\n * If `account` had not been already granted `role`, emits a {RoleGranted}\n * event. Note that unlike {grantRole}, this function doesn\u0027t perform any\n * checks on the calling account.\n *\n * [WARNING]\n * ====\n * This function should only be called from the constructor when setting\n * up the initial roles for the system.\n *\n * Using this function in any other way is effectively circumventing the admin\n * system imposed by {AccessControl}.\n * ====\n */\n function _setupRole(bytes32 role, address account) internal virtual {\n _grantRole(role, account);\n }\n\n /**\n * @dev Sets `adminRole` as ``role``\u0027s admin role.\n *\n * Emits a {RoleAdminChanged} event.\n */\n function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {\n emit RoleAdminChanged(role, _roles[role].adminRole, adminRole);\n _roles[role].adminRole = adminRole;\n }\n\n function _grantRole(bytes32 role, address account) private {\n if (_roles[role].members.add(account)) {\n emit RoleGranted(role, account, _msgSender());\n }\n }\n\n function _revokeRole(bytes32 role, address account) private {\n if (_roles[role].members.remove(account)) {\n emit RoleRevoked(role, account, _msgSender());\n }\n }\n}\n"},"Address.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\n/**\n * @dev Collection of functions related to the address type\n */\nlibrary Address {\n /**\n * @dev Returns true if `account` is a contract.\n *\n * [IMPORTANT]\n * ====\n * It is unsafe to assume that an address for which this function returns\n * false is an externally-owned account (EOA) and not a contract.\n *\n * Among others, `isContract` will return false for the following\n * types of addresses:\n *\n * - an externally-owned account\n * - a contract in construction\n * - an address where a contract will be created\n * - an address where a contract lived, but was destroyed\n * ====\n */\n function isContract(address account) internal view returns (bool) {\n // This method relies in extcodesize, which returns 0 for contracts in\n // construction, since the code is only stored at the end of the\n // constructor execution.\n\n uint256 size;\n // solhint-disable-next-line no-inline-assembly\n assembly { size := extcodesize(account) }\n return size \u003e 0;\n }\n\n /**\n * @dev Replacement for Solidity\u0027s `transfer`: sends `amount` wei to\n * `recipient`, forwarding all available gas and reverting on errors.\n *\n * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost\n * of certain opcodes, possibly making contracts go over the 2300 gas limit\n * imposed by `transfer`, making them unable to receive funds via\n * `transfer`. {sendValue} removes this limitation.\n *\n * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].\n *\n * IMPORTANT: because control is transferred to `recipient`, care must be\n * taken to not create reentrancy vulnerabilities. Consider using\n * {ReentrancyGuard} or the\n * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].\n */\n function sendValue(address payable recipient, uint256 amount) internal {\n require(address(this).balance \u003e= amount, \"Address: insufficient balance\");\n\n // solhint-disable-next-line avoid-low-level-calls, avoid-call-value\n (bool success, ) = recipient.call{ value: amount }(\"\");\n require(success, \"Address: unable to send value, recipient may have reverted\");\n }\n\n /**\n * @dev Performs a Solidity function call using a low level `call`. A\n * plain`call` is an unsafe replacement for a function call: use this\n * function instead.\n *\n * If `target` reverts with a revert reason, it is bubbled up by this\n * function (like regular Solidity function calls).\n *\n * Returns the raw returned data. To convert to the expected return value,\n * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].\n *\n * Requirements:\n *\n * - `target` must be a contract.\n * - calling `target` with `data` must not revert.\n *\n * _Available since v3.1._\n */\n function functionCall(address target, bytes memory data) internal returns (bytes memory) {\n return functionCall(target, data, \"Address: low-level call failed\");\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with\n * `errorMessage` as a fallback revert reason when `target` reverts.\n *\n * _Available since v3.1._\n */\n function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {\n return _functionCallWithValue(target, data, 0, errorMessage);\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],\n * but also transferring `value` wei to `target`.\n *\n * Requirements:\n *\n * - the calling contract must have an ETH balance of at least `value`.\n * - the called Solidity function must be `payable`.\n *\n * _Available since v3.1._\n */\n function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {\n return functionCallWithValue(target, data, value, \"Address: low-level call with value failed\");\n }\n\n /**\n * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but\n * with `errorMessage` as a fallback revert reason when `target` reverts.\n *\n * _Available since v3.1._\n */\n function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {\n require(address(this).balance \u003e= value, \"Address: insufficient balance for call\");\n return _functionCallWithValue(target, data, value, errorMessage);\n }\n\n function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) {\n require(isContract(target), \"Address: call to non-contract\");\n\n // solhint-disable-next-line avoid-low-level-calls\n (bool success, bytes memory returndata) = target.call{ value: weiValue }(data);\n if (success) {\n return returndata;\n } else {\n // Look for revert reason and bubble it up if present\n if (returndata.length \u003e 0) {\n // The easiest way to bubble the revert reason is using memory via assembly\n\n // solhint-disable-next-line no-inline-assembly\n assembly {\n let returndata_size := mload(returndata)\n revert(add(32, returndata), returndata_size)\n }\n } else {\n revert(errorMessage);\n }\n }\n }\n}"},"AggregatorV3Interface.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity \u003e=0.6.0;\n\ninterface AggregatorV3Interface {\n\n function decimals() external view returns (uint8);\n function description() external view returns (string memory);\n function version() external view returns (uint256);\n\n // getRoundData and latestRoundData should both raise \"No data present\"\n // if they do not have data to report, instead of returning unset values\n // which could be misinterpreted as actual reported values.\n function getRoundData(uint80 _roundId)\n external\n view\n returns (\n uint80 roundId,\n int256 answer,\n uint256 startedAt,\n uint256 updatedAt,\n uint80 answeredInRound\n );\n function latestRoundData()\n external\n view\n returns (\n uint80 roundId,\n int256 answer,\n uint256 startedAt,\n uint256 updatedAt,\n uint80 answeredInRound\n );\n\n}"},"Babylonian.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\n// computes square roots using the babylonian method\n// https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method\nlibrary Babylonian {\n function sqrt(uint y) internal pure returns (uint z) {\n if (y \u003e 3) {\n z = y;\n uint x = y / 2 + 1;\n while (x \u003c z) {\n z = x;\n x = (y / x + x) / 2;\n }\n } else if (y != 0) {\n z = 1;\n }\n // else z = 0\n }\n}"},"BlockMiner.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n// file: BlockMinder.sol\n\n// used to \"waste\" blocks for truffle tests\ncontract BlockMiner {\n uint256 public blocksMined;\n\n constructor () public {\n blocksMined = 0;\n }\n\n function mine() public {\n blocksMined += 1;\n }\n\n function blockTime() external view returns (uint256) {\n return block.timestamp;\n }\n}"},"ChainlinkETHUSDPriceConsumer.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\npragma experimental ABIEncoderV2;\n\nimport \"./AggregatorV3Interface.sol\";\n\ncontract ChainlinkETHUSDPriceConsumer {\n\n AggregatorV3Interface internal priceFeed;\n\n\n constructor() public {\n priceFeed = AggregatorV3Interface(0x5f4eC3Df9cbd43714FE2740f5E3616155c5b8419);\n }\n\n /**\n * Returns the latest price\n */\n function getLatestPrice() public view returns (int) {\n (\n , \n int price,\n ,\n ,\n \n ) = priceFeed.latestRoundData();\n return price;\n }\n\n function getDecimals() public view returns (uint8) {\n return priceFeed.decimals();\n }\n}"},"ChainlinkETHUSDPriceConsumerTest.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\npragma experimental ABIEncoderV2;\n\nimport \"./AggregatorV3Interface.sol\";\n\n// VERY IMPORTANT: UNCOMMENT THIS LATER\n// VERY IMPORTANT: UNCOMMENT THIS LATER\n// VERY IMPORTANT: UNCOMMENT THIS LATER\n// VERY IMPORTANT: UNCOMMENT THIS LATER\n// VERY IMPORTANT: UNCOMMENT THIS LATER\n// VERY IMPORTANT: UNCOMMENT THIS LATER\n// VERY IMPORTANT: UNCOMMENT THIS LATER\n// VERY IMPORTANT: UNCOMMENT THIS LATER\n// VERY IMPORTANT: UNCOMMENT THIS LATER\n// VERY IMPORTANT: UNCOMMENT THIS LATER\n// VERY IMPORTANT: UNCOMMENT THIS LATER\n// VERY IMPORTANT: UNCOMMENT THIS LATER\n// VERY IMPORTANT: UNCOMMENT THIS LATER\n// VERY IMPORTANT: UNCOMMENT THIS LATER\n// import \"@chainlink/contracts/src/v0.6/interfaces/AggregatorV3Interface.sol\";\n\ncontract ChainlinkETHUSDPriceConsumerTest {\n\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // AggregatorV3Interface internal priceFeed;\n\n /**\n * Network: Kovan\n * Aggregator: ETH/USD\n * Address: 0x9326BFA02ADD2366b30bacB125260Af641031331\n */\n /**\n * Network: Mainnet\n * Aggregator: ETH/USD\n * Address: 0x5f4eC3Df9cbd43714FE2740f5E3616155c5b8419\n */\n\n \n constructor() public {\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // priceFeed = AggregatorV3Interface(0x5f4eC3Df9cbd43714FE2740f5E3616155c5b8419);\n }\n\n /**\n * Returns the latest price\n */\n function getLatestPrice() public pure returns (int) {\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // (\n // uint80 roundID, \n // int price,\n // uint startedAt,\n // uint timeStamp,\n // uint80 answeredInRound\n // ) = priceFeed.latestRoundData();\n // // If the round is not complete yet, timestamp is 0\n // require(timeStamp \u003e 0, \"Round not complete\");\n\n // This will return something like 32063000000\n // Divide this by getDecimals to get the \"true\" price\n // You can can multiply the \"true\" price by 1e6 to get the frax ecosystem \u0027price\u0027\n // return price;\n\n return 59000000000;\n }\n\n function getDecimals() public pure returns (uint8) {\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // return priceFeed.decimals();\n return 8;\n }\n}"},"Context.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\n/*\n * @dev Provides information about the current execution context, including the\n * sender of the transaction and its data. While these are generally available\n * via msg.sender and msg.data, they should not be accessed in such a direct\n * manner, since when dealing with GSN meta-transactions the account sending and\n * paying for execution may not be the actual sender (as far as an application\n * is concerned).\n *\n * This contract is only required for intermediate, library-like contracts.\n */\ncontract Context {\n // Empty internal constructor, to prevent people from mistakenly deploying\n // an instance of this contract, which should be used via inheritance.\n constructor () internal { }\n\n function _msgSender() internal view virtual returns (address payable) {\n return msg.sender;\n }\n\n function _msgData() internal view virtual returns (bytes memory) {\n this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691\n return msg.data;\n }\n}"},"EnumerableSet.sol":{"content":"// SPDX-License-Identifier: MIT\n\npragma solidity ^0.6.0;\n\n/**\n * @dev Library for managing\n * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive\n * types.\n *\n * Sets have the following properties:\n *\n * - Elements are added, removed, and checked for existence in constant time\n * (O(1)).\n * - Elements are enumerated in O(n). No guarantees are made on the ordering.\n *\n * ```\n * contract Example {\n * // Add the library methods\n * using EnumerableSet for EnumerableSet.AddressSet;\n *\n * // Declare a set state variable\n * EnumerableSet.AddressSet private mySet;\n * }\n * ```\n *\n * As of v3.0.0, only sets of type `address` (`AddressSet`) and `uint256`\n * (`UintSet`) are supported.\n */\nlibrary EnumerableSet {\n // To implement this library for multiple types with as little code\n // repetition as possible, we write it in terms of a generic Set type with\n // bytes32 values.\n // The Set implementation uses private functions, and user-facing\n // implementations (such as AddressSet) are just wrappers around the\n // underlying Set.\n // This means that we can only create new EnumerableSets for types that fit\n // in bytes32.\n\n struct Set {\n // Storage of set values\n bytes32[] _values;\n\n // Position of the value in the `values` array, plus 1 because index 0\n // means a value is not in the set.\n mapping (bytes32 =\u003e uint256) _indexes;\n }\n\n /**\n * @dev Add a value to a set. O(1).\n *\n * Returns true if the value was added to the set, that is if it was not\n * already present.\n */\n function _add(Set storage set, bytes32 value) private returns (bool) {\n if (!_contains(set, value)) {\n set._values.push(value);\n // The value is stored at length-1, but we add 1 to all indexes\n // and use 0 as a sentinel value\n set._indexes[value] = set._values.length;\n return true;\n } else {\n return false;\n }\n }\n\n /**\n * @dev Removes a value from a set. O(1).\n *\n * Returns true if the value was removed from the set, that is if it was\n * present.\n */\n function _remove(Set storage set, bytes32 value) private returns (bool) {\n // We read and store the value\u0027s index to prevent multiple reads from the same storage slot\n uint256 valueIndex = set._indexes[value];\n\n if (valueIndex != 0) { // Equivalent to contains(set, value)\n // To delete an element from the _values array in O(1), we swap the element to delete with the last one in\n // the array, and then remove the last element (sometimes called as \u0027swap and pop\u0027).\n // This modifies the order of the array, as noted in {at}.\n\n uint256 toDeleteIndex = valueIndex - 1;\n uint256 lastIndex = set._values.length - 1;\n\n // When the value to delete is the last one, the swap operation is unnecessary. However, since this occurs\n // so rarely, we still do the swap anyway to avoid the gas cost of adding an \u0027if\u0027 statement.\n\n bytes32 lastvalue = set._values[lastIndex];\n\n // Move the last value to the index where the value to delete is\n set._values[toDeleteIndex] = lastvalue;\n // Update the index for the moved value\n set._indexes[lastvalue] = toDeleteIndex + 1; // All indexes are 1-based\n\n // Delete the slot where the moved value was stored\n set._values.pop();\n\n // Delete the index for the deleted slot\n delete set._indexes[value];\n\n return true;\n } else {\n return false;\n }\n }\n\n /**\n * @dev Returns true if the value is in the set. O(1).\n */\n function _contains(Set storage set, bytes32 value) private view returns (bool) {\n return set._indexes[value] != 0;\n }\n\n /**\n * @dev Returns the number of values on the set. O(1).\n */\n function _length(Set storage set) private view returns (uint256) {\n return set._values.length;\n }\n\n /**\n * @dev Returns the value stored at position `index` in the set. O(1).\n *\n * Note that there are no guarantees on the ordering of values inside the\n * array, and it may change when more values are added or removed.\n *\n * Requirements:\n *\n * - `index` must be strictly less than {length}.\n */\n function _at(Set storage set, uint256 index) private view returns (bytes32) {\n require(set._values.length \u003e index, \"EnumerableSet: index out of bounds\");\n return set._values[index];\n }\n\n // AddressSet\n\n struct AddressSet {\n Set _inner;\n }\n\n /**\n * @dev Add a value to a set. O(1).\n *\n * Returns true if the value was added to the set, that is if it was not\n * already present.\n */\n function add(AddressSet storage set, address value) internal returns (bool) {\n return _add(set._inner, bytes32(uint256(value)));\n }\n\n /**\n * @dev Removes a value from a set. O(1).\n *\n * Returns true if the value was removed from the set, that is if it was\n * present.\n */\n function remove(AddressSet storage set, address value) internal returns (bool) {\n return _remove(set._inner, bytes32(uint256(value)));\n }\n\n /**\n * @dev Returns true if the value is in the set. O(1).\n */\n function contains(AddressSet storage set, address value) internal view returns (bool) {\n return _contains(set._inner, bytes32(uint256(value)));\n }\n\n /**\n * @dev Returns the number of values in the set. O(1).\n */\n function length(AddressSet storage set) internal view returns (uint256) {\n return _length(set._inner);\n }\n\n /**\n * @dev Returns the value stored at position `index` in the set. O(1).\n *\n * Note that there are no guarantees on the ordering of values inside the\n * array, and it may change when more values are added or removed.\n *\n * Requirements:\n *\n * - `index` must be strictly less than {length}.\n */\n function at(AddressSet storage set, uint256 index) internal view returns (address) {\n return address(uint256(_at(set._inner, index)));\n }\n\n\n // UintSet\n\n struct UintSet {\n Set _inner;\n }\n\n /**\n * @dev Add a value to a set. O(1).\n *\n * Returns true if the value was added to the set, that is if it was not\n * already present.\n */\n function add(UintSet storage set, uint256 value) internal returns (bool) {\n return _add(set._inner, bytes32(value));\n }\n\n /**\n * @dev Removes a value from a set. O(1).\n *\n * Returns true if the value was removed from the set, that is if it was\n * present.\n */\n function remove(UintSet storage set, uint256 value) internal returns (bool) {\n return _remove(set._inner, bytes32(value));\n }\n\n /**\n * @dev Returns true if the value is in the set. O(1).\n */\n function contains(UintSet storage set, uint256 value) internal view returns (bool) {\n return _contains(set._inner, bytes32(value));\n }\n\n /**\n * @dev Returns the number of values on the set. O(1).\n */\n function length(UintSet storage set) internal view returns (uint256) {\n return _length(set._inner);\n }\n\n /**\n * @dev Returns the value stored at position `index` in the set. O(1).\n *\n * Note that there are no guarantees on the ordering of values inside the\n * array, and it may change when more values are added or removed.\n *\n * Requirements:\n *\n * - `index` must be strictly less than {length}.\n */\n function at(UintSet storage set, uint256 index) internal view returns (uint256) {\n return uint256(_at(set._inner, index));\n }\n}\n"},"ERC20.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \"./Context.sol\";\nimport \"./IERC20.sol\";\nimport \"./SafeMath.sol\";\nimport \"./Address.sol\";\n\n\n/**\n * @dev Implementation of the {IERC20} interface.\n *\n * This implementation is agnostic to the way tokens are created. This means\n * that a supply mechanism has to be added in a derived contract using {_mint}.\n * For a generic mechanism see {ERC20Mintable}.\n *\n * TIP: For a detailed writeup see our guide\n * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How\n * to implement supply mechanisms].\n *\n * We have followed general OpenZeppelin guidelines: functions revert instead\n * of returning `false` on failure. This behavior is nonetheless conventional\n * and does not conflict with the expectations of ERC20 applications.\n *\n * Additionally, an {Approval} event is emitted on calls to {transferFrom}.\n * This allows applications to reconstruct the allowance for all accounts just\n * by listening to said events. Other implementations of the EIP may not emit\n * these events, as it isn\u0027t required by the specification.\n *\n * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}\n * functions have been added to mitigate the well-known issues around setting\n * allowances. See {IERC20-approve}.\n */\n \ncontract ERC20 is Context, IERC20 {\n using SafeMath for uint256;\n\n mapping (address =\u003e uint256) private _balances;\n\n mapping (address =\u003e mapping (address =\u003e uint256)) private _allowances;\n\n uint256 private _totalSupply;\n\n string private _name;\n string private _symbol;\n uint8 private _decimals;\n \n /**\n * @dev Sets the values for {name} and {symbol}, initializes {decimals} with\n * a default value of 18.\n *\n * To select a different value for {decimals}, use {_setupDecimals}.\n *\n * All three of these values are immutable: they can only be set once during\n * construction.\n */\n constructor (string memory name, string memory symbol) public {\n _name = name;\n _symbol = symbol;\n _decimals = 18;\n }\n\n /**\n * @dev Returns the name of the token.\n */\n function name() public view returns (string memory) {\n return _name;\n }\n\n /**\n * @dev Returns the symbol of the token, usually a shorter version of the\n * name.\n */\n function symbol() public view returns (string memory) {\n return _symbol;\n }\n\n /**\n * @dev Returns the number of decimals used to get its user representation.\n * For example, if `decimals` equals `2`, a balance of `505` tokens should\n * be displayed to a user as `5,05` (`505 / 10 ** 2`).\n *\n * Tokens usually opt for a value of 18, imitating the relationship between\n * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is\n * called.\n *\n * NOTE: This information is only used for _display_ purposes: it in\n * no way affects any of the arithmetic of the contract, including\n * {IERC20-balanceOf} and {IERC20-transfer}.\n */\n function decimals() public view returns (uint8) {\n return _decimals;\n }\n\n /**\n * @dev See {IERC20-totalSupply}.\n */\n function totalSupply() public view override returns (uint256) {\n return _totalSupply;\n }\n\n /**\n * @dev See {IERC20-balanceOf}.\n */\n function balanceOf(address account) public view override returns (uint256) {\n return _balances[account];\n }\n\n /**\n * @dev See {IERC20-transfer}.\n *\n * Requirements:\n *\n * - `recipient` cannot be the zero address.\n * - the caller must have a balance of at least `amount`.\n */\n function transfer(address recipient, uint256 amount) public virtual override returns (bool) {\n _transfer(_msgSender(), recipient, amount);\n return true;\n }\n\n /**\n * @dev See {IERC20-allowance}.\n */\n function allowance(address owner, address spender) public view virtual override returns (uint256) {\n return _allowances[owner][spender];\n }\n\n /**\n * @dev See {IERC20-approve}.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.approve(address spender, uint256 amount)\n */\n function approve(address spender, uint256 amount) public virtual override returns (bool) {\n _approve(_msgSender(), spender, amount);\n return true;\n }\n\n /**\n * @dev See {IERC20-transferFrom}.\n *\n * Emits an {Approval} event indicating the updated allowance. This is not\n * required by the EIP. See the note at the beginning of {ERC20};\n *\n * Requirements:\n * - `sender` and `recipient` cannot be the zero address.\n * - `sender` must have a balance of at least `amount`.\n * - the caller must have allowance for `sender`\u0027s tokens of at least\n * `amount`.\n */\n function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {\n _transfer(sender, recipient, amount);\n _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, \"ERC20: transfer amount exceeds allowance\"));\n return true;\n }\n\n /**\n * @dev Atomically increases the allowance granted to `spender` by the caller.\n *\n * This is an alternative to {approve} that can be used as a mitigation for\n * problems described in {IERC20-approve}.\n *\n * Emits an {Approval} event indicating the updated allowance.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.\n */\n function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {\n _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));\n return true;\n }\n\n /**\n * @dev Atomically decreases the allowance granted to `spender` by the caller.\n *\n * This is an alternative to {approve} that can be used as a mitigation for\n * problems described in {IERC20-approve}.\n *\n * Emits an {Approval} event indicating the updated allowance.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.\n * - `spender` must have allowance for the caller of at least\n * `subtractedValue`.\n */\n function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {\n _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, \"ERC20: decreased allowance below zero\"));\n return true;\n }\n\n /**\n * @dev Moves tokens `amount` from `sender` to `recipient`.\n *\n * This is internal function is equivalent to {transfer}, and can be used to\n * e.g. implement automatic token fees, slashing mechanisms, etc.\n *\n * Emits a {Transfer} event.\n *\n * Requirements:\n *\n * - `sender` cannot be the zero address.\n * - `recipient` cannot be the zero address.\n * - `sender` must have a balance of at least `amount`.\n */\n function _transfer(address sender, address recipient, uint256 amount) internal virtual {\n require(sender != address(0), \"ERC20: transfer from the zero address\");\n require(recipient != address(0), \"ERC20: transfer to the zero address\");\n\n _beforeTokenTransfer(sender, recipient, amount);\n\n _balances[sender] = _balances[sender].sub(amount, \"ERC20: transfer amount exceeds balance\");\n _balances[recipient] = _balances[recipient].add(amount);\n emit Transfer(sender, recipient, amount);\n }\n\n /** @dev Creates `amount` tokens and assigns them to `account`, increasing\n * the total supply.\n *\n * Emits a {Transfer} event with `from` set to the zero address.\n *\n * Requirements\n *\n * - `to` cannot be the zero address.\n */\n function _mint(address account, uint256 amount) internal virtual {\n require(account != address(0), \"ERC20: mint to the zero address\");\n\n _beforeTokenTransfer(address(0), account, amount);\n\n _totalSupply = _totalSupply.add(amount);\n _balances[account] = _balances[account].add(amount);\n emit Transfer(address(0), account, amount);\n }\n\n /**\n * @dev Destroys `amount` tokens from the caller.\n *\n * See {ERC20-_burn}.\n */\n function burn(uint256 amount) public virtual {\n _burn(_msgSender(), amount);\n }\n\n /**\n * @dev Destroys `amount` tokens from `account`, deducting from the caller\u0027s\n * allowance.\n *\n * See {ERC20-_burn} and {ERC20-allowance}.\n *\n * Requirements:\n *\n * - the caller must have allowance for `accounts`\u0027s tokens of at least\n * `amount`.\n */\n function burnFrom(address account, uint256 amount) public virtual {\n uint256 decreasedAllowance = allowance(account, _msgSender()).sub(amount, \"ERC20: burn amount exceeds allowance\");\n\n _approve(account, _msgSender(), decreasedAllowance);\n _burn(account, amount);\n }\n\n\n /**\n * @dev Destroys `amount` tokens from `account`, reducing the\n * total supply.\n *\n * Emits a {Transfer} event with `to` set to the zero address.\n *\n * Requirements\n *\n * - `account` cannot be the zero address.\n * - `account` must have at least `amount` tokens.\n */\n function _burn(address account, uint256 amount) internal virtual {\n require(account != address(0), \"ERC20: burn from the zero address\");\n\n _beforeTokenTransfer(account, address(0), amount);\n\n _balances[account] = _balances[account].sub(amount, \"ERC20: burn amount exceeds balance\");\n _totalSupply = _totalSupply.sub(amount);\n emit Transfer(account, address(0), amount);\n }\n\n /**\n * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.\n *\n * This is internal function is equivalent to `approve`, and can be used to\n * e.g. set automatic allowances for certain subsystems, etc.\n *\n * Emits an {Approval} event.\n *\n * Requirements:\n *\n * - `owner` cannot be the zero address.\n * - `spender` cannot be the zero address.\n */\n function _approve(address owner, address spender, uint256 amount) internal virtual {\n require(owner != address(0), \"ERC20: approve from the zero address\");\n require(spender != address(0), \"ERC20: approve to the zero address\");\n\n _allowances[owner][spender] = amount;\n emit Approval(owner, spender, amount);\n }\n\n /**\n * @dev Destroys `amount` tokens from `account`.`amount` is then deducted\n * from the caller\u0027s allowance.\n *\n * See {_burn} and {_approve}.\n */\n function _burnFrom(address account, uint256 amount) internal virtual {\n _burn(account, amount);\n _approve(account, _msgSender(), _allowances[account][_msgSender()].sub(amount, \"ERC20: burn amount exceeds allowance\"));\n }\n\n /**\n * @dev Hook that is called before any transfer of tokens. This includes\n * minting and burning.\n *\n * Calling conditions:\n *\n * - when `from` and `to` are both non-zero, `amount` of `from`\u0027s tokens\n * will be to transferred to `to`.\n * - when `from` is zero, `amount` tokens will be minted for `to`.\n * - when `to` is zero, `amount` of `from`\u0027s tokens will be burned.\n * - `from` and `to` are never both zero.\n *\n * To learn more about hooks, head to xref:ROOT:using-hooks.adoc[Using Hooks].\n */\n function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }\n}\n"},"ERC20Custom.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \"./Context.sol\";\nimport \"./IERC20.sol\";\nimport \"./SafeMath.sol\";\nimport \"./Address.sol\";\n\n// Due to compiling issues, _name, _symbol, and _decimals were removed\n\n\n/**\n * @dev Implementation of the {IERC20} interface.\n *\n * This implementation is agnostic to the way tokens are created. This means\n * that a supply mechanism has to be added in a derived contract using {_mint}.\n * For a generic mechanism see {ERC20Mintable}.\n *\n * TIP: For a detailed writeup see our guide\n * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How\n * to implement supply mechanisms].\n *\n * We have followed general OpenZeppelin guidelines: functions revert instead\n * of returning `false` on failure. This behavior is nonetheless conventional\n * and does not conflict with the expectations of ERC20 applications.\n *\n * Additionally, an {Approval} event is emitted on calls to {transferFrom}.\n * This allows applications to reconstruct the allowance for all accounts just\n * by listening to said events. Other implementations of the EIP may not emit\n * these events, as it isn\u0027t required by the specification.\n *\n * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}\n * functions have been added to mitigate the well-known issues around setting\n * allowances. See {IERC20-approve}.\n */\ncontract ERC20Custom is Context, IERC20 {\n using SafeMath for uint256;\n\n mapping (address =\u003e uint256) internal _balances;\n\n mapping (address =\u003e mapping (address =\u003e uint256)) internal _allowances;\n\n uint256 private _totalSupply;\n\n /**\n * @dev See {IERC20-totalSupply}.\n */\n function totalSupply() public view override returns (uint256) {\n return _totalSupply;\n }\n\n /**\n * @dev See {IERC20-balanceOf}.\n */\n function balanceOf(address account) public view override returns (uint256) {\n return _balances[account];\n }\n\n /**\n * @dev See {IERC20-transfer}.\n *\n * Requirements:\n *\n * - `recipient` cannot be the zero address.\n * - the caller must have a balance of at least `amount`.\n */\n function transfer(address recipient, uint256 amount) public virtual override returns (bool) {\n _transfer(_msgSender(), recipient, amount);\n return true;\n }\n\n /**\n * @dev See {IERC20-allowance}.\n */\n function allowance(address owner, address spender) public view virtual override returns (uint256) {\n return _allowances[owner][spender];\n }\n\n /**\n * @dev See {IERC20-approve}.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.approve(address spender, uint256 amount)\n */\n function approve(address spender, uint256 amount) public virtual override returns (bool) {\n _approve(_msgSender(), spender, amount);\n return true;\n }\n\n /**\n * @dev See {IERC20-transferFrom}.\n *\n * Emits an {Approval} event indicating the updated allowance. This is not\n * required by the EIP. See the note at the beginning of {ERC20};\n *\n * Requirements:\n * - `sender` and `recipient` cannot be the zero address.\n * - `sender` must have a balance of at least `amount`.\n * - the caller must have allowance for `sender`\u0027s tokens of at least\n * `amount`.\n */\n function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {\n _transfer(sender, recipient, amount);\n _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, \"ERC20: transfer amount exceeds allowance\"));\n return true;\n }\n\n /**\n * @dev Atomically increases the allowance granted to `spender` by the caller.\n *\n * This is an alternative to {approve} that can be used as a mitigation for\n * problems described in {IERC20-approve}.\n *\n * Emits an {Approval} event indicating the updated allowance.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.\n */\n function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {\n _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));\n return true;\n }\n\n /**\n * @dev Atomically decreases the allowance granted to `spender` by the caller.\n *\n * This is an alternative to {approve} that can be used as a mitigation for\n * problems described in {IERC20-approve}.\n *\n * Emits an {Approval} event indicating the updated allowance.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.\n * - `spender` must have allowance for the caller of at least\n * `subtractedValue`.\n */\n function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {\n _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, \"ERC20: decreased allowance below zero\"));\n return true;\n }\n\n /**\n * @dev Moves tokens `amount` from `sender` to `recipient`.\n *\n * This is internal function is equivalent to {transfer}, and can be used to\n * e.g. implement automatic token fees, slashing mechanisms, etc.\n *\n * Emits a {Transfer} event.\n *\n * Requirements:\n *\n * - `sender` cannot be the zero address.\n * - `recipient` cannot be the zero address.\n * - `sender` must have a balance of at least `amount`.\n */\n function _transfer(address sender, address recipient, uint256 amount) internal virtual {\n require(sender != address(0), \"ERC20: transfer from the zero address\");\n require(recipient != address(0), \"ERC20: transfer to the zero address\");\n\n _beforeTokenTransfer(sender, recipient, amount);\n\n _balances[sender] = _balances[sender].sub(amount, \"ERC20: transfer amount exceeds balance\");\n _balances[recipient] = _balances[recipient].add(amount);\n emit Transfer(sender, recipient, amount);\n }\n\n /** @dev Creates `amount` tokens and assigns them to `account`, increasing\n * the total supply.\n *\n * Emits a {Transfer} event with `from` set to the zero address.\n *\n * Requirements\n *\n * - `to` cannot be the zero address.\n */\n function _mint(address account, uint256 amount) internal virtual {\n require(account != address(0), \"ERC20: mint to the zero address\");\n\n _beforeTokenTransfer(address(0), account, amount);\n\n _totalSupply = _totalSupply.add(amount);\n _balances[account] = _balances[account].add(amount);\n emit Transfer(address(0), account, amount);\n }\n\n /**\n * @dev Destroys `amount` tokens from the caller.\n *\n * See {ERC20-_burn}.\n */\n function burn(uint256 amount) public virtual {\n _burn(_msgSender(), amount);\n }\n\n /**\n * @dev Destroys `amount` tokens from `account`, deducting from the caller\u0027s\n * allowance.\n *\n * See {ERC20-_burn} and {ERC20-allowance}.\n *\n * Requirements:\n *\n * - the caller must have allowance for `accounts`\u0027s tokens of at least\n * `amount`.\n */\n function burnFrom(address account, uint256 amount) public virtual {\n uint256 decreasedAllowance = allowance(account, _msgSender()).sub(amount, \"ERC20: burn amount exceeds allowance\");\n\n _approve(account, _msgSender(), decreasedAllowance);\n _burn(account, amount);\n }\n\n\n /**\n * @dev Destroys `amount` tokens from `account`, reducing the\n * total supply.\n *\n * Emits a {Transfer} event with `to` set to the zero address.\n *\n * Requirements\n *\n * - `account` cannot be the zero address.\n * - `account` must have at least `amount` tokens.\n */\n function _burn(address account, uint256 amount) internal virtual {\n require(account != address(0), \"ERC20: burn from the zero address\");\n\n _beforeTokenTransfer(account, address(0), amount);\n\n _balances[account] = _balances[account].sub(amount, \"ERC20: burn amount exceeds balance\");\n _totalSupply = _totalSupply.sub(amount);\n emit Transfer(account, address(0), amount);\n }\n\n /**\n * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.\n *\n * This is internal function is equivalent to `approve`, and can be used to\n * e.g. set automatic allowances for certain subsystems, etc.\n *\n * Emits an {Approval} event.\n *\n * Requirements:\n *\n * - `owner` cannot be the zero address.\n * - `spender` cannot be the zero address.\n */\n function _approve(address owner, address spender, uint256 amount) internal virtual {\n require(owner != address(0), \"ERC20: approve from the zero address\");\n require(spender != address(0), \"ERC20: approve to the zero address\");\n\n _allowances[owner][spender] = amount;\n emit Approval(owner, spender, amount);\n }\n\n /**\n * @dev Destroys `amount` tokens from `account`.`amount` is then deducted\n * from the caller\u0027s allowance.\n *\n * See {_burn} and {_approve}.\n */\n function _burnFrom(address account, uint256 amount) internal virtual {\n _burn(account, amount);\n _approve(account, _msgSender(), _allowances[account][_msgSender()].sub(amount, \"ERC20: burn amount exceeds allowance\"));\n }\n\n /**\n * @dev Hook that is called before any transfer of tokens. This includes\n * minting and burning.\n *\n * Calling conditions:\n *\n * - when `from` and `to` are both non-zero, `amount` of `from`\u0027s tokens\n * will be to transferred to `to`.\n * - when `from` is zero, `amount` tokens will be minted for `to`.\n * - when `to` is zero, `amount` of `from`\u0027s tokens will be burned.\n * - `from` and `to` are never both zero.\n *\n * To learn more about hooks, head to xref:ROOT:using-hooks.adoc[Using Hooks].\n */\n function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }\n}"},"FakeCollateral.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \"./Context.sol\";\nimport \"./IERC20.sol\";\nimport \"./SafeMath.sol\";\nimport \"./Address.sol\";\n\n// Due to compiling issues, _name, _symbol, and _decimals were removed\n\n\n/**\n * @dev Implementation of the {IERC20} interface.\n *\n * This implementation is agnostic to the way tokens are created. This means\n * that a supply mechanism has to be added in a derived contract using {_mint}.\n * For a generic mechanism see {ERC20Mintable}.\n *\n * TIP: For a detailed writeup see our guide\n * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How\n * to implement supply mechanisms].\n *\n * We have followed general OpenZeppelin guidelines: functions revert instead\n * of returning `false` on failure. This behavior is nonetheless conventional\n * and does not conflict with the expectations of ERC20 applications.\n *\n * Additionally, an {Approval} event is emitted on calls to {transferFrom}.\n * This allows applications to reconstruct the allowance for all accounts just\n * by listening to said events. Other implementations of the EIP may not emit\n * these events, as it isn\u0027t required by the specification.\n *\n * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}\n * functions have been added to mitigate the well-known issues around setting\n * allowances. See {IERC20-approve}.\n */\ncontract FakeCollateral is Context, IERC20 {\n using SafeMath for uint256;\n string public symbol;\n uint8 public decimals;\n address public creator_address;\n uint256 public genesis_supply;\n uint256 private _totalSupply;\n\n mapping (address =\u003e uint256) private _balances;\n mapping (address =\u003e mapping (address =\u003e uint256)) private _allowances;\n mapping (address =\u003e bool) used;\n\n constructor(\n address _creator_address,\n uint256 _genesis_supply,\n string memory _symbol,\n uint8 _decimals\n ) public {\n genesis_supply = _genesis_supply;\n creator_address = _creator_address;\n symbol = _symbol;\n decimals = _decimals;\n _mint(creator_address, genesis_supply);\n }\n\n function faucet() public {\n \tif (used[msg.sender] == false) {\n \t\tused[msg.sender] = true;\n \t\t_mint(msg.sender, 1000 * (10 ** uint256(decimals)));\n \t}\n }\n\n /**\n * @dev See {IERC20-totalSupply}.\n */\n function totalSupply() public view override returns (uint256) {\n return _totalSupply;\n }\n\n /**\n * @dev See {IERC20-balanceOf}.\n */\n function balanceOf(address account) public view override returns (uint256) {\n return _balances[account];\n }\n\n /**\n * @dev See {IERC20-transfer}.\n *\n * Requirements:\n *\n * - `recipient` cannot be the zero address.\n * - the caller must have a balance of at least `amount`.\n */\n function transfer(address recipient, uint256 amount) public virtual override returns (bool) {\n _transfer(_msgSender(), recipient, amount);\n return true;\n }\n\n /**\n * @dev See {IERC20-allowance}.\n */\n function allowance(address owner, address spender) public view virtual override returns (uint256) {\n return _allowances[owner][spender];\n }\n\n /**\n * @dev See {IERC20-approve}.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.approve(address spender, uint256 amount)\n */\n function approve(address spender, uint256 amount) public virtual override returns (bool) {\n _approve(_msgSender(), spender, amount);\n return true;\n }\n\n /**\n * @dev See {IERC20-transferFrom}.\n *\n * Emits an {Approval} event indicating the updated allowance. This is not\n * required by the EIP. See the note at the beginning of {ERC20};\n *\n * Requirements:\n * - `sender` and `recipient` cannot be the zero address.\n * - `sender` must have a balance of at least `amount`.\n * - the caller must have allowance for `sender`\u0027s tokens of at least\n * `amount`.\n */\n function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {\n _transfer(sender, recipient, amount);\n _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, \"ERC20: transfer amount exceeds allowance\"));\n return true;\n }\n\n /**\n * @dev Atomically increases the allowance granted to `spender` by the caller.\n *\n * This is an alternative to {approve} that can be used as a mitigation for\n * problems described in {IERC20-approve}.\n *\n * Emits an {Approval} event indicating the updated allowance.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.\n */\n function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {\n _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));\n return true;\n }\n\n /**\n * @dev Atomically decreases the allowance granted to `spender` by the caller.\n *\n * This is an alternative to {approve} that can be used as a mitigation for\n * problems described in {IERC20-approve}.\n *\n * Emits an {Approval} event indicating the updated allowance.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.\n * - `spender` must have allowance for the caller of at least\n * `subtractedValue`.\n */\n function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {\n _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, \"ERC20: decreased allowance below zero\"));\n return true;\n }\n\n /**\n * @dev Moves tokens `amount` from `sender` to `recipient`.\n *\n * This is internal function is equivalent to {transfer}, and can be used to\n * e.g. implement automatic token fees, slashing mechanisms, etc.\n *\n * Emits a {Transfer} event.\n *\n * Requirements:\n *\n * - `sender` cannot be the zero address.\n * - `recipient` cannot be the zero address.\n * - `sender` must have a balance of at least `amount`.\n */\n function _transfer(address sender, address recipient, uint256 amount) internal virtual {\n require(sender != address(0), \"ERC20: transfer from the zero address\");\n require(recipient != address(0), \"ERC20: transfer to the zero address\");\n\n _beforeTokenTransfer(sender, recipient, amount);\n\n _balances[sender] = _balances[sender].sub(amount, \"ERC20: transfer amount exceeds balance\");\n _balances[recipient] = _balances[recipient].add(amount);\n emit Transfer(sender, recipient, amount);\n }\n\n /** @dev Creates `amount` tokens and assigns them to `account`, increasing\n * the total supply.\n *\n * Emits a {Transfer} event with `from` set to the zero address.\n *\n * Requirements\n *\n * - `to` cannot be the zero address.\n */\n function _mint(address account, uint256 amount) internal virtual {\n require(account != address(0), \"ERC20: mint to the zero address\");\n\n _beforeTokenTransfer(address(0), account, amount);\n\n _totalSupply = _totalSupply.add(amount);\n _balances[account] = _balances[account].add(amount);\n emit Transfer(address(0), account, amount);\n }\n\n /**\n * @dev Destroys `amount` tokens from the caller.\n *\n * See {ERC20-_burn}.\n */\n function burn(uint256 amount) public virtual {\n _burn(_msgSender(), amount);\n }\n\n /**\n * @dev Destroys `amount` tokens from `account`, deducting from the caller\u0027s\n * allowance.\n *\n * See {ERC20-_burn} and {ERC20-allowance}.\n *\n * Requirements:\n *\n * - the caller must have allowance for `accounts`\u0027s tokens of at least\n * `amount`.\n */\n function burnFrom(address account, uint256 amount) public virtual {\n uint256 decreasedAllowance = allowance(account, _msgSender()).sub(amount, \"ERC20: burn amount exceeds allowance\");\n\n _approve(account, _msgSender(), decreasedAllowance);\n _burn(account, amount);\n }\n\n\n /**\n * @dev Destroys `amount` tokens from `account`, reducing the\n * total supply.\n *\n * Emits a {Transfer} event with `to` set to the zero address.\n *\n * Requirements\n *\n * - `account` cannot be the zero address.\n * - `account` must have at least `amount` tokens.\n */\n function _burn(address account, uint256 amount) internal virtual {\n require(account != address(0), \"ERC20: burn from the zero address\");\n\n _beforeTokenTransfer(account, address(0), amount);\n\n _balances[account] = _balances[account].sub(amount, \"ERC20: burn amount exceeds balance\");\n _totalSupply = _totalSupply.sub(amount);\n emit Transfer(account, address(0), amount);\n }\n\n /**\n * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.\n *\n * This is internal function is equivalent to `approve`, and can be used to\n * e.g. set automatic allowances for certain subsystems, etc.\n *\n * Emits an {Approval} event.\n *\n * Requirements:\n *\n * - `owner` cannot be the zero address.\n * - `spender` cannot be the zero address.\n */\n function _approve(address owner, address spender, uint256 amount) internal virtual {\n require(owner != address(0), \"ERC20: approve from the zero address\");\n require(spender != address(0), \"ERC20: approve to the zero address\");\n\n _allowances[owner][spender] = amount;\n emit Approval(owner, spender, amount);\n }\n\n /**\n * @dev Destroys `amount` tokens from `account`.`amount` is then deducted\n * from the caller\u0027s allowance.\n *\n * See {_burn} and {_approve}.\n */\n function _burnFrom(address account, uint256 amount) internal virtual {\n _burn(account, amount);\n _approve(account, _msgSender(), _allowances[account][_msgSender()].sub(amount, \"ERC20: burn amount exceeds allowance\"));\n }\n\n /**\n * @dev Hook that is called before any transfer of tokens. This includes\n * minting and burning.\n *\n * Calling conditions:\n *\n * - when `from` and `to` are both non-zero, `amount` of `from`\u0027s tokens\n * will be to transferred to `to`.\n * - when `from` is zero, `amount` tokens will be minted for `to`.\n * - when `to` is zero, `amount` of `from`\u0027s tokens will be burned.\n * - `from` and `to` are never both zero.\n *\n * To learn more about hooks, head to xref:ROOT:using-hooks.adoc[Using Hooks].\n */\n function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }\n}\n"},"FakeCollateral_USDC.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \"./FakeCollateral.sol\";\n\ncontract FakeCollateral_USDC is FakeCollateral {\n constructor(\n address _creator_address,\n uint256 _genesis_supply,\n string memory _symbol,\n uint8 _decimals\n ) \n FakeCollateral(_creator_address, _genesis_supply, _symbol, _decimals)\n public {}\n}"},"FakeCollateral_USDT.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \"./FakeCollateral.sol\";\n\ncontract FakeCollateral_USDT is FakeCollateral {\n constructor(\n address _creator_address,\n uint256 _genesis_supply,\n string memory _symbol,\n uint8 _decimals\n ) \n FakeCollateral(_creator_address, _genesis_supply, _symbol, _decimals)\n public {}\n}"},"FakeCollateral_WETH.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \"./FakeCollateral.sol\";\n\ncontract FakeCollateral_WETH is FakeCollateral {\n constructor(\n address _creator_address,\n uint256 _genesis_supply,\n string memory _symbol,\n uint8 _decimals\n ) \n FakeCollateral(_creator_address, _genesis_supply, _symbol, _decimals)\n public {}\n}"},"FixedPoint.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./Babylonian.sol\u0027;\n\n// a library for handling binary fixed point numbers (https://en.wikipedia.org/wiki/Q_(number_format))\nlibrary FixedPoint {\n // range: [0, 2**112 - 1]\n // resolution: 1 / 2**112\n struct uq112x112 {\n uint224 _x;\n }\n\n // range: [0, 2**144 - 1]\n // resolution: 1 / 2**112\n struct uq144x112 {\n uint _x;\n }\n\n uint8 private constant RESOLUTION = 112;\n uint private constant Q112 = uint(1) \u003c\u003c RESOLUTION;\n uint private constant Q224 = Q112 \u003c\u003c RESOLUTION;\n\n // encode a uint112 as a UQ112x112\n function encode(uint112 x) internal pure returns (uq112x112 memory) {\n return uq112x112(uint224(x) \u003c\u003c RESOLUTION);\n }\n\n // encodes a uint144 as a UQ144x112\n function encode144(uint144 x) internal pure returns (uq144x112 memory) {\n return uq144x112(uint256(x) \u003c\u003c RESOLUTION);\n }\n\n // divide a UQ112x112 by a uint112, returning a UQ112x112\n function div(uq112x112 memory self, uint112 x) internal pure returns (uq112x112 memory) {\n require(x != 0, \u0027FixedPoint: DIV_BY_ZERO\u0027);\n return uq112x112(self._x / uint224(x));\n }\n\n // multiply a UQ112x112 by a uint, returning a UQ144x112\n // reverts on overflow\n function mul(uq112x112 memory self, uint y) internal pure returns (uq144x112 memory) {\n uint z;\n require(y == 0 || (z = uint(self._x) * y) / y == uint(self._x), \"FixedPoint: MULTIPLICATION_OVERFLOW\");\n return uq144x112(z);\n }\n\n // returns a UQ112x112 which represents the ratio of the numerator to the denominator\n // equivalent to encode(numerator).div(denominator)\n function fraction(uint112 numerator, uint112 denominator) internal pure returns (uq112x112 memory) {\n require(denominator \u003e 0, \"FixedPoint: DIV_BY_ZERO\");\n return uq112x112((uint224(numerator) \u003c\u003c RESOLUTION) / denominator);\n }\n\n // decode a UQ112x112 into a uint112 by truncating after the radix point\n function decode(uq112x112 memory self) internal pure returns (uint112) {\n return uint112(self._x \u003e\u003e RESOLUTION);\n }\n\n // decode a UQ144x112 into a uint144 by truncating after the radix point\n function decode144(uq144x112 memory self) internal pure returns (uint144) {\n return uint144(self._x \u003e\u003e RESOLUTION);\n }\n\n // take the reciprocal of a UQ112x112\n function reciprocal(uq112x112 memory self) internal pure returns (uq112x112 memory) {\n require(self._x != 0, \u0027FixedPoint: ZERO_RECIPROCAL\u0027);\n return uq112x112(uint224(Q224 / self._x));\n }\n\n // square root of a UQ112x112\n function sqrt(uq112x112 memory self) internal pure returns (uq112x112 memory) {\n return uq112x112(uint224(Babylonian.sqrt(uint256(self._x)) \u003c\u003c 56));\n }\n}"},"Frax.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\npragma experimental ABIEncoderV2;\n\nimport \"./Context.sol\";\nimport \"./IERC20.sol\";\nimport \"./ERC20Custom.sol\";\nimport \"./ERC20.sol\";\nimport \"./SafeMath.sol\";\nimport \"./FXS.sol\";\nimport \"./FraxPool.sol\";\nimport \"./UniswapPairOracle.sol\";\nimport \"./ChainlinkETHUSDPriceConsumer.sol\";\nimport \"./AccessControl.sol\";\n\ncontract FRAXStablecoin is ERC20Custom, AccessControl {\n using SafeMath for uint256;\n\n /* ========== STATE VARIABLES ========== */\n enum PriceChoice { FRAX, FXS }\n ChainlinkETHUSDPriceConsumer private eth_usd_pricer;\n uint8 private eth_usd_pricer_decimals;\n UniswapPairOracle private fraxEthOracle;\n UniswapPairOracle private fxsEthOracle;\n string public symbol;\n string public name;\n uint8 public constant decimals = 18;\n address public owner_address;\n address public creator_address;\n address public timelock_address; // Governance timelock address\n address public controller_address; // Controller contract to dynamically adjust system parameters automatically\n address public fxs_address;\n address public frax_eth_oracle_address;\n address public fxs_eth_oracle_address;\n address public weth_address;\n address public eth_usd_consumer_address;\n uint256 public constant genesis_supply = 2000000e18; // 2M FRAX (only for testing, genesis supply will be 5k on Mainnet). This is to help with establishing the Uniswap pools, as they need liquidity\n\n // The addresses in this array are added by the oracle and these contracts are able to mint frax\n address[] public frax_pools_array;\n\n // Mapping is also used for faster verification\n mapping(address =\u003e bool) public frax_pools; \n\n // Constants for various precisions\n uint256 private constant PRICE_PRECISION = 1e6;\n \n uint256 public global_collateral_ratio; // 6 decimals of precision, e.g. 924102 = 0.924102\n uint256 public redemption_fee; // 6 decimals of precision, divide by 1000000 in calculations for fee\n uint256 public minting_fee; // 6 decimals of precision, divide by 1000000 in calculations for fee\n uint256 public frax_step; // Amount to change the collateralization ratio by upon refreshCollateralRatio()\n uint256 public refresh_cooldown; // Seconds to wait before being able to run refreshCollateralRatio() again\n uint256 public price_target; // The price of FRAX at which the collateral ratio will respond to; this value is only used for the collateral ratio mechanism and not for minting and redeeming which are hardcoded at $1\n uint256 public price_band; // The bound above and below the price target at which the refreshCollateralRatio() will not change the collateral ratio\n\n address public DEFAULT_ADMIN_ADDRESS;\n bytes32 public constant COLLATERAL_RATIO_PAUSER = keccak256(\"COLLATERAL_RATIO_PAUSER\");\n bool public collateral_ratio_paused = false;\n\n /* ========== MODIFIERS ========== */\n\n modifier onlyCollateralRatioPauser() {\n require(hasRole(COLLATERAL_RATIO_PAUSER, msg.sender));\n _;\n }\n\n modifier onlyPools() {\n require(frax_pools[msg.sender] == true, \"Only frax pools can call this function\");\n _;\n } \n \n modifier onlyByOwnerOrGovernance() {\n require(msg.sender == owner_address || msg.sender == timelock_address || msg.sender == controller_address, \"You are not the owner, controller, or the governance timelock\");\n _;\n }\n\n modifier onlyByOwnerGovernanceOrPool() {\n require(\n msg.sender == owner_address \n || msg.sender == timelock_address \n || frax_pools[msg.sender] == true, \n \"You are not the owner, the governance timelock, or a pool\");\n _;\n }\n\n /* ========== CONSTRUCTOR ========== */\n\n constructor(\n string memory _name,\n string memory _symbol,\n address _creator_address,\n address _timelock_address\n ) public {\n name = _name;\n symbol = _symbol;\n creator_address = _creator_address;\n timelock_address = _timelock_address;\n _setupRole(DEFAULT_ADMIN_ROLE, _msgSender());\n DEFAULT_ADMIN_ADDRESS = _msgSender();\n owner_address = _creator_address;\n _mint(creator_address, genesis_supply);\n grantRole(COLLATERAL_RATIO_PAUSER, creator_address);\n grantRole(COLLATERAL_RATIO_PAUSER, timelock_address);\n frax_step = 2500; // 6 decimals of precision, equal to 0.25%\n global_collateral_ratio = 1000000; // Frax system starts off fully collateralized (6 decimals of precision)\n refresh_cooldown = 3600; // Refresh cooldown period is set to 1 hour (3600 seconds) at genesis\n price_target = 1000000; // Collateral ratio will adjust according to the $1 price target at genesis\n price_band = 5000; // Collateral ratio will not adjust if between $0.995 and $1.005 at genesis\n }\n\n /* ========== VIEWS ========== */\n\n // Choice = \u0027FRAX\u0027 or \u0027FXS\u0027 for now\n function oracle_price(PriceChoice choice) internal view returns (uint256) {\n // Get the ETH / USD price first, and cut it down to 1e6 precision\n uint256 eth_usd_price = uint256(eth_usd_pricer.getLatestPrice()).mul(PRICE_PRECISION).div(uint256(10) ** eth_usd_pricer_decimals);\n uint256 price_vs_eth;\n\n if (choice == PriceChoice.FRAX) {\n price_vs_eth = uint256(fraxEthOracle.consult(weth_address, PRICE_PRECISION)); // How much FRAX if you put in PRICE_PRECISION WETH\n }\n else if (choice == PriceChoice.FXS) {\n price_vs_eth = uint256(fxsEthOracle.consult(weth_address, PRICE_PRECISION)); // How much FXS if you put in PRICE_PRECISION WETH\n }\n else revert(\"INVALID PRICE CHOICE. Needs to be either 0 (FRAX) or 1 (FXS)\");\n\n // Will be in 1e6 format\n return eth_usd_price.mul(PRICE_PRECISION).div(price_vs_eth);\n }\n\n // Returns X FRAX = 1 USD\n function frax_price() public view returns (uint256) {\n return oracle_price(PriceChoice.FRAX);\n }\n\n // Returns X FXS = 1 USD\n function fxs_price() public view returns (uint256) {\n return oracle_price(PriceChoice.FXS);\n }\n\n function eth_usd_price() public view returns (uint256) {\n return uint256(eth_usd_pricer.getLatestPrice()).mul(PRICE_PRECISION).div(uint256(10) ** eth_usd_pricer_decimals);\n }\n\n // This is needed to avoid costly repeat calls to different getter functions\n // It is cheaper gas-wise to just dump everything and only use some of the info\n function frax_info() public view returns (uint256, uint256, uint256, uint256, uint256, uint256, uint256, uint256) {\n return (\n oracle_price(PriceChoice.FRAX), // frax_price()\n oracle_price(PriceChoice.FXS), // fxs_price()\n totalSupply(), // totalSupply()\n global_collateral_ratio, // global_collateral_ratio()\n globalCollateralValue(), // globalCollateralValue\n minting_fee, // minting_fee()\n redemption_fee, // redemption_fee()\n uint256(eth_usd_pricer.getLatestPrice()).mul(PRICE_PRECISION).div(uint256(10) ** eth_usd_pricer_decimals) //eth_usd_price\n );\n }\n\n // Iterate through all frax pools and calculate all value of collateral in all pools globally \n function globalCollateralValue() public view returns (uint256) {\n uint256 total_collateral_value_d18 = 0; \n\n for (uint i = 0; i \u003c frax_pools_array.length; i++){ \n // Exclude null addresses\n if (frax_pools_array[i] != address(0)){\n total_collateral_value_d18 = total_collateral_value_d18.add(FraxPool(frax_pools_array[i]).collatDollarBalance());\n }\n\n }\n return total_collateral_value_d18;\n }\n\n /* ========== PUBLIC FUNCTIONS ========== */\n \n // There needs to be a time interval that this can be called. Otherwise it can be called multiple times per expansion.\n uint256 public last_call_time; // Last time the refreshCollateralRatio function was called\n function refreshCollateralRatio() public {\n require(collateral_ratio_paused == false, \"Collateral Ratio has been paused\");\n uint256 frax_price_cur = frax_price();\n require(block.timestamp - last_call_time \u003e= refresh_cooldown, \"Must wait for the refresh cooldown since last refresh\");\n\n // Step increments are 0.25% (upon genesis, changable by setFraxStep()) \n \n if (frax_price_cur \u003e price_target.add(price_band)) { //decrease collateral ratio\n if(global_collateral_ratio \u003c= frax_step){ //if within a step of 0, go to 0\n global_collateral_ratio = 0;\n } else {\n global_collateral_ratio = global_collateral_ratio.sub(frax_step);\n }\n } else if (frax_price_cur \u003c price_target.sub(price_band)) { //increase collateral ratio\n if(global_collateral_ratio.add(frax_step) \u003e= 1000000){\n global_collateral_ratio = 1000000; // cap collateral ratio at 1.000000\n } else {\n global_collateral_ratio = global_collateral_ratio.add(frax_step);\n }\n }\n\n last_call_time = block.timestamp; // Set the time of the last expansion\n }\n\n /* ========== RESTRICTED FUNCTIONS ========== */\n\n // Used by pools when user redeems\n function pool_burn_from(address b_address, uint256 b_amount) public onlyPools {\n super._burnFrom(b_address, b_amount);\n emit FRAXBurned(b_address, msg.sender, b_amount);\n }\n\n // This function is what other frax pools will call to mint new FRAX \n function pool_mint(address m_address, uint256 m_amount) public onlyPools {\n super._mint(m_address, m_amount);\n emit FRAXMinted(msg.sender, m_address, m_amount);\n }\n\n // Adds collateral addresses supported, such as tether and busd, must be ERC20 \n function addPool(address pool_address) public onlyByOwnerOrGovernance {\n require(frax_pools[pool_address] == false, \"address already exists\");\n frax_pools[pool_address] = true; \n frax_pools_array.push(pool_address);\n }\n\n // Remove a pool \n function removePool(address pool_address) public onlyByOwnerOrGovernance {\n require(frax_pools[pool_address] == true, \"address doesn\u0027t exist already\");\n \n // Delete from the mapping\n delete frax_pools[pool_address];\n\n // \u0027Delete\u0027 from the array by setting the address to 0x0\n for (uint i = 0; i \u003c frax_pools_array.length; i++){ \n if (frax_pools_array[i] == pool_address) {\n frax_pools_array[i] = address(0); // This will leave a null in the array and keep the indices the same\n break;\n }\n }\n }\n\n function setOwner(address _owner_address) external onlyByOwnerOrGovernance {\n owner_address = _owner_address;\n }\n\n function setRedemptionFee(uint256 red_fee) public onlyByOwnerOrGovernance {\n redemption_fee = red_fee;\n }\n\n function setMintingFee(uint256 min_fee) public onlyByOwnerOrGovernance {\n minting_fee = min_fee;\n } \n\n function setFraxStep(uint256 _new_step) public onlyByOwnerOrGovernance {\n frax_step = _new_step;\n } \n\n function setPriceTarget (uint256 _new_price_target) public onlyByOwnerOrGovernance {\n price_target = _new_price_target;\n }\n\n function setRefreshCooldown(uint256 _new_cooldown) public onlyByOwnerOrGovernance {\n \trefresh_cooldown = _new_cooldown;\n }\n\n function setFXSAddress(address _fxs_address) public onlyByOwnerOrGovernance {\n fxs_address = _fxs_address;\n }\n\n function setETHUSDOracle(address _eth_usd_consumer_address) public onlyByOwnerOrGovernance {\n eth_usd_consumer_address = _eth_usd_consumer_address;\n eth_usd_pricer = ChainlinkETHUSDPriceConsumer(eth_usd_consumer_address);\n eth_usd_pricer_decimals = eth_usd_pricer.getDecimals();\n }\n\n function setTimelock(address new_timelock) external onlyByOwnerOrGovernance {\n timelock_address = new_timelock;\n }\n\n function setController(address _controller_address) external onlyByOwnerOrGovernance {\n controller_address = _controller_address;\n }\n\n function setPriceBand(uint256 _price_band) external onlyByOwnerOrGovernance {\n price_band = _price_band;\n }\n\n // Sets the FRAX_ETH Uniswap oracle address \n function setFRAXEthOracle(address _frax_oracle_addr, address _weth_address) public onlyByOwnerOrGovernance {\n frax_eth_oracle_address = _frax_oracle_addr;\n fraxEthOracle = UniswapPairOracle(_frax_oracle_addr); \n weth_address = _weth_address;\n }\n\n // Sets the FXS_ETH Uniswap oracle address \n function setFXSEthOracle(address _fxs_oracle_addr, address _weth_address) public onlyByOwnerOrGovernance {\n fxs_eth_oracle_address = _fxs_oracle_addr;\n fxsEthOracle = UniswapPairOracle(_fxs_oracle_addr);\n weth_address = _weth_address;\n }\n\n function toggleCollateralRatio() public onlyCollateralRatioPauser {\n collateral_ratio_paused = !collateral_ratio_paused;\n }\n\n /* ========== EVENTS ========== */\n\n // Track FRAX burned\n event FRAXBurned(address indexed from, address indexed to, uint256 amount);\n\n // Track FRAX minted\n event FRAXMinted(address indexed from, address indexed to, uint256 amount);\n}\n"},"FraxPool.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\npragma experimental ABIEncoderV2;\n\nimport \"./SafeMath.sol\";\nimport \"./FXS.sol\";\nimport \"./Frax.sol\";\nimport \"./ERC20.sol\";\n// import \u0027../../Uniswap/TransferHelper.sol\u0027;\nimport \"./UniswapPairOracle.sol\";\nimport \"./AccessControl.sol\";\n// import \"../../Utils/StringHelpers.sol\";\nimport \"./FraxPoolLibrary.sol\";\n\n/*\n Same as FraxPool.sol, but has some gas optimizations\n*/\n\n\ncontract FraxPool is AccessControl {\n using SafeMath for uint256;\n\n /* ========== STATE VARIABLES ========== */\n\n ERC20 private collateral_token;\n address private collateral_address;\n address private owner_address;\n // address private oracle_address;\n address private frax_contract_address;\n address private fxs_contract_address;\n address private timelock_address; // Timelock address for the governance contract\n FRAXShares private FXS;\n FRAXStablecoin private FRAX;\n // UniswapPairOracle private oracle;\n UniswapPairOracle private collatEthOracle;\n address private collat_eth_oracle_address;\n address private weth_address;\n\n uint256 private minting_fee;\n uint256 private redemption_fee;\n\n mapping (address =\u003e uint256) public redeemFXSBalances;\n mapping (address =\u003e uint256) public redeemCollateralBalances;\n uint256 public unclaimedPoolCollateral;\n uint256 public unclaimedPoolFXS;\n mapping (address =\u003e uint256) public lastRedeemed;\n\n // Constants for various precisions\n uint256 private constant PRICE_PRECISION = 1e6;\n uint256 private constant COLLATERAL_RATIO_PRECISION = 1e6;\n uint256 private constant COLLATERAL_RATIO_MAX = 1e6;\n\n // Number of decimals needed to get to 18\n uint256 private missing_decimals;\n \n // Pool_ceiling is the total units of collateral that a pool contract can hold\n uint256 public pool_ceiling = 0;\n\n // Stores price of the collateral, if price is paused\n uint256 public pausedPrice = 0;\n\n // Bonus rate on FXS minted during recollateralizeFRAX(); 6 decimals of precision, set to 0.75% on genesis\n uint256 public bonus_rate = 7500;\n\n // Number of blocks to wait before being able to collectRedemption()\n uint256 public redemption_delay = 1;\n\n // AccessControl Roles\n bytes32 private constant MINT_PAUSER = keccak256(\"MINT_PAUSER\");\n bytes32 private constant REDEEM_PAUSER = keccak256(\"REDEEM_PAUSER\");\n bytes32 private constant BUYBACK_PAUSER = keccak256(\"BUYBACK_PAUSER\");\n bytes32 private constant RECOLLATERALIZE_PAUSER = keccak256(\"RECOLLATERALIZE_PAUSER\");\n bytes32 private constant COLLATERAL_PRICE_PAUSER = keccak256(\"COLLATERAL_PRICE_PAUSER\");\n \n // AccessControl state variables\n bool private mintPaused = false;\n bool private redeemPaused = false;\n bool private recollateralizePaused = false;\n bool private buyBackPaused = false;\n bool private collateralPricePaused = false;\n\n /* ========== MODIFIERS ========== */\n\n modifier onlyByOwnerOrGovernance() {\n require(msg.sender == timelock_address || msg.sender == owner_address, \"You are not the owner or the governance timelock\");\n _;\n }\n\n modifier notRedeemPaused() {\n require(redeemPaused == false, \"Redeeming is paused\");\n _;\n }\n\n modifier notMintPaused() {\n require(mintPaused == false, \"Minting is paused\");\n _;\n }\n \n /* ========== CONSTRUCTOR ========== */\n \n constructor(\n address _frax_contract_address,\n address _fxs_contract_address,\n address _collateral_address,\n address _creator_address,\n address _timelock_address,\n uint256 _pool_ceiling\n ) public {\n FRAX = FRAXStablecoin(_frax_contract_address);\n FXS = FRAXShares(_fxs_contract_address);\n frax_contract_address = _frax_contract_address;\n fxs_contract_address = _fxs_contract_address;\n collateral_address = _collateral_address;\n timelock_address = _timelock_address;\n owner_address = _creator_address;\n collateral_token = ERC20(_collateral_address);\n pool_ceiling = _pool_ceiling;\n missing_decimals = uint(18).sub(collateral_token.decimals());\n\n _setupRole(DEFAULT_ADMIN_ROLE, _msgSender());\n grantRole(MINT_PAUSER, timelock_address);\n grantRole(REDEEM_PAUSER, timelock_address);\n grantRole(RECOLLATERALIZE_PAUSER, timelock_address);\n grantRole(BUYBACK_PAUSER, timelock_address);\n grantRole(COLLATERAL_PRICE_PAUSER, timelock_address);\n }\n\n /* ========== VIEWS ========== */\n\n // Returns dollar value of collateral held in this Frax pool\n function collatDollarBalance() public view returns (uint256) {\n uint256 eth_usd_price = FRAX.eth_usd_price();\n uint256 eth_collat_price = collatEthOracle.consult(weth_address, (PRICE_PRECISION * (10 ** missing_decimals)));\n\n uint256 collat_usd_price = eth_usd_price.mul(PRICE_PRECISION).div(eth_collat_price);\n return (collateral_token.balanceOf(address(this)).sub(unclaimedPoolCollateral)).mul(10 ** missing_decimals).mul(collat_usd_price).div(PRICE_PRECISION); //.mul(getCollateralPrice()).div(1e6); \n }\n\n // Returns the value of excess collateral held in this Frax pool, compared to what is needed to maintain the global collateral ratio\n function availableExcessCollatDV() public view returns (uint256) {\n uint256 total_supply = FRAX.totalSupply();\n uint256 global_collateral_ratio = FRAX.global_collateral_ratio();\n uint256 global_collat_value = FRAX.globalCollateralValue();\n\n if (global_collateral_ratio \u003e COLLATERAL_RATIO_PRECISION) global_collateral_ratio = COLLATERAL_RATIO_PRECISION; // Handles an overcollateralized contract with CR \u003e 1\n uint256 required_collat_dollar_value_d18 = (total_supply.mul(global_collateral_ratio)).div(COLLATERAL_RATIO_PRECISION); // Calculates collateral needed to back each 1 FRAX with $1 of collateral at current collat ratio\n if (global_collat_value \u003e required_collat_dollar_value_d18) return global_collat_value.sub(required_collat_dollar_value_d18);\n else return 0;\n }\n\n /* ========== PUBLIC FUNCTIONS ========== */\n \n // Returns the price of the pool collateral in USD\n function getCollateralPrice() public view returns (uint256) {\n if(collateralPricePaused == true){\n return pausedPrice;\n } else {\n uint256 eth_usd_price = FRAX.eth_usd_price();\n return eth_usd_price.mul(PRICE_PRECISION).div(collatEthOracle.consult(weth_address, PRICE_PRECISION * (10 ** missing_decimals)));\n }\n }\n\n function setCollatETHOracle(address _collateral_weth_oracle_address, address _weth_address) external onlyByOwnerOrGovernance {\n collat_eth_oracle_address = _collateral_weth_oracle_address;\n collatEthOracle = UniswapPairOracle(_collateral_weth_oracle_address);\n weth_address = _weth_address;\n }\n\n // We separate out the 1t1, fractional and algorithmic minting functions for gas efficiency \n function mint1t1FRAX(uint256 collateral_amount, uint256 FRAX_out_min) external notMintPaused {\n uint256 collateral_amount_d18 = collateral_amount * (10 ** missing_decimals);\n uint256 global_collateral_ratio = FRAX.global_collateral_ratio();\n\n require(global_collateral_ratio \u003e= COLLATERAL_RATIO_MAX, \"Collateral ratio must be \u003e= 1\");\n require((collateral_token.balanceOf(address(this))).sub(unclaimedPoolCollateral).add(collateral_amount) \u003c= pool_ceiling, \"[Pool\u0027s Closed]: Ceiling reached\");\n \n (uint256 frax_amount_d18) = FraxPoolLibrary.calcMint1t1FRAX(\n getCollateralPrice(),\n minting_fee,\n collateral_amount_d18\n ); //1 FRAX for each $1 worth of collateral\n\n require(FRAX_out_min \u003c= frax_amount_d18, \"Slippage limit reached\");\n collateral_token.transferFrom(msg.sender, address(this), collateral_amount);\n FRAX.pool_mint(msg.sender, frax_amount_d18);\n }\n\n // 0% collateral-backed\n function mintAlgorithmicFRAX(uint256 fxs_amount_d18, uint256 FRAX_out_min) external notMintPaused {\n uint256 fxs_price = FRAX.fxs_price();\n uint256 global_collateral_ratio = FRAX.global_collateral_ratio();\n require(global_collateral_ratio == 0, \"Collateral ratio must be 0\");\n \n (uint256 frax_amount_d18) = FraxPoolLibrary.calcMintAlgorithmicFRAX(\n minting_fee, \n fxs_price, // X FXS / 1 USD\n fxs_amount_d18\n );\n\n require(FRAX_out_min \u003c= frax_amount_d18, \"Slippage limit reached\");\n FXS.pool_burn_from(msg.sender, fxs_amount_d18);\n FRAX.pool_mint(msg.sender, frax_amount_d18);\n }\n\n // Will fail if fully collateralized or fully algorithmic\n // \u003e 0% and \u003c 100% collateral-backed\n function mintFractionalFRAX(uint256 collateral_amount, uint256 fxs_amount, uint256 FRAX_out_min) external notMintPaused {\n uint256 frax_price = FRAX.frax_price();\n uint256 fxs_price = FRAX.fxs_price();\n uint256 global_collateral_ratio = FRAX.global_collateral_ratio();\n\n require(global_collateral_ratio \u003c COLLATERAL_RATIO_MAX \u0026\u0026 global_collateral_ratio \u003e 0, \"Collateral ratio needs to be between .000001 and .999999\");\n require(collateral_token.balanceOf(address(this)).sub(unclaimedPoolCollateral).add(collateral_amount) \u003c= pool_ceiling, \"Pool ceiling reached, no more FRAX can be minted with this collateral\");\n\n uint256 collateral_amount_d18 = collateral_amount * (10 ** missing_decimals);\n FraxPoolLibrary.MintFF_Params memory input_params = FraxPoolLibrary.MintFF_Params(\n minting_fee, \n fxs_price,\n frax_price,\n getCollateralPrice(),\n fxs_amount,\n collateral_amount_d18,\n (collateral_token.balanceOf(address(this)).sub(unclaimedPoolCollateral)),\n pool_ceiling,\n global_collateral_ratio\n );\n\n (uint256 mint_amount, uint256 fxs_needed) = FraxPoolLibrary.calcMintFractionalFRAX(input_params);\n\n require(FRAX_out_min \u003c= mint_amount, \"Slippage limit reached\");\n require(fxs_needed \u003c= fxs_amount, \"Not enough FXS inputted\");\n FXS.pool_burn_from(msg.sender, fxs_needed);\n collateral_token.transferFrom(msg.sender, address(this), collateral_amount);\n FRAX.pool_mint(msg.sender, mint_amount);\n }\n\n // Redeem collateral. 100% collateral-backed\n function redeem1t1FRAX(uint256 FRAX_amount, uint256 COLLATERAL_out_min) external notRedeemPaused {\n uint256 global_collateral_ratio = FRAX.global_collateral_ratio();\n require(global_collateral_ratio == COLLATERAL_RATIO_MAX, \"Collateral ratio must be == 1\");\n\n // Need to adjust for decimals of collateral\n uint256 FRAX_amount_precision = FRAX_amount.div(10 ** missing_decimals);\n (uint256 collateral_needed) = FraxPoolLibrary.calcRedeem1t1FRAX(\n getCollateralPrice(),\n FRAX_amount_precision,\n redemption_fee\n );\n\n require(collateral_needed \u003c= collateral_token.balanceOf(address(this)).sub(unclaimedPoolCollateral), \"Not enough collateral in pool\");\n\n redeemCollateralBalances[msg.sender] = redeemCollateralBalances[msg.sender].add(collateral_needed);\n unclaimedPoolCollateral = unclaimedPoolCollateral.add(collateral_needed);\n lastRedeemed[msg.sender] = block.number;\n\n require(COLLATERAL_out_min \u003c= collateral_needed, \"Slippage limit reached\");\n \n // Move all external functions to the end\n FRAX.pool_burn_from(msg.sender, FRAX_amount);\n }\n\n // Will fail if fully collateralized or algorithmic\n // Redeem FRAX for collateral and FXS. \u003e 0% and \u003c 100% collateral-backed\n function redeemFractionalFRAX(uint256 FRAX_amount, uint256 FXS_out_min, uint256 COLLATERAL_out_min) external notRedeemPaused {\n uint256 fxs_price = FRAX.fxs_price();\n uint256 global_collateral_ratio = FRAX.global_collateral_ratio();\n\n require(global_collateral_ratio \u003c COLLATERAL_RATIO_MAX \u0026\u0026 global_collateral_ratio \u003e 0, \"Collateral ratio needs to be between .000001 and .999999\");\n uint256 col_price_usd = getCollateralPrice();\n\n uint256 FRAX_amount_post_fee = FRAX_amount.sub((FRAX_amount.mul(redemption_fee)).div(PRICE_PRECISION));\n uint256 fxs_dollar_value_d18 = FRAX_amount_post_fee.sub(FRAX_amount_post_fee.mul(global_collateral_ratio).div(PRICE_PRECISION));\n uint256 fxs_amount = fxs_dollar_value_d18.mul(PRICE_PRECISION).div(fxs_price);\n\n // Need to adjust for decimals of collateral\n uint256 FRAX_amount_precision = FRAX_amount_post_fee.div(10 ** missing_decimals);\n uint256 collateral_dollar_value = FRAX_amount_precision.mul(global_collateral_ratio).div(PRICE_PRECISION);\n uint256 collateral_amount = collateral_dollar_value.mul(PRICE_PRECISION).div(col_price_usd);\n\n redeemCollateralBalances[msg.sender] = redeemCollateralBalances[msg.sender].add(collateral_amount);\n unclaimedPoolCollateral = unclaimedPoolCollateral.add(collateral_amount);\n\n redeemFXSBalances[msg.sender] = redeemFXSBalances[msg.sender].add(fxs_amount);\n unclaimedPoolFXS = unclaimedPoolFXS.add(fxs_amount);\n\n lastRedeemed[msg.sender] = block.number;\n\n require(collateral_amount \u003c= collateral_token.balanceOf(address(this)).sub(unclaimedPoolCollateral), \"Not enough collateral in pool\");\n require(COLLATERAL_out_min \u003c= collateral_amount, \"Slippage limit reached [collateral]\");\n require(FXS_out_min \u003c= fxs_amount, \"Slippage limit reached [FXS]\");\n \n // Move all external functions to the end\n FRAX.pool_burn_from(msg.sender, FRAX_amount);\n FXS.pool_mint(address(this), fxs_amount);\n }\n\n // Redeem FRAX for FXS. 0% collateral-backed\n function redeemAlgorithmicFRAX(uint256 FRAX_amount, uint256 FXS_out_min) external notRedeemPaused {\n uint256 fxs_price = FRAX.fxs_price();\n uint256 global_collateral_ratio = FRAX.global_collateral_ratio();\n\n require(global_collateral_ratio == 0, \"Collateral ratio must be 0\"); \n uint256 fxs_dollar_value_d18 = FRAX_amount;\n fxs_dollar_value_d18 = fxs_dollar_value_d18.sub((fxs_dollar_value_d18.mul(redemption_fee)).div(PRICE_PRECISION)); //apply redemption fee\n\n uint256 fxs_amount = fxs_dollar_value_d18.mul(PRICE_PRECISION).div(fxs_price);\n \n redeemFXSBalances[msg.sender] = redeemFXSBalances[msg.sender].add(fxs_amount);\n unclaimedPoolFXS = unclaimedPoolFXS.add(fxs_amount);\n \n lastRedeemed[msg.sender] = block.number;\n \n require(FXS_out_min \u003c= fxs_amount, \"Slippage limit reached\");\n // Move all external functions to the end\n FRAX.pool_burn_from(msg.sender, FRAX_amount);\n FXS.pool_mint(address(this), fxs_amount);\n }\n\n // After a redemption happens, transfer the newly minted FXS and owed collateral from this pool\n // contract to the user. Redemption is split into two functions to prevent flash loans from being able\n // to take out FRAX/collateral from the system, use an AMM to trade the new price, and then mint back into the system.\n function collectRedemption() external {\n require((lastRedeemed[msg.sender].add(redemption_delay)) \u003c= block.number, \"Must wait for redemption_delay blocks before collecting redemption\");\n bool sendFXS = false;\n bool sendCollateral = false;\n uint FXSAmount;\n uint CollateralAmount;\n\n // Use Checks-Effects-Interactions pattern\n if(redeemFXSBalances[msg.sender] \u003e 0){\n FXSAmount = redeemFXSBalances[msg.sender];\n redeemFXSBalances[msg.sender] = 0;\n unclaimedPoolFXS = unclaimedPoolFXS.sub(FXSAmount);\n\n sendFXS = true;\n }\n \n if(redeemCollateralBalances[msg.sender] \u003e 0){\n CollateralAmount = redeemCollateralBalances[msg.sender];\n redeemCollateralBalances[msg.sender] = 0;\n unclaimedPoolCollateral = unclaimedPoolCollateral.sub(CollateralAmount);\n\n sendCollateral = true;\n }\n\n if(sendFXS == true){\n FXS.transfer(msg.sender, FXSAmount);\n }\n if(sendCollateral == true){\n collateral_token.transfer(msg.sender, CollateralAmount);\n }\n }\n\n\n // When the protocol is recollateralizing, we need to give a discount of FXS to hit the new CR target\n // Thus, if the target collateral ratio is higher than the actual value of collateral, minters get FXS for adding collateral\n // This function simply rewards anyone that sends collateral to a pool with the same amount of FXS + the bonus rate\n // Anyone can call this function to recollateralize the protocol and take the extra FXS value from the bonus rate as an arb opportunity\n function recollateralizeFRAX(uint256 collateral_amount, uint256 FXS_out_min) external {\n require(recollateralizePaused == false, \"Recollateralize is paused\");\n uint256 collateral_amount_d18 = collateral_amount * (10 ** missing_decimals);\n uint256 fxs_price = FRAX.fxs_price();\n uint256 frax_total_supply = FRAX.totalSupply();\n uint256 global_collateral_ratio = FRAX.global_collateral_ratio();\n uint256 global_collat_value = FRAX.globalCollateralValue();\n \n (uint256 collateral_units, uint256 amount_to_recollat) = FraxPoolLibrary.calcRecollateralizeFRAXInner(\n collateral_amount_d18,\n getCollateralPrice(),\n global_collat_value,\n frax_total_supply,\n global_collateral_ratio\n ); \n\n uint256 collateral_units_precision = collateral_units.div(10 ** missing_decimals);\n\n uint256 fxs_paid_back = amount_to_recollat.mul(uint(1e6).add(bonus_rate)).div(fxs_price);\n\n require(FXS_out_min \u003c= fxs_paid_back, \"Slippage limit reached\");\n collateral_token.transferFrom(msg.sender, address(this), collateral_units_precision);\n FXS.pool_mint(msg.sender, fxs_paid_back);\n \n }\n\n // Function can be called by an FXS holder to have the protocol buy back FXS with excess collateral value from a desired collateral pool\n // This can also happen if the collateral ratio \u003e 1\n function buyBackFXS(uint256 FXS_amount, uint256 COLLATERAL_out_min) external {\n require(buyBackPaused == false, \"Buyback is paused\");\n uint256 fxs_price = FRAX.fxs_price();\n \n FraxPoolLibrary.BuybackFXS_Params memory input_params = FraxPoolLibrary.BuybackFXS_Params(\n availableExcessCollatDV(),\n fxs_price,\n getCollateralPrice(),\n FXS_amount\n );\n\n (uint256 collateral_equivalent_d18) = FraxPoolLibrary.calcBuyBackFXS(input_params);\n uint256 collateral_precision = collateral_equivalent_d18.div(10 ** missing_decimals);\n\n require(COLLATERAL_out_min \u003c= collateral_precision, \"Slippage limit reached\");\n // Give the sender their desired collateral and burn the FXS\n FXS.pool_burn_from(msg.sender, FXS_amount);\n collateral_token.transfer(msg.sender, collateral_precision);\n }\n\n /* ========== RESTRICTED FUNCTIONS ========== */\n\n function toggleMinting() external {\n require(hasRole(MINT_PAUSER, msg.sender));\n mintPaused = !mintPaused;\n }\n \n function toggleRedeeming() external {\n require(hasRole(REDEEM_PAUSER, msg.sender));\n redeemPaused = !redeemPaused;\n }\n\n function toggleRecollateralize() external {\n require(hasRole(RECOLLATERALIZE_PAUSER, msg.sender));\n recollateralizePaused = !recollateralizePaused;\n }\n \n function toggleBuyBack() external {\n require(hasRole(BUYBACK_PAUSER, msg.sender));\n buyBackPaused = !buyBackPaused;\n }\n\n function toggleCollateralPrice() external {\n require(hasRole(COLLATERAL_PRICE_PAUSER, msg.sender));\n // If pausing, set paused price; else if unpausing, clear pausedPrice\n if(collateralPricePaused == false){\n pausedPrice = getCollateralPrice();\n } else {\n pausedPrice = 0;\n }\n collateralPricePaused = !collateralPricePaused;\n }\n\n // Combined into one function due to 24KiB contract memory limit\n function setPoolParameters(uint256 new_ceiling, uint256 new_bonus_rate, uint256 new_redemption_delay) external onlyByOwnerOrGovernance {\n pool_ceiling = new_ceiling;\n bonus_rate = new_bonus_rate;\n redemption_delay = new_redemption_delay;\n minting_fee = FRAX.minting_fee();\n redemption_fee = FRAX.redemption_fee();\n }\n\n function setTimelock(address new_timelock) external onlyByOwnerOrGovernance {\n timelock_address = new_timelock;\n }\n\n function setOwner(address _owner_address) external onlyByOwnerOrGovernance {\n owner_address = _owner_address;\n }\n\n /* ========== EVENTS ========== */\n\n}"},"FraxPoolLibrary.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity ^0.6.0;\npragma experimental ABIEncoderV2;\n\nimport \"./SafeMath.sol\";\n\n\n\nlibrary FraxPoolLibrary {\n using SafeMath for uint256;\n\n // Constants for various precisions\n uint256 private constant PRICE_PRECISION = 1e6;\n\n // ================ Structs ================\n // Needed to lower stack size\n struct MintFF_Params {\n uint256 mint_fee; \n uint256 fxs_price_usd; \n uint256 frax_price_usd; \n uint256 col_price_usd;\n uint256 fxs_amount;\n uint256 collateral_amount;\n uint256 collateral_token_balance;\n uint256 pool_ceiling;\n uint256 col_ratio;\n }\n\n struct BuybackFXS_Params {\n uint256 excess_collateral_dollar_value_d18;\n uint256 fxs_price_usd;\n uint256 col_price_usd;\n uint256 FXS_amount;\n }\n\n // ================ Functions ================\n\n function calcMint1t1FRAX(uint256 col_price, uint256 mint_fee, uint256 collateral_amount_d18) public pure returns (uint256) {\n uint256 col_price_usd = col_price;\n uint256 c_dollar_value_d18 = (collateral_amount_d18.mul(col_price_usd)).div(1e6);\n return c_dollar_value_d18.sub((c_dollar_value_d18.mul(mint_fee)).div(1e6));\n }\n\n function calcMintAlgorithmicFRAX(uint256 mint_fee, uint256 fxs_price_usd, uint256 fxs_amount_d18) public pure returns (uint256) {\n uint256 fxs_dollar_value_d18 = fxs_amount_d18.mul(fxs_price_usd).div(1e6);\n return fxs_dollar_value_d18.sub((fxs_dollar_value_d18.mul(mint_fee)).div(1e6));\n }\n\n // Must be internal because of the struct\n function calcMintFractionalFRAX(MintFF_Params memory params) internal pure returns (uint256, uint256) {\n // Since solidity truncates division, every division operation must be the last operation in the equation to ensure minimum error\n // The contract must check the proper ratio was sent to mint FRAX. We do this by seeing the minimum mintable FRAX based on each amount \n uint256 fxs_dollar_value_d18;\n uint256 c_dollar_value_d18;\n \n // Scoping for stack concerns\n { \n // USD amounts of the collateral and the FXS\n fxs_dollar_value_d18 = params.fxs_amount.mul(params.fxs_price_usd).div(1e6);\n c_dollar_value_d18 = params.collateral_amount.mul(params.col_price_usd).div(1e6);\n\n }\n uint calculated_fxs_dollar_value_d18 = \n (c_dollar_value_d18.mul(1e6).div(params.col_ratio))\n .sub(c_dollar_value_d18);\n\n uint calculated_fxs_needed = calculated_fxs_dollar_value_d18.mul(1e6).div(params.fxs_price_usd);\n\n return (\n (c_dollar_value_d18.add(calculated_fxs_dollar_value_d18)).sub(((c_dollar_value_d18.add(calculated_fxs_dollar_value_d18)).mul(params.mint_fee)).div(1e6)),\n calculated_fxs_needed\n );\n }\n\n function calcRedeem1t1FRAX(uint256 col_price_usd, uint256 FRAX_amount, uint256 redemption_fee) public pure returns (uint256) {\n uint256 collateral_needed_d18 = FRAX_amount.mul(1e6).div(col_price_usd);\n return collateral_needed_d18.sub((collateral_needed_d18.mul(redemption_fee)).div(1e6));\n }\n\n // Must be internal because of the struct\n function calcBuyBackFXS(BuybackFXS_Params memory params) internal pure returns (uint256) {\n // If the total collateral value is higher than the amount required at the current collateral ratio then buy back up to the possible FXS with the desired collateral\n require(params.excess_collateral_dollar_value_d18 \u003e 0, \"No excess collateral to buy back!\");\n\n // Make sure not to take more than is available\n uint256 fxs_dollar_value_d18 = params.FXS_amount.mul(params.fxs_price_usd).div(1e6);\n require(fxs_dollar_value_d18 \u003c= params.excess_collateral_dollar_value_d18, \"You are trying to buy back more than the excess!\");\n\n // Get the equivalent amount of collateral based on the market value of FXS provided \n uint256 collateral_equivalent_d18 = fxs_dollar_value_d18.mul(1e6).div(params.col_price_usd);\n //collateral_equivalent_d18 = collateral_equivalent_d18.sub((collateral_equivalent_d18.mul(params.buyback_fee)).div(1e6));\n\n return (\n collateral_equivalent_d18\n );\n\n }\n\n\n // Returns value of collateral that must increase to reach recollateralization target (if 0 means no recollateralization)\n function recollateralizeAmount(uint256 total_supply, uint256 global_collateral_ratio, uint256 global_collat_value) public pure returns (uint256) {\n uint256 target_collat_value = total_supply.mul(global_collateral_ratio).div(1e6); // We want 18 decimals of precision so divide by 1e6; total_supply is 1e18 and global_collateral_ratio is 1e6\n // Subtract the current value of collateral from the target value needed, if higher than 0 then system needs to recollateralize\n uint256 recollateralization_left = target_collat_value.sub(global_collat_value); // If recollateralization is not needed, throws a subtraction underflow\n return(recollateralization_left);\n }\n\n function calcRecollateralizeFRAXInner(\n uint256 collateral_amount, \n uint256 col_price,\n uint256 global_collat_value,\n uint256 frax_total_supply,\n uint256 global_collateral_ratio\n ) public pure returns (uint256, uint256) {\n uint256 collat_value_attempted = collateral_amount.mul(col_price).div(1e6);\n uint256 effective_collateral_ratio = global_collat_value.mul(1e6).div(frax_total_supply); //returns it in 1e6\n uint256 recollat_possible = (global_collateral_ratio.mul(frax_total_supply).sub(frax_total_supply.mul(effective_collateral_ratio))).div(1e6);\n\n uint256 amount_to_recollat;\n if(collat_value_attempted \u003c= recollat_possible){\n amount_to_recollat = collat_value_attempted;\n } else {\n amount_to_recollat = recollat_possible;\n }\n\n return (amount_to_recollat.mul(1e6).div(col_price), amount_to_recollat);\n\n }\n\n}"},"FXS.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\npragma experimental ABIEncoderV2;\n\nimport \"./Context.sol\";\nimport \"./ERC20Custom.sol\";\nimport \"./IERC20.sol\";\nimport \"./Frax.sol\";\nimport \"./SafeMath.sol\";\nimport \"./AccessControl.sol\";\n\ncontract FRAXShares is ERC20Custom, AccessControl {\n using SafeMath for uint256;\n\n /* ========== STATE VARIABLES ========== */\n\n string public symbol;\n string public name;\n uint8 public constant decimals = 18;\n address public FRAXStablecoinAdd;\n \n uint256 public constant genesis_supply = 100000000e18; // 100M is printed upon genesis\n uint256 public FXS_DAO_min; // Minimum FXS required to join DAO groups \n\n address public owner_address;\n address public oracle_address;\n address public timelock_address; // Governance timelock address\n FRAXStablecoin private FRAX;\n\n bool public trackingVotes = true; // Tracking votes (only change if need to disable votes)\n\n // A checkpoint for marking number of votes from a given block\n struct Checkpoint {\n uint32 fromBlock;\n uint96 votes;\n }\n\n // A record of votes checkpoints for each account, by index\n mapping (address =\u003e mapping (uint32 =\u003e Checkpoint)) public checkpoints;\n\n // The number of checkpoints for each account\n mapping (address =\u003e uint32) public numCheckpoints;\n\n /* ========== MODIFIERS ========== */\n\n modifier onlyPools() {\n require(FRAX.frax_pools(msg.sender) == true, \"Only frax pools can mint new FRAX\");\n _;\n } \n \n modifier onlyByOwnerOrGovernance() {\n require(msg.sender == owner_address || msg.sender == timelock_address, \"You are not an owner or the governance timelock\");\n _;\n }\n\n /* ========== CONSTRUCTOR ========== */\n\n constructor(\n string memory _name,\n string memory _symbol, \n address _oracle_address,\n address _owner_address,\n address _timelock_address\n ) public {\n name = _name;\n symbol = _symbol;\n owner_address = _owner_address;\n oracle_address = _oracle_address;\n timelock_address = _timelock_address;\n _setupRole(DEFAULT_ADMIN_ROLE, _msgSender());\n _mint(owner_address, genesis_supply);\n\n // Do a checkpoint for the owner\n _writeCheckpoint(owner_address, 0, 0, uint96(genesis_supply));\n }\n\n /* ========== RESTRICTED FUNCTIONS ========== */\n\n function setOracle(address new_oracle) external onlyByOwnerOrGovernance {\n oracle_address = new_oracle;\n }\n\n function setTimelock(address new_timelock) external onlyByOwnerOrGovernance {\n timelock_address = new_timelock;\n }\n \n function setFRAXAddress(address frax_contract_address) external onlyByOwnerOrGovernance {\n FRAX = FRAXStablecoin(frax_contract_address);\n }\n \n function setFXSMinDAO(uint256 min_FXS) external onlyByOwnerOrGovernance {\n FXS_DAO_min = min_FXS;\n }\n\n function setOwner(address _owner_address) external onlyByOwnerOrGovernance {\n owner_address = _owner_address;\n }\n\n function mint(address to, uint256 amount) public onlyPools {\n _mint(to, amount);\n }\n \n // This function is what other frax pools will call to mint new FXS (similar to the FRAX mint) \n function pool_mint(address m_address, uint256 m_amount) external onlyPools { \n if(trackingVotes){\n uint32 srcRepNum = numCheckpoints[address(this)];\n uint96 srcRepOld = srcRepNum \u003e 0 ? checkpoints[address(this)][srcRepNum - 1].votes : 0;\n uint96 srcRepNew = add96(srcRepOld, uint96(m_amount), \"pool_mint new votes overflows\");\n _writeCheckpoint(address(this), srcRepNum, srcRepOld, srcRepNew); // mint new votes\n trackVotes(address(this), m_address, uint96(m_amount));\n }\n\n super._mint(m_address, m_amount);\n emit FXSMinted(address(this), m_address, m_amount);\n }\n\n // This function is what other frax pools will call to burn FXS \n function pool_burn_from(address b_address, uint256 b_amount) external onlyPools {\n if(trackingVotes){\n trackVotes(b_address, address(this), uint96(b_amount));\n uint32 srcRepNum = numCheckpoints[address(this)];\n uint96 srcRepOld = srcRepNum \u003e 0 ? checkpoints[address(this)][srcRepNum - 1].votes : 0;\n uint96 srcRepNew = sub96(srcRepOld, uint96(b_amount), \"pool_burn_from new votes underflows\");\n _writeCheckpoint(address(this), srcRepNum, srcRepOld, srcRepNew); // burn votes\n }\n\n super._burnFrom(b_address, b_amount);\n emit FXSBurned(b_address, address(this), b_amount);\n }\n\n function toggleVotes() external onlyByOwnerOrGovernance {\n trackingVotes = !trackingVotes;\n }\n\n /* ========== OVERRIDDEN PUBLIC FUNCTIONS ========== */\n\n function transfer(address recipient, uint256 amount) public virtual override returns (bool) {\n if(trackingVotes){\n // Transfer votes\n trackVotes(_msgSender(), recipient, uint96(amount));\n }\n\n _transfer(_msgSender(), recipient, amount);\n return true;\n }\n\n function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {\n if(trackingVotes){\n // Transfer votes\n trackVotes(sender, recipient, uint96(amount));\n }\n\n _transfer(sender, recipient, amount);\n _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, \"ERC20: transfer amount exceeds allowance\"));\n\n return true;\n }\n\n /* ========== PUBLIC FUNCTIONS ========== */\n\n /**\n * @notice Gets the current votes balance for `account`\n * @param account The address to get votes balance\n * @return The number of current votes for `account`\n */\n function getCurrentVotes(address account) external view returns (uint96) {\n uint32 nCheckpoints = numCheckpoints[account];\n return nCheckpoints \u003e 0 ? checkpoints[account][nCheckpoints - 1].votes : 0;\n }\n\n /**\n * @notice Determine the prior number of votes for an account as of a block number\n * @dev Block number must be a finalized block or else this function will revert to prevent misinformation.\n * @param account The address of the account to check\n * @param blockNumber The block number to get the vote balance at\n * @return The number of votes the account had as of the given block\n */\n function getPriorVotes(address account, uint blockNumber) public view returns (uint96) {\n require(blockNumber \u003c block.number, \"FXS::getPriorVotes: not yet determined\");\n\n uint32 nCheckpoints = numCheckpoints[account];\n if (nCheckpoints == 0) {\n return 0;\n }\n\n // First check most recent balance\n if (checkpoints[account][nCheckpoints - 1].fromBlock \u003c= blockNumber) {\n return checkpoints[account][nCheckpoints - 1].votes;\n }\n\n // Next check implicit zero balance\n if (checkpoints[account][0].fromBlock \u003e blockNumber) {\n return 0;\n }\n\n uint32 lower = 0;\n uint32 upper = nCheckpoints - 1;\n while (upper \u003e lower) {\n uint32 center = upper - (upper - lower) / 2; // ceil, avoiding overflow\n Checkpoint memory cp = checkpoints[account][center];\n if (cp.fromBlock == blockNumber) {\n return cp.votes;\n } else if (cp.fromBlock \u003c blockNumber) {\n lower = center;\n } else {\n upper = center - 1;\n }\n }\n return checkpoints[account][lower].votes;\n }\n\n /* ========== INTERNAL FUNCTIONS ========== */\n\n // From compound\u0027s _moveDelegates\n // Keep track of votes. \"Delegates\" is a misnomer here\n function trackVotes(address srcRep, address dstRep, uint96 amount) internal {\n if (srcRep != dstRep \u0026\u0026 amount \u003e 0) {\n if (srcRep != address(0)) {\n uint32 srcRepNum = numCheckpoints[srcRep];\n uint96 srcRepOld = srcRepNum \u003e 0 ? checkpoints[srcRep][srcRepNum - 1].votes : 0;\n uint96 srcRepNew = sub96(srcRepOld, amount, \"FXS::_moveVotes: vote amount underflows\");\n _writeCheckpoint(srcRep, srcRepNum, srcRepOld, srcRepNew);\n }\n\n if (dstRep != address(0)) {\n uint32 dstRepNum = numCheckpoints[dstRep];\n uint96 dstRepOld = dstRepNum \u003e 0 ? checkpoints[dstRep][dstRepNum - 1].votes : 0;\n uint96 dstRepNew = add96(dstRepOld, amount, \"FXS::_moveVotes: vote amount overflows\");\n _writeCheckpoint(dstRep, dstRepNum, dstRepOld, dstRepNew);\n }\n }\n }\n\n function _writeCheckpoint(address voter, uint32 nCheckpoints, uint96 oldVotes, uint96 newVotes) internal {\n uint32 blockNumber = safe32(block.number, \"FXS::_writeCheckpoint: block number exceeds 32 bits\");\n\n if (nCheckpoints \u003e 0 \u0026\u0026 checkpoints[voter][nCheckpoints - 1].fromBlock == blockNumber) {\n checkpoints[voter][nCheckpoints - 1].votes = newVotes;\n } else {\n checkpoints[voter][nCheckpoints] = Checkpoint(blockNumber, newVotes);\n numCheckpoints[voter] = nCheckpoints + 1;\n }\n\n emit VoterVotesChanged(voter, oldVotes, newVotes);\n }\n\n function safe32(uint n, string memory errorMessage) internal pure returns (uint32) {\n require(n \u003c 2**32, errorMessage);\n return uint32(n);\n }\n\n function safe96(uint n, string memory errorMessage) internal pure returns (uint96) {\n require(n \u003c 2**96, errorMessage);\n return uint96(n);\n }\n\n function add96(uint96 a, uint96 b, string memory errorMessage) internal pure returns (uint96) {\n uint96 c = a + b;\n require(c \u003e= a, errorMessage);\n return c;\n }\n\n function sub96(uint96 a, uint96 b, string memory errorMessage) internal pure returns (uint96) {\n require(b \u003c= a, errorMessage);\n return a - b;\n }\n\n function getChainId() internal pure returns (uint) {\n uint256 chainId;\n assembly { chainId := chainid() }\n return chainId;\n }\n\n /* ========== EVENTS ========== */\n \n /// @notice An event thats emitted when a voters account\u0027s vote balance changes\n event VoterVotesChanged(address indexed voter, uint previousBalance, uint newBalance);\n\n // Track FXS burned\n event FXSBurned(address indexed from, address indexed to, uint256 amount);\n\n // Track FXS minted\n event FXSMinted(address indexed from, address indexed to, uint256 amount);\n\n}\n"},"Governance.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\npragma experimental ABIEncoderV2;\n\nimport \"./FXS.sol\";\n\n// From https://compound.finance/docs/governance\n// and https://github.com/compound-finance/compound-protocol/tree/master/contracts/Governance\ncontract GovernorAlpha {\n /// @notice The name of this contract\n string public constant name = \"FXS Governor Alpha\";\n\n /// @notice The number of votes in support of a proposal required in order for a quorum to be reached and for a vote to succeed\n function quorumVotes() public pure returns (uint) { return 4000000e18; } // 4,000,000 = 4% of FXS\n\n /// @notice The number of votes required in order for a voter to become a proposer\n function proposalThreshold() public pure returns (uint) { return 1000000e18; } // 1,000,000 = 1% of FXS\n\n /// @notice The maximum number of actions that can be included in a proposal\n function proposalMaxOperations() public pure returns (uint) { return 10; } // 10 actions\n\n /// @notice The delay before voting on a proposal may take place, once proposed\n // This also helps protect against flash loan attacks because only the vote balance at the proposal start block is considered\n function votingDelay() public pure returns (uint) { return 1; } // 1 block\n\n /// @notice The duration of voting on a proposal, in blocks\n // function votingPeriod() public pure returns (uint) { return 17280; } // ~3 days in blocks (assuming 15s blocks)\n uint public votingPeriod = 17280;\n \n /// @notice The address of the Timelock\n TimelockInterface public timelock;\n\n // The address of the FXS token\n FRAXShares public fxs;\n\n /// @notice The address of the Governor Guardian\n address public guardian;\n\n /// @notice The total number of proposals\n uint public proposalCount = 0;\n\n struct Proposal {\n // @notice Unique id for looking up a proposal\n uint id;\n\n // @notice Creator of the proposal\n address proposer;\n\n // @notice The timestamp that the proposal will be available for execution, set once the vote succeeds\n uint eta;\n\n // @notice the ordered list of target addresses for calls to be made\n address[] targets;\n\n // @notice The ordered list of values (i.e. msg.value) to be passed to the calls to be made\n uint[] values;\n\n // @notice The ordered list of function signatures to be called\n string[] signatures;\n\n // @notice The ordered list of calldata to be passed to each call\n bytes[] calldatas;\n\n // @notice The block at which voting begins: holders must delegate their votes prior to this block\n uint startBlock;\n\n // @notice The block at which voting ends: votes must be cast prior to this block\n uint endBlock;\n\n // @notice Current number of votes in favor of this proposal\n uint forVotes;\n\n // @notice Current number of votes in opposition to this proposal\n uint againstVotes;\n\n // @notice Flag marking whether the proposal has been canceled\n bool canceled;\n\n // @notice Flag marking whether the proposal has been executed\n bool executed;\n\n // @notice Title of the proposal (human-readable)\n string title;\n\n // @notice Description of the proposall (human-readable)\n string description;\n\n // @notice Receipts of ballots for the entire set of voters\n mapping (address =\u003e Receipt) receipts;\n }\n\n /// @notice Ballot receipt record for a voter\n struct Receipt {\n // @notice Whether or not a vote has been cast\n bool hasVoted;\n\n // @notice Whether or not the voter supports the proposal\n bool support;\n\n // @notice The number of votes the voter had, which were cast\n uint96 votes;\n }\n\n /// @notice Possible states that a proposal may be in\n enum ProposalState {\n Pending,\n Active,\n Canceled,\n Defeated,\n Succeeded,\n Queued,\n Expired,\n Executed\n }\n\n /// @notice The official record of all proposals ever proposed\n mapping (uint =\u003e Proposal) public proposals;\n\n /// @notice The latest proposal for each proposer\n mapping (address =\u003e uint) public latestProposalIds;\n\n /// @notice The EIP-712 typehash for the contract\u0027s domain\n bytes32 public constant DOMAIN_TYPEHASH = keccak256(\"EIP712Domain(string name,uint256 chainId,address verifyingContract)\");\n\n /// @notice The EIP-712 typehash for the ballot struct used by the contract\n bytes32 public constant BALLOT_TYPEHASH = keccak256(\"Ballot(uint256 proposalId,bool support)\");\n\n /// @notice An event emitted when a new proposal is created\n event ProposalCreated(uint id, address proposer, address[] targets, uint[] values, string[] signatures, bytes[] calldatas, uint startBlock, uint endBlock, string description);\n\n /// @notice An event emitted when a vote has been cast on a proposal\n event VoteCast(address voter, uint proposalId, bool support, uint votes);\n\n /// @notice An event emitted when a proposal has been canceled\n event ProposalCanceled(uint id);\n\n /// @notice An event emitted when a proposal has been queued in the Timelock\n event ProposalQueued(uint id, uint eta);\n\n /// @notice An event emitted when a proposal has been executed in the Timelock\n event ProposalExecuted(uint id);\n\n constructor(address timelock_, address fxs_, address guardian_) public {\n timelock = TimelockInterface(timelock_);\n fxs = FRAXShares(fxs_);\n guardian = guardian_;\n }\n\n function propose(address[] memory targets, uint[] memory values, string[] memory signatures, bytes[] memory calldatas, string memory title, string memory description) public returns (uint) {\n require(fxs.getPriorVotes(msg.sender, sub256(block.number, 1)) \u003e= proposalThreshold(), \"GovernorAlpha::propose: proposer votes below proposal threshold\");\n require(targets.length == values.length \u0026\u0026 targets.length == signatures.length \u0026\u0026 targets.length == calldatas.length, \"GovernorAlpha::propose: proposal function information arity mismatch\");\n require(targets.length != 0, \"GovernorAlpha::propose: must provide actions\");\n require(targets.length \u003c= proposalMaxOperations(), \"GovernorAlpha::propose: too many actions\");\n\n uint latestProposalId = latestProposalIds[msg.sender];\n if (latestProposalId != 0) {\n ProposalState proposersLatestProposalState = state(latestProposalId);\n require(proposersLatestProposalState != ProposalState.Active, \"GovernorAlpha::propose: one live proposal per proposer, found an already active proposal\");\n require(proposersLatestProposalState != ProposalState.Pending, \"GovernorAlpha::propose: one live proposal per proposer, found an already pending proposal\");\n }\n\n uint startBlock = add256(block.number, votingDelay());\n uint endBlock = add256(startBlock, votingPeriod);\n\n proposalCount++;\n Proposal memory newProposal = Proposal({\n id: proposalCount,\n proposer: msg.sender,\n eta: 0,\n targets: targets,\n values: values,\n signatures: signatures,\n calldatas: calldatas,\n startBlock: startBlock,\n endBlock: endBlock,\n forVotes: 0,\n againstVotes: 0,\n canceled: false,\n executed: false,\n title: title,\n description: description\n });\n\n proposals[newProposal.id] = newProposal;\n latestProposalIds[newProposal.proposer] = newProposal.id;\n\n emit ProposalCreated(newProposal.id, msg.sender, targets, values, signatures, calldatas, startBlock, endBlock, description);\n return newProposal.id;\n }\n\n function queue(uint proposalId) public {\n require(state(proposalId) == ProposalState.Succeeded, \"GovernorAlpha::queue: proposal can only be queued if it succeeded\");\n Proposal storage proposal = proposals[proposalId];\n uint eta = add256(block.timestamp, timelock.delay());\n for (uint i = 0; i \u003c proposal.targets.length; i++) {\n _queueOrRevert(proposal.targets[i], proposal.values[i], proposal.signatures[i], proposal.calldatas[i], eta);\n }\n proposal.eta = eta;\n emit ProposalQueued(proposalId, eta);\n }\n\n function _queueOrRevert(address target, uint value, string memory signature, bytes memory data, uint eta) internal {\n require(!timelock.queuedTransactions(keccak256(abi.encode(target, value, signature, data, eta))), \"GovernorAlpha::_queueOrRevert: proposal action already queued at eta\");\n timelock.queueTransaction(target, value, signature, data, eta);\n }\n\n function execute(uint proposalId) public payable {\n require(state(proposalId) == ProposalState.Queued, \"GovernorAlpha::execute: proposal can only be executed if it is queued\");\n Proposal storage proposal = proposals[proposalId];\n proposal.executed = true;\n for (uint i = 0; i \u003c proposal.targets.length; i++) {\n timelock.executeTransaction(proposal.targets[i], proposal.values[i], proposal.signatures[i], proposal.calldatas[i], proposal.eta);\n }\n emit ProposalExecuted(proposalId);\n }\n\n function cancel(uint proposalId) public {\n ProposalState state = state(proposalId);\n require(state != ProposalState.Executed, \"GovernorAlpha::cancel: cannot cancel executed proposal\");\n\n Proposal storage proposal = proposals[proposalId];\n require(msg.sender == guardian || fxs.getPriorVotes(proposal.proposer, sub256(block.number, 1)) \u003c proposalThreshold(), \"GovernorAlpha::cancel: proposer at or above threshold\");\n\n proposal.canceled = true;\n for (uint i = 0; i \u003c proposal.targets.length; i++) {\n timelock.cancelTransaction(proposal.targets[i], proposal.values[i], proposal.signatures[i], proposal.calldatas[i], proposal.eta);\n }\n\n emit ProposalCanceled(proposalId);\n }\n\n function getActions(uint proposalId) public view returns (address[] memory targets, uint[] memory values, string[] memory signatures, bytes[] memory calldatas) {\n Proposal storage p = proposals[proposalId];\n return (p.targets, p.values, p.signatures, p.calldatas);\n }\n\n function getReceipt(uint proposalId, address voter) public view returns (Receipt memory) {\n return proposals[proposalId].receipts[voter];\n }\n\n function state(uint proposalId) public view returns (ProposalState) {\n require(proposalCount \u003e= proposalId \u0026\u0026 proposalId \u003e 0, \"GovernorAlpha::state: invalid proposal id\");\n Proposal storage proposal = proposals[proposalId];\n if (proposal.canceled) {\n return ProposalState.Canceled;\n } else if (block.number \u003c= proposal.startBlock) {\n return ProposalState.Pending;\n } else if (block.number \u003c= proposal.endBlock) {\n return ProposalState.Active;\n } else if (proposal.forVotes \u003c= proposal.againstVotes || proposal.forVotes \u003c quorumVotes()) {\n return ProposalState.Defeated;\n } else if (proposal.eta == 0) {\n return ProposalState.Succeeded;\n } else if (proposal.executed) {\n return ProposalState.Executed;\n } else if (block.timestamp \u003e= add256(proposal.eta, timelock.GRACE_PERIOD())) {\n return ProposalState.Expired;\n } else {\n return ProposalState.Queued;\n }\n }\n\n function castVote(uint proposalId, bool support) public {\n return _castVote(msg.sender, proposalId, support);\n }\n\n function castVoteBySig(uint proposalId, bool support, uint8 v, bytes32 r, bytes32 s) public {\n bytes32 domainSeparator = keccak256(abi.encode(DOMAIN_TYPEHASH, keccak256(bytes(name)), getChainId(), address(this)));\n bytes32 structHash = keccak256(abi.encode(BALLOT_TYPEHASH, proposalId, support));\n bytes32 digest = keccak256(abi.encodePacked(\"\\x19\\x01\", domainSeparator, structHash));\n address signatory = ecrecover(digest, v, r, s);\n require(signatory != address(0), \"GovernorAlpha::castVoteBySig: invalid signature\");\n return _castVote(signatory, proposalId, support);\n }\n\n function _castVote(address voter, uint proposalId, bool support) internal {\n require(state(proposalId) == ProposalState.Active, \"GovernorAlpha::_castVote: voting is closed\");\n Proposal storage proposal = proposals[proposalId];\n Receipt storage receipt = proposal.receipts[voter];\n require(receipt.hasVoted == false, \"GovernorAlpha::_castVote: voter already voted\");\n uint96 votes = fxs.getPriorVotes(voter, proposal.startBlock);\n\n if (support) {\n proposal.forVotes = add256(proposal.forVotes, votes);\n } else {\n proposal.againstVotes = add256(proposal.againstVotes, votes);\n }\n\n receipt.hasVoted = true;\n receipt.support = support;\n receipt.votes = votes;\n\n emit VoteCast(voter, proposalId, support, votes);\n }\n\n function __acceptAdmin() public {\n require(msg.sender == guardian, \"GovernorAlpha::__acceptAdmin: sender must be gov guardian\");\n timelock.acceptAdmin();\n }\n\n function __abdicate() public {\n require(msg.sender == guardian, \"GovernorAlpha::__abdicate: sender must be gov guardian\");\n guardian = address(0);\n }\n\n function __setVotingPeriod(uint period) public {\n require(msg.sender == guardian, \"GovernorAlpha::__setVotingPeriod: sender must be gov guardian\");\n votingPeriod = period;\n }\n\n function __setTimelockAddress(address timelock_) public {\n require(msg.sender == guardian, \"GovernorAlpha::__setTimelockAddress: sender must be gov guardian\");\n timelock = TimelockInterface(timelock_);\n }\n\n function __queueSetTimelockPendingAdmin(address newPendingAdmin, uint eta) public {\n require(msg.sender == guardian, \"GovernorAlpha::__queueSetTimelockPendingAdmin: sender must be gov guardian\");\n timelock.queueTransaction(address(timelock), 0, \"setPendingAdmin(address)\", abi.encode(newPendingAdmin), eta);\n }\n\n function __executeSetTimelockPendingAdmin(address newPendingAdmin, uint eta) public {\n require(msg.sender == guardian, \"GovernorAlpha::__executeSetTimelockPendingAdmin: sender must be gov guardian\");\n timelock.executeTransaction(address(timelock), 0, \"setPendingAdmin(address)\", abi.encode(newPendingAdmin), eta);\n }\n\n function add256(uint256 a, uint256 b) internal pure returns (uint) {\n uint c = a + b;\n require(c \u003e= a, \"addition overflow\");\n return c;\n }\n\n function sub256(uint256 a, uint256 b) internal pure returns (uint) {\n require(b \u003c= a, \"subtraction underflow\");\n return a - b;\n }\n\n function getChainId() internal pure returns (uint) {\n uint chainId;\n assembly { chainId := chainid() }\n return chainId;\n }\n}\n\ninterface TimelockInterface {\n function delay() external view returns (uint);\n function GRACE_PERIOD() external view returns (uint);\n function acceptAdmin() external;\n function queuedTransactions(bytes32 hash) external view returns (bool);\n function queueTransaction(address target, uint value, string calldata signature, bytes calldata data, uint eta) external returns (bytes32);\n function cancelTransaction(address target, uint value, string calldata signature, bytes calldata data, uint eta) external;\n function executeTransaction(address target, uint value, string calldata signature, bytes calldata data, uint eta) external payable returns (bytes memory);\n}\n"},"IERC20.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \"./Context.sol\";\nimport \"./SafeMath.sol\";\n\n/**\n * @dev Interface of the ERC20 standard as defined in the EIP. Does not include\n * the optional functions; to access them see {ERC20Detailed}.\n */\ninterface IERC20 {\n /**\n * @dev Returns the amount of tokens in existence.\n */\n function totalSupply() external view returns (uint256);\n\n /**\n * @dev Returns the amount of tokens owned by `account`.\n */\n function balanceOf(address account) external view returns (uint256);\n\n /**\n * @dev Moves `amount` tokens from the caller\u0027s account to `recipient`.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * Emits a {Transfer} event.\n */\n function transfer(address recipient, uint256 amount) external returns (bool);\n\n /**\n * @dev Returns the remaining number of tokens that `spender` will be\n * allowed to spend on behalf of `owner` through {transferFrom}. This is\n * zero by default.\n *\n * This value changes when {approve} or {transferFrom} are called.\n */\n function allowance(address owner, address spender) external view returns (uint256);\n\n /**\n * @dev Sets `amount` as the allowance of `spender` over the caller\u0027s tokens.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * IMPORTANT: Beware that changing an allowance with this method brings the risk\n * that someone may use both the old and the new allowance by unfortunate\n * transaction ordering. One possible solution to mitigate this race\n * condition is to first reduce the spender\u0027s allowance to 0 and set the\n * desired value afterwards:\n * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729\n *\n * Emits an {Approval} event.\n */\n function approve(address spender, uint256 amount) external returns (bool);\n\n /**\n * @dev Moves `amount` tokens from `sender` to `recipient` using the\n * allowance mechanism. `amount` is then deducted from the caller\u0027s\n * allowance.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * Emits a {Transfer} event.\n */\n function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);\n\n /**\n * @dev Emitted when `value` tokens are moved from one account (`from`) to\n * another (`to`).\n *\n * Note that `value` may be zero.\n */\n event Transfer(address indexed from, address indexed to, uint256 value);\n\n /**\n * @dev Emitted when the allowance of a `spender` for an `owner` is set by\n * a call to {approve}. `value` is the new allowance.\n */\n event Approval(address indexed owner, address indexed spender, uint256 value);\n}\n\n"},"IStakingRewards.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\n\ninterface IStakingRewards {\n // Views\n function lastTimeRewardApplicable() external view returns (uint256);\n\n function rewardPerToken() external view returns (uint256);\n\n function earned(address account) external view returns (uint256);\n\n function getRewardForDuration() external view returns (uint256);\n\n function totalSupply() external view returns (uint256);\n\n function balanceOf(address account) external view returns (uint256);\n\n // Mutative\n\n function stake(uint256 amount) external;\n\n function withdraw(uint256 amount) external;\n\n function getReward() external;\n\n //function exit() external;\n}\n"},"IUniswapV2Callee.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\ninterface IUniswapV2Callee {\n function uniswapV2Call(address sender, uint amount0, uint amount1, bytes calldata data) external;\n}\n"},"IUniswapV2ERC20.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\ninterface IUniswapV2ERC20 {\n event Approval(address indexed owner, address indexed spender, uint value);\n event Transfer(address indexed from, address indexed to, uint value);\n\n function name() external pure returns (string memory);\n function symbol() external pure returns (string memory);\n function decimals() external pure returns (uint8);\n function totalSupply() external view returns (uint);\n function balanceOf(address owner) external view returns (uint);\n function allowance(address owner, address spender) external view returns (uint);\n\n function approve(address spender, uint value) external returns (bool);\n function transfer(address to, uint value) external returns (bool);\n function transferFrom(address from, address to, uint value) external returns (bool);\n\n function DOMAIN_SEPARATOR() external view returns (bytes32);\n function PERMIT_TYPEHASH() external pure returns (bytes32);\n function nonces(address owner) external view returns (uint);\n\n function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;\n}\n"},"IUniswapV2Factory.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\ninterface IUniswapV2Factory {\n event PairCreated(address indexed token0, address indexed token1, address pair, uint);\n\n function feeTo() external view returns (address);\n function feeToSetter() external view returns (address);\n\n function getPair(address tokenA, address tokenB) external view returns (address pair);\n function allPairs(uint) external view returns (address pair);\n function allPairsLength() external view returns (uint);\n\n function createPair(address tokenA, address tokenB) external returns (address pair);\n\n function setFeeTo(address) external;\n function setFeeToSetter(address) external;\n}\n"},"IUniswapV2Pair.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\ninterface IUniswapV2Pair {\n event Approval(address indexed owner, address indexed spender, uint value);\n event Transfer(address indexed from, address indexed to, uint value);\n\n function name() external pure returns (string memory);\n function symbol() external pure returns (string memory);\n function decimals() external pure returns (uint8);\n function totalSupply() external view returns (uint);\n function balanceOf(address owner) external view returns (uint);\n function allowance(address owner, address spender) external view returns (uint);\n\n function approve(address spender, uint value) external returns (bool);\n function transfer(address to, uint value) external returns (bool);\n function transferFrom(address from, address to, uint value) external returns (bool);\n\n function DOMAIN_SEPARATOR() external view returns (bytes32);\n function PERMIT_TYPEHASH() external pure returns (bytes32);\n function nonces(address owner) external view returns (uint);\n\n function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;\n\n event Mint(address indexed sender, uint amount0, uint amount1);\n event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);\n event Swap(\n address indexed sender,\n uint amount0In,\n uint amount1In,\n uint amount0Out,\n uint amount1Out,\n address indexed to\n );\n event Sync(uint112 reserve0, uint112 reserve1);\n\n function MINIMUM_LIQUIDITY() external pure returns (uint);\n function factory() external view returns (address);\n function token0() external view returns (address);\n function token1() external view returns (address);\n function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);\n function price0CumulativeLast() external view returns (uint);\n function price1CumulativeLast() external view returns (uint);\n function kLast() external view returns (uint);\n\n function mint(address to) external returns (uint liquidity);\n function burn(address to) external returns (uint amount0, uint amount1);\n function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;\n function skim(address to) external;\n function sync() external;\n\n function initialize(address, address) external;\n\n\n\n\n\n\n\n\n\n\n\n\n \n}\n"},"IUniswapV2Router01.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\ninterface IUniswapV2Router01 {\n function factory() external pure returns (address);\n function WETH() external pure returns (address);\n\n function addLiquidity(\n address tokenA,\n address tokenB,\n uint amountADesired,\n uint amountBDesired,\n uint amountAMin,\n uint amountBMin,\n address to,\n uint deadline\n ) external returns (uint amountA, uint amountB, uint liquidity);\n function addLiquidityETH(\n address token,\n uint amountTokenDesired,\n uint amountTokenMin,\n uint amountETHMin,\n address to,\n uint deadline\n ) external payable returns (uint amountToken, uint amountETH, uint liquidity);\n function removeLiquidity(\n address tokenA,\n address tokenB,\n uint liquidity,\n uint amountAMin,\n uint amountBMin,\n address to,\n uint deadline\n ) external returns (uint amountA, uint amountB);\n function removeLiquidityETH(\n address token,\n uint liquidity,\n uint amountTokenMin,\n uint amountETHMin,\n address to,\n uint deadline\n ) external returns (uint amountToken, uint amountETH);\n function removeLiquidityWithPermit(\n address tokenA,\n address tokenB,\n uint liquidity,\n uint amountAMin,\n uint amountBMin,\n address to,\n uint deadline,\n bool approveMax, uint8 v, bytes32 r, bytes32 s\n ) external returns (uint amountA, uint amountB);\n function removeLiquidityETHWithPermit(\n address token,\n uint liquidity,\n uint amountTokenMin,\n uint amountETHMin,\n address to,\n uint deadline,\n bool approveMax, uint8 v, bytes32 r, bytes32 s\n ) external returns (uint amountToken, uint amountETH);\n function swapExactTokensForTokens(\n uint amountIn,\n uint amountOutMin,\n address[] calldata path,\n address to,\n uint deadline\n ) external returns (uint[] memory amounts);\n function swapTokensForExactTokens(\n uint amountOut,\n uint amountInMax,\n address[] calldata path,\n address to,\n uint deadline\n ) external returns (uint[] memory amounts);\n function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)\n external\n payable\n returns (uint[] memory amounts);\n function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)\n external\n returns (uint[] memory amounts);\n function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)\n external\n returns (uint[] memory amounts);\n function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)\n external\n payable\n returns (uint[] memory amounts);\n\n function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB);\n function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut);\n function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn);\n function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);\n function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);\n}"},"IUniswapV2Router02.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./IUniswapV2Router01.sol\u0027;\n\ninterface IUniswapV2Router02 is IUniswapV2Router01 {\n function removeLiquidityETHSupportingFeeOnTransferTokens(\n address token,\n uint liquidity,\n uint amountTokenMin,\n uint amountETHMin,\n address to,\n uint deadline\n ) external returns (uint amountETH);\n function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(\n address token,\n uint liquidity,\n uint amountTokenMin,\n uint amountETHMin,\n address to,\n uint deadline,\n bool approveMax, uint8 v, bytes32 r, bytes32 s\n ) external returns (uint amountETH);\n\n function swapExactTokensForTokensSupportingFeeOnTransferTokens(\n uint amountIn,\n uint amountOutMin,\n address[] calldata path,\n address to,\n uint deadline\n ) external;\n function swapExactETHForTokensSupportingFeeOnTransferTokens(\n uint amountOutMin,\n address[] calldata path,\n address to,\n uint deadline\n ) external payable;\n function swapExactTokensForETHSupportingFeeOnTransferTokens(\n uint amountIn,\n uint amountOutMin,\n address[] calldata path,\n address to,\n uint deadline\n ) external;\n}"},"IWETH.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\ninterface IWETH {\n function deposit() external payable;\n function transfer(address to, uint value) external returns (bool);\n function transferFrom(address src, address dst, uint wad) external returns (bool);\n function withdraw(uint) external;\n}"},"Math.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\n/**\n * @dev Standard math utilities missing in the Solidity language.\n */\nlibrary Math {\n /**\n * @dev Returns the largest of two numbers.\n */\n function max(uint256 a, uint256 b) internal pure returns (uint256) {\n return a \u003e= b ? a : b;\n }\n\n /**\n * @dev Returns the smallest of two numbers.\n */\n function min(uint256 a, uint256 b) internal pure returns (uint256) {\n return a \u003c b ? a : b;\n }\n\n /**\n * @dev Returns the average of two numbers. The result is rounded towards\n * zero.\n */\n function average(uint256 a, uint256 b) internal pure returns (uint256) {\n // (a + b) / 2 can overflow, so we distribute\n return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2);\n }\n\n // babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method)\n function sqrt(uint y) internal pure returns (uint z) {\n if (y \u003e 3) {\n z = y;\n uint x = y / 2 + 1;\n while (x \u003c z) {\n z = x;\n x = (y / x + x) / 2;\n }\n } else if (y != 0) {\n z = 1;\n }\n }\n}"},"MigrationHelper.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\ncontract MigrationHelper {\n address public owner;\n uint256 public gov_to_timelock_eta;\n\n modifier restricted() {\n if (msg.sender == owner) _;\n }\n\n constructor(address _owner) public {\n owner = _owner;\n }\n\n function setGovToTimeLockETA(uint256 _eta) public restricted {\n gov_to_timelock_eta = _eta;\n }\n}\n"},"Migrations.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\ncontract Migrations {\n address public owner;\n uint public last_completed_migration;\n\n modifier restricted() {\n if (msg.sender == owner) _;\n }\n\n constructor() public {\n owner = msg.sender;\n }\n\n function setCompleted(uint completed) public restricted {\n last_completed_migration = completed;\n }\n}\n"},"Owned.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\n// https://docs.synthetix.io/contracts/Owned\ncontract Owned {\n address public owner;\n address public nominatedOwner;\n\n constructor(address _owner) public {\n require(_owner != address(0), \"Owner address cannot be 0\");\n owner = _owner;\n emit OwnerChanged(address(0), _owner);\n }\n\n function nominateNewOwner(address _owner) external onlyOwner {\n nominatedOwner = _owner;\n emit OwnerNominated(_owner);\n }\n\n function acceptOwnership() external {\n require(msg.sender == nominatedOwner, \"You must be nominated before you can accept ownership\");\n emit OwnerChanged(owner, nominatedOwner);\n owner = nominatedOwner;\n nominatedOwner = address(0);\n }\n\n modifier onlyOwner {\n require(msg.sender == owner, \"Only the contract owner may perform this action\");\n _;\n }\n\n event OwnerNominated(address newOwner);\n event OwnerChanged(address oldOwner, address newOwner);\n}"},"Pausable.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\n// Inheritance\nimport \"./Owned.sol\";\n\n// https://docs.synthetix.io/contracts/Pausable\nabstract contract Pausable is Owned {\n uint public lastPauseTime;\n bool public paused;\n\n constructor() internal {\n // This contract is abstract, and thus cannot be instantiated directly\n require(owner != address(0), \"Owner must be set\");\n // Paused will be false, and lastPauseTime will be 0 upon initialisation\n }\n\n /**\n * @notice Change the paused state of the contract\n * @dev Only the contract owner may call this.\n */\n function setPaused(bool _paused) external onlyOwner {\n // Ensure we\u0027re actually changing the state before we do anything\n if (_paused == paused) {\n return;\n }\n\n // Set our paused state.\n paused = _paused;\n\n // If applicable, set the last pause time.\n if (paused) {\n lastPauseTime = now;\n }\n\n // Let everyone know that our pause state has changed.\n emit PauseChanged(paused);\n }\n\n event PauseChanged(bool isPaused);\n\n modifier notPaused {\n require(!paused, \"This action cannot be performed while the contract is paused\");\n _;\n }\n}"},"Pool_USDC.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \"./FraxPool.sol\";\n\ncontract Pool_USDC is FraxPool {\n address public USDC_address;\n constructor(\n address _frax_contract_address,\n address _fxs_contract_address,\n address _collateral_address,\n address _creator_address,\n address _timelock_address,\n uint256 _pool_ceiling\n ) \n FraxPool(_frax_contract_address, _fxs_contract_address, _collateral_address, _creator_address, _timelock_address, _pool_ceiling)\n public {\n _setupRole(DEFAULT_ADMIN_ROLE, _msgSender());\n USDC_address = _collateral_address;\n }\n}\n"},"Pool_USDT.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \"./FraxPool.sol\";\n\ncontract Pool_USDT is FraxPool {\n address public USDT_address;\n constructor(\n address _frax_contract_address,\n address _fxs_contract_address,\n address _collateral_address,\n address _creator_address,\n address _timelock_address,\n uint256 _pool_ceiling\n ) \n FraxPool(_frax_contract_address, _fxs_contract_address, _collateral_address, _creator_address, _timelock_address, _pool_ceiling)\n public {\n _setupRole(DEFAULT_ADMIN_ROLE, _msgSender());\n USDT_address = _collateral_address;\n }\n}\n"},"ReentrancyGuard.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\n/**\n * @dev Contract module that helps prevent reentrant calls to a function.\n *\n * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier\n * available, which can be applied to functions to make sure there are no nested\n * (reentrant) calls to them.\n *\n * Note that because there is a single `nonReentrant` guard, functions marked as\n * `nonReentrant` may not call one another. This can be worked around by making\n * those functions `private`, and then adding `external` `nonReentrant` entry\n * points to them.\n *\n * TIP: If you would like to learn more about reentrancy and alternative ways\n * to protect against it, check out our blog post\n * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].\n */\ncontract ReentrancyGuard {\n // Booleans are more expensive than uint256 or any type that takes up a full\n // word because each write operation emits an extra SLOAD to first read the\n // slot\u0027s contents, replace the bits taken up by the boolean, and then write\n // back. This is the compiler\u0027s defense against contract upgrades and\n // pointer aliasing, and it cannot be disabled.\n\n // The values being non-zero value makes deployment a bit more expensive,\n // but in exchange the refund on every call to nonReentrant will be lower in\n // amount. Since refunds are capped to a percentage of the total\n // transaction\u0027s gas, it is best to keep them low in cases like this one, to\n // increase the likelihood of the full refund coming into effect.\n uint256 private constant _NOT_ENTERED = 1;\n uint256 private constant _ENTERED = 2;\n\n uint256 private _status;\n\n constructor () internal {\n _status = _NOT_ENTERED;\n }\n\n /**\n * @dev Prevents a contract from calling itself, directly or indirectly.\n * Calling a `nonReentrant` function from another `nonReentrant`\n * function is not supported. It is possible to prevent this from happening\n * by making the `nonReentrant` function external, and make it call a\n * `private` function that does the actual work.\n */\n modifier nonReentrant() {\n // On the first call to nonReentrant, _notEntered will be true\n require(_status != _ENTERED, \"ReentrancyGuard: reentrant call\");\n\n // Any calls to nonReentrant after this point will fail\n _status = _ENTERED;\n\n _;\n\n // By storing the original value once again, a refund is triggered (see\n // https://eips.ethereum.org/EIPS/eip-2200)\n _status = _NOT_ENTERED;\n }\n}"},"RewardsDistributionRecipient.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\n// Inheritance\nimport \"./Owned.sol\";\n\n\n// https://docs.synthetix.io/contracts/RewardsDistributionRecipient\nabstract contract RewardsDistributionRecipient is Owned {\n address public rewardsDistribution;\n\n //function notifyRewardAmount(uint256 reward) external virtual;\n\n modifier onlyRewardsDistribution() {\n require(msg.sender == rewardsDistribution, \"Caller is not RewardsDistribution contract\");\n _;\n }\n\n function setRewardsDistribution(address _rewardsDistribution) external onlyOwner {\n rewardsDistribution = _rewardsDistribution;\n }\n}\n"},"SafeERC20.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \"./IERC20.sol\";\nimport \"./SafeMath.sol\";\nimport \"./Address.sol\";\n\n/**\n * @title SafeERC20\n * @dev Wrappers around ERC20 operations that throw on failure (when the token\n * contract returns false). Tokens that return no value (and instead revert or\n * throw on failure) are also supported, non-reverting calls are assumed to be\n * successful.\n * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,\n * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.\n */\nlibrary SafeERC20 {\n using SafeMath for uint256;\n using Address for address;\n\n function safeTransfer(IERC20 token, address to, uint256 value) internal {\n _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));\n }\n\n function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {\n _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));\n }\n\n /**\n * @dev Deprecated. This function has issues similar to the ones found in\n * {IERC20-approve}, and its usage is discouraged.\n *\n * Whenever possible, use {safeIncreaseAllowance} and\n * {safeDecreaseAllowance} instead.\n */\n function safeApprove(IERC20 token, address spender, uint256 value) internal {\n // safeApprove should only be called when setting an initial allowance,\n // or when resetting it to zero. To increase and decrease it, use\n // \u0027safeIncreaseAllowance\u0027 and \u0027safeDecreaseAllowance\u0027\n // solhint-disable-next-line max-line-length\n require((value == 0) || (token.allowance(address(this), spender) == 0),\n \"SafeERC20: approve from non-zero to non-zero allowance\"\n );\n _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));\n }\n\n function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {\n uint256 newAllowance = token.allowance(address(this), spender).add(value);\n _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));\n }\n\n function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {\n uint256 newAllowance = token.allowance(address(this), spender).sub(value, \"SafeERC20: decreased allowance below zero\");\n _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));\n }\n\n /**\n * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement\n * on the return value: the return value is optional (but if data is returned, it must not be false).\n * @param token The token targeted by the call.\n * @param data The call data (encoded using abi.encode or one of its variants).\n */\n function _callOptionalReturn(IERC20 token, bytes memory data) private {\n // We need to perform a low level call here, to bypass Solidity\u0027s return data size checking mechanism, since\n // we\u0027re implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that\n // the target address contains contract code and also asserts for success in the low-level call.\n\n bytes memory returndata = address(token).functionCall(data, \"SafeERC20: low-level call failed\");\n if (returndata.length \u003e 0) { // Return data is optional\n // solhint-disable-next-line max-line-length\n require(abi.decode(returndata, (bool)), \"SafeERC20: ERC20 operation did not succeed\");\n }\n }\n}"},"SafeMath.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\n/**\n * @dev Wrappers over Solidity\u0027s arithmetic operations with added overflow\n * checks.\n *\n * Arithmetic operations in Solidity wrap on overflow. This can easily result\n * in bugs, because programmers usually assume that an overflow raises an\n * error, which is the standard behavior in high level programming languages.\n * `SafeMath` restores this intuition by reverting the transaction when an\n * operation overflows.\n *\n * Using this library instead of the unchecked operations eliminates an entire\n * class of bugs, so it\u0027s recommended to use it always.\n */\nlibrary SafeMath {\n /**\n * @dev Returns the addition of two unsigned integers, reverting on\n * overflow.\n *\n * Counterpart to Solidity\u0027s `+` operator.\n *\n * Requirements:\n * - Addition cannot overflow.\n */\n function add(uint256 a, uint256 b) internal pure returns (uint256) {\n uint256 c = a + b;\n require(c \u003e= a, \"SafeMath: addition overflow\");\n\n return c;\n }\n\n /**\n * @dev Returns the subtraction of two unsigned integers, reverting on\n * overflow (when the result is negative).\n *\n * Counterpart to Solidity\u0027s `-` operator.\n *\n * Requirements:\n * - Subtraction cannot overflow.\n */\n function sub(uint256 a, uint256 b) internal pure returns (uint256) {\n return sub(a, b, \"SafeMath: subtraction overflow\");\n }\n\n /**\n * @dev Returns the subtraction of two unsigned integers, reverting with custom message on\n * overflow (when the result is negative).\n *\n * Counterpart to Solidity\u0027s `-` operator.\n *\n * Requirements:\n * - Subtraction cannot overflow.\n *\n * _Available since v2.4.0._\n */\n function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {\n require(b \u003c= a, errorMessage);\n uint256 c = a - b;\n\n return c;\n }\n\n /**\n * @dev Returns the multiplication of two unsigned integers, reverting on\n * overflow.\n *\n * Counterpart to Solidity\u0027s `*` operator.\n *\n * Requirements:\n * - Multiplication cannot overflow.\n */\n function mul(uint256 a, uint256 b) internal pure returns (uint256) {\n // Gas optimization: this is cheaper than requiring \u0027a\u0027 not being zero, but the\n // benefit is lost if \u0027b\u0027 is also tested.\n // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522\n if (a == 0) {\n return 0;\n }\n\n uint256 c = a * b;\n require(c / a == b, \"SafeMath: multiplication overflow\");\n\n return c;\n }\n\n /**\n * @dev Returns the integer division of two unsigned integers. Reverts on\n * division by zero. The result is rounded towards zero.\n *\n * Counterpart to Solidity\u0027s `/` operator. Note: this function uses a\n * `revert` opcode (which leaves remaining gas untouched) while Solidity\n * uses an invalid opcode to revert (consuming all remaining gas).\n *\n * Requirements:\n * - The divisor cannot be zero.\n */\n function div(uint256 a, uint256 b) internal pure returns (uint256) {\n return div(a, b, \"SafeMath: division by zero\");\n }\n\n /**\n * @dev Returns the integer division of two unsigned integers. Reverts with custom message on\n * division by zero. The result is rounded towards zero.\n *\n * Counterpart to Solidity\u0027s `/` operator. Note: this function uses a\n * `revert` opcode (which leaves remaining gas untouched) while Solidity\n * uses an invalid opcode to revert (consuming all remaining gas).\n *\n * Requirements:\n * - The divisor cannot be zero.\n *\n * _Available since v2.4.0._\n */\n function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {\n // Solidity only automatically asserts when dividing by 0\n require(b \u003e 0, errorMessage);\n uint256 c = a / b;\n // assert(a == b * c + a % b); // There is no case in which this doesn\u0027t hold\n\n return c;\n }\n\n /**\n * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),\n * Reverts when dividing by zero.\n *\n * Counterpart to Solidity\u0027s `%` operator. This function uses a `revert`\n * opcode (which leaves remaining gas untouched) while Solidity uses an\n * invalid opcode to revert (consuming all remaining gas).\n *\n * Requirements:\n * - The divisor cannot be zero.\n */\n function mod(uint256 a, uint256 b) internal pure returns (uint256) {\n return mod(a, b, \"SafeMath: modulo by zero\");\n }\n\n /**\n * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),\n * Reverts with custom message when dividing by zero.\n *\n * Counterpart to Solidity\u0027s `%` operator. This function uses a `revert`\n * opcode (which leaves remaining gas untouched) while Solidity uses an\n * invalid opcode to revert (consuming all remaining gas).\n *\n * Requirements:\n * - The divisor cannot be zero.\n *\n * _Available since v2.4.0._\n */\n function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {\n require(b != 0, errorMessage);\n return a % b;\n }\n}"},"Stake_FRAX_FXS.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\npragma experimental ABIEncoderV2;\n\nimport \"./StakingRewards.sol\";\n\ncontract Stake_FRAX_FXS is StakingRewards {\n constructor(\n address _owner,\n address _rewardsDistribution,\n address _rewardsToken,\n address _stakingToken,\n address _frax_address,\n address _timelock_address,\n uint256 _pool_weight\n ) \n StakingRewards(_owner, _rewardsDistribution, _rewardsToken, _stakingToken, _frax_address, _timelock_address, _pool_weight)\n public {}\n}"},"Stake_FRAX_USDC.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\npragma experimental ABIEncoderV2;\n\nimport \"./StakingRewards.sol\";\n\ncontract Stake_FRAX_USDC is StakingRewards {\n constructor(\n address _owner,\n address _rewardsDistribution,\n address _rewardsToken,\n address _stakingToken,\n address _frax_address,\n address _timelock_address,\n uint256 _pool_weight\n ) \n StakingRewards(_owner, _rewardsDistribution, _rewardsToken, _stakingToken, _frax_address, _timelock_address, _pool_weight)\n public {}\n}"},"Stake_FRAX_WETH.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\npragma experimental ABIEncoderV2;\n\nimport \"./StakingRewards.sol\";\n\ncontract Stake_FRAX_WETH is StakingRewards {\n constructor(\n address _owner,\n address _rewardsDistribution,\n address _rewardsToken,\n address _stakingToken,\n address _frax_address,\n address _timelock_address,\n uint256 _pool_weight\n ) \n StakingRewards(_owner, _rewardsDistribution, _rewardsToken, _stakingToken, _frax_address, _timelock_address, _pool_weight)\n public {}\n}"},"Stake_FXS_WETH.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\npragma experimental ABIEncoderV2;\n\nimport \"./StakingRewards.sol\";\n\ncontract Stake_FXS_WETH is StakingRewards {\n constructor(\n address _owner,\n address _rewardsDistribution,\n address _rewardsToken,\n address _stakingToken,\n address _frax_address,\n address _timelock_address,\n uint256 _pool_weight\n ) \n StakingRewards(_owner, _rewardsDistribution, _rewardsToken, _stakingToken, _frax_address, _timelock_address, _pool_weight)\n public {}\n}"},"StakingRewards.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\npragma experimental ABIEncoderV2;\n\n// Stolen with love from Synthetixio\n// https://raw.githubusercontent.com/Synthetixio/synthetix/develop/contracts/StakingRewards.sol\n\nimport \"./Math.sol\";\nimport \"./SafeMath.sol\";\nimport \"./ERC20.sol\";\nimport \u0027./TransferHelper.sol\u0027;\nimport \"./SafeERC20.sol\";\nimport \"./Frax.sol\";\nimport \"./ReentrancyGuard.sol\";\nimport \"./StringHelpers.sol\";\n\n// Inheritance\nimport \"./IStakingRewards.sol\";\nimport \"./RewardsDistributionRecipient.sol\";\nimport \"./Pausable.sol\";\n\ncontract StakingRewards is IStakingRewards, RewardsDistributionRecipient, ReentrancyGuard, Pausable {\n using SafeMath for uint256;\n using SafeERC20 for ERC20;\n\n /* ========== STATE VARIABLES ========== */\n\n FRAXStablecoin private FRAX;\n ERC20 public rewardsToken;\n ERC20 public stakingToken;\n uint256 public periodFinish;\n\n // Constant for various precisions\n uint256 private constant PRICE_PRECISION = 1e6;\n uint256 private constant MULTIPLIER_BASE = 1e6;\n\n // Max reward per second\n uint256 public rewardRate;\n\n // uint256 public rewardsDuration = 86400 hours;\n uint256 public rewardsDuration = 604800; // 7 * 86400 (7 days)\n\n uint256 public lastUpdateTime;\n uint256 public rewardPerTokenStored = 0;\n uint256 private pool_weight; // This staking pool\u0027s percentage of the total FXS being distributed by all pools, 6 decimals of precision\n\n address public owner_address;\n address public timelock_address; // Governance timelock address\n\n uint256 public locked_stake_max_multiplier = 3000000; // 6 decimals of precision. 1x = 1000000\n uint256 public locked_stake_time_for_max_multiplier = 3 * 365 * 86400; // 3 years\n uint256 public locked_stake_min_time = 604800; // 7 * 86400 (7 days)\n string private locked_stake_min_time_str = \"604800\"; // 7 days on genesis\n\n uint256 public cr_boost_max_multiplier = 3000000; // 6 decimals of precision. 1x = 1000000\n\n mapping(address =\u003e uint256) public userRewardPerTokenPaid;\n mapping(address =\u003e uint256) public rewards;\n\n uint256 private _staking_token_supply = 0;\n uint256 private _staking_token_boosted_supply = 0;\n mapping(address =\u003e uint256) private _unlocked_balances;\n mapping(address =\u003e uint256) private _locked_balances;\n mapping(address =\u003e uint256) private _boosted_balances;\n\n mapping(address =\u003e LockedStake[]) private lockedStakes;\n\n mapping(address =\u003e bool) public greylist;\n\n bool public unlockedStakes; // Release lock stakes in case of system migration\n\n struct LockedStake {\n bytes32 kek_id;\n uint256 start_timestamp;\n uint256 amount;\n uint256 ending_timestamp;\n uint256 multiplier; // 6 decimals of precision. 1x = 1000000\n }\n\n /* ========== CONSTRUCTOR ========== */\n\n constructor(\n address _owner,\n address _rewardsDistribution,\n address _rewardsToken,\n address _stakingToken,\n address _frax_address,\n address _timelock_address,\n uint256 _pool_weight\n ) public Owned(_owner){\n owner_address = _owner;\n rewardsToken = ERC20(_rewardsToken);\n stakingToken = ERC20(_stakingToken);\n FRAX = FRAXStablecoin(_frax_address);\n rewardsDistribution = _rewardsDistribution;\n lastUpdateTime = block.timestamp;\n timelock_address = _timelock_address;\n pool_weight = _pool_weight;\n rewardRate = 380517503805175038; // (uint256(12000000e18)).div(365 * 86400); // Base emission rate of 12M FXS over the first year\n rewardRate = rewardRate.mul(pool_weight).div(1e6);\n unlockedStakes = false;\n }\n\n /* ========== VIEWS ========== */\n\n function totalSupply() external override view returns (uint256) {\n return _staking_token_supply;\n }\n\n function totalBoostedSupply() external view returns (uint256) {\n return _staking_token_boosted_supply;\n }\n\n function stakingMultiplier(uint256 secs) public view returns (uint256) {\n uint256 multiplier = uint(MULTIPLIER_BASE).add(secs.mul(locked_stake_max_multiplier.sub(MULTIPLIER_BASE)).div(locked_stake_time_for_max_multiplier));\n if (multiplier \u003e locked_stake_max_multiplier) multiplier = locked_stake_max_multiplier;\n return multiplier;\n }\n\n function crBoostMultiplier() public view returns (uint256) {\n uint256 multiplier = uint(MULTIPLIER_BASE).add((uint(MULTIPLIER_BASE).sub(FRAX.global_collateral_ratio())).mul(cr_boost_max_multiplier.sub(MULTIPLIER_BASE)).div(MULTIPLIER_BASE) );\n return multiplier;\n }\n\n // Total unlocked and locked liquidity tokens\n function balanceOf(address account) external override view returns (uint256) {\n return (_unlocked_balances[account]).add(_locked_balances[account]);\n }\n\n // Total unlocked liquidity tokens\n function unlockedBalanceOf(address account) external view returns (uint256) {\n return _unlocked_balances[account];\n }\n\n // Total locked liquidity tokens\n function lockedBalanceOf(address account) public view returns (uint256) {\n return _locked_balances[account];\n }\n\n // Total \u0027balance\u0027 used for calculating the percent of the pool the account owns\n // Takes into account the locked stake time multiplier\n function boostedBalanceOf(address account) external view returns (uint256) {\n return _boosted_balances[account];\n }\n\n function lockedStakesOf(address account) external view returns (LockedStake[] memory) {\n return lockedStakes[account];\n }\n\n function stakingDecimals() external view returns (uint256) {\n return stakingToken.decimals();\n }\n\n function rewardsFor(address account) external view returns (uint256) {\n // You may have use earned() instead, because of the order in which the contract executes \n return rewards[account];\n }\n\n function lastTimeRewardApplicable() public override view returns (uint256) {\n return Math.min(block.timestamp, periodFinish);\n }\n\n function rewardPerToken() public override view returns (uint256) {\n if (_staking_token_supply == 0) {\n return rewardPerTokenStored;\n }\n else {\n return rewardPerTokenStored.add(\n lastTimeRewardApplicable().sub(lastUpdateTime).mul(rewardRate).mul(crBoostMultiplier()).mul(1e18).div(PRICE_PRECISION).div(_staking_token_boosted_supply)\n );\n }\n }\n\n function earned(address account) public override view returns (uint256) {\n return _boosted_balances[account].mul(rewardPerToken().sub(userRewardPerTokenPaid[account])).div(1e18).add(rewards[account]);\n }\n\n // function earned(address account) public override view returns (uint256) {\n // return _balances[account].mul(rewardPerToken().sub(userRewardPerTokenPaid[account])).add(rewards[account]);\n // }\n\n function getRewardForDuration() external override view returns (uint256) {\n return rewardRate.mul(rewardsDuration).mul(crBoostMultiplier()).div(PRICE_PRECISION);\n }\n\n /* ========== MUTATIVE FUNCTIONS ========== */\n\n function stake(uint256 amount) external override nonReentrant notPaused updateReward(msg.sender) {\n require(amount \u003e 0, \"Cannot stake 0\");\n require(greylist[msg.sender] == false, \"address has been greylisted\");\n\n // Pull the tokens from the staker\n TransferHelper.safeTransferFrom(address(stakingToken), msg.sender, address(this), amount);\n\n // Staking token supply and boosted supply\n _staking_token_supply = _staking_token_supply.add(amount);\n _staking_token_boosted_supply = _staking_token_boosted_supply.add(amount);\n\n // Staking token balance and boosted balance\n _unlocked_balances[msg.sender] = _unlocked_balances[msg.sender].add(amount);\n _boosted_balances[msg.sender] = _boosted_balances[msg.sender].add(amount);\n\n emit Staked(msg.sender, amount);\n }\n\n function stakeLocked(uint256 amount, uint256 secs) external nonReentrant notPaused updateReward(msg.sender) {\n require(amount \u003e 0, \"Cannot stake 0\");\n require(secs \u003e 0, \"Cannot wait for a negative number\");\n require(greylist[msg.sender] == false, \"address has been greylisted\");\n require(secs \u003e= locked_stake_min_time, StringHelpers.strConcat(\"Minimum stake time not met (\", locked_stake_min_time_str, \")\") );\n\n uint256 multiplier = stakingMultiplier(secs);\n uint256 boostedAmount = amount.mul(multiplier).div(PRICE_PRECISION);\n lockedStakes[msg.sender].push(LockedStake(\n keccak256(abi.encodePacked(msg.sender, block.timestamp, amount)),\n block.timestamp,\n amount,\n block.timestamp.add(secs),\n multiplier\n ));\n\n // Pull the tokens from the staker\n TransferHelper.safeTransferFrom(address(stakingToken), msg.sender, address(this), amount);\n\n // Staking token supply and boosted supply\n _staking_token_supply = _staking_token_supply.add(amount);\n _staking_token_boosted_supply = _staking_token_boosted_supply.add(boostedAmount);\n\n // Staking token balance and boosted balance\n _locked_balances[msg.sender] = _locked_balances[msg.sender].add(amount);\n _boosted_balances[msg.sender] = _boosted_balances[msg.sender].add(boostedAmount);\n\n emit StakeLocked(msg.sender, amount, secs);\n }\n\n function withdraw(uint256 amount) public override nonReentrant updateReward(msg.sender) {\n require(amount \u003e 0, \"Cannot withdraw 0\");\n\n // Staking token balance and boosted balance\n _unlocked_balances[msg.sender] = _unlocked_balances[msg.sender].sub(amount);\n _boosted_balances[msg.sender] = _boosted_balances[msg.sender].sub(amount);\n\n // Staking token supply and boosted supply\n _staking_token_supply = _staking_token_supply.sub(amount);\n _staking_token_boosted_supply = _staking_token_boosted_supply.sub(amount);\n\n // Give the tokens to the withdrawer\n stakingToken.safeTransfer(msg.sender, amount);\n emit Withdrawn(msg.sender, amount);\n }\n\n function withdrawLocked(bytes32 kek_id) public nonReentrant updateReward(msg.sender) {\n LockedStake memory thisStake;\n thisStake.amount = 0;\n uint theIndex;\n for (uint i = 0; i \u003c lockedStakes[msg.sender].length; i++){ \n if (kek_id == lockedStakes[msg.sender][i].kek_id){\n thisStake = lockedStakes[msg.sender][i];\n theIndex = i;\n break;\n }\n }\n require(thisStake.kek_id == kek_id, \"Stake not found\");\n require(block.timestamp \u003e= thisStake.ending_timestamp || unlockedStakes == true, \"Stake is still locked!\");\n\n uint256 theAmount = thisStake.amount;\n uint256 boostedAmount = theAmount.mul(thisStake.multiplier).div(PRICE_PRECISION);\n if (theAmount \u003e 0){\n // Staking token balance and boosted balance\n _locked_balances[msg.sender] = _locked_balances[msg.sender].sub(theAmount);\n _boosted_balances[msg.sender] = _boosted_balances[msg.sender].sub(boostedAmount);\n\n // Staking token supply and boosted supply\n _staking_token_supply = _staking_token_supply.sub(theAmount);\n _staking_token_boosted_supply = _staking_token_boosted_supply.sub(boostedAmount);\n\n // Remove the stake from the array\n delete lockedStakes[msg.sender][theIndex];\n\n // Give the tokens to the withdrawer\n stakingToken.safeTransfer(msg.sender, theAmount);\n\n emit WithdrawnLocked(msg.sender, theAmount, kek_id);\n }\n\n }\n\n function getReward() public override nonReentrant updateReward(msg.sender) {\n uint256 reward = rewards[msg.sender];\n if (reward \u003e 0) {\n rewards[msg.sender] = 0;\n rewardsToken.transfer(msg.sender, reward);\n emit RewardPaid(msg.sender, reward);\n }\n }\n/*\n function exit() external override {\n withdraw(_balances[msg.sender]);\n\n // TODO: Add locked stakes too?\n\n getReward();\n }\n*/\n function renewIfApplicable() external {\n if (block.timestamp \u003e periodFinish) {\n retroCatchUp();\n }\n }\n\n // If the period expired, renew it\n function retroCatchUp() internal {\n // Failsafe check\n require(block.timestamp \u003e periodFinish, \"Period has not expired yet!\");\n\n // Ensure the provided reward amount is not more than the balance in the contract.\n // This keeps the reward rate in the right range, preventing overflows due to\n // very high values of rewardRate in the earned and rewardsPerToken functions;\n // Reward + leftover must be less than 2^256 / 10^18 to avoid overflow.\n uint256 num_periods_elapsed = uint256(block.timestamp.sub(periodFinish)) / rewardsDuration; // Floor division to the nearest period\n uint balance = rewardsToken.balanceOf(address(this));\n require(rewardRate.mul(rewardsDuration).mul(crBoostMultiplier()).mul(num_periods_elapsed + 1).div(PRICE_PRECISION) \u003c= balance, \"Not enough FXS available for rewards!\");\n\n // uint256 old_lastUpdateTime = lastUpdateTime;\n // uint256 new_lastUpdateTime = block.timestamp;\n\n // lastUpdateTime = periodFinish;\n periodFinish = periodFinish.add((num_periods_elapsed.add(1)).mul(rewardsDuration));\n\n rewardPerTokenStored = rewardPerToken();\n lastUpdateTime = lastTimeRewardApplicable();\n\n emit RewardsPeriodRenewed(address(stakingToken));\n }\n\n /* ========== RESTRICTED FUNCTIONS ========== */\n/*\n // This notifies people that the reward is being changed\n function notifyRewardAmount(uint256 reward) external override onlyRewardsDistribution updateReward(address(0)) {\n // Needed to make compiler happy\n\n \n // if (block.timestamp \u003e= periodFinish) {\n // rewardRate = reward.mul(crBoostMultiplier()).div(rewardsDuration).div(PRICE_PRECISION);\n // } else {\n // uint256 remaining = periodFinish.sub(block.timestamp);\n // uint256 leftover = remaining.mul(rewardRate);\n // rewardRate = reward.mul(crBoostMultiplier()).add(leftover).div(rewardsDuration).div(PRICE_PRECISION);\n // }\n\n // // Ensure the provided reward amount is not more than the balance in the contract.\n // // This keeps the reward rate in the right range, preventing overflows due to\n // // very high values of rewardRate in the earned and rewardsPerToken functions;\n // // Reward + leftover must be less than 2^256 / 10^18 to avoid overflow.\n // uint balance = rewardsToken.balanceOf(address(this));\n // require(rewardRate \u003c= balance.div(rewardsDuration), \"Provided reward too high\");\n\n // lastUpdateTime = block.timestamp;\n // periodFinish = block.timestamp.add(rewardsDuration);\n // emit RewardAdded(reward);\n }\n*/\n // Added to support recovering LP Rewards from other systems to be distributed to holders\n function recoverERC20(address tokenAddress, uint256 tokenAmount) external onlyByOwnerOrGovernance {\n // Admin cannot withdraw the staking token from the contract\n require(tokenAddress != address(stakingToken));\n ERC20(tokenAddress).transfer(owner_address, tokenAmount);\n emit Recovered(tokenAddress, tokenAmount);\n }\n\n function setRewardsDuration(uint256 _rewardsDuration) external onlyByOwnerOrGovernance {\n require(\n periodFinish == 0 || block.timestamp \u003e periodFinish,\n \"Previous rewards period must be complete before changing the duration for the new period\"\n );\n rewardsDuration = _rewardsDuration;\n emit RewardsDurationUpdated(rewardsDuration);\n }\n\n function setMultipliers(uint256 _locked_stake_max_multiplier, uint256 _cr_boost_max_multiplier) external onlyByOwnerOrGovernance {\n require(_locked_stake_max_multiplier \u003e= 1, \"Multiplier must be greater than or equal to 1\");\n require(_cr_boost_max_multiplier \u003e= 1, \"Max CR Boost must be greater than or equal to 1\");\n\n locked_stake_max_multiplier = _locked_stake_max_multiplier;\n cr_boost_max_multiplier = _cr_boost_max_multiplier;\n \n emit MaxCRBoostMultiplier(cr_boost_max_multiplier);\n emit LockedStakeMaxMultiplierUpdated(locked_stake_max_multiplier);\n }\n\n function setLockedStakeTimeForMinAndMaxMultiplier(uint256 _locked_stake_time_for_max_multiplier, uint256 _locked_stake_min_time) external onlyByOwnerOrGovernance {\n require(_locked_stake_time_for_max_multiplier \u003e= 1, \"Multiplier Max Time must be greater than or equal to 1\");\n require(_locked_stake_min_time \u003e= 1, \"Multiplier Min Time must be greater than or equal to 1\");\n \n locked_stake_time_for_max_multiplier = _locked_stake_time_for_max_multiplier;\n\n locked_stake_min_time = _locked_stake_min_time;\n locked_stake_min_time_str = StringHelpers.uint2str(_locked_stake_min_time);\n\n emit LockedStakeTimeForMaxMultiplier(locked_stake_time_for_max_multiplier);\n emit LockedStakeMinTime(_locked_stake_min_time);\n }\n\n function initializeDefault() external onlyByOwnerOrGovernance {\n lastUpdateTime = block.timestamp;\n periodFinish = block.timestamp.add(rewardsDuration);\n emit DefaultInitialization();\n }\n\n function greylistAddress(address _address) external onlyByOwnerOrGovernance {\n greylist[_address] = !(greylist[_address]);\n }\n\n function unlockStakes() external onlyByOwnerOrGovernance {\n unlockedStakes = !unlockedStakes;\n }\n\n function setRewardRate(uint256 _new_rate) external onlyByOwnerOrGovernance {\n rewardRate = _new_rate;\n }\n\n function setOwnerAndTimelock(address _new_owner, address _new_timelock) external onlyByOwnerOrGovernance {\n owner_address = _new_owner;\n timelock_address = _new_timelock;\n }\n\n /* ========== MODIFIERS ========== */\n\n modifier updateReward(address account) {\n // Need to retro-adjust some things if the period hasn\u0027t been renewed, then start a new one\n if (block.timestamp \u003e periodFinish) {\n retroCatchUp();\n }\n else {\n rewardPerTokenStored = rewardPerToken();\n lastUpdateTime = lastTimeRewardApplicable();\n }\n if (account != address(0)) {\n rewards[account] = earned(account);\n userRewardPerTokenPaid[account] = rewardPerTokenStored;\n }\n _;\n }\n\n modifier onlyByOwnerOrGovernance() {\n require(msg.sender == owner_address || msg.sender == timelock_address, \"You are not the owner or the governance timelock\");\n _;\n }\n\n /* ========== EVENTS ========== */\n\n event RewardAdded(uint256 reward);\n event Staked(address indexed user, uint256 amount);\n event StakeLocked(address indexed user, uint256 amount, uint256 secs);\n event Withdrawn(address indexed user, uint256 amount);\n event WithdrawnLocked(address indexed user, uint256 amount, bytes32 kek_id);\n event RewardPaid(address indexed user, uint256 reward);\n event RewardsDurationUpdated(uint256 newDuration);\n event Recovered(address token, uint256 amount);\n event RewardsPeriodRenewed(address token);\n event DefaultInitialization();\n event LockedStakeMaxMultiplierUpdated(uint256 multiplier);\n event LockedStakeTimeForMaxMultiplier(uint256 secs);\n event LockedStakeMinTime(uint256 secs);\n event MaxCRBoostMultiplier(uint256 multiplier);\n}\n"},"StringHelpers.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\n\nlibrary StringHelpers {\n function parseAddr(string memory _a) internal pure returns (address _parsedAddress) {\n bytes memory tmp = bytes(_a);\n uint160 iaddr = 0;\n uint160 b1;\n uint160 b2;\n for (uint i = 2; i \u003c 2 + 2 * 20; i += 2) {\n iaddr *= 256;\n b1 = uint160(uint8(tmp[i]));\n b2 = uint160(uint8(tmp[i + 1]));\n if ((b1 \u003e= 97) \u0026\u0026 (b1 \u003c= 102)) {\n b1 -= 87;\n } else if ((b1 \u003e= 65) \u0026\u0026 (b1 \u003c= 70)) {\n b1 -= 55;\n } else if ((b1 \u003e= 48) \u0026\u0026 (b1 \u003c= 57)) {\n b1 -= 48;\n }\n if ((b2 \u003e= 97) \u0026\u0026 (b2 \u003c= 102)) {\n b2 -= 87;\n } else if ((b2 \u003e= 65) \u0026\u0026 (b2 \u003c= 70)) {\n b2 -= 55;\n } else if ((b2 \u003e= 48) \u0026\u0026 (b2 \u003c= 57)) {\n b2 -= 48;\n }\n iaddr += (b1 * 16 + b2);\n }\n return address(iaddr);\n }\n\n function strCompare(string memory _a, string memory _b) internal pure returns (int _returnCode) {\n bytes memory a = bytes(_a);\n bytes memory b = bytes(_b);\n uint minLength = a.length;\n if (b.length \u003c minLength) {\n minLength = b.length;\n }\n for (uint i = 0; i \u003c minLength; i ++) {\n if (a[i] \u003c b[i]) {\n return -1;\n } else if (a[i] \u003e b[i]) {\n return 1;\n }\n }\n if (a.length \u003c b.length) {\n return -1;\n } else if (a.length \u003e b.length) {\n return 1;\n } else {\n return 0;\n }\n }\n\n function indexOf(string memory _haystack, string memory _needle) internal pure returns (int _returnCode) {\n bytes memory h = bytes(_haystack);\n bytes memory n = bytes(_needle);\n if (h.length \u003c 1 || n.length \u003c 1 || (n.length \u003e h.length)) {\n return -1;\n } else if (h.length \u003e (2 ** 128 - 1)) {\n return -1;\n } else {\n uint subindex = 0;\n for (uint i = 0; i \u003c h.length; i++) {\n if (h[i] == n[0]) {\n subindex = 1;\n while(subindex \u003c n.length \u0026\u0026 (i + subindex) \u003c h.length \u0026\u0026 h[i + subindex] == n[subindex]) {\n subindex++;\n }\n if (subindex == n.length) {\n return int(i);\n }\n }\n }\n return -1;\n }\n }\n\n function strConcat(string memory _a, string memory _b) internal pure returns (string memory _concatenatedString) {\n return strConcat(_a, _b, \"\", \"\", \"\");\n }\n\n function strConcat(string memory _a, string memory _b, string memory _c) internal pure returns (string memory _concatenatedString) {\n return strConcat(_a, _b, _c, \"\", \"\");\n }\n\n function strConcat(string memory _a, string memory _b, string memory _c, string memory _d) internal pure returns (string memory _concatenatedString) {\n return strConcat(_a, _b, _c, _d, \"\");\n }\n\n function strConcat(string memory _a, string memory _b, string memory _c, string memory _d, string memory _e) internal pure returns (string memory _concatenatedString) {\n bytes memory _ba = bytes(_a);\n bytes memory _bb = bytes(_b);\n bytes memory _bc = bytes(_c);\n bytes memory _bd = bytes(_d);\n bytes memory _be = bytes(_e);\n string memory abcde = new string(_ba.length + _bb.length + _bc.length + _bd.length + _be.length);\n bytes memory babcde = bytes(abcde);\n uint k = 0;\n uint i = 0;\n for (i = 0; i \u003c _ba.length; i++) {\n babcde[k++] = _ba[i];\n }\n for (i = 0; i \u003c _bb.length; i++) {\n babcde[k++] = _bb[i];\n }\n for (i = 0; i \u003c _bc.length; i++) {\n babcde[k++] = _bc[i];\n }\n for (i = 0; i \u003c _bd.length; i++) {\n babcde[k++] = _bd[i];\n }\n for (i = 0; i \u003c _be.length; i++) {\n babcde[k++] = _be[i];\n }\n return string(babcde);\n }\n\n function safeParseInt(string memory _a) internal pure returns (uint _parsedInt) {\n return safeParseInt(_a, 0);\n }\n\n function safeParseInt(string memory _a, uint _b) internal pure returns (uint _parsedInt) {\n bytes memory bresult = bytes(_a);\n uint mint = 0;\n bool decimals = false;\n for (uint i = 0; i \u003c bresult.length; i++) {\n if ((uint(uint8(bresult[i])) \u003e= 48) \u0026\u0026 (uint(uint8(bresult[i])) \u003c= 57)) {\n if (decimals) {\n if (_b == 0) break;\n else _b--;\n }\n mint *= 10;\n mint += uint(uint8(bresult[i])) - 48;\n } else if (uint(uint8(bresult[i])) == 46) {\n require(!decimals, \u0027More than one decimal encountered in string!\u0027);\n decimals = true;\n } else {\n revert(\"Non-numeral character encountered in string!\");\n }\n }\n if (_b \u003e 0) {\n mint *= 10 ** _b;\n }\n return mint;\n }\n\n function parseInt(string memory _a) internal pure returns (uint _parsedInt) {\n return parseInt(_a, 0);\n }\n\n function parseInt(string memory _a, uint _b) internal pure returns (uint _parsedInt) {\n bytes memory bresult = bytes(_a);\n uint mint = 0;\n bool decimals = false;\n for (uint i = 0; i \u003c bresult.length; i++) {\n if ((uint(uint8(bresult[i])) \u003e= 48) \u0026\u0026 (uint(uint8(bresult[i])) \u003c= 57)) {\n if (decimals) {\n if (_b == 0) {\n break;\n } else {\n _b--;\n }\n }\n mint *= 10;\n mint += uint(uint8(bresult[i])) - 48;\n } else if (uint(uint8(bresult[i])) == 46) {\n decimals = true;\n }\n }\n if (_b \u003e 0) {\n mint *= 10 ** _b;\n }\n return mint;\n }\n\n function uint2str(uint _i) internal pure returns (string memory _uintAsString) {\n if (_i == 0) {\n return \"0\";\n }\n uint j = _i;\n uint len;\n while (j != 0) {\n len++;\n j /= 10;\n }\n bytes memory bstr = new bytes(len);\n uint k = len - 1;\n while (_i != 0) {\n bstr[k--] = byte(uint8(48 + _i % 10));\n _i /= 10;\n }\n return string(bstr);\n }\n}"},"SwapToPrice.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./IUniswapV2Pair.sol\u0027;\nimport \u0027./Babylonian.sol\u0027;\nimport \u0027./SafeMath.sol\u0027;\nimport \u0027./TransferHelper.sol\u0027;\nimport \u0027./IERC20.sol\u0027;\nimport \u0027./IUniswapV2Router01.sol\u0027;\nimport \u0027./UniswapV2Library.sol\u0027;\n\ncontract SwapToPrice {\n using SafeMath for uint256;\n\n IUniswapV2Router01 public immutable router;\n address public immutable factory;\n\n constructor(address factory_, IUniswapV2Router01 router_) public {\n factory = factory_;\n router = router_;\n }\n\n // computes the direction and magnitude of the profit-maximizing trade\n function computeProfitMaximizingTrade(\n uint256 truePriceTokenA,\n uint256 truePriceTokenB,\n uint256 reserveA,\n uint256 reserveB\n ) pure public returns (bool aToB, uint256 amountIn) {\n aToB = reserveA.mul(truePriceTokenB) / reserveB \u003c truePriceTokenA;\n\n uint256 invariant = reserveA.mul(reserveB);\n\n uint256 leftSide = Babylonian.sqrt(\n invariant.mul(aToB ? truePriceTokenA : truePriceTokenB).mul(1000) /\n uint256(aToB ? truePriceTokenB : truePriceTokenA).mul(997)\n );\n uint256 rightSide = (aToB ? reserveA.mul(1000) : reserveB.mul(1000)) / 997;\n\n // compute the amount that must be sent to move the price to the profit-maximizing price\n amountIn = leftSide.sub(rightSide);\n }\n\n // swaps an amount of either token such that the trade is profit-maximizing, given an external true price\n // true price is expressed in the ratio of token A to token B\n // caller must approve this contract to spend whichever token is intended to be swapped\n function swapToPrice(\n address tokenA,\n address tokenB,\n uint256 truePriceTokenA,\n uint256 truePriceTokenB,\n uint256 maxSpendTokenA,\n uint256 maxSpendTokenB,\n address to,\n uint256 deadline\n ) public {\n // true price is expressed as a ratio, so both values must be non-zero\n require(truePriceTokenA != 0 \u0026\u0026 truePriceTokenB != 0, \"ExampleSwapToPrice: ZERO_PRICE\");\n // caller can specify 0 for either if they wish to swap in only one direction, but not both\n require(maxSpendTokenA != 0 || maxSpendTokenB != 0, \"ExampleSwapToPrice: ZERO_SPEND\");\n\n bool aToB;\n uint256 amountIn;\n {\n (uint256 reserveA, uint256 reserveB) = UniswapV2Library.getReserves(factory, tokenA, tokenB);\n (aToB, amountIn) = computeProfitMaximizingTrade(\n truePriceTokenA, truePriceTokenB,\n reserveA, reserveB\n );\n }\n\n // spend up to the allowance of the token in\n uint256 maxSpend = aToB ? maxSpendTokenA : maxSpendTokenB;\n if (amountIn \u003e maxSpend) {\n amountIn = maxSpend;\n }\n\n address tokenIn = aToB ? tokenA : tokenB;\n address tokenOut = aToB ? tokenB : tokenA;\n TransferHelper.safeTransferFrom(tokenIn, msg.sender, address(this), amountIn);\n TransferHelper.safeApprove(tokenIn, address(router), amountIn);\n\n address[] memory path = new address[](2);\n path[0] = tokenIn;\n path[1] = tokenOut;\n\n router.swapExactTokensForTokens(\n amountIn,\n 0, // amountOutMin: we can skip computing this number because the math is tested\n path,\n to,\n deadline\n );\n }\n}"},"TestSwap.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \"./FakeCollateral_USDT.sol\";\nimport \"./FakeCollateral_WETH.sol\";\nimport \"./UniswapV2Router02_Modified.sol\";\n\n/* IGNORE THIS CONTRACT, ONLY USED FOR TESTING PURPOSES */\n\ncontract TestSwap {\n\taddress public USDT_address;\n\taddress public WETH_address;\n\tUniswapV2Router02_Modified public router;\n\tFakeCollateral_USDT USDT = FakeCollateral_USDT(USDT);\n\tFakeCollateral_WETH WETH = FakeCollateral_WETH(WETH);\n\n\tconstructor( \n\t\taddress _USDT_address, \n\t\taddress _WETH_address,\n\t\tUniswapV2Router02_Modified _router_address\n\t) public {\n\t\tUSDT_address = _USDT_address;\n\t\tWETH_address = _WETH_address;\n\t\trouter = UniswapV2Router02_Modified(_router_address);\n\t}\n\n\tfunction getPath() public returns (address[] memory) {\n\t\taddress[] memory path = new address[](2);\n\t\tpath[0] = USDT_address;\n\t\tpath[1] = WETH_address;\n\t\treturn path;\n\t}\n\n\tfunction swapUSDTforETH(uint256 amountIn, uint256 amountOutMin) public payable {\n\t\trequire(USDT.transferFrom(msg.sender, address(this), amountIn), \"transferFrom failed.\");\n\t\trequire(USDT.approve(address(router), amountIn), \"approve failed.\");\n\n\t\taddress[] memory path = new address[](2);\n\t\tpath[0] = USDT_address;\n\t\tpath[1] = WETH_address;\n\n\t\trouter.swapExactTokensForETH(amountIn, amountOutMin, path, msg.sender, block.timestamp);\n\t}\n\n}"},"Timelock.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \"./SafeMath.sol\";\n\ncontract Timelock {\n using SafeMath for uint;\n\n event NewAdmin(address indexed newAdmin);\n event NewPendingAdmin(address indexed newPendingAdmin);\n event NewDelay(uint indexed newDelay);\n event CancelTransaction(bytes32 indexed txHash, address indexed target, uint value, string signature, bytes data, uint eta);\n event ExecuteTransaction(bytes32 indexed txHash, address indexed target, uint value, string signature, bytes data, uint eta);\n event QueueTransaction(bytes32 indexed txHash, address indexed target, uint value, string signature, bytes data, uint eta);\n\n uint public constant GRACE_PERIOD = 14 days;\n uint public constant MINIMUM_DELAY = 2 days;\n uint public constant MAXIMUM_DELAY = 30 days;\n\n address public admin;\n address public pendingAdmin;\n uint public delay;\n\n mapping (bytes32 =\u003e bool) public queuedTransactions;\n\n\n constructor(address admin_, uint delay_) public {\n require(delay_ \u003e= MINIMUM_DELAY, \"Timelock::constructor: Delay must exceed minimum delay.\");\n require(delay_ \u003c= MAXIMUM_DELAY, \"Timelock::setDelay: Delay must not exceed maximum delay.\");\n\n admin = admin_;\n delay = delay_;\n }\n\n //function() external payable { }\n\n function setDelay(uint delay_) public {\n require(msg.sender == address(this), \"Timelock::setDelay: Call must come from Timelock.\");\n require(delay_ \u003e= MINIMUM_DELAY, \"Timelock::setDelay: Delay must exceed minimum delay.\");\n require(delay_ \u003c= MAXIMUM_DELAY, \"Timelock::setDelay: Delay must not exceed maximum delay.\");\n delay = delay_;\n\n emit NewDelay(delay);\n }\n\n function acceptAdmin() public {\n require(msg.sender == pendingAdmin, \"Timelock::acceptAdmin: Call must come from pendingAdmin.\");\n admin = msg.sender;\n pendingAdmin = address(0);\n\n emit NewAdmin(admin);\n }\n\n function setPendingAdmin(address pendingAdmin_) public {\n require(msg.sender == address(this), \"Timelock::setPendingAdmin: Call must come from Timelock.\");\n pendingAdmin = pendingAdmin_;\n\n emit NewPendingAdmin(pendingAdmin);\n }\n\n function queueTransaction(address target, uint value, string memory signature, bytes memory data, uint eta) public returns (bytes32) {\n require(msg.sender == admin, \"Timelock::queueTransaction: Call must come from admin.\");\n require(eta \u003e= getBlockTimestamp().add(delay), \"Timelock::queueTransaction: Estimated execution block must satisfy delay.\");\n\n bytes32 txHash = keccak256(abi.encode(target, value, signature, data, eta));\n queuedTransactions[txHash] = true;\n\n emit QueueTransaction(txHash, target, value, signature, data, eta);\n return txHash;\n }\n\n function cancelTransaction(address target, uint value, string memory signature, bytes memory data, uint eta) public {\n require(msg.sender == admin, \"Timelock::cancelTransaction: Call must come from admin.\");\n\n bytes32 txHash = keccak256(abi.encode(target, value, signature, data, eta));\n queuedTransactions[txHash] = false;\n\n emit CancelTransaction(txHash, target, value, signature, data, eta);\n }\n\n function executeTransaction(address target, uint value, string memory signature, bytes memory data, uint eta) public payable returns (bytes memory) {\n require(msg.sender == admin, \"Timelock::executeTransaction: Call must come from admin.\");\n\n bytes32 txHash = keccak256(abi.encode(target, value, signature, data, eta));\n require(queuedTransactions[txHash], \"Timelock::executeTransaction: Transaction hasn\u0027t been queued.\");\n require(getBlockTimestamp() \u003e= eta, \"Timelock::executeTransaction: Transaction hasn\u0027t surpassed time lock.\");\n require(getBlockTimestamp() \u003c= eta.add(GRACE_PERIOD), \"Timelock::executeTransaction: Transaction is stale.\");\n\n queuedTransactions[txHash] = false;\n\n bytes memory callData;\n\n if (bytes(signature).length == 0) {\n callData = data;\n } else {\n callData = abi.encodePacked(bytes4(keccak256(bytes(signature))), data);\n }\n\n // Execute the call\n (bool success, bytes memory returnData) = target.call{ value: value }(callData);\n require(success, \"Timelock::executeTransaction: Transaction execution reverted.\");\n\n emit ExecuteTransaction(txHash, target, value, signature, data, eta);\n\n return returnData;\n }\n\n function getBlockTimestamp() internal view returns (uint) {\n return block.timestamp;\n }\n}"},"TokenVesting.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \"./ERC20Custom.sol\";\nimport \"./ERC20.sol\";\nimport \"./SafeMath.sol\";\n\n/**\n * @title TokenVesting\n * @dev A token holder contract that can release its token balance gradually like a\n * typical vesting scheme, with a cliff and vesting period. Optionally revocable by the\n * owner.\n * \n * Modified from OpenZeppelin\u0027s TokenVesting.sol draft\n */\ncontract TokenVesting {\n // The vesting schedule is time-based (i.e. using block timestamps as opposed to e.g. block numbers), and is\n // therefore sensitive to timestamp manipulation (which is something miners can do, to a certain degree). Therefore,\n // it is recommended to avoid using short time durations (less than a minute). Typical vesting schemes, with a\n // cliff period of a year and a duration of four years, are safe to use.\n // solhint-disable not-rely-on-time\n\n using SafeMath for uint256;\n\n event TokensReleased(uint256 amount);\n event TokenVestingRevoked();\n\n // beneficiary of tokens after they are released\n address private _beneficiary;\n\n // owner (grantor) of the tokens\n address private _owner;\n\n // Durations and timestamps are expressed in UNIX time, the same units as block.timestamp.\n uint256 private _cliff;\n uint256 private _start;\n uint256 private _duration;\n\n address public _FXS_contract_address;\n ERC20 FXS;\n address public _timelock_address;\n bool public _revocable;\n\n uint256 private _released;\n bool public _revoked;\n\n /**\n * @dev Creates a vesting contract that vests its balance of any ERC20 token to the\n * beneficiary, gradually in a linear fashion until start + duration. By then all\n * of the balance will have vested.\n * @param beneficiary address of the beneficiary to whom vested tokens are transferred\n * @param cliffDuration duration in seconds of the cliff in which tokens will begin to vest\n * @param start the time (as Unix time) at which point vesting starts\n * @param duration duration in seconds of the period in which the tokens will vest\n * @param revocable whether the vesting is revocable or not\n */\n\n constructor(\n address beneficiary,\n uint256 start,\n uint256 cliffDuration,\n uint256 duration,\n bool revocable\n ) public {\n require(beneficiary != address(0), \"TokenVesting: beneficiary is the zero address\");\n // solhint-disable-next-line max-line-length\n require(cliffDuration \u003c= duration, \"TokenVesting: cliff is longer than duration\");\n require(duration \u003e 0, \"TokenVesting: duration is 0\");\n // solhint-disable-next-line max-line-length\n require(start.add(duration) \u003e block.timestamp, \"TokenVesting: final time is before current time\");\n\n _beneficiary = beneficiary;\n _revocable = revocable;\n _duration = duration;\n _cliff = start.add(cliffDuration);\n _start = start;\n _owner = msg.sender;\n }\n\n function setFXSAddress(address FXS_address) public {\n require(msg.sender == _owner, \"must be set by the owner\");\n _FXS_contract_address = FXS_address;\n FXS = ERC20(FXS_address);\n }\n\n function setTimelockAddress(address timelock_address) public {\n require(msg.sender == _owner, \"must be set by the owner\");\n _timelock_address = timelock_address;\n }\n\n /**\n * @return the beneficiary of the tokens.\n */\n function getBeneficiary() public view returns (address) {\n return _beneficiary;\n }\n\n /**\n * @return the cliff time of the token vesting.\n */\n function getCliff() public view returns (uint256) {\n return _cliff;\n }\n\n /**\n * @return the start time of the token vesting.\n */\n function getStart() public view returns (uint256) {\n return _start;\n }\n\n /**\n * @return the duration of the token vesting.\n */\n function getDuration() public view returns (uint256) {\n return _duration;\n }\n\n /**\n * @return true if the vesting is revocable.\n */\n function getRevocable() public view returns (bool) {\n return _revocable;\n }\n\n /**\n * @return the amount of the token released.\n */\n function getReleased() public view returns (uint256) {\n return _released;\n }\n\n /**\n * @return true if the token is revoked.\n */\n function getRevoked() public view returns (bool) {\n return _revoked;\n }\n\n /**\n * @notice Transfers vested tokens to beneficiary.\n */\n function release() public {\n require(msg.sender == _beneficiary, \"must be the beneficiary to release tokens\");\n uint256 unreleased = _releasableAmount();\n\n require(unreleased \u003e 0, \"TokenVesting: no tokens are due\");\n\n _released = _released.add(unreleased);\n\n FXS.transfer(_beneficiary, unreleased);\n\n emit TokensReleased(unreleased);\n }\n\n /**\n * @notice Allows the owner to revoke the vesting. Tokens already vested\n * remain in the contract, the rest are returned to the owner.\n */\n function revoke() public {\n require(msg.sender == _timelock_address, \"Must be called by the timelock contract\");\n require(_revocable, \"TokenVesting: cannot revoke\");\n require(!_revoked, \"TokenVesting: token already revoked\");\n\n uint256 balance = FXS.balanceOf(address(this));\n\n uint256 unreleased = _releasableAmount();\n uint256 refund = balance.sub(unreleased);\n\n _revoked = true;\n\n FXS.transfer(_owner, refund);\n\n emit TokenVestingRevoked();\n }\n\n // Added to support recovering possible airdrops\n function recoverERC20(address tokenAddress, uint256 tokenAmount) external {\n require(msg.sender == _beneficiary, \"Must be called by the beneficiary\");\n\n // Cannot recover the staking token or the rewards token\n require(tokenAddress != _FXS_contract_address, \"Cannot withdraw the FXS through this function\");\n ERC20(tokenAddress).transfer(_beneficiary, tokenAmount);\n }\n\n\n /**\n * @dev Calculates the amount that has already vested but hasn\u0027t been released yet.\n */\n function _releasableAmount() private view returns (uint256) {\n return _vestedAmount().sub(_released);\n }\n\n /**\n * @dev Calculates the amount that has already vested.\n */\n function _vestedAmount() private view returns (uint256) {\n uint256 currentBalance = FXS.balanceOf(address(this));\n uint256 totalBalance = currentBalance.add(_released);\n if (block.timestamp \u003c _cliff) {\n return 0;\n } else if (block.timestamp \u003e= _start.add(_duration) || _revoked) {\n return totalBalance;\n } else {\n return totalBalance.mul(block.timestamp.sub(_start)).div(_duration);\n }\n }\n\n uint256[44] private __gap;\n}\n"},"TransferHelper.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\n// helper methods for interacting with ERC20 tokens and sending ETH that do not consistently return true/false\nlibrary TransferHelper {\n function safeApprove(address token, address to, uint value) internal {\n // bytes4(keccak256(bytes(\u0027approve(address,uint256)\u0027)));\n (bool success, bytes memory data) = token.call(abi.encodeWithSelector(0x095ea7b3, to, value));\n require(success \u0026\u0026 (data.length == 0 || abi.decode(data, (bool))), \u0027TransferHelper: APPROVE_FAILED\u0027);\n }\n\n function safeTransfer(address token, address to, uint value) internal {\n // bytes4(keccak256(bytes(\u0027transfer(address,uint256)\u0027)));\n (bool success, bytes memory data) = token.call(abi.encodeWithSelector(0xa9059cbb, to, value));\n require(success \u0026\u0026 (data.length == 0 || abi.decode(data, (bool))), \u0027TransferHelper: TRANSFER_FAILED\u0027);\n }\n\n function safeTransferFrom(address token, address from, address to, uint value) internal {\n // bytes4(keccak256(bytes(\u0027transferFrom(address,address,uint256)\u0027)));\n (bool success, bytes memory data) = token.call(abi.encodeWithSelector(0x23b872dd, from, to, value));\n require(success \u0026\u0026 (data.length == 0 || abi.decode(data, (bool))), \u0027TransferHelper: TRANSFER_FROM_FAILED\u0027);\n }\n\n function safeTransferETH(address to, uint value) internal {\n (bool success,) = to.call{value:value}(new bytes(0));\n require(success, \u0027TransferHelper: ETH_TRANSFER_FAILED\u0027);\n }\n}"},"UniswapPairOracle.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./IUniswapV2Factory.sol\u0027;\nimport \u0027./IUniswapV2Pair.sol\u0027;\nimport \u0027./FixedPoint.sol\u0027;\n\nimport \u0027./UniswapV2OracleLibrary.sol\u0027;\nimport \u0027./UniswapV2Library.sol\u0027;\n\n// Fixed window oracle that recomputes the average price for the entire period once every period\n// Note that the price average is only guaranteed to be over at least 1 period, but may be over a longer period\ncontract UniswapPairOracle {\n using FixedPoint for *;\n \n address owner_address;\n address timelock_address;\n\n uint public PERIOD = 3600; // 1 hour TWAP (time-weighted average price)\n\n IUniswapV2Pair public immutable pair;\n address public immutable token0;\n address public immutable token1;\n\n uint public price0CumulativeLast;\n uint public price1CumulativeLast;\n uint32 public blockTimestampLast;\n FixedPoint.uq112x112 public price0Average;\n FixedPoint.uq112x112 public price1Average;\n\n modifier onlyByOwnerOrGovernance() {\n require(msg.sender == owner_address || msg.sender == timelock_address, \"You are not an owner or the governance timelock\");\n _;\n }\n\n constructor(address factory, address tokenA, address tokenB, address _owner_address, address _timelock_address) public {\n IUniswapV2Pair _pair = IUniswapV2Pair(UniswapV2Library.pairFor(factory, tokenA, tokenB));\n pair = _pair;\n token0 = _pair.token0();\n token1 = _pair.token1();\n price0CumulativeLast = _pair.price0CumulativeLast(); // Fetch the current accumulated price value (1 / 0)\n price1CumulativeLast = _pair.price1CumulativeLast(); // Fetch the current accumulated price value (0 / 1)\n uint112 reserve0;\n uint112 reserve1;\n (reserve0, reserve1, blockTimestampLast) = _pair.getReserves();\n require(reserve0 != 0 \u0026\u0026 reserve1 != 0, \u0027UniswapPairOracle: NO_RESERVES\u0027); // Ensure that there\u0027s liquidity in the pair\n\n owner_address = _owner_address;\n timelock_address = _timelock_address;\n }\n\n function setOwner(address _owner_address) external onlyByOwnerOrGovernance {\n owner_address = _owner_address;\n }\n\n function setTimelock(address _timelock_address) external onlyByOwnerOrGovernance {\n timelock_address = _timelock_address;\n }\n\n function setPeriod(uint _period) external onlyByOwnerOrGovernance {\n PERIOD = _period;\n }\n\n function update() external {\n (uint price0Cumulative, uint price1Cumulative, uint32 blockTimestamp) =\n UniswapV2OracleLibrary.currentCumulativePrices(address(pair));\n uint32 timeElapsed = blockTimestamp - blockTimestampLast; // Overflow is desired\n\n // Ensure that at least one full period has passed since the last update\n require(timeElapsed \u003e= PERIOD, \u0027UniswapPairOracle: PERIOD_NOT_ELAPSED\u0027);\n\n // Overflow is desired, casting never truncates\n // Cumulative price is in (uq112x112 price * seconds) units so we simply wrap it after division by time elapsed\n price0Average = FixedPoint.uq112x112(uint224((price0Cumulative - price0CumulativeLast) / timeElapsed));\n price1Average = FixedPoint.uq112x112(uint224((price1Cumulative - price1CumulativeLast) / timeElapsed));\n\n price0CumulativeLast = price0Cumulative;\n price1CumulativeLast = price1Cumulative;\n blockTimestampLast = blockTimestamp;\n }\n\n // Note this will always return 0 before update has been called successfully for the first time.\n function consult(address token, uint amountIn) external view returns (uint amountOut) {\n if (token == token0) {\n amountOut = price0Average.mul(amountIn).decode144();\n } else {\n require(token == token1, \u0027UniswapPairOracle: INVALID_TOKEN\u0027);\n amountOut = price1Average.mul(amountIn).decode144();\n }\n }\n}\n"},"UniswapPairOracle_FRAX_FXS.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./UniswapPairOracle.sol\u0027;\n\n// Fixed window oracle that recomputes the average price for the entire period once every period\n// Note that the price average is only guaranteed to be over at least 1 period, but may be over a longer period\ncontract UniswapPairOracle_FRAX_FXS is UniswapPairOracle {\n constructor(address factory, address tokenA, address tokenB, address owner_address, address timelock_address) \n UniswapPairOracle(factory, tokenA, tokenB, owner_address, timelock_address) \n public {}\n}"},"UniswapPairOracle_FRAX_USDC.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./UniswapPairOracle.sol\u0027;\n\n// Fixed window oracle that recomputes the average price for the entire period once every period\n// Note that the price average is only guaranteed to be over at least 1 period, but may be over a longer period\ncontract UniswapPairOracle_FRAX_USDC is UniswapPairOracle {\n constructor(address factory, address tokenA, address tokenB, address owner_address, address timelock_address) \n UniswapPairOracle(factory, tokenA, tokenB, owner_address, timelock_address) \n public {}\n}\n"},"UniswapPairOracle_FRAX_USDT.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./UniswapPairOracle.sol\u0027;\n\n// Fixed window oracle that recomputes the average price for the entire period once every period\n// Note that the price average is only guaranteed to be over at least 1 period, but may be over a longer period\ncontract UniswapPairOracle_FRAX_USDT is UniswapPairOracle {\n constructor(address factory, address tokenA, address tokenB, address owner_address, address timelock_address) \n UniswapPairOracle(factory, tokenA, tokenB, owner_address, timelock_address) \n public {}\n}\n"},"UniswapPairOracle_FRAX_WETH.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./UniswapPairOracle.sol\u0027;\n\n// Fixed window oracle that recomputes the average price for the entire period once every period\n// Note that the price average is only guaranteed to be over at least 1 period, but may be over a longer period\ncontract UniswapPairOracle_FRAX_WETH is UniswapPairOracle {\n constructor(address factory, address tokenA, address tokenB, address owner_address, address timelock_address) \n UniswapPairOracle(factory, tokenA, tokenB, owner_address, timelock_address) \n public {}\n}"},"UniswapPairOracle_FXS_USDC.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./UniswapPairOracle.sol\u0027;\n\n// Fixed window oracle that recomputes the average price for the entire period once every period\n// Note that the price average is only guaranteed to be over at least 1 period, but may be over a longer period\ncontract UniswapPairOracle_FXS_USDC is UniswapPairOracle {\n constructor(address factory, address tokenA, address tokenB, address owner_address, address timelock_address) \n UniswapPairOracle(factory, tokenA, tokenB, owner_address, timelock_address) \n public {}\n}"},"UniswapPairOracle_FXS_USDT.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./UniswapPairOracle.sol\u0027;\n\n// Fixed window oracle that recomputes the average price for the entire period once every period\n// Note that the price average is only guaranteed to be over at least 1 period, but may be over a longer period\ncontract UniswapPairOracle_FXS_USDT is UniswapPairOracle {\n constructor(address factory, address tokenA, address tokenB, address owner_address, address timelock_address) \n UniswapPairOracle(factory, tokenA, tokenB, owner_address, timelock_address) \n public {}\n}"},"UniswapPairOracle_FXS_WETH.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./UniswapPairOracle.sol\u0027;\n\n// Fixed window oracle that recomputes the average price for the entire period once every period\n// Note that the price average is only guaranteed to be over at least 1 period, but may be over a longer period\ncontract UniswapPairOracle_FXS_WETH is UniswapPairOracle {\n constructor(address factory, address tokenA, address tokenB, address owner_address, address timelock_address) \n UniswapPairOracle(factory, tokenA, tokenB, owner_address, timelock_address) \n public {}\n}"},"UniswapPairOracle_USDC_WETH.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./UniswapPairOracle.sol\u0027;\n\n// Fixed window oracle that recomputes the average price for the entire period once every period\n// Note that the price average is only guaranteed to be over at least 1 period, but may be over a longer period\ncontract UniswapPairOracle_USDC_WETH is UniswapPairOracle {\n constructor(address factory, address tokenA, address tokenB, address owner_address, address timelock_address) \n UniswapPairOracle(factory, tokenA, tokenB, owner_address, timelock_address) \n public {}\n}\n"},"UniswapPairOracle_USDT_WETH.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./UniswapPairOracle.sol\u0027;\n\n// Fixed window oracle that recomputes the average price for the entire period once every period\n// Note that the price average is only guaranteed to be over at least 1 period, but may be over a longer period\ncontract UniswapPairOracle_USDT_WETH is UniswapPairOracle {\n constructor(address factory, address tokenA, address tokenB, address owner_address, address timelock_address) \n UniswapPairOracle(factory, tokenA, tokenB, owner_address, timelock_address) \n public {}\n}\n"},"UniswapV2ERC20.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./IUniswapV2ERC20.sol\u0027;\nimport \u0027./SafeMath.sol\u0027;\n\ncontract UniswapV2ERC20 is IUniswapV2ERC20 {\n using SafeMath for uint;\n\n string public override constant name = \u0027Uniswap V2\u0027;\n string public override constant symbol = \u0027UNI-V2\u0027;\n uint8 public override constant decimals = 18;\n uint public override totalSupply;\n mapping(address =\u003e uint) public override balanceOf;\n mapping(address =\u003e mapping(address =\u003e uint)) public override allowance;\n\n bytes32 public override DOMAIN_SEPARATOR;\n // keccak256(\"Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)\");\n bytes32 public constant override PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;\n mapping(address =\u003e uint) public override nonces;\n\n event Approval(address indexed owner, address indexed spender, uint value);\n event Transfer(address indexed from, address indexed to, uint value);\n\n constructor() public {\n uint chainId;\n assembly {\n chainId := chainid()\n }\n DOMAIN_SEPARATOR = keccak256(\n abi.encode(\n keccak256(\u0027EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)\u0027),\n keccak256(bytes(name)),\n keccak256(bytes(\u00271\u0027)),\n chainId,\n address(this)\n )\n );\n }\n\n function _mint(address to, uint value) internal {\n totalSupply = totalSupply.add(value);\n balanceOf[to] = balanceOf[to].add(value);\n emit Transfer(address(0), to, value);\n }\n\n function _burn(address from, uint value) internal {\n balanceOf[from] = balanceOf[from].sub(value);\n totalSupply = totalSupply.sub(value);\n emit Transfer(from, address(0), value);\n }\n\n function _approve(address owner, address spender, uint value) private {\n allowance[owner][spender] = value;\n emit Approval(owner, spender, value);\n }\n\n function _transfer(address from, address to, uint value) private {\n balanceOf[from] = balanceOf[from].sub(value);\n balanceOf[to] = balanceOf[to].add(value);\n emit Transfer(from, to, value);\n }\n\n function approve(address spender, uint value) external override returns (bool) {\n _approve(msg.sender, spender, value);\n return true;\n }\n\n function transfer(address to, uint value) external override returns (bool) {\n _transfer(msg.sender, to, value);\n return true;\n }\n\n function transferFrom(address from, address to, uint value) external override returns (bool) {\n if (allowance[from][msg.sender] != uint(-1)) {\n allowance[from][msg.sender] = allowance[from][msg.sender].sub(value);\n }\n _transfer(from, to, value);\n return true;\n }\n\n function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external override {\n require(deadline \u003e= block.timestamp, \u0027UniswapV2: EXPIRED\u0027);\n bytes32 digest = keccak256(\n abi.encodePacked(\n \u0027\\x19\\x01\u0027,\n DOMAIN_SEPARATOR,\n keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[owner]++, deadline))\n )\n );\n address recoveredAddress = ecrecover(digest, v, r, s);\n require(recoveredAddress != address(0) \u0026\u0026 recoveredAddress == owner, \u0027UniswapV2: INVALID_SIGNATURE\u0027);\n _approve(owner, spender, value);\n }\n}\n"},"UniswapV2Factory.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./IUniswapV2Factory.sol\u0027;\nimport \u0027./UniswapV2Pair.sol\u0027;\n\ncontract UniswapV2Factory is IUniswapV2Factory {\n address public override feeTo;\n address public override feeToSetter;\n\n mapping(address =\u003e mapping(address =\u003e address)) public override getPair;\n address[] public override allPairs;\n\n event PairCreated(address indexed token0, address indexed token1, address pair, uint);\n\n constructor(address _feeToSetter) public {\n feeToSetter = _feeToSetter;\n }\n\n function allPairsLength() external override view returns (uint) {\n return allPairs.length;\n }\n\n function createPair(address tokenA, address tokenB) external override returns (address pair) {\n require(tokenA != tokenB, \u0027UniswapV2: IDENTICAL_ADDRESSES\u0027);\n (address token0, address token1) = tokenA \u003c tokenB ? (tokenA, tokenB) : (tokenB, tokenA);\n require(token0 != address(0), \u0027UniswapV2: ZERO_ADDRESS\u0027);\n require(getPair[token0][token1] == address(0), \u0027UniswapV2: PAIR_EXISTS\u0027); // single check is sufficient\n bytes memory bytecode = type(UniswapV2Pair).creationCode;\n bytes32 salt = keccak256(abi.encodePacked(token0, token1));\n\n // This creates a new contract\n assembly {\n pair := create2(0, add(bytecode, 32), mload(bytecode), salt)\n }\n IUniswapV2Pair(pair).initialize(token0, token1);\n getPair[token0][token1] = pair;\n getPair[token1][token0] = pair; // populate mapping in the reverse direction\n allPairs.push(pair);\n emit PairCreated(token0, token1, pair, allPairs.length);\n }\n\n function setFeeTo(address _feeTo) external override {\n require(msg.sender == feeToSetter, \u0027UniswapV2: FORBIDDEN\u0027);\n feeTo = _feeTo;\n }\n\n function setFeeToSetter(address _feeToSetter) external override {\n require(msg.sender == feeToSetter, \u0027UniswapV2: FORBIDDEN\u0027);\n feeToSetter = _feeToSetter;\n }\n}\n"},"UniswapV2Library.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./IUniswapV2Pair.sol\u0027;\nimport \u0027./IUniswapV2Factory.sol\u0027;\n\nimport \"./SafeMath.sol\";\n\nlibrary UniswapV2Library {\n using SafeMath for uint;\n\n // returns sorted token addresses, used to handle return values from pairs sorted in this order\n function sortTokens(address tokenA, address tokenB) internal pure returns (address token0, address token1) {\n require(tokenA != tokenB, \u0027UniswapV2Library: IDENTICAL_ADDRESSES\u0027);\n (token0, token1) = tokenA \u003c tokenB ? (tokenA, tokenB) : (tokenB, tokenA);\n require(token0 != address(0), \u0027UniswapV2Library: ZERO_ADDRESS\u0027);\n }\n\n // Less efficient than the CREATE2 method below\n function pairFor(address factory, address tokenA, address tokenB) internal view returns (address pair) {\n (address token0, address token1) = sortTokens(tokenA, tokenB);\n pair = IUniswapV2Factory(factory).getPair(token0, token1);\n }\n\n // calculates the CREATE2 address for a pair without making any external calls\n function pairForCreate2(address factory, address tokenA, address tokenB) internal pure returns (address pair) {\n (address token0, address token1) = sortTokens(tokenA, tokenB);\n pair = address(uint(keccak256(abi.encodePacked(\n hex\u0027ff\u0027,\n factory,\n keccak256(abi.encodePacked(token0, token1)),\n hex\u002796e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f\u0027 // init code hash\n )))); // this matches the CREATE2 in UniswapV2Factory.createPair\n }\n\n // fetches and sorts the reserves for a pair\n function getReserves(address factory, address tokenA, address tokenB) internal view returns (uint reserveA, uint reserveB) {\n (address token0,) = sortTokens(tokenA, tokenB);\n (uint reserve0, uint reserve1,) = IUniswapV2Pair(pairFor(factory, tokenA, tokenB)).getReserves();\n (reserveA, reserveB) = tokenA == token0 ? (reserve0, reserve1) : (reserve1, reserve0);\n }\n\n // given some amount of an asset and pair reserves, returns an equivalent amount of the other asset\n function quote(uint amountA, uint reserveA, uint reserveB) internal pure returns (uint amountB) {\n require(amountA \u003e 0, \u0027UniswapV2Library: INSUFFICIENT_AMOUNT\u0027);\n require(reserveA \u003e 0 \u0026\u0026 reserveB \u003e 0, \u0027UniswapV2Library: INSUFFICIENT_LIQUIDITY\u0027);\n amountB = amountA.mul(reserveB) / reserveA;\n }\n\n // given an input amount of an asset and pair reserves, returns the maximum output amount of the other asset\n function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) internal pure returns (uint amountOut) {\n require(amountIn \u003e 0, \u0027UniswapV2Library: INSUFFICIENT_INPUT_AMOUNT\u0027);\n require(reserveIn \u003e 0 \u0026\u0026 reserveOut \u003e 0, \u0027UniswapV2Library: INSUFFICIENT_LIQUIDITY\u0027);\n uint amountInWithFee = amountIn.mul(997);\n uint numerator = amountInWithFee.mul(reserveOut);\n uint denominator = reserveIn.mul(1000).add(amountInWithFee);\n amountOut = numerator / denominator;\n }\n\n // given an output amount of an asset and pair reserves, returns a required input amount of the other asset\n function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) internal pure returns (uint amountIn) {\n require(amountOut \u003e 0, \u0027UniswapV2Library: INSUFFICIENT_OUTPUT_AMOUNT\u0027);\n require(reserveIn \u003e 0 \u0026\u0026 reserveOut \u003e 0, \u0027UniswapV2Library: INSUFFICIENT_LIQUIDITY\u0027);\n uint numerator = reserveIn.mul(amountOut).mul(1000);\n uint denominator = reserveOut.sub(amountOut).mul(997);\n amountIn = (numerator / denominator).add(1);\n }\n\n // performs chained getAmountOut calculations on any number of pairs\n function getAmountsOut(address factory, uint amountIn, address[] memory path) internal view returns (uint[] memory amounts) {\n require(path.length \u003e= 2, \u0027UniswapV2Library: INVALID_PATH\u0027);\n amounts = new uint[](path.length);\n amounts[0] = amountIn;\n for (uint i; i \u003c path.length - 1; i++) {\n (uint reserveIn, uint reserveOut) = getReserves(factory, path[i], path[i + 1]);\n amounts[i + 1] = getAmountOut(amounts[i], reserveIn, reserveOut);\n }\n }\n\n // performs chained getAmountIn calculations on any number of pairs\n function getAmountsIn(address factory, uint amountOut, address[] memory path) internal view returns (uint[] memory amounts) {\n require(path.length \u003e= 2, \u0027UniswapV2Library: INVALID_PATH\u0027);\n amounts = new uint[](path.length);\n amounts[amounts.length - 1] = amountOut;\n for (uint i = path.length - 1; i \u003e 0; i--) {\n (uint reserveIn, uint reserveOut) = getReserves(factory, path[i - 1], path[i]);\n amounts[i - 1] = getAmountIn(amounts[i], reserveIn, reserveOut);\n }\n }\n}"},"UniswapV2OracleLibrary.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./IUniswapV2Pair.sol\u0027;\nimport \u0027./FixedPoint.sol\u0027;\n\n// library with helper methods for oracles that are concerned with computing average prices\nlibrary UniswapV2OracleLibrary {\n using FixedPoint for *;\n\n // helper function that returns the current block timestamp within the range of uint32, i.e. [0, 2**32 - 1]\n function currentBlockTimestamp() internal view returns (uint32) {\n return uint32(block.timestamp % 2 ** 32);\n }\n\n // produces the cumulative price using counterfactuals to save gas and avoid a call to sync.\n function currentCumulativePrices(\n address pair\n ) internal view returns (uint price0Cumulative, uint price1Cumulative, uint32 blockTimestamp) {\n blockTimestamp = currentBlockTimestamp();\n price0Cumulative = IUniswapV2Pair(pair).price0CumulativeLast();\n price1Cumulative = IUniswapV2Pair(pair).price1CumulativeLast();\n\n // if time has elapsed since the last update on the pair, mock the accumulated price values\n (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast) = IUniswapV2Pair(pair).getReserves();\n if (blockTimestampLast != blockTimestamp) {\n // subtraction overflow is desired\n uint32 timeElapsed = blockTimestamp - blockTimestampLast;\n // addition overflow is desired\n // counterfactual\n price0Cumulative += uint(FixedPoint.fraction(reserve1, reserve0)._x) * timeElapsed;\n // counterfactual\n price1Cumulative += uint(FixedPoint.fraction(reserve0, reserve1)._x) * timeElapsed;\n }\n }\n}"},"UniswapV2Pair.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\n\nimport \u0027./IUniswapV2Pair.sol\u0027;\nimport \u0027./UniswapV2ERC20.sol\u0027;\nimport \u0027./Math.sol\u0027;\nimport \u0027./UQ112x112.sol\u0027;\nimport \u0027./IERC20.sol\u0027;\nimport \u0027./IUniswapV2Factory.sol\u0027;\nimport \u0027./IUniswapV2Callee.sol\u0027;\n\ncontract UniswapV2Pair is IUniswapV2Pair {\n using SafeMath for uint;\n using UQ112x112 for uint224;\n\n string public override constant name = \u0027Uniswap V2\u0027;\n string public override constant symbol = \u0027UNI-V2\u0027;\n uint8 public override constant decimals = 18;\n uint public override totalSupply;\n mapping(address =\u003e uint) public override balanceOf;\n mapping(address =\u003e mapping(address =\u003e uint)) public override allowance;\n\n uint public override constant MINIMUM_LIQUIDITY = 10**3;\n bytes4 private constant SELECTOR = bytes4(keccak256(bytes(\u0027transfer(address,uint256)\u0027)));\n bytes32 public override DOMAIN_SEPARATOR;\n // keccak256(\"Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)\");\n bytes32 public constant override PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;\n mapping(address =\u003e uint) public override nonces;\n\n\n \n\n address public override factory;\n address public override token0;\n address public override token1;\n\n uint112 private reserve0; // uses single storage slot, accessible via getReserves\n uint112 private reserve1; // uses single storage slot, accessible via getReserves\n uint32 private blockTimestampLast; // uses single storage slot, accessible via getReserves\n\n uint public override price0CumulativeLast;\n uint public override price1CumulativeLast;\n uint public override kLast; // reserve0 * reserve1, as of immediately after the most recent liquidity event\n\n uint private unlocked = 1;\n modifier lock() {\n require(unlocked == 1, \u0027UniswapV2: LOCKED\u0027);\n unlocked = 0;\n _;\n unlocked = 1;\n }\n\n function getReserves() public override view returns (uint112 _reserve0, uint112 _reserve1, uint32 _blockTimestampLast) {\n _reserve0 = reserve0;\n _reserve1 = reserve1;\n _blockTimestampLast = blockTimestampLast;\n }\n\n function _safeTransfer(address token, address to, uint value) private {\n (bool success, bytes memory data) = token.call(abi.encodeWithSelector(SELECTOR, to, value));\n require(success \u0026\u0026 (data.length == 0 || abi.decode(data, (bool))), \u0027UniswapV2: TRANSFER_FAILED\u0027);\n }\n\n event Mint(address indexed sender, uint amount0, uint amount1);\n event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);\n event Swap(\n address indexed sender,\n uint amount0In,\n uint amount1In,\n uint amount0Out,\n uint amount1Out,\n address indexed to\n );\n event Sync(uint112 reserve0, uint112 reserve1);\n\n constructor() public {\n factory = msg.sender;\n }\n\n // called once by the factory at time of deployment\n function initialize(address _token0, address _token1) external override {\n require(msg.sender == factory, \u0027UniswapV2: FORBIDDEN\u0027); // sufficient check\n token0 = _token0;\n token1 = _token1;\n }\n\n // update reserves and, on the first call per block, price accumulators\n function _update(uint balance0, uint balance1, uint112 _reserve0, uint112 _reserve1) private {\n require(balance0 \u003c= uint112(-1) \u0026\u0026 balance1 \u003c= uint112(-1), \u0027UniswapV2: OVERFLOW\u0027);\n uint32 blockTimestamp = uint32(block.timestamp % 2**32);\n uint32 timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired\n if (timeElapsed \u003e 0 \u0026\u0026 _reserve0 != 0 \u0026\u0026 _reserve1 != 0) {\n // * never overflows, and + overflow is desired\n price0CumulativeLast += uint(UQ112x112.encode(_reserve1).uqdiv(_reserve0)) * timeElapsed;\n price1CumulativeLast += uint(UQ112x112.encode(_reserve0).uqdiv(_reserve1)) * timeElapsed;\n }\n reserve0 = uint112(balance0);\n reserve1 = uint112(balance1);\n blockTimestampLast = blockTimestamp;\n emit Sync(reserve0, reserve1);\n }\n\n // if fee is on, mint liquidity equivalent to 1/6th of the growth in sqrt(k)\n function _mintFee(uint112 _reserve0, uint112 _reserve1) private returns (bool feeOn) {\n address feeTo = IUniswapV2Factory(factory).feeTo();\n feeOn = feeTo != address(0);\n uint _kLast = kLast; // gas savings\n if (feeOn) {\n if (_kLast != 0) {\n uint rootK = Math.sqrt(uint(_reserve0).mul(_reserve1));\n uint rootKLast = Math.sqrt(_kLast);\n if (rootK \u003e rootKLast) {\n uint numerator = totalSupply.mul(rootK.sub(rootKLast));\n uint denominator = rootK.mul(5).add(rootKLast);\n uint liquidity = numerator / denominator;\n if (liquidity \u003e 0) _mint(feeTo, liquidity);\n }\n }\n } else if (_kLast != 0) {\n kLast = 0;\n }\n }\n\n // this low-level function should be called from a contract which performs important safety checks\n function mint(address to) external override lock returns (uint liquidity) {\n (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings\n uint balance0 = IERC20(token0).balanceOf(address(this));\n uint balance1 = IERC20(token1).balanceOf(address(this));\n uint amount0 = balance0.sub(_reserve0);\n uint amount1 = balance1.sub(_reserve1);\n bool feeOn = _mintFee(_reserve0, _reserve1);\n uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee\n\n if (_totalSupply == 0) {\n liquidity = Math.sqrt(amount0.mul(amount1)).sub(MINIMUM_LIQUIDITY);\n _mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY tokens\n } else {\n liquidity = Math.min(amount0.mul(_totalSupply) / _reserve0, amount1.mul(_totalSupply) / _reserve1);\n }\n\n require(liquidity \u003e 0, \u0027UniswapV2: INSUFFICIENT_LIQUIDITY_MINTED\u0027);\n _mint(to, liquidity);\n\n _update(balance0, balance1, _reserve0, _reserve1);\n if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date\n emit Mint(msg.sender, amount0, amount1);\n }\n\n // this low-level function should be called from a contract which performs important safety checks\n function burn(address to) external override lock returns (uint amount0, uint amount1) {\n (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings\n address _token0 = token0; // gas savings\n address _token1 = token1; // gas savings\n uint balance0 = IERC20(_token0).balanceOf(address(this));\n uint balance1 = IERC20(_token1).balanceOf(address(this));\n uint liquidity = balanceOf[address(this)];\n\n bool feeOn = _mintFee(_reserve0, _reserve1);\n uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee\n amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata distribution\n amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata distribution\n require(amount0 \u003e 0 \u0026\u0026 amount1 \u003e 0, \u0027UniswapV2: INSUFFICIENT_LIQUIDITY_BURNED\u0027);\n _burn(address(this), liquidity);\n _safeTransfer(_token0, to, amount0);\n _safeTransfer(_token1, to, amount1);\n balance0 = IERC20(_token0).balanceOf(address(this));\n balance1 = IERC20(_token1).balanceOf(address(this));\n\n _update(balance0, balance1, _reserve0, _reserve1);\n if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date\n emit Burn(msg.sender, amount0, amount1, to);\n }\n\n // this low-level function should be called from a contract which performs important safety checks\n function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external override lock {\n require(amount0Out \u003e 0 || amount1Out \u003e 0, \u0027UniswapV2: INSUFFICIENT_OUTPUT_AMOUNT\u0027);\n (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings\n require(amount0Out \u003c _reserve0 \u0026\u0026 amount1Out \u003c _reserve1, \u0027UniswapV2: INSUFFICIENT_LIQUIDITY\u0027);\n\n uint balance0;\n uint balance1;\n { // scope for _token{0,1}, avoids stack too deep errors\n address _token0 = token0;\n address _token1 = token1;\n require(to != _token0 \u0026\u0026 to != _token1, \u0027UniswapV2: INVALID_TO\u0027);\n if (amount0Out \u003e 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens\n if (amount1Out \u003e 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens\n if (data.length \u003e 0) IUniswapV2Callee(to).uniswapV2Call(msg.sender, amount0Out, amount1Out, data);\n balance0 = IERC20(_token0).balanceOf(address(this));\n balance1 = IERC20(_token1).balanceOf(address(this));\n }\n uint amount0In = balance0 \u003e _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0;\n uint amount1In = balance1 \u003e _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0;\n require(amount0In \u003e 0 || amount1In \u003e 0, \u0027UniswapV2: INSUFFICIENT_INPUT_AMOUNT\u0027);\n { // scope for reserve{0,1}Adjusted, avoids stack too deep errors\n uint balance0Adjusted = balance0.mul(1000).sub(amount0In.mul(3));\n uint balance1Adjusted = balance1.mul(1000).sub(amount1In.mul(3));\n require(balance0Adjusted.mul(balance1Adjusted) \u003e= uint(_reserve0).mul(_reserve1).mul(1000**2), \u0027UniswapV2: K\u0027);\n }\n\n _update(balance0, balance1, _reserve0, _reserve1);\n emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to);\n }\n\n // force balances to match reserves\n function skim(address to) external override lock {\n address _token0 = token0; // gas savings\n address _token1 = token1; // gas savings\n _safeTransfer(_token0, to, IERC20(_token0).balanceOf(address(this)).sub(reserve0));\n _safeTransfer(_token1, to, IERC20(_token1).balanceOf(address(this)).sub(reserve1));\n }\n\n // force reserves to match balances\n function sync() external override lock {\n _update(IERC20(token0).balanceOf(address(this)), IERC20(token1).balanceOf(address(this)), reserve0, reserve1);\n }\n\n\n\n // Migrated over from UniswapV2ERC20. Needed for ^0.6.0\n // ===============================================\n\n function _mint(address to, uint value) internal {\n totalSupply = totalSupply.add(value);\n balanceOf[to] = balanceOf[to].add(value);\n emit Transfer(address(0), to, value);\n }\n\n function _burn(address from, uint value) internal {\n balanceOf[from] = balanceOf[from].sub(value);\n totalSupply = totalSupply.sub(value);\n emit Transfer(from, address(0), value);\n }\n\n function _approve(address owner, address spender, uint value) private {\n allowance[owner][spender] = value;\n emit Approval(owner, spender, value);\n }\n\n function _transfer(address from, address to, uint value) private {\n balanceOf[from] = balanceOf[from].sub(value);\n balanceOf[to] = balanceOf[to].add(value);\n emit Transfer(from, to, value);\n }\n\n function approve(address spender, uint value) external override returns (bool) {\n _approve(msg.sender, spender, value);\n return true;\n }\n\n function transfer(address to, uint value) external override returns (bool) {\n _transfer(msg.sender, to, value);\n return true;\n }\n\n function transferFrom(address from, address to, uint value) external override returns (bool) {\n if (allowance[from][msg.sender] != uint(-1)) {\n allowance[from][msg.sender] = allowance[from][msg.sender].sub(value);\n }\n _transfer(from, to, value);\n return true;\n }\n\n function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external override {\n require(deadline \u003e= block.timestamp, \u0027UniswapV2: EXPIRED\u0027);\n bytes32 digest = keccak256(\n abi.encodePacked(\n \u0027\\x19\\x01\u0027,\n DOMAIN_SEPARATOR,\n keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[owner]++, deadline))\n )\n );\n address recoveredAddress = ecrecover(digest, v, r, s);\n require(recoveredAddress != address(0) \u0026\u0026 recoveredAddress == owner, \u0027UniswapV2: INVALID_SIGNATURE\u0027);\n _approve(owner, spender, value);\n }\n\n\n\n}"},"UniswapV2Router02.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./IUniswapV2Factory.sol\u0027;\nimport \u0027./TransferHelper.sol\u0027;\n\nimport \u0027./IUniswapV2Router02.sol\u0027;\nimport \u0027./UniswapV2Library.sol\u0027;\nimport \u0027./SafeMath.sol\u0027;\nimport \u0027./IERC20.sol\u0027;\nimport \u0027./IWETH.sol\u0027;\n\ncontract UniswapV2Router02 is IUniswapV2Router02 {\n using SafeMath for uint;\n\n address public immutable override factory;\n address public immutable override WETH;\n\n modifier ensure(uint deadline) {\n require(deadline \u003e= block.timestamp, \u0027UniswapV2Router: EXPIRED\u0027);\n _;\n }\n\n constructor(address _factory, address _WETH) public {\n factory = _factory;\n WETH = _WETH;\n }\n\n receive() external payable {\n assert(msg.sender == WETH); // only accept ETH via fallback from the WETH contract\n }\n\n // **** ADD LIQUIDITY ****\n function _addLiquidity(\n address tokenA,\n address tokenB,\n uint amountADesired,\n uint amountBDesired,\n uint amountAMin,\n uint amountBMin\n ) internal virtual returns (uint amountA, uint amountB) {\n // create the pair if it doesn\u0027t exist yet\n if (IUniswapV2Factory(factory).getPair(tokenA, tokenB) == address(0)) {\n IUniswapV2Factory(factory).createPair(tokenA, tokenB);\n }\n (uint reserveA, uint reserveB) = UniswapV2Library.getReserves(factory, tokenA, tokenB);\n if (reserveA == 0 \u0026\u0026 reserveB == 0) {\n (amountA, amountB) = (amountADesired, amountBDesired);\n } else {\n uint amountBOptimal = UniswapV2Library.quote(amountADesired, reserveA, reserveB);\n if (amountBOptimal \u003c= amountBDesired) {\n require(amountBOptimal \u003e= amountBMin, \u0027UniswapV2Router: INSUFFICIENT_B_AMOUNT\u0027);\n (amountA, amountB) = (amountADesired, amountBOptimal);\n } else {\n uint amountAOptimal = UniswapV2Library.quote(amountBDesired, reserveB, reserveA);\n assert(amountAOptimal \u003c= amountADesired);\n require(amountAOptimal \u003e= amountAMin, \u0027UniswapV2Router: INSUFFICIENT_A_AMOUNT\u0027);\n (amountA, amountB) = (amountAOptimal, amountBDesired);\n }\n }\n }\n function addLiquidity(\n address tokenA,\n address tokenB,\n uint amountADesired,\n uint amountBDesired,\n uint amountAMin,\n uint amountBMin,\n address to,\n uint deadline\n ) external virtual override ensure(deadline) returns (uint amountA, uint amountB, uint liquidity) {\n (amountA, amountB) = _addLiquidity(tokenA, tokenB, amountADesired, amountBDesired, amountAMin, amountBMin);\n address pair = UniswapV2Library.pairFor(factory, tokenA, tokenB);\n TransferHelper.safeTransferFrom(tokenA, msg.sender, pair, amountA);\n TransferHelper.safeTransferFrom(tokenB, msg.sender, pair, amountB);\n liquidity = IUniswapV2Pair(pair).mint(to);\n }\n function addLiquidityETH(\n address token,\n uint amountTokenDesired,\n uint amountTokenMin,\n uint amountETHMin,\n address to,\n uint deadline\n ) external virtual override payable ensure(deadline) returns (uint amountToken, uint amountETH, uint liquidity) {\n (amountToken, amountETH) = _addLiquidity(\n token,\n WETH,\n amountTokenDesired,\n msg.value,\n amountTokenMin,\n amountETHMin\n );\n address pair = UniswapV2Library.pairFor(factory, token, WETH);\n TransferHelper.safeTransferFrom(token, msg.sender, pair, amountToken);\n IWETH(WETH).deposit{value: amountETH}();\n assert(IWETH(WETH).transfer(pair, amountETH));\n liquidity = IUniswapV2Pair(pair).mint(to);\n // refund dust eth, if any\n if (msg.value \u003e amountETH) TransferHelper.safeTransferETH(msg.sender, msg.value - amountETH);\n }\n\n // **** REMOVE LIQUIDITY ****\n function removeLiquidity(\n address tokenA,\n address tokenB,\n uint liquidity,\n uint amountAMin,\n uint amountBMin,\n address to,\n uint deadline\n ) public virtual override ensure(deadline) returns (uint amountA, uint amountB) {\n address pair = UniswapV2Library.pairFor(factory, tokenA, tokenB);\n IUniswapV2Pair(pair).transferFrom(msg.sender, pair, liquidity); // send liquidity to pair\n (uint amount0, uint amount1) = IUniswapV2Pair(pair).burn(to);\n (address token0,) = UniswapV2Library.sortTokens(tokenA, tokenB);\n (amountA, amountB) = tokenA == token0 ? (amount0, amount1) : (amount1, amount0);\n require(amountA \u003e= amountAMin, \u0027UniswapV2Router: INSUFFICIENT_A_AMOUNT\u0027);\n require(amountB \u003e= amountBMin, \u0027UniswapV2Router: INSUFFICIENT_B_AMOUNT\u0027);\n }\n function removeLiquidityETH(\n address token,\n uint liquidity,\n uint amountTokenMin,\n uint amountETHMin,\n address to,\n uint deadline\n ) public virtual override ensure(deadline) returns (uint amountToken, uint amountETH) {\n (amountToken, amountETH) = removeLiquidity(\n token,\n WETH,\n liquidity,\n amountTokenMin,\n amountETHMin,\n address(this),\n deadline\n );\n TransferHelper.safeTransfer(token, to, amountToken);\n IWETH(WETH).withdraw(amountETH);\n TransferHelper.safeTransferETH(to, amountETH);\n }\n function removeLiquidityWithPermit(\n address tokenA,\n address tokenB,\n uint liquidity,\n uint amountAMin,\n uint amountBMin,\n address to,\n uint deadline,\n bool approveMax, uint8 v, bytes32 r, bytes32 s\n ) external virtual override returns (uint amountA, uint amountB) {\n address pair = UniswapV2Library.pairFor(factory, tokenA, tokenB);\n uint value = approveMax ? uint(-1) : liquidity;\n IUniswapV2Pair(pair).permit(msg.sender, address(this), value, deadline, v, r, s);\n (amountA, amountB) = removeLiquidity(tokenA, tokenB, liquidity, amountAMin, amountBMin, to, deadline);\n }\n function removeLiquidityETHWithPermit(\n address token,\n uint liquidity,\n uint amountTokenMin,\n uint amountETHMin,\n address to,\n uint deadline,\n bool approveMax, uint8 v, bytes32 r, bytes32 s\n ) external virtual override returns (uint amountToken, uint amountETH) {\n address pair = UniswapV2Library.pairFor(factory, token, WETH);\n uint value = approveMax ? uint(-1) : liquidity;\n IUniswapV2Pair(pair).permit(msg.sender, address(this), value, deadline, v, r, s);\n (amountToken, amountETH) = removeLiquidityETH(token, liquidity, amountTokenMin, amountETHMin, to, deadline);\n }\n\n // **** REMOVE LIQUIDITY (supporting fee-on-transfer tokens) ****\n function removeLiquidityETHSupportingFeeOnTransferTokens(\n address token,\n uint liquidity,\n uint amountTokenMin,\n uint amountETHMin,\n address to,\n uint deadline\n ) public virtual override ensure(deadline) returns (uint amountETH) {\n (, amountETH) = removeLiquidity(\n token,\n WETH,\n liquidity,\n amountTokenMin,\n amountETHMin,\n address(this),\n deadline\n );\n TransferHelper.safeTransfer(token, to, IERC20(token).balanceOf(address(this)));\n IWETH(WETH).withdraw(amountETH);\n TransferHelper.safeTransferETH(to, amountETH);\n }\n function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(\n address token,\n uint liquidity,\n uint amountTokenMin,\n uint amountETHMin,\n address to,\n uint deadline,\n bool approveMax, uint8 v, bytes32 r, bytes32 s\n ) external virtual override returns (uint amountETH) {\n address pair = UniswapV2Library.pairFor(factory, token, WETH);\n uint value = approveMax ? uint(-1) : liquidity;\n IUniswapV2Pair(pair).permit(msg.sender, address(this), value, deadline, v, r, s);\n amountETH = removeLiquidityETHSupportingFeeOnTransferTokens(\n token, liquidity, amountTokenMin, amountETHMin, to, deadline\n );\n }\n\n // **** SWAP ****\n // requires the initial amount to have already been sent to the first pair\n function _swap(uint[] memory amounts, address[] memory path, address _to) internal virtual {\n for (uint i; i \u003c path.length - 1; i++) {\n (address input, address output) = (path[i], path[i + 1]);\n (address token0,) = UniswapV2Library.sortTokens(input, output);\n uint amountOut = amounts[i + 1];\n (uint amount0Out, uint amount1Out) = input == token0 ? (uint(0), amountOut) : (amountOut, uint(0));\n address to = i \u003c path.length - 2 ? UniswapV2Library.pairFor(factory, output, path[i + 2]) : _to;\n IUniswapV2Pair(UniswapV2Library.pairFor(factory, input, output)).swap(\n amount0Out, amount1Out, to, new bytes(0)\n );\n }\n }\n function swapExactTokensForTokens(\n uint amountIn,\n uint amountOutMin,\n address[] calldata path,\n address to,\n uint deadline\n ) external virtual override ensure(deadline) returns (uint[] memory amounts) {\n amounts = UniswapV2Library.getAmountsOut(factory, amountIn, path);\n require(amounts[amounts.length - 1] \u003e= amountOutMin, \u0027UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT\u0027);\n TransferHelper.safeTransferFrom(\n path[0], msg.sender, UniswapV2Library.pairFor(factory, path[0], path[1]), amounts[0]\n );\n _swap(amounts, path, to);\n }\n function swapTokensForExactTokens(\n uint amountOut,\n uint amountInMax,\n address[] calldata path,\n address to,\n uint deadline\n ) external virtual override ensure(deadline) returns (uint[] memory amounts) {\n amounts = UniswapV2Library.getAmountsIn(factory, amountOut, path);\n require(amounts[0] \u003c= amountInMax, \u0027UniswapV2Router: EXCESSIVE_INPUT_AMOUNT\u0027);\n TransferHelper.safeTransferFrom(\n path[0], msg.sender, UniswapV2Library.pairFor(factory, path[0], path[1]), amounts[0]\n );\n _swap(amounts, path, to);\n }\n function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)\n external\n virtual\n override\n payable\n ensure(deadline)\n returns (uint[] memory amounts)\n {\n require(path[0] == WETH, \u0027UniswapV2Router: INVALID_PATH\u0027);\n amounts = UniswapV2Library.getAmountsOut(factory, msg.value, path);\n require(amounts[amounts.length - 1] \u003e= amountOutMin, \u0027UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT\u0027);\n IWETH(WETH).deposit{value: amounts[0]}();\n assert(IWETH(WETH).transfer(UniswapV2Library.pairFor(factory, path[0], path[1]), amounts[0]));\n _swap(amounts, path, to);\n }\n function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)\n external\n virtual\n override\n ensure(deadline)\n returns (uint[] memory amounts)\n {\n require(path[path.length - 1] == WETH, \u0027UniswapV2Router: INVALID_PATH\u0027);\n amounts = UniswapV2Library.getAmountsIn(factory, amountOut, path);\n require(amounts[0] \u003c= amountInMax, \u0027UniswapV2Router: EXCESSIVE_INPUT_AMOUNT\u0027);\n TransferHelper.safeTransferFrom(\n path[0], msg.sender, UniswapV2Library.pairFor(factory, path[0], path[1]), amounts[0]\n );\n _swap(amounts, path, address(this));\n IWETH(WETH).withdraw(amounts[amounts.length - 1]);\n TransferHelper.safeTransferETH(to, amounts[amounts.length - 1]);\n }\n function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)\n external\n virtual\n override\n ensure(deadline)\n returns (uint[] memory amounts)\n {\n require(path[path.length - 1] == WETH, \u0027UniswapV2Router: INVALID_PATH\u0027);\n amounts = UniswapV2Library.getAmountsOut(factory, amountIn, path);\n require(amounts[amounts.length - 1] \u003e= amountOutMin, \u0027UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT\u0027);\n TransferHelper.safeTransferFrom(\n path[0], msg.sender, UniswapV2Library.pairFor(factory, path[0], path[1]), amounts[0]\n );\n _swap(amounts, path, address(this));\n IWETH(WETH).withdraw(amounts[amounts.length - 1]);\n TransferHelper.safeTransferETH(to, amounts[amounts.length - 1]);\n }\n function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)\n external\n virtual\n override\n payable\n ensure(deadline)\n returns (uint[] memory amounts)\n {\n require(path[0] == WETH, \u0027UniswapV2Router: INVALID_PATH\u0027);\n amounts = UniswapV2Library.getAmountsIn(factory, amountOut, path);\n require(amounts[0] \u003c= msg.value, \u0027UniswapV2Router: EXCESSIVE_INPUT_AMOUNT\u0027);\n IWETH(WETH).deposit{value: amounts[0]}();\n assert(IWETH(WETH).transfer(UniswapV2Library.pairFor(factory, path[0], path[1]), amounts[0]));\n _swap(amounts, path, to);\n // refund dust eth, if any\n if (msg.value \u003e amounts[0]) TransferHelper.safeTransferETH(msg.sender, msg.value - amounts[0]);\n }\n\n // **** SWAP (supporting fee-on-transfer tokens) ****\n // requires the initial amount to have already been sent to the first pair\n function _swapSupportingFeeOnTransferTokens(address[] memory path, address _to) internal virtual {\n for (uint i; i \u003c path.length - 1; i++) {\n (address input, address output) = (path[i], path[i + 1]);\n (address token0,) = UniswapV2Library.sortTokens(input, output);\n IUniswapV2Pair pair = IUniswapV2Pair(UniswapV2Library.pairFor(factory, input, output));\n uint amountInput;\n uint amountOutput;\n { // scope to avoid stack too deep errors\n (uint reserve0, uint reserve1,) = pair.getReserves();\n (uint reserveInput, uint reserveOutput) = input == token0 ? (reserve0, reserve1) : (reserve1, reserve0);\n amountInput = IERC20(input).balanceOf(address(pair)).sub(reserveInput);\n amountOutput = UniswapV2Library.getAmountOut(amountInput, reserveInput, reserveOutput);\n }\n (uint amount0Out, uint amount1Out) = input == token0 ? (uint(0), amountOutput) : (amountOutput, uint(0));\n address to = i \u003c path.length - 2 ? UniswapV2Library.pairFor(factory, output, path[i + 2]) : _to;\n pair.swap(amount0Out, amount1Out, to, new bytes(0));\n }\n }\n function swapExactTokensForTokensSupportingFeeOnTransferTokens(\n uint amountIn,\n uint amountOutMin,\n address[] calldata path,\n address to,\n uint deadline\n ) external virtual override ensure(deadline) {\n TransferHelper.safeTransferFrom(\n path[0], msg.sender, UniswapV2Library.pairFor(factory, path[0], path[1]), amountIn\n );\n uint balanceBefore = IERC20(path[path.length - 1]).balanceOf(to);\n _swapSupportingFeeOnTransferTokens(path, to);\n require(\n IERC20(path[path.length - 1]).balanceOf(to).sub(balanceBefore) \u003e= amountOutMin,\n \u0027UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT\u0027\n );\n }\n function swapExactETHForTokensSupportingFeeOnTransferTokens(\n uint amountOutMin,\n address[] calldata path,\n address to,\n uint deadline\n )\n external\n virtual\n override\n payable\n ensure(deadline)\n {\n require(path[0] == WETH, \u0027UniswapV2Router: INVALID_PATH\u0027);\n uint amountIn = msg.value;\n IWETH(WETH).deposit{value: amountIn}();\n assert(IWETH(WETH).transfer(UniswapV2Library.pairFor(factory, path[0], path[1]), amountIn));\n uint balanceBefore = IERC20(path[path.length - 1]).balanceOf(to);\n _swapSupportingFeeOnTransferTokens(path, to);\n require(\n IERC20(path[path.length - 1]).balanceOf(to).sub(balanceBefore) \u003e= amountOutMin,\n \u0027UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT\u0027\n );\n }\n function swapExactTokensForETHSupportingFeeOnTransferTokens(\n uint amountIn,\n uint amountOutMin,\n address[] calldata path,\n address to,\n uint deadline\n )\n external\n virtual\n override\n ensure(deadline)\n {\n require(path[path.length - 1] == WETH, \u0027UniswapV2Router: INVALID_PATH\u0027);\n TransferHelper.safeTransferFrom(\n path[0], msg.sender, UniswapV2Library.pairFor(factory, path[0], path[1]), amountIn\n );\n _swapSupportingFeeOnTransferTokens(path, address(this));\n uint amountOut = IERC20(WETH).balanceOf(address(this));\n require(amountOut \u003e= amountOutMin, \u0027UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT\u0027);\n IWETH(WETH).withdraw(amountOut);\n TransferHelper.safeTransferETH(to, amountOut);\n }\n\n // **** LIBRARY FUNCTIONS ****\n function quote(uint amountA, uint reserveA, uint reserveB) public pure virtual override returns (uint amountB) {\n return UniswapV2Library.quote(amountA, reserveA, reserveB);\n }\n\n function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut)\n public\n pure\n virtual\n override\n returns (uint amountOut)\n {\n return UniswapV2Library.getAmountOut(amountIn, reserveIn, reserveOut);\n }\n\n function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut)\n public\n pure\n virtual\n override\n returns (uint amountIn)\n {\n return UniswapV2Library.getAmountIn(amountOut, reserveIn, reserveOut);\n }\n\n function getAmountsOut(uint amountIn, address[] memory path)\n public\n view\n virtual\n override\n returns (uint[] memory amounts)\n {\n return UniswapV2Library.getAmountsOut(factory, amountIn, path);\n }\n\n function getAmountsIn(uint amountOut, address[] memory path)\n public\n view\n virtual\n override\n returns (uint[] memory amounts)\n {\n return UniswapV2Library.getAmountsIn(factory, amountOut, path);\n }\n}"},"UniswapV2Router02_Modified.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./IUniswapV2Factory.sol\u0027;\nimport \u0027./TransferHelper.sol\u0027;\n\nimport \u0027./IUniswapV2Router02.sol\u0027;\nimport \u0027./UniswapV2Library.sol\u0027;\nimport \u0027./SafeMath.sol\u0027;\nimport \u0027./IERC20.sol\u0027;\nimport \u0027./IWETH.sol\u0027;\n\ncontract UniswapV2Router02_Modified is IUniswapV2Router02 {\n using SafeMath for uint;\n\n address public immutable override factory;\n address public immutable override WETH;\n\n modifier ensure(uint deadline) {\n require(deadline \u003e= block.timestamp, \u0027UniswapV2Router: EXPIRED\u0027);\n _;\n }\n\n constructor(address _factory, address _WETH) public {\n factory = _factory;\n WETH = _WETH;\n }\n\n receive() external payable {\n assert(msg.sender == WETH); // only accept ETH via fallback from the WETH contract\n }\n\n // **** ADD LIQUIDITY ****\n function _addLiquidity(\n address tokenA,\n address tokenB,\n uint amountADesired,\n uint amountBDesired,\n uint amountAMin,\n uint amountBMin\n ) internal virtual returns (uint amountA, uint amountB) {\n // create the pair if it doesn\u0027t exist yet\n if (IUniswapV2Factory(factory).getPair(tokenA, tokenB) == address(0)) {\n IUniswapV2Factory(factory).createPair(tokenA, tokenB);\n }\n (uint reserveA, uint reserveB) = UniswapV2Library.getReserves(factory, tokenA, tokenB);\n if (reserveA == 0 \u0026\u0026 reserveB == 0) {\n (amountA, amountB) = (amountADesired, amountBDesired);\n } else {\n uint amountBOptimal = UniswapV2Library.quote(amountADesired, reserveA, reserveB);\n if (amountBOptimal \u003c= amountBDesired) {\n require(amountBOptimal \u003e= amountBMin, \u0027UniswapV2Router: INSUFFICIENT_B_AMOUNT\u0027);\n (amountA, amountB) = (amountADesired, amountBOptimal);\n } else {\n uint amountAOptimal = UniswapV2Library.quote(amountBDesired, reserveB, reserveA);\n assert(amountAOptimal \u003c= amountADesired);\n require(amountAOptimal \u003e= amountAMin, \u0027UniswapV2Router: INSUFFICIENT_A_AMOUNT\u0027);\n (amountA, amountB) = (amountAOptimal, amountBDesired);\n }\n }\n }\n function addLiquidity(\n address tokenA,\n address tokenB,\n uint amountADesired,\n uint amountBDesired,\n uint amountAMin,\n uint amountBMin,\n address to,\n uint deadline\n ) external virtual override ensure(deadline) returns (uint amountA, uint amountB, uint liquidity) {\n (amountA, amountB) = _addLiquidity(tokenA, tokenB, amountADesired, amountBDesired, amountAMin, amountBMin);\n address pair = UniswapV2Library.pairFor(factory, tokenA, tokenB);\n TransferHelper.safeTransferFrom(tokenA, msg.sender, pair, amountA);\n TransferHelper.safeTransferFrom(tokenB, msg.sender, pair, amountB);\n liquidity = IUniswapV2Pair(pair).mint(to);\n }\n function addLiquidityETH(\n address token,\n uint amountTokenDesired,\n uint amountTokenMin,\n uint amountETHMin,\n address to,\n uint deadline\n ) external virtual override payable ensure(deadline) returns (uint amountToken, uint amountETH, uint liquidity) {\n (amountToken, amountETH) = _addLiquidity(\n token,\n WETH,\n amountTokenDesired,\n msg.value,\n amountTokenMin,\n amountETHMin\n );\n address pair = UniswapV2Library.pairFor(factory, token, WETH);\n TransferHelper.safeTransferFrom(token, msg.sender, pair, amountToken);\n \n \n TransferHelper.safeTransferFrom(WETH, msg.sender, pair, amountETH);\n\n // IWETH(WETH).transferFrom(msg.sender, pair, amountETH);\n // IWETH(WETH).deposit{value: amountETH}();\n // assert(IWETH(WETH).transfer(pair, amountETH));\n\n // require(false, \"HELLO: HOW ARE YOU TODAY!\");\n\n liquidity = IUniswapV2Pair(pair).mint(to); // \u003c\u003c PROBLEM IS HERE\n\n // refund dust eth, if any\n if (msg.value \u003e amountETH) TransferHelper.safeTransferETH(msg.sender, msg.value - amountETH);\n }\n\n // **** REMOVE LIQUIDITY ****\n function removeLiquidity(\n address tokenA,\n address tokenB,\n uint liquidity,\n uint amountAMin,\n uint amountBMin,\n address to,\n uint deadline\n ) public virtual override ensure(deadline) returns (uint amountA, uint amountB) {\n address pair = UniswapV2Library.pairFor(factory, tokenA, tokenB);\n IUniswapV2Pair(pair).transferFrom(msg.sender, pair, liquidity); // send liquidity to pair\n (uint amount0, uint amount1) = IUniswapV2Pair(pair).burn(to);\n (address token0,) = UniswapV2Library.sortTokens(tokenA, tokenB);\n (amountA, amountB) = tokenA == token0 ? (amount0, amount1) : (amount1, amount0);\n require(amountA \u003e= amountAMin, \u0027UniswapV2Router: INSUFFICIENT_A_AMOUNT\u0027);\n require(amountB \u003e= amountBMin, \u0027UniswapV2Router: INSUFFICIENT_B_AMOUNT\u0027);\n }\n function removeLiquidityETH(\n address token,\n uint liquidity,\n uint amountTokenMin,\n uint amountETHMin,\n address to,\n uint deadline\n ) public virtual override ensure(deadline) returns (uint amountToken, uint amountETH) {\n (amountToken, amountETH) = removeLiquidity(\n token,\n WETH,\n liquidity,\n amountTokenMin,\n amountETHMin,\n address(this),\n deadline\n );\n TransferHelper.safeTransfer(token, to, amountToken);\n IWETH(WETH).withdraw(amountETH);\n TransferHelper.safeTransferETH(to, amountETH);\n }\n function removeLiquidityWithPermit(\n address tokenA,\n address tokenB,\n uint liquidity,\n uint amountAMin,\n uint amountBMin,\n address to,\n uint deadline,\n bool approveMax, uint8 v, bytes32 r, bytes32 s\n ) external virtual override returns (uint amountA, uint amountB) {\n address pair = UniswapV2Library.pairFor(factory, tokenA, tokenB);\n uint value = approveMax ? uint(-1) : liquidity;\n IUniswapV2Pair(pair).permit(msg.sender, address(this), value, deadline, v, r, s);\n (amountA, amountB) = removeLiquidity(tokenA, tokenB, liquidity, amountAMin, amountBMin, to, deadline);\n }\n function removeLiquidityETHWithPermit(\n address token,\n uint liquidity,\n uint amountTokenMin,\n uint amountETHMin,\n address to,\n uint deadline,\n bool approveMax, uint8 v, bytes32 r, bytes32 s\n ) external virtual override returns (uint amountToken, uint amountETH) {\n address pair = UniswapV2Library.pairFor(factory, token, WETH);\n uint value = approveMax ? uint(-1) : liquidity;\n IUniswapV2Pair(pair).permit(msg.sender, address(this), value, deadline, v, r, s);\n (amountToken, amountETH) = removeLiquidityETH(token, liquidity, amountTokenMin, amountETHMin, to, deadline);\n }\n\n // **** REMOVE LIQUIDITY (supporting fee-on-transfer tokens) ****\n function removeLiquidityETHSupportingFeeOnTransferTokens(\n address token,\n uint liquidity,\n uint amountTokenMin,\n uint amountETHMin,\n address to,\n uint deadline\n ) public virtual override ensure(deadline) returns (uint amountETH) {\n (, amountETH) = removeLiquidity(\n token,\n WETH,\n liquidity,\n amountTokenMin,\n amountETHMin,\n address(this),\n deadline\n );\n TransferHelper.safeTransfer(token, to, IERC20(token).balanceOf(address(this)));\n IWETH(WETH).withdraw(amountETH);\n TransferHelper.safeTransferETH(to, amountETH);\n }\n function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(\n address token,\n uint liquidity,\n uint amountTokenMin,\n uint amountETHMin,\n address to,\n uint deadline,\n bool approveMax, uint8 v, bytes32 r, bytes32 s\n ) external virtual override returns (uint amountETH) {\n address pair = UniswapV2Library.pairFor(factory, token, WETH);\n uint value = approveMax ? uint(-1) : liquidity;\n IUniswapV2Pair(pair).permit(msg.sender, address(this), value, deadline, v, r, s);\n amountETH = removeLiquidityETHSupportingFeeOnTransferTokens(\n token, liquidity, amountTokenMin, amountETHMin, to, deadline\n );\n }\n\n // **** SWAP ****\n // requires the initial amount to have already been sent to the first pair\n function _swap(uint[] memory amounts, address[] memory path, address _to) internal virtual {\n for (uint i; i \u003c path.length - 1; i++) {\n (address input, address output) = (path[i], path[i + 1]);\n (address token0,) = UniswapV2Library.sortTokens(input, output);\n uint amountOut = amounts[i + 1];\n (uint amount0Out, uint amount1Out) = input == token0 ? (uint(0), amountOut) : (amountOut, uint(0));\n address to = i \u003c path.length - 2 ? UniswapV2Library.pairFor(factory, output, path[i + 2]) : _to;\n IUniswapV2Pair(UniswapV2Library.pairFor(factory, input, output)).swap(\n amount0Out, amount1Out, to, new bytes(0)\n );\n }\n }\n function swapExactTokensForTokens(\n uint amountIn,\n uint amountOutMin,\n address[] calldata path,\n address to,\n uint deadline\n ) external virtual override ensure(deadline) returns (uint[] memory amounts) {\n amounts = UniswapV2Library.getAmountsOut(factory, amountIn, path);\n require(amounts[amounts.length - 1] \u003e= amountOutMin, \u0027UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT\u0027);\n TransferHelper.safeTransferFrom(\n path[0], msg.sender, UniswapV2Library.pairFor(factory, path[0], path[1]), amounts[0]\n );\n _swap(amounts, path, to);\n }\n function swapTokensForExactTokens(\n uint amountOut,\n uint amountInMax,\n address[] calldata path,\n address to,\n uint deadline\n ) external virtual override ensure(deadline) returns (uint[] memory amounts) {\n amounts = UniswapV2Library.getAmountsIn(factory, amountOut, path);\n require(amounts[0] \u003c= amountInMax, \u0027UniswapV2Router: EXCESSIVE_INPUT_AMOUNT\u0027);\n TransferHelper.safeTransferFrom(\n path[0], msg.sender, UniswapV2Library.pairFor(factory, path[0], path[1]), amounts[0]\n );\n _swap(amounts, path, to);\n }\n function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)\n external\n virtual\n override\n payable\n ensure(deadline)\n returns (uint[] memory amounts)\n {\n require(path[0] == WETH, \u0027UniswapV2Router: INVALID_PATH\u0027);\n amounts = UniswapV2Library.getAmountsOut(factory, msg.value, path);\n require(amounts[amounts.length - 1] \u003e= amountOutMin, \u0027UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT\u0027);\n IWETH(WETH).deposit{value: amounts[0]}();\n assert(IWETH(WETH).transfer(UniswapV2Library.pairFor(factory, path[0], path[1]), amounts[0]));\n _swap(amounts, path, to);\n }\n function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)\n external\n virtual\n override\n ensure(deadline)\n returns (uint[] memory amounts)\n {\n require(path[path.length - 1] == WETH, \u0027UniswapV2Router: INVALID_PATH\u0027);\n amounts = UniswapV2Library.getAmountsIn(factory, amountOut, path);\n require(amounts[0] \u003c= amountInMax, \u0027UniswapV2Router: EXCESSIVE_INPUT_AMOUNT\u0027);\n TransferHelper.safeTransferFrom(\n path[0], msg.sender, UniswapV2Library.pairFor(factory, path[0], path[1]), amounts[0]\n );\n _swap(amounts, path, address(this));\n IWETH(WETH).withdraw(amounts[amounts.length - 1]);\n TransferHelper.safeTransferETH(to, amounts[amounts.length - 1]);\n }\n function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)\n external\n virtual\n override\n ensure(deadline)\n returns (uint[] memory amounts)\n {\n require(path[path.length - 1] == WETH, \u0027UniswapV2Router: INVALID_PATH\u0027);\n amounts = UniswapV2Library.getAmountsOut(factory, amountIn, path);\n require(amounts[amounts.length - 1] \u003e= amountOutMin, \u0027UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT\u0027);\n TransferHelper.safeTransferFrom(\n path[0], msg.sender, UniswapV2Library.pairFor(factory, path[0], path[1]), amounts[0]\n );\n _swap(amounts, path, address(this));\n IWETH(WETH).withdraw(amounts[amounts.length - 1]);\n TransferHelper.safeTransferETH(to, amounts[amounts.length - 1]);\n }\n function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)\n external\n virtual\n override\n payable\n ensure(deadline)\n returns (uint[] memory amounts)\n {\n require(path[0] == WETH, \u0027UniswapV2Router: INVALID_PATH\u0027);\n amounts = UniswapV2Library.getAmountsIn(factory, amountOut, path);\n require(amounts[0] \u003c= msg.value, \u0027UniswapV2Router: EXCESSIVE_INPUT_AMOUNT\u0027);\n IWETH(WETH).deposit{value: amounts[0]}();\n assert(IWETH(WETH).transfer(UniswapV2Library.pairFor(factory, path[0], path[1]), amounts[0]));\n _swap(amounts, path, to);\n // refund dust eth, if any\n if (msg.value \u003e amounts[0]) TransferHelper.safeTransferETH(msg.sender, msg.value - amounts[0]);\n }\n\n // **** SWAP (supporting fee-on-transfer tokens) ****\n // requires the initial amount to have already been sent to the first pair\n function _swapSupportingFeeOnTransferTokens(address[] memory path, address _to) internal virtual {\n // for (uint i; i \u003c path.length - 1; i++) {\n // (address input, address output) = (path[i], path[i + 1]);\n // (address token0,) = UniswapV2Library.sortTokens(input, output);\n // IUniswapV2Pair pair = IUniswapV2Pair(UniswapV2Library.pairFor(factory, input, output));\n // uint amountInput;\n // uint amountOutput;\n // { // scope to avoid stack too deep errors\n // (uint reserve0, uint reserve1,) = pair.getReserves();\n // (uint reserveInput, uint reserveOutput) = input == token0 ? (reserve0, reserve1) : (reserve1, reserve0);\n // amountInput = IERC20(input).balanceOf(address(pair)).sub(reserveInput);\n // amountOutput = UniswapV2Library.getAmountOut(amountInput, reserveInput, reserveOutput);\n // }\n // (uint amount0Out, uint amount1Out) = input == token0 ? (uint(0), amountOutput) : (amountOutput, uint(0));\n // address to = i \u003c path.length - 2 ? UniswapV2Library.pairFor(factory, output, path[i + 2]) : _to;\n // pair.swap(amount0Out, amount1Out, to, new bytes(0));\n // }\n }\n function swapExactTokensForTokensSupportingFeeOnTransferTokens(\n uint amountIn,\n uint amountOutMin,\n address[] calldata path,\n address to,\n uint deadline\n ) external virtual override ensure(deadline) {\n // TransferHelper.safeTransferFrom(\n // path[0], msg.sender, UniswapV2Library.pairFor(factory, path[0], path[1]), amountIn\n // );\n // uint balanceBefore = IERC20(path[path.length - 1]).balanceOf(to);\n // _swapSupportingFeeOnTransferTokens(path, to);\n // require(\n // IERC20(path[path.length - 1]).balanceOf(to).sub(balanceBefore) \u003e= amountOutMin,\n // \u0027UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT\u0027\n // );\n }\n function swapExactETHForTokensSupportingFeeOnTransferTokens(\n uint amountOutMin,\n address[] calldata path,\n address to,\n uint deadline\n )\n external\n virtual\n override\n payable\n ensure(deadline)\n {\n // require(path[0] == WETH, \u0027UniswapV2Router: INVALID_PATH\u0027);\n // uint amountIn = msg.value;\n // IWETH(WETH).deposit{value: amountIn}();\n // assert(IWETH(WETH).transfer(UniswapV2Library.pairFor(factory, path[0], path[1]), amountIn));\n // uint balanceBefore = IERC20(path[path.length - 1]).balanceOf(to);\n // _swapSupportingFeeOnTransferTokens(path, to);\n // require(\n // IERC20(path[path.length - 1]).balanceOf(to).sub(balanceBefore) \u003e= amountOutMin,\n // \u0027UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT\u0027\n // );\n }\n function swapExactTokensForETHSupportingFeeOnTransferTokens(\n uint amountIn,\n uint amountOutMin,\n address[] calldata path,\n address to,\n uint deadline\n )\n external\n virtual\n override\n ensure(deadline)\n {\n // require(path[path.length - 1] == WETH, \u0027UniswapV2Router: INVALID_PATH\u0027);\n // TransferHelper.safeTransferFrom(\n // path[0], msg.sender, UniswapV2Library.pairFor(factory, path[0], path[1]), amountIn\n // );\n // _swapSupportingFeeOnTransferTokens(path, address(this));\n // uint amountOut = IERC20(WETH).balanceOf(address(this));\n // require(amountOut \u003e= amountOutMin, \u0027UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT\u0027);\n // IWETH(WETH).withdraw(amountOut);\n // TransferHelper.safeTransferETH(to, amountOut);\n }\n\n // **** LIBRARY FUNCTIONS ****\n function quote(uint amountA, uint reserveA, uint reserveB) public pure virtual override returns (uint amountB) {\n return UniswapV2Library.quote(amountA, reserveA, reserveB);\n }\n\n function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut)\n public\n pure\n virtual\n override\n returns (uint amountOut)\n {\n return UniswapV2Library.getAmountOut(amountIn, reserveIn, reserveOut);\n }\n\n function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut)\n public\n pure\n virtual\n override\n returns (uint amountIn)\n {\n return UniswapV2Library.getAmountIn(amountOut, reserveIn, reserveOut);\n }\n\n function getAmountsOut(uint amountIn, address[] memory path)\n public\n view\n virtual\n override\n returns (uint[] memory amounts)\n {\n return UniswapV2Library.getAmountsOut(factory, amountIn, path);\n }\n\n function getAmountsIn(uint amountOut, address[] memory path)\n public\n view\n virtual\n override\n returns (uint[] memory amounts)\n {\n return UniswapV2Library.getAmountsIn(factory, amountOut, path);\n }\n}"},"UQ112x112.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\n// a library for handling binary fixed point numbers (https://en.wikipedia.org/wiki/Q_(number_format))\n\n// range: [0, 2**112 - 1]\n// resolution: 1 / 2**112\n\nlibrary UQ112x112 {\n uint224 constant Q112 = 2**112;\n\n // encode a uint112 as a UQ112x112\n function encode(uint112 y) internal pure returns (uint224 z) {\n z = uint224(y) * Q112; // never overflows\n }\n\n // divide a UQ112x112 by a uint112, returning a UQ112x112\n function uqdiv(uint224 x, uint112 y) internal pure returns (uint224 z) {\n z = x / uint224(y);\n }\n}"},"WETH.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./IWETH.sol\u0027;\n\n// Copyright (C) 2015, 2016, 2017 Dapphub\n\n// This program is free software: you can redistribute it and/or modify\n// it under the terms of the GNU General Public License as published by\n// the Free Software Foundation, either version 3 of the License, or\n// (at your option) any later version.\n\n// This program is distributed in the hope that it will be useful,\n// but WITHOUT ANY WARRANTY; without even the implied warranty of\n// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n// GNU General Public License for more details.\n\n// You should have received a copy of the GNU General Public License\n// along with this program. If not, see \u003chttp://www.gnu.org/licenses/\u003e.\n\ncontract WETH is IWETH {\n string public name = \"Wrapped Ether\";\n string public symbol = \"WETH\";\n uint8 public decimals = 18;\n\n event Approval(address indexed src, address indexed guy, uint wad);\n event Transfer(address indexed src, address indexed dst, uint wad);\n event Deposit(address indexed dst, uint wad);\n event Withdrawal(address indexed src, uint wad);\n\n mapping (address =\u003e uint) public balanceOf;\n mapping (address =\u003e mapping (address =\u003e uint)) public allowance;\n\n fallback() external payable {\n deposit();\n }\n\n receive() external payable { }\n\n constructor (address _creator_address ) public \n {\n balanceOf[_creator_address] = 1000000e18; // this is for testing only\n }\n\n\n function deposit() public override payable {\n balanceOf[msg.sender] += msg.value;\n emit Deposit(msg.sender, msg.value);\n }\n function withdraw(uint wad) override public {\n require(balanceOf[msg.sender] \u003e= wad);\n balanceOf[msg.sender] -= wad;\n msg.sender.transfer(wad);\n emit Withdrawal(msg.sender, wad);\n }\n\n function totalSupply() public view returns (uint) {\n return address(this).balance;\n }\n\n function approve(address guy, uint wad) public returns (bool) {\n allowance[msg.sender][guy] = wad;\n emit Approval(msg.sender, guy, wad);\n return true;\n }\n\n function transfer(address dst, uint wad) public override returns (bool) {\n return transferFrom(msg.sender, dst, wad);\n }\n\n function transferFrom(address src, address dst, uint wad)\n public\n override\n returns (bool)\n {\n require(balanceOf[src] \u003e= wad);\n\n if (src != msg.sender \u0026\u0026 allowance[src][msg.sender] != uint(-1)) {\n require(allowance[src][msg.sender] \u003e= wad);\n allowance[src][msg.sender] -= wad;\n }\n\n balanceOf[src] -= wad;\n balanceOf[dst] += wad;\n\n emit Transfer(src, dst, wad);\n\n return true;\n }\n}\n\n\n/*\n GNU GENERAL PUBLIC LICENSE\n Version 3, 29 June 2007\n\n Copyright (C) 2007 Free Software Foundation, Inc. \u003chttp://fsf.org/\u003e\n Everyone is permitted to copy and distribute verbatim copies\n of this license document, but changing it is not allowed.\n\n Preamble\n\n The GNU General Public License is a free, copyleft license for\nsoftware and other kinds of works.\n\n The licenses for most software and other practical works are designed\nto take away your freedom to share and change the works. By contrast,\nthe GNU General Public License is intended to guarantee your freedom to\nshare and change all versions of a program--to make sure it remains free\nsoftware for all its users. We, the Free Software Foundation, use the\nGNU General Public License for most of our software; it applies also to\nany other work released this way by its authors. You can apply it to\nyour programs, too.\n\n When we speak of free software, we are referring to freedom, not\nprice. Our General Public Licenses are designed to make sure that you\nhave the freedom to distribute copies of free software (and charge for\nthem if you wish), that you receive source code or can get it if you\nwant it, that you can change the software or use pieces of it in new\nfree programs, and that you know you can do these things.\n\n To protect your rights, we need to prevent others from denying you\nthese rights or asking you to surrender the rights. Therefore, you have\ncertain responsibilities if you distribute copies of the software, or if\nyou modify it: responsibilities to respect the freedom of others.\n\n For example, if you distribute copies of such a program, whether\ngratis or for a fee, you must pass on to the recipients the same\nfreedoms that you received. You must make sure that they, too, receive\nor can get the source code. And you must show them these terms so they\nknow their rights.\n\n Developers that use the GNU GPL protect your rights with two steps:\n(1) assert copyright on the software, and (2) offer you this License\ngiving you legal permission to copy, distribute and/or modify it.\n\n For the developers\u0027 and authors\u0027 protection, the GPL clearly explains\nthat there is no warranty for this free software. For both users\u0027 and\nauthors\u0027 sake, the GPL requires that modified versions be marked as\nchanged, so that their problems will not be attributed erroneously to\nauthors of previous versions.\n\n Some devices are designed to deny users access to install or run\nmodified versions of the software inside them, although the manufacturer\ncan do so. This is fundamentally incompatible with the aim of\nprotecting users\u0027 freedom to change the software. The systematic\npattern of such abuse occurs in the area of products for individuals to\nuse, which is precisely where it is most unacceptable. Therefore, we\nhave designed this version of the GPL to prohibit the practice for those\nproducts. If such problems arise substantially in other domains, we\nstand ready to extend this provision to those domains in future versions\nof the GPL, as needed to protect the freedom of users.\n\n Finally, every program is threatened constantly by software patents.\nStates should not allow patents to restrict development and use of\nsoftware on general-purpose computers, but in those that do, we wish to\navoid the special danger that patents applied to a free program could\nmake it effectively proprietary. To prevent this, the GPL assures that\npatents cannot be used to render the program non-free.\n\n The precise terms and conditions for copying, distribution and\nmodification follow.\n\n TERMS AND CONDITIONS\n\n 0. Definitions.\n\n \"This License\" refers to version 3 of the GNU General Public License.\n\n \"Copyright\" also means copyright-like laws that apply to other kinds of\nworks, such as semiconductor masks.\n\n \"The Program\" refers to any copyrightable work licensed under this\nLicense. Each licensee is addressed as \"you\". \"Licensees\" and\n\"recipients\" may be individuals or organizations.\n\n To \"modify\" a work means to copy from or adapt all or part of the work\nin a fashion requiring copyright permission, other than the making of an\nexact copy. The resulting work is called a \"modified version\" of the\nearlier work or a work \"based on\" the earlier work.\n\n A \"covered work\" means either the unmodified Program or a work based\non the Program.\n\n To \"propagate\" a work means to do anything with it that, without\npermission, would make you directly or secondarily liable for\ninfringement under applicable copyright law, except executing it on a\ncomputer or modifying a private copy. Propagation includes copying,\ndistribution (with or without modification), making available to the\npublic, and in some countries other activities as well.\n\n To \"convey\" a work means any kind of propagation that enables other\nparties to make or receive copies. Mere interaction with a user through\na computer network, with no transfer of a copy, is not conveying.\n\n An interactive user interface displays \"Appropriate Legal Notices\"\nto the extent that it includes a convenient and prominently visible\nfeature that (1) displays an appropriate copyright notice, and (2)\ntells the user that there is no warranty for the work (except to the\nextent that warranties are provided), that licensees may convey the\nwork under this License, and how to view a copy of this License. If\nthe interface presents a list of user commands or options, such as a\nmenu, a prominent item in the list meets this criterion.\n\n 1. Source Code.\n\n The \"source code\" for a work means the preferred form of the work\nfor making modifications to it. \"Object code\" means any non-source\nform of a work.\n\n A \"Standard Interface\" means an interface that either is an official\nstandard defined by a recognized standards body, or, in the case of\ninterfaces specified for a particular programming language, one that\nis widely used among developers working in that language.\n\n The \"System Libraries\" of an executable work include anything, other\nthan the work as a whole, that (a) is included in the normal form of\npackaging a Major Component, but which is not part of that Major\nComponent, and (b) serves only to enable use of the work with that\nMajor Component, or to implement a Standard Interface for which an\nimplementation is available to the public in source code form. A\n\"Major Component\", in this context, means a major essential component\n(kernel, window system, and so on) of the specific operating system\n(if any) on which the executable work runs, or a compiler used to\nproduce the work, or an object code interpreter used to run it.\n\n The \"Corresponding Source\" for a work in object code form means all\nthe source code needed to generate, install, and (for an executable\nwork) run the object code and to modify the work, including scripts to\ncontrol those activities. However, it does not include the work\u0027s\nSystem Libraries, or general-purpose tools or generally available free\nprograms which are used unmodified in performing those activities but\nwhich are not part of the work. For example, Corresponding Source\nincludes interface definition files associated with source files for\nthe work, and the source code for shared libraries and dynamically\nlinked subprograms that the work is specifically designed to require,\nsuch as by intimate data communication or control flow between those\nsubprograms and other parts of the work.\n\n The Corresponding Source need not include anything that users\ncan regenerate automatically from other parts of the Corresponding\nSource.\n\n The Corresponding Source for a work in source code form is that\nsame work.\n\n 2. Basic Permissions.\n\n All rights granted under this License are granted for the term of\ncopyright on the Program, and are irrevocable provided the stated\nconditions are met. This License explicitly affirms your unlimited\npermission to run the unmodified Program. The output from running a\ncovered work is covered by this License only if the output, given its\ncontent, constitutes a covered work. This License acknowledges your\nrights of fair use or other equivalent, as provided by copyright law.\n\n You may make, run and propagate covered works that you do not\nconvey, without conditions so long as your license otherwise remains\nin force. You may convey covered works to others for the sole purpose\nof having them make modifications exclusively for you, or provide you\nwith facilities for running those works, provided that you comply with\nthe terms of this License in conveying all material for which you do\nnot control copyright. Those thus making or running the covered works\nfor you must do so exclusively on your behalf, under your direction\nand control, on terms that prohibit them from making any copies of\nyour copyrighted material outside their relationship with you.\n\n Conveying under any other circumstances is permitted solely under\nthe conditions stated below. Sublicensing is not allowed; section 10\nmakes it unnecessary.\n\n 3. Protecting Users\u0027 Legal Rights From Anti-Circumvention Law.\n\n No covered work shall be deemed part of an effective technological\nmeasure under any applicable law fulfilling obligations under article\n11 of the WIPO copyright treaty adopted on 20 December 1996, or\nsimilar laws prohibiting or restricting circumvention of such\nmeasures.\n\n When you convey a covered work, you waive any legal power to forbid\ncircumvention of technological measures to the extent such circumvention\nis effected by exercising rights under this License with respect to\nthe covered work, and you disclaim any intention to limit operation or\nmodification of the work as a means of enforcing, against the work\u0027s\nusers, your or third parties\u0027 legal rights to forbid circumvention of\ntechnological measures.\n\n 4. Conveying Verbatim Copies.\n\n You may convey verbatim copies of the Program\u0027s source code as you\nreceive it, in any medium, provided that you conspicuously and\nappropriately publish on each copy an appropriate copyright notice;\nkeep intact all notices stating that this License and any\nnon-permissive terms added in accord with section 7 apply to the code;\nkeep intact all notices of the absence of any warranty; and give all\nrecipients a copy of this License along with the Program.\n\n You may charge any price or no price for each copy that you convey,\nand you may offer support or warranty protection for a fee.\n\n 5. Conveying Modified Source Versions.\n\n You may convey a work based on the Program, or the modifications to\nproduce it from the Program, in the form of source code under the\nterms of section 4, provided that you also meet all of these conditions:\n\n a) The work must carry prominent notices stating that you modified\n it, and giving a relevant date.\n\n b) The work must carry prominent notices stating that it is\n released under this License and any conditions added under section\n 7. This requirement modifies the requirement in section 4 to\n \"keep intact all notices\".\n\n c) You must license the entire work, as a whole, under this\n License to anyone who comes into possession of a copy. This\n License will therefore apply, along with any applicable section 7\n additional terms, to the whole of the work, and all its parts,\n regardless of how they are packaged. This License gives no\n permission to license the work in any other way, but it does not\n invalidate such permission if you have separately received it.\n\n d) If the work has interactive user interfaces, each must display\n Appropriate Legal Notices; however, if the Program has interactive\n interfaces that do not display Appropriate Legal Notices, your\n work need not make them do so.\n\n A compilation of a covered work with other separate and independent\nworks, which are not by their nature extensions of the covered work,\nand which are not combined with it such as to form a larger program,\nin or on a volume of a storage or distribution medium, is called an\n\"aggregate\" if the compilation and its resulting copyright are not\nused to limit the access or legal rights of the compilation\u0027s users\nbeyond what the individual works permit. Inclusion of a covered work\nin an aggregate does not cause this License to apply to the other\nparts of the aggregate.\n\n 6. Conveying Non-Source Forms.\n\n You may convey a covered work in object code form under the terms\nof sections 4 and 5, provided that you also convey the\nmachine-readable Corresponding Source under the terms of this License,\nin one of these ways:\n\n a) Convey the object code in, or embodied in, a physical product\n (including a physical distribution medium), accompanied by the\n Corresponding Source fixed on a durable physical medium\n customarily used for software interchange.\n\n b) Convey the object code in, or embodied in, a physical product\n (including a physical distribution medium), accompanied by a\n written offer, valid for at least three years and valid for as\n long as you offer spare parts or customer support for that product\n model, to give anyone who possesses the object code either (1) a\n copy of the Corresponding Source for all the software in the\n product that is covered by this License, on a durable physical\n medium customarily used for software interchange, for a price no\n more than your reasonable cost of physically performing this\n conveying of source, or (2) access to copy the\n Corresponding Source from a network server at no charge.\n\n c) Convey individual copies of the object code with a copy of the\n written offer to provide the Corresponding Source. This\n alternative is allowed only occasionally and noncommercially, and\n only if you received the object code with such an offer, in accord\n with subsection 6b.\n\n d) Convey the object code by offering access from a designated\n place (gratis or for a charge), and offer equivalent access to the\n Corresponding Source in the same way through the same place at no\n further charge. You need not require recipients to copy the\n Corresponding Source along with the object code. If the place to\n copy the object code is a network server, the Corresponding Source\n may be on a different server (operated by you or a third party)\n that supports equivalent copying facilities, provided you maintain\n clear directions next to the object code saying where to find the\n Corresponding Source. Regardless of what server hosts the\n Corresponding Source, you remain obligated to ensure that it is\n available for as long as needed to satisfy these requirements.\n\n e) Convey the object code using peer-to-peer transmission, provided\n you inform other peers where the object code and Corresponding\n Source of the work are being offered to the general public at no\n charge under subsection 6d.\n\n A separable portion of the object code, whose source code is excluded\nfrom the Corresponding Source as a System Library, need not be\nincluded in conveying the object code work.\n\n A \"User Product\" is either (1) a \"consumer product\", which means any\ntangible personal property which is normally used for personal, family,\nor household purposes, or (2) anything designed or sold for incorporation\ninto a dwelling. In determining whether a product is a consumer product,\ndoubtful cases shall be resolved in favor of coverage. For a particular\nproduct received by a particular user, \"normally used\" refers to a\ntypical or common use of that class of product, regardless of the status\nof the particular user or of the way in which the particular user\nactually uses, or expects or is expected to use, the product. A product\nis a consumer product regardless of whether the product has substantial\ncommercial, industrial or non-consumer uses, unless such uses represent\nthe only significant mode of use of the product.\n\n \"Installation Information\" for a User Product means any methods,\nprocedures, authorization keys, or other information required to install\nand execute modified versions of a covered work in that User Product from\na modified version of its Corresponding Source. The information must\nsuffice to ensure that the continued functioning of the modified object\ncode is in no case prevented or interfered with solely because\nmodification has been made.\n\n If you convey an object code work under this section in, or with, or\nspecifically for use in, a User Product, and the conveying occurs as\npart of a transaction in which the right of possession and use of the\nUser Product is transferred to the recipient in perpetuity or for a\nfixed term (regardless of how the transaction is characterized), the\nCorresponding Source conveyed under this section must be accompanied\nby the Installation Information. But this requirement does not apply\nif neither you nor any third party retains the ability to install\nmodified object code on the User Product (for example, the work has\nbeen installed in ROM).\n\n The requirement to provide Installation Information does not include a\nrequirement to continue to provide support service, warranty, or updates\nfor a work that has been modified or installed by the recipient, or for\nthe User Product in which it has been modified or installed. Access to a\nnetwork may be denied when the modification itself materially and\nadversely affects the operation of the network or violates the rules and\nprotocols for communication across the network.\n\n Corresponding Source conveyed, and Installation Information provided,\nin accord with this section must be in a format that is publicly\ndocumented (and with an implementation available to the public in\nsource code form), and must require no special password or key for\nunpacking, reading or copying.\n\n 7. Additional Terms.\n\n \"Additional permissions\" are terms that supplement the terms of this\nLicense by making exceptions from one or more of its conditions.\nAdditional permissions that are applicable to the entire Program shall\nbe treated as though they were included in this License, to the extent\nthat they are valid under applicable law. If additional permissions\napply only to part of the Program, that part may be used separately\nunder those permissions, but the entire Program remains governed by\nthis License without regard to the additional permissions.\n\n When you convey a copy of a covered work, you may at your option\nremove any additional permissions from that copy, or from any part of\nit. (Additional permissions may be written to require their own\nremoval in certain cases when you modify the work.) You may place\nadditional permissions on material, added by you to a covered work,\nfor which you have or can give appropriate copyright permission.\n\n Notwithstanding any other provision of this License, for material you\nadd to a covered work, you may (if authorized by the copyright holders of\nthat material) supplement the terms of this License with terms:\n\n a) Disclaiming warranty or limiting liability differently from the\n terms of sections 15 and 16 of this License; or\n\n b) Requiring preservation of specified reasonable legal notices or\n author attributions in that material or in the Appropriate Legal\n Notices displayed by works containing it; or\n\n c) Prohibiting misrepresentation of the origin of that material, or\n requiring that modified versions of such material be marked in\n reasonable ways as different from the original version; or\n\n d) Limiting the use for publicity purposes of names of licensors or\n authors of the material; or\n\n e) Declining to grant rights under trademark law for use of some\n trade names, trademarks, or service marks; or\n\n f) Requiring indemnification of licensors and authors of that\n material by anyone who conveys the material (or modified versions of\n it) with contractual assumptions of liability to the recipient, for\n any liability that these contractual assumptions directly impose on\n those licensors and authors.\n\n All other non-permissive additional terms are considered \"further\nrestrictions\" within the meaning of section 10. If the Program as you\nreceived it, or any part of it, contains a notice stating that it is\ngoverned by this License along with a term that is a further\nrestriction, you may remove that term. If a license document contains\na further restriction but permits relicensing or conveying under this\nLicense, you may add to a covered work material governed by the terms\nof that license document, provided that the further restriction does\nnot survive such relicensing or conveying.\n\n If you add terms to a covered work in accord with this section, you\nmust place, in the relevant source files, a statement of the\nadditional terms that apply to those files, or a notice indicating\nwhere to find the applicable terms.\n\n Additional terms, permissive or non-permissive, may be stated in the\nform of a separately written license, or stated as exceptions;\nthe above requirements apply either way.\n\n 8. Termination.\n\n You may not propagate or modify a covered work except as expressly\nprovided under this License. Any attempt otherwise to propagate or\nmodify it is void, and will automatically terminate your rights under\nthis License (including any patent licenses granted under the third\nparagraph of section 11).\n\n However, if you cease all violation of this License, then your\nlicense from a particular copyright holder is reinstated (a)\nprovisionally, unless and until the copyright holder explicitly and\nfinally terminates your license, and (b) permanently, if the copyright\nholder fails to notify you of the violation by some reasonable means\nprior to 60 days after the cessation.\n\n Moreover, your license from a particular copyright holder is\nreinstated permanently if the copyright holder notifies you of the\nviolation by some reasonable means, this is the first time you have\nreceived notice of violation of this License (for any work) from that\ncopyright holder, and you cure the violation prior to 30 days after\nyour receipt of the notice.\n\n Termination of your rights under this section does not terminate the\nlicenses of parties who have received copies or rights from you under\nthis License. If your rights have been terminated and not permanently\nreinstated, you do not qualify to receive new licenses for the same\nmaterial under section 10.\n\n 9. Acceptance Not Required for Having Copies.\n\n You are not required to accept this License in order to receive or\nrun a copy of the Program. Ancillary propagation of a covered work\noccurring solely as a consequence of using peer-to-peer transmission\nto receive a copy likewise does not require acceptance. However,\nnothing other than this License grants you permission to propagate or\nmodify any covered work. These actions infringe copyright if you do\nnot accept this License. Therefore, by modifying or propagating a\ncovered work, you indicate your acceptance of this License to do so.\n\n 10. Automatic Licensing of Downstream Recipients.\n\n Each time you convey a covered work, the recipient automatically\nreceives a license from the original licensors, to run, modify and\npropagate that work, subject to this License. You are not responsible\nfor enforcing compliance by third parties with this License.\n\n An \"entity transaction\" is a transaction transferring control of an\norganization, or substantially all assets of one, or subdividing an\norganization, or merging organizations. If propagation of a covered\nwork results from an entity transaction, each party to that\ntransaction who receives a copy of the work also receives whatever\nlicenses to the work the party\u0027s predecessor in interest had or could\ngive under the previous paragraph, plus a right to possession of the\nCorresponding Source of the work from the predecessor in interest, if\nthe predecessor has it or can get it with reasonable efforts.\n\n You may not impose any further restrictions on the exercise of the\nrights granted or affirmed under this License. For example, you may\nnot impose a license fee, royalty, or other charge for exercise of\nrights granted under this License, and you may not initiate litigation\n(including a cross-claim or counterclaim in a lawsuit) alleging that\nany patent claim is infringed by making, using, selling, offering for\nsale, or importing the Program or any portion of it.\n\n 11. Patents.\n\n A \"contributor\" is a copyright holder who authorizes use under this\nLicense of the Program or a work on which the Program is based. The\nwork thus licensed is called the contributor\u0027s \"contributor version\".\n\n A contributor\u0027s \"essential patent claims\" are all patent claims\nowned or controlled by the contributor, whether already acquired or\nhereafter acquired, that would be infringed by some manner, permitted\nby this License, of making, using, or selling its contributor version,\nbut do not include claims that would be infringed only as a\nconsequence of further modification of the contributor version. For\npurposes of this definition, \"control\" includes the right to grant\npatent sublicenses in a manner consistent with the requirements of\nthis License.\n\n Each contributor grants you a non-exclusive, worldwide, royalty-free\npatent license under the contributor\u0027s essential patent claims, to\nmake, use, sell, offer for sale, import and otherwise run, modify and\npropagate the contents of its contributor version.\n\n In the following three paragraphs, a \"patent license\" is any express\nagreement or commitment, however denominated, not to enforce a patent\n(such as an express permission to practice a patent or covenant not to\nsue for patent infringement). To \"grant\" such a patent license to a\nparty means to make such an agreement or commitment not to enforce a\npatent against the party.\n\n If you convey a covered work, knowingly relying on a patent license,\nand the Corresponding Source of the work is not available for anyone\nto copy, free of charge and under the terms of this License, through a\npublicly available network server or other readily accessible means,\nthen you must either (1) cause the Corresponding Source to be so\navailable, or (2) arrange to deprive yourself of the benefit of the\npatent license for this particular work, or (3) arrange, in a manner\nconsistent with the requirements of this License, to extend the patent\nlicense to downstream recipients. \"Knowingly relying\" means you have\nactual knowledge that, but for the patent license, your conveying the\ncovered work in a country, or your recipient\u0027s use of the covered work\nin a country, would infringe one or more identifiable patents in that\ncountry that you have reason to believe are valid.\n\n If, pursuant to or in connection with a single transaction or\narrangement, you convey, or propagate by procuring conveyance of, a\ncovered work, and grant a patent license to some of the parties\nreceiving the covered work authorizing them to use, propagate, modify\nor convey a specific copy of the covered work, then the patent license\nyou grant is automatically extended to all recipients of the covered\nwork and works based on it.\n\n A patent license is \"discriminatory\" if it does not include within\nthe scope of its coverage, prohibits the exercise of, or is\nconditioned on the non-exercise of one or more of the rights that are\nspecifically granted under this License. You may not convey a covered\nwork if you are a party to an arrangement with a third party that is\nin the business of distributing software, under which you make payment\nto the third party based on the extent of your activity of conveying\nthe work, and under which the third party grants, to any of the\nparties who would receive the covered work from you, a discriminatory\npatent license (a) in connection with copies of the covered work\nconveyed by you (or copies made from those copies), or (b) primarily\nfor and in connection with specific products or compilations that\ncontain the covered work, unless you entered into that arrangement,\nor that patent license was granted, prior to 28 March 2007.\n\n Nothing in this License shall be construed as excluding or limiting\nany implied license or other defenses to infringement that may\notherwise be available to you under applicable patent law.\n\n 12. No Surrender of Others\u0027 Freedom.\n\n If conditions are imposed on you (whether by court order, agreement or\notherwise) that contradict the conditions of this License, they do not\nexcuse you from the conditions of this License. If you cannot convey a\ncovered work so as to satisfy simultaneously your obligations under this\nLicense and any other pertinent obligations, then as a consequence you may\nnot convey it at all. For example, if you agree to terms that obligate you\nto collect a royalty for further conveying from those to whom you convey\nthe Program, the only way you could satisfy both those terms and this\nLicense would be to refrain entirely from conveying the Program.\n\n 13. Use with the GNU Affero General Public License.\n\n Notwithstanding any other provision of this License, you have\npermission to link or combine any covered work with a work licensed\nunder version 3 of the GNU Affero General Public License into a single\ncombined work, and to convey the resulting work. The terms of this\nLicense will continue to apply to the part which is the covered work,\nbut the special requirements of the GNU Affero General Public License,\nsection 13, concerning interaction through a network will apply to the\ncombination as such.\n\n 14. Revised Versions of this License.\n\n The Free Software Foundation may publish revised and/or new versions of\nthe GNU General Public License from time to time. Such new versions will\nbe similar in spirit to the present version, but may differ in detail to\naddress new problems or concerns.\n\n Each version is given a distinguishing version number. If the\nProgram specifies that a certain numbered version of the GNU General\nPublic License \"or any later version\" applies to it, you have the\noption of following the terms and conditions either of that numbered\nversion or of any later version published by the Free Software\nFoundation. If the Program does not specify a version number of the\nGNU General Public License, you may choose any version ever published\nby the Free Software Foundation.\n\n If the Program specifies that a proxy can decide which future\nversions of the GNU General Public License can be used, that proxy\u0027s\npublic statement of acceptance of a version permanently authorizes you\nto choose that version for the Program.\n\n Later license versions may give you additional or different\npermissions. However, no additional obligations are imposed on any\nauthor or copyright holder as a result of your choosing to follow a\nlater version.\n\n 15. Disclaimer of Warranty.\n\n THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY\nAPPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT\nHOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM \"AS IS\" WITHOUT WARRANTY\nOF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,\nTHE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR\nPURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM\nIS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF\nALL NECESSARY SERVICING, REPAIR OR CORRECTION.\n\n 16. Limitation of Liability.\n\n IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING\nWILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS\nTHE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY\nGENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE\nUSE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF\nDATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD\nPARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),\nEVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF\nSUCH DAMAGES.\n\n 17. Interpretation of Sections 15 and 16.\n\n If the disclaimer of warranty and limitation of liability provided\nabove cannot be given local legal effect according to their terms,\nreviewing courts shall apply local law that most closely approximates\nan absolute waiver of all civil liability in connection with the\nProgram, unless a warranty or assumption of liability accompanies a\ncopy of the Program in return for a fee.\n\n END OF TERMS AND CONDITIONS\n\n How to Apply These Terms to Your New Programs\n\n If you develop a new program, and you want it to be of the greatest\npossible use to the public, the best way to achieve this is to make it\nfree software which everyone can redistribute and change under these terms.\n\n To do so, attach the following notices to the program. It is safest\nto attach them to the start of each source file to most effectively\nstate the exclusion of warranty; and each file should have at least\nthe \"copyright\" line and a pointer to where the full notice is found.\n\n \u003cone line to give the program\u0027s name and a brief idea of what it does.\u003e\n Copyright (C) \u003cyear\u003e \u003cname of author\u003e\n\n This program is free software: you can redistribute it and/or modify\n it under the terms of the GNU General Public License as published by\n the Free Software Foundation, either version 3 of the License, or\n (at your option) any later version.\n\n This program is distributed in the hope that it will be useful,\n but WITHOUT ANY WARRANTY; without even the implied warranty of\n MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n GNU General Public License for more details.\n\n You should have received a copy of the GNU General Public License\n along with this program. If not, see \u003chttp://www.gnu.org/licenses/\u003e.\n\nAlso add information on how to contact you by electronic and paper mail.\n\n If the program does terminal interaction, make it output a short\nnotice like this when it starts in an interactive mode:\n\n \u003cprogram\u003e Copyright (C) \u003cyear\u003e \u003cname of author\u003e\n This program comes with ABSOLUTELY NO WARRANTY; for details type `show w\u0027.\n This is free software, and you are welcome to redistribute it\n under certain conditions; type `show c\u0027 for details.\n\nThe hypothetical commands `show w\u0027 and `show c\u0027 should show the appropriate\nparts of the General Public License. Of course, your program\u0027s commands\nmight be different; for a GUI interface, you would use an \"about box\".\n\n You should also get your employer (if you work as a programmer) or school,\nif any, to sign a \"copyright disclaimer\" for the program, if necessary.\nFor more information on this, and how to apply and follow the GNU GPL, see\n\u003chttp://www.gnu.org/licenses/\u003e.\n\n The GNU General Public License does not permit incorporating your program\ninto proprietary programs. If your program is a subroutine library, you\nmay consider it more useful to permit linking proprietary applications with\nthe library. If this is what you want to do, use the GNU Lesser General\nPublic License instead of this License. But first, please read\n\u003chttp://www.gnu.org/philosophy/why-not-lgpl.html\u003e.\n\n*/"}}File 26 of 30: SetToken
// Sources flattened with hardhat v2.2.1 https://hardhat.org
// File @openzeppelin/contracts/utils/Address.sol@v3.3.0
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.8.0;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize, which returns 0 for contracts in
// construction, since the code is only stored at the end of the
// constructor execution.
uint256 size;
// solhint-disable-next-line no-inline-assembly
assembly { size := extcodesize(account) }
return size > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain`call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.call{ value: value }(data);
return _verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.staticcall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
// solhint-disable-next-line no-inline-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
// File @openzeppelin/contracts/GSN/Context.sol@v3.3.0
pragma solidity >=0.6.0 <0.8.0;
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address payable) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}
// File @openzeppelin/contracts/token/ERC20/IERC20.sol@v3.3.0
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// File @openzeppelin/contracts/math/SafeMath.sol@v3.3.0
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
// File @openzeppelin/contracts/token/ERC20/ERC20.sol@v3.3.0
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin guidelines: functions revert instead
* of returning `false` on failure. This behavior is nonetheless conventional
* and does not conflict with the expectations of ERC20 applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20 {
using SafeMath for uint256;
mapping (address => uint256) private _balances;
mapping (address => mapping (address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
uint8 private _decimals;
/**
* @dev Sets the values for {name} and {symbol}, initializes {decimals} with
* a default value of 18.
*
* To select a different value for {decimals}, use {_setupDecimals}.
*
* All three of these values are immutable: they can only be set once during
* construction.
*/
constructor (string memory name_, string memory symbol_) public {
_name = name_;
_symbol = symbol_;
_decimals = 18;
}
/**
* @dev Returns the name of the token.
*/
function name() public view returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5,05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
* called.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view returns (uint8) {
return _decimals;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `recipient` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
_approve(_msgSender(), spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* Requirements:
*
* - `sender` and `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
* - the caller must have allowance for ``sender``'s tokens of at least
* `amount`.
*/
function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
/**
* @dev Moves tokens `amount` from `sender` to `recipient`.
*
* This is internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `sender` cannot be the zero address.
* - `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
*/
function _transfer(address sender, address recipient, uint256 amount) internal virtual {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(sender, recipient, amount);
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `to` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Sets {decimals} to a value other than the default one of 18.
*
* WARNING: This function should only be called from the constructor. Most
* applications that interact with token contracts will not expect
* {decimals} to ever change, and may work incorrectly if it does.
*/
function _setupDecimals(uint8 decimals_) internal {
_decimals = decimals_;
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be to transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
}
// File @openzeppelin/contracts/utils/SafeCast.sol@v3.3.0
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*
* Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing
* all math on `uint256` and `int256` and then downcasting.
*/
library SafeCast {
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
require(value < 2**128, "SafeCast: value doesn\'t fit in 128 bits");
return uint128(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
require(value < 2**64, "SafeCast: value doesn\'t fit in 64 bits");
return uint64(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
require(value < 2**32, "SafeCast: value doesn\'t fit in 32 bits");
return uint32(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
require(value < 2**16, "SafeCast: value doesn\'t fit in 16 bits");
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits.
*/
function toUint8(uint256 value) internal pure returns (uint8) {
require(value < 2**8, "SafeCast: value doesn\'t fit in 8 bits");
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
require(value >= 0, "SafeCast: value must be positive");
return uint256(value);
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*
* _Available since v3.1._
*/
function toInt128(int256 value) internal pure returns (int128) {
require(value >= -2**127 && value < 2**127, "SafeCast: value doesn\'t fit in 128 bits");
return int128(value);
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*
* _Available since v3.1._
*/
function toInt64(int256 value) internal pure returns (int64) {
require(value >= -2**63 && value < 2**63, "SafeCast: value doesn\'t fit in 64 bits");
return int64(value);
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*
* _Available since v3.1._
*/
function toInt32(int256 value) internal pure returns (int32) {
require(value >= -2**31 && value < 2**31, "SafeCast: value doesn\'t fit in 32 bits");
return int32(value);
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*
* _Available since v3.1._
*/
function toInt16(int256 value) internal pure returns (int16) {
require(value >= -2**15 && value < 2**15, "SafeCast: value doesn\'t fit in 16 bits");
return int16(value);
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits.
*
* _Available since v3.1._
*/
function toInt8(int256 value) internal pure returns (int8) {
require(value >= -2**7 && value < 2**7, "SafeCast: value doesn\'t fit in 8 bits");
return int8(value);
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
require(value < 2**255, "SafeCast: value doesn't fit in an int256");
return int256(value);
}
}
// File @openzeppelin/contracts/math/SignedSafeMath.sol@v3.3.0
pragma solidity >=0.6.0 <0.8.0;
/**
* @title SignedSafeMath
* @dev Signed math operations with safety checks that revert on error.
*/
library SignedSafeMath {
int256 constant private _INT256_MIN = -2**255;
/**
* @dev Returns the multiplication of two signed integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(int256 a, int256 b) internal pure returns (int256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
require(!(a == -1 && b == _INT256_MIN), "SignedSafeMath: multiplication overflow");
int256 c = a * b;
require(c / a == b, "SignedSafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two signed integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(int256 a, int256 b) internal pure returns (int256) {
require(b != 0, "SignedSafeMath: division by zero");
require(!(b == -1 && a == _INT256_MIN), "SignedSafeMath: division overflow");
int256 c = a / b;
return c;
}
/**
* @dev Returns the subtraction of two signed integers, reverting on
* overflow.
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(int256 a, int256 b) internal pure returns (int256) {
int256 c = a - b;
require((b >= 0 && c <= a) || (b < 0 && c > a), "SignedSafeMath: subtraction overflow");
return c;
}
/**
* @dev Returns the addition of two signed integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(int256 a, int256 b) internal pure returns (int256) {
int256 c = a + b;
require((b >= 0 && c >= a) || (b < 0 && c < a), "SignedSafeMath: addition overflow");
return c;
}
}
// File contracts/interfaces/IController.sol
/*
Copyright 2020 Set Labs Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
pragma solidity 0.6.10;
interface IController {
function addSet(address _setToken) external;
function feeRecipient() external view returns(address);
function getModuleFee(address _module, uint256 _feeType) external view returns(uint256);
function isModule(address _module) external view returns(bool);
function isSet(address _setToken) external view returns(bool);
function isSystemContract(address _contractAddress) external view returns (bool);
function resourceId(uint256 _id) external view returns(address);
}
// File contracts/interfaces/IModule.sol
/*
Copyright 2020 Set Labs Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
pragma solidity 0.6.10;
/**
* @title IModule
* @author Set Protocol
*
* Interface for interacting with Modules.
*/
interface IModule {
/**
* Called by a SetToken to notify that this module was removed from the Set token. Any logic can be included
* in case checks need to be made or state needs to be cleared.
*/
function removeModule() external;
}
// File contracts/interfaces/ISetToken.sol
/*
Copyright 2020 Set Labs Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
pragma solidity 0.6.10;
/**
* @title ISetToken
* @author Set Protocol
*
* Interface for operating with SetTokens.
*/
interface ISetToken is IERC20 {
/* ============ Enums ============ */
enum ModuleState {
NONE,
PENDING,
INITIALIZED
}
/* ============ Structs ============ */
/**
* The base definition of a SetToken Position
*
* @param component Address of token in the Position
* @param module If not in default state, the address of associated module
* @param unit Each unit is the # of components per 10^18 of a SetToken
* @param positionState Position ENUM. Default is 0; External is 1
* @param data Arbitrary data
*/
struct Position {
address component;
address module;
int256 unit;
uint8 positionState;
bytes data;
}
/**
* A struct that stores a component's cash position details and external positions
* This data structure allows O(1) access to a component's cash position units and
* virtual units.
*
* @param virtualUnit Virtual value of a component's DEFAULT position. Stored as virtual for efficiency
* updating all units at once via the position multiplier. Virtual units are achieved
* by dividing a "real" value by the "positionMultiplier"
* @param componentIndex
* @param externalPositionModules List of external modules attached to each external position. Each module
* maps to an external position
* @param externalPositions Mapping of module => ExternalPosition struct for a given component
*/
struct ComponentPosition {
int256 virtualUnit;
address[] externalPositionModules;
mapping(address => ExternalPosition) externalPositions;
}
/**
* A struct that stores a component's external position details including virtual unit and any
* auxiliary data.
*
* @param virtualUnit Virtual value of a component's EXTERNAL position.
* @param data Arbitrary data
*/
struct ExternalPosition {
int256 virtualUnit;
bytes data;
}
/* ============ Functions ============ */
function addComponent(address _component) external;
function removeComponent(address _component) external;
function editDefaultPositionUnit(address _component, int256 _realUnit) external;
function addExternalPositionModule(address _component, address _positionModule) external;
function removeExternalPositionModule(address _component, address _positionModule) external;
function editExternalPositionUnit(address _component, address _positionModule, int256 _realUnit) external;
function editExternalPositionData(address _component, address _positionModule, bytes calldata _data) external;
function invoke(address _target, uint256 _value, bytes calldata _data) external returns(bytes memory);
function editPositionMultiplier(int256 _newMultiplier) external;
function mint(address _account, uint256 _quantity) external;
function burn(address _account, uint256 _quantity) external;
function lock() external;
function unlock() external;
function addModule(address _module) external;
function removeModule(address _module) external;
function initializeModule() external;
function setManager(address _manager) external;
function manager() external view returns (address);
function moduleStates(address _module) external view returns (ModuleState);
function getModules() external view returns (address[] memory);
function getDefaultPositionRealUnit(address _component) external view returns(int256);
function getExternalPositionRealUnit(address _component, address _positionModule) external view returns(int256);
function getComponents() external view returns(address[] memory);
function getExternalPositionModules(address _component) external view returns(address[] memory);
function getExternalPositionData(address _component, address _positionModule) external view returns(bytes memory);
function isExternalPositionModule(address _component, address _module) external view returns(bool);
function isComponent(address _component) external view returns(bool);
function positionMultiplier() external view returns (int256);
function getPositions() external view returns (Position[] memory);
function getTotalComponentRealUnits(address _component) external view returns(int256);
function isInitializedModule(address _module) external view returns(bool);
function isPendingModule(address _module) external view returns(bool);
function isLocked() external view returns (bool);
}
// File contracts/lib/PreciseUnitMath.sol
/*
Copyright 2020 Set Labs Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
pragma solidity 0.6.10;
pragma experimental ABIEncoderV2;
/**
* @title PreciseUnitMath
* @author Set Protocol
*
* Arithmetic for fixed-point numbers with 18 decimals of precision. Some functions taken from
* dYdX's BaseMath library.
*
* CHANGELOG:
* - 9/21/20: Added safePower function
* - 4/21/21: Added approximatelyEquals function
*/
library PreciseUnitMath {
using SafeMath for uint256;
using SignedSafeMath for int256;
// The number One in precise units.
uint256 constant internal PRECISE_UNIT = 10 ** 18;
int256 constant internal PRECISE_UNIT_INT = 10 ** 18;
// Max unsigned integer value
uint256 constant internal MAX_UINT_256 = type(uint256).max;
// Max and min signed integer value
int256 constant internal MAX_INT_256 = type(int256).max;
int256 constant internal MIN_INT_256 = type(int256).min;
/**
* @dev Getter function since constants can't be read directly from libraries.
*/
function preciseUnit() internal pure returns (uint256) {
return PRECISE_UNIT;
}
/**
* @dev Getter function since constants can't be read directly from libraries.
*/
function preciseUnitInt() internal pure returns (int256) {
return PRECISE_UNIT_INT;
}
/**
* @dev Getter function since constants can't be read directly from libraries.
*/
function maxUint256() internal pure returns (uint256) {
return MAX_UINT_256;
}
/**
* @dev Getter function since constants can't be read directly from libraries.
*/
function maxInt256() internal pure returns (int256) {
return MAX_INT_256;
}
/**
* @dev Getter function since constants can't be read directly from libraries.
*/
function minInt256() internal pure returns (int256) {
return MIN_INT_256;
}
/**
* @dev Multiplies value a by value b (result is rounded down). It's assumed that the value b is the significand
* of a number with 18 decimals precision.
*/
function preciseMul(uint256 a, uint256 b) internal pure returns (uint256) {
return a.mul(b).div(PRECISE_UNIT);
}
/**
* @dev Multiplies value a by value b (result is rounded towards zero). It's assumed that the value b is the
* significand of a number with 18 decimals precision.
*/
function preciseMul(int256 a, int256 b) internal pure returns (int256) {
return a.mul(b).div(PRECISE_UNIT_INT);
}
/**
* @dev Multiplies value a by value b (result is rounded up). It's assumed that the value b is the significand
* of a number with 18 decimals precision.
*/
function preciseMulCeil(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0 || b == 0) {
return 0;
}
return a.mul(b).sub(1).div(PRECISE_UNIT).add(1);
}
/**
* @dev Divides value a by value b (result is rounded down).
*/
function preciseDiv(uint256 a, uint256 b) internal pure returns (uint256) {
return a.mul(PRECISE_UNIT).div(b);
}
/**
* @dev Divides value a by value b (result is rounded towards 0).
*/
function preciseDiv(int256 a, int256 b) internal pure returns (int256) {
return a.mul(PRECISE_UNIT_INT).div(b);
}
/**
* @dev Divides value a by value b (result is rounded up or away from 0).
*/
function preciseDivCeil(uint256 a, uint256 b) internal pure returns (uint256) {
require(b != 0, "Cant divide by 0");
return a > 0 ? a.mul(PRECISE_UNIT).sub(1).div(b).add(1) : 0;
}
/**
* @dev Divides value a by value b (result is rounded down - positive numbers toward 0 and negative away from 0).
*/
function divDown(int256 a, int256 b) internal pure returns (int256) {
require(b != 0, "Cant divide by 0");
require(a != MIN_INT_256 || b != -1, "Invalid input");
int256 result = a.div(b);
if (a ^ b < 0 && a % b != 0) {
result -= 1;
}
return result;
}
/**
* @dev Multiplies value a by value b where rounding is towards the lesser number.
* (positive values are rounded towards zero and negative values are rounded away from 0).
*/
function conservativePreciseMul(int256 a, int256 b) internal pure returns (int256) {
return divDown(a.mul(b), PRECISE_UNIT_INT);
}
/**
* @dev Divides value a by value b where rounding is towards the lesser number.
* (positive values are rounded towards zero and negative values are rounded away from 0).
*/
function conservativePreciseDiv(int256 a, int256 b) internal pure returns (int256) {
return divDown(a.mul(PRECISE_UNIT_INT), b);
}
/**
* @dev Performs the power on a specified value, reverts on overflow.
*/
function safePower(
uint256 a,
uint256 pow
)
internal
pure
returns (uint256)
{
require(a > 0, "Value must be positive");
uint256 result = 1;
for (uint256 i = 0; i < pow; i++){
uint256 previousResult = result;
// Using safemath multiplication prevents overflows
result = previousResult.mul(a);
}
return result;
}
/**
* @dev Returns true if a =~ b within range, false otherwise.
*/
function approximatelyEquals(uint256 a, uint256 b, uint256 range) internal pure returns (bool) {
return a <= b.add(range) && a >= b.sub(range);
}
}
// File contracts/protocol/lib/Position.sol
/*
Copyright 2020 Set Labs Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
pragma solidity 0.6.10;
/**
* @title Position
* @author Set Protocol
*
* Collection of helper functions for handling and updating SetToken Positions
*
* CHANGELOG:
* - Updated editExternalPosition to work when no external position is associated with module
*/
library Position {
using SafeCast for uint256;
using SafeMath for uint256;
using SafeCast for int256;
using SignedSafeMath for int256;
using PreciseUnitMath for uint256;
/* ============ Helper ============ */
/**
* Returns whether the SetToken has a default position for a given component (if the real unit is > 0)
*/
function hasDefaultPosition(ISetToken _setToken, address _component) internal view returns(bool) {
return _setToken.getDefaultPositionRealUnit(_component) > 0;
}
/**
* Returns whether the SetToken has an external position for a given component (if # of position modules is > 0)
*/
function hasExternalPosition(ISetToken _setToken, address _component) internal view returns(bool) {
return _setToken.getExternalPositionModules(_component).length > 0;
}
/**
* Returns whether the SetToken component default position real unit is greater than or equal to units passed in.
*/
function hasSufficientDefaultUnits(ISetToken _setToken, address _component, uint256 _unit) internal view returns(bool) {
return _setToken.getDefaultPositionRealUnit(_component) >= _unit.toInt256();
}
/**
* Returns whether the SetToken component external position is greater than or equal to the real units passed in.
*/
function hasSufficientExternalUnits(
ISetToken _setToken,
address _component,
address _positionModule,
uint256 _unit
)
internal
view
returns(bool)
{
return _setToken.getExternalPositionRealUnit(_component, _positionModule) >= _unit.toInt256();
}
/**
* If the position does not exist, create a new Position and add to the SetToken. If it already exists,
* then set the position units. If the new units is 0, remove the position. Handles adding/removing of
* components where needed (in light of potential external positions).
*
* @param _setToken Address of SetToken being modified
* @param _component Address of the component
* @param _newUnit Quantity of Position units - must be >= 0
*/
function editDefaultPosition(ISetToken _setToken, address _component, uint256 _newUnit) internal {
bool isPositionFound = hasDefaultPosition(_setToken, _component);
if (!isPositionFound && _newUnit > 0) {
// If there is no Default Position and no External Modules, then component does not exist
if (!hasExternalPosition(_setToken, _component)) {
_setToken.addComponent(_component);
}
} else if (isPositionFound && _newUnit == 0) {
// If there is a Default Position and no external positions, remove the component
if (!hasExternalPosition(_setToken, _component)) {
_setToken.removeComponent(_component);
}
}
_setToken.editDefaultPositionUnit(_component, _newUnit.toInt256());
}
/**
* Update an external position and remove and external positions or components if necessary. The logic flows as follows:
* 1) If component is not already added then add component and external position.
* 2) If component is added but no existing external position using the passed module exists then add the external position.
* 3) If the existing position is being added to then just update the unit and data
* 4) If the position is being closed and no other external positions or default positions are associated with the component
* then untrack the component and remove external position.
* 5) If the position is being closed and other existing positions still exist for the component then just remove the
* external position.
*
* @param _setToken SetToken being updated
* @param _component Component position being updated
* @param _module Module external position is associated with
* @param _newUnit Position units of new external position
* @param _data Arbitrary data associated with the position
*/
function editExternalPosition(
ISetToken _setToken,
address _component,
address _module,
int256 _newUnit,
bytes memory _data
)
internal
{
if (_newUnit != 0) {
if (!_setToken.isComponent(_component)) {
_setToken.addComponent(_component);
_setToken.addExternalPositionModule(_component, _module);
} else if (!_setToken.isExternalPositionModule(_component, _module)) {
_setToken.addExternalPositionModule(_component, _module);
}
_setToken.editExternalPositionUnit(_component, _module, _newUnit);
_setToken.editExternalPositionData(_component, _module, _data);
} else {
require(_data.length == 0, "Passed data must be null");
// If no default or external position remaining then remove component from components array
if (_setToken.getExternalPositionRealUnit(_component, _module) != 0) {
address[] memory positionModules = _setToken.getExternalPositionModules(_component);
if (_setToken.getDefaultPositionRealUnit(_component) == 0 && positionModules.length == 1) {
require(positionModules[0] == _module, "External positions must be 0 to remove component");
_setToken.removeComponent(_component);
}
_setToken.removeExternalPositionModule(_component, _module);
}
}
}
/**
* Get total notional amount of Default position
*
* @param _setTokenSupply Supply of SetToken in precise units (10^18)
* @param _positionUnit Quantity of Position units
*
* @return Total notional amount of units
*/
function getDefaultTotalNotional(uint256 _setTokenSupply, uint256 _positionUnit) internal pure returns (uint256) {
return _setTokenSupply.preciseMul(_positionUnit);
}
/**
* Get position unit from total notional amount
*
* @param _setTokenSupply Supply of SetToken in precise units (10^18)
* @param _totalNotional Total notional amount of component prior to
* @return Default position unit
*/
function getDefaultPositionUnit(uint256 _setTokenSupply, uint256 _totalNotional) internal pure returns (uint256) {
return _totalNotional.preciseDiv(_setTokenSupply);
}
/**
* Get the total tracked balance - total supply * position unit
*
* @param _setToken Address of the SetToken
* @param _component Address of the component
* @return Notional tracked balance
*/
function getDefaultTrackedBalance(ISetToken _setToken, address _component) internal view returns(uint256) {
int256 positionUnit = _setToken.getDefaultPositionRealUnit(_component);
return _setToken.totalSupply().preciseMul(positionUnit.toUint256());
}
/**
* Calculates the new default position unit and performs the edit with the new unit
*
* @param _setToken Address of the SetToken
* @param _component Address of the component
* @param _setTotalSupply Current SetToken supply
* @param _componentPreviousBalance Pre-action component balance
* @return Current component balance
* @return Previous position unit
* @return New position unit
*/
function calculateAndEditDefaultPosition(
ISetToken _setToken,
address _component,
uint256 _setTotalSupply,
uint256 _componentPreviousBalance
)
internal
returns(uint256, uint256, uint256)
{
uint256 currentBalance = IERC20(_component).balanceOf(address(_setToken));
uint256 positionUnit = _setToken.getDefaultPositionRealUnit(_component).toUint256();
uint256 newTokenUnit;
if (currentBalance > 0) {
newTokenUnit = calculateDefaultEditPositionUnit(
_setTotalSupply,
_componentPreviousBalance,
currentBalance,
positionUnit
);
} else {
newTokenUnit = 0;
}
editDefaultPosition(_setToken, _component, newTokenUnit);
return (currentBalance, positionUnit, newTokenUnit);
}
/**
* Calculate the new position unit given total notional values pre and post executing an action that changes SetToken state
* The intention is to make updates to the units without accidentally picking up airdropped assets as well.
*
* @param _setTokenSupply Supply of SetToken in precise units (10^18)
* @param _preTotalNotional Total notional amount of component prior to executing action
* @param _postTotalNotional Total notional amount of component after the executing action
* @param _prePositionUnit Position unit of SetToken prior to executing action
* @return New position unit
*/
function calculateDefaultEditPositionUnit(
uint256 _setTokenSupply,
uint256 _preTotalNotional,
uint256 _postTotalNotional,
uint256 _prePositionUnit
)
internal
pure
returns (uint256)
{
// If pre action total notional amount is greater then subtract post action total notional and calculate new position units
uint256 airdroppedAmount = _preTotalNotional.sub(_prePositionUnit.preciseMul(_setTokenSupply));
return _postTotalNotional.sub(airdroppedAmount).preciseDiv(_setTokenSupply);
}
}
// File contracts/lib/AddressArrayUtils.sol
/*
Copyright 2020 Set Labs Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
pragma solidity 0.6.10;
/**
* @title AddressArrayUtils
* @author Set Protocol
*
* Utility functions to handle Address Arrays
*
* CHANGELOG:
* - 4/21/21: Added validatePairsWithArray methods
*/
library AddressArrayUtils {
/**
* Finds the index of the first occurrence of the given element.
* @param A The input array to search
* @param a The value to find
* @return Returns (index and isIn) for the first occurrence starting from index 0
*/
function indexOf(address[] memory A, address a) internal pure returns (uint256, bool) {
uint256 length = A.length;
for (uint256 i = 0; i < length; i++) {
if (A[i] == a) {
return (i, true);
}
}
return (uint256(-1), false);
}
/**
* Returns true if the value is present in the list. Uses indexOf internally.
* @param A The input array to search
* @param a The value to find
* @return Returns isIn for the first occurrence starting from index 0
*/
function contains(address[] memory A, address a) internal pure returns (bool) {
(, bool isIn) = indexOf(A, a);
return isIn;
}
/**
* Returns true if there are 2 elements that are the same in an array
* @param A The input array to search
* @return Returns boolean for the first occurrence of a duplicate
*/
function hasDuplicate(address[] memory A) internal pure returns(bool) {
require(A.length > 0, "A is empty");
for (uint256 i = 0; i < A.length - 1; i++) {
address current = A[i];
for (uint256 j = i + 1; j < A.length; j++) {
if (current == A[j]) {
return true;
}
}
}
return false;
}
/**
* @param A The input array to search
* @param a The address to remove
* @return Returns the array with the object removed.
*/
function remove(address[] memory A, address a)
internal
pure
returns (address[] memory)
{
(uint256 index, bool isIn) = indexOf(A, a);
if (!isIn) {
revert("Address not in array.");
} else {
(address[] memory _A,) = pop(A, index);
return _A;
}
}
/**
* @param A The input array to search
* @param a The address to remove
*/
function removeStorage(address[] storage A, address a)
internal
{
(uint256 index, bool isIn) = indexOf(A, a);
if (!isIn) {
revert("Address not in array.");
} else {
uint256 lastIndex = A.length - 1; // If the array would be empty, the previous line would throw, so no underflow here
if (index != lastIndex) { A[index] = A[lastIndex]; }
A.pop();
}
}
/**
* Removes specified index from array
* @param A The input array to search
* @param index The index to remove
* @return Returns the new array and the removed entry
*/
function pop(address[] memory A, uint256 index)
internal
pure
returns (address[] memory, address)
{
uint256 length = A.length;
require(index < A.length, "Index must be < A length");
address[] memory newAddresses = new address[](length - 1);
for (uint256 i = 0; i < index; i++) {
newAddresses[i] = A[i];
}
for (uint256 j = index + 1; j < length; j++) {
newAddresses[j - 1] = A[j];
}
return (newAddresses, A[index]);
}
/**
* Returns the combination of the two arrays
* @param A The first array
* @param B The second array
* @return Returns A extended by B
*/
function extend(address[] memory A, address[] memory B) internal pure returns (address[] memory) {
uint256 aLength = A.length;
uint256 bLength = B.length;
address[] memory newAddresses = new address[](aLength + bLength);
for (uint256 i = 0; i < aLength; i++) {
newAddresses[i] = A[i];
}
for (uint256 j = 0; j < bLength; j++) {
newAddresses[aLength + j] = B[j];
}
return newAddresses;
}
/**
* Validate that address and uint array lengths match. Validate address array is not empty
* and contains no duplicate elements.
*
* @param A Array of addresses
* @param B Array of uint
*/
function validatePairsWithArray(address[] memory A, uint[] memory B) internal pure {
require(A.length == B.length, "Array length mismatch");
_validateLengthAndUniqueness(A);
}
/**
* Validate that address and bool array lengths match. Validate address array is not empty
* and contains no duplicate elements.
*
* @param A Array of addresses
* @param B Array of bool
*/
function validatePairsWithArray(address[] memory A, bool[] memory B) internal pure {
require(A.length == B.length, "Array length mismatch");
_validateLengthAndUniqueness(A);
}
/**
* Validate that address and string array lengths match. Validate address array is not empty
* and contains no duplicate elements.
*
* @param A Array of addresses
* @param B Array of strings
*/
function validatePairsWithArray(address[] memory A, string[] memory B) internal pure {
require(A.length == B.length, "Array length mismatch");
_validateLengthAndUniqueness(A);
}
/**
* Validate that address array lengths match, and calling address array are not empty
* and contain no duplicate elements.
*
* @param A Array of addresses
* @param B Array of addresses
*/
function validatePairsWithArray(address[] memory A, address[] memory B) internal pure {
require(A.length == B.length, "Array length mismatch");
_validateLengthAndUniqueness(A);
}
/**
* Validate that address and bytes array lengths match. Validate address array is not empty
* and contains no duplicate elements.
*
* @param A Array of addresses
* @param B Array of bytes
*/
function validatePairsWithArray(address[] memory A, bytes[] memory B) internal pure {
require(A.length == B.length, "Array length mismatch");
_validateLengthAndUniqueness(A);
}
/**
* Validate address array is not empty and contains no duplicate elements.
*
* @param A Array of addresses
*/
function _validateLengthAndUniqueness(address[] memory A) internal pure {
require(A.length > 0, "Array length must be > 0");
require(!hasDuplicate(A), "Cannot duplicate addresses");
}
}
// File contracts/protocol/SetToken.sol
/*
Copyright 2020 Set Labs Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
pragma solidity 0.6.10;
/**
* @title SetToken
* @author Set Protocol
*
* ERC20 Token contract that allows privileged modules to make modifications to its positions and invoke function calls
* from the SetToken.
*/
contract SetToken is ERC20 {
using SafeMath for uint256;
using SafeCast for int256;
using SafeCast for uint256;
using SignedSafeMath for int256;
using PreciseUnitMath for int256;
using Address for address;
using AddressArrayUtils for address[];
/* ============ Constants ============ */
/*
The PositionState is the status of the Position, whether it is Default (held on the SetToken)
or otherwise held on a separate smart contract (whether a module or external source).
There are issues with cross-usage of enums, so we are defining position states
as a uint8.
*/
uint8 internal constant DEFAULT = 0;
uint8 internal constant EXTERNAL = 1;
/* ============ Events ============ */
event Invoked(address indexed _target, uint indexed _value, bytes _data, bytes _returnValue);
event ModuleAdded(address indexed _module);
event ModuleRemoved(address indexed _module);
event ModuleInitialized(address indexed _module);
event ManagerEdited(address _newManager, address _oldManager);
event PendingModuleRemoved(address indexed _module);
event PositionMultiplierEdited(int256 _newMultiplier);
event ComponentAdded(address indexed _component);
event ComponentRemoved(address indexed _component);
event DefaultPositionUnitEdited(address indexed _component, int256 _realUnit);
event ExternalPositionUnitEdited(address indexed _component, address indexed _positionModule, int256 _realUnit);
event ExternalPositionDataEdited(address indexed _component, address indexed _positionModule, bytes _data);
event PositionModuleAdded(address indexed _component, address indexed _positionModule);
event PositionModuleRemoved(address indexed _component, address indexed _positionModule);
/* ============ Modifiers ============ */
/**
* Throws if the sender is not a SetToken's module or module not enabled
*/
modifier onlyModule() {
// Internal function used to reduce bytecode size
_validateOnlyModule();
_;
}
/**
* Throws if the sender is not the SetToken's manager
*/
modifier onlyManager() {
_validateOnlyManager();
_;
}
/**
* Throws if SetToken is locked and called by any account other than the locker.
*/
modifier whenLockedOnlyLocker() {
_validateWhenLockedOnlyLocker();
_;
}
/* ============ State Variables ============ */
// Address of the controller
IController public controller;
// The manager has the privelege to add modules, remove, and set a new manager
address public manager;
// A module that has locked other modules from privileged functionality, typically required
// for multi-block module actions such as auctions
address public locker;
// List of initialized Modules; Modules extend the functionality of SetTokens
address[] public modules;
// Modules are initialized from NONE -> PENDING -> INITIALIZED through the
// addModule (called by manager) and initialize (called by module) functions
mapping(address => ISetToken.ModuleState) public moduleStates;
// When locked, only the locker (a module) can call privileged functionality
// Typically utilized if a module (e.g. Auction) needs multiple transactions to complete an action
// without interruption
bool public isLocked;
// List of components
address[] public components;
// Mapping that stores all Default and External position information for a given component.
// Position quantities are represented as virtual units; Default positions are on the top-level,
// while external positions are stored in a module array and accessed through its externalPositions mapping
mapping(address => ISetToken.ComponentPosition) private componentPositions;
// The multiplier applied to the virtual position unit to achieve the real/actual unit.
// This multiplier is used for efficiently modifying the entire position units (e.g. streaming fee)
int256 public positionMultiplier;
/* ============ Constructor ============ */
/**
* When a new SetToken is created, initializes Positions in default state and adds modules into pending state.
* All parameter validations are on the SetTokenCreator contract. Validations are performed already on the
* SetTokenCreator. Initiates the positionMultiplier as 1e18 (no adjustments).
*
* @param _components List of addresses of components for initial Positions
* @param _units List of units. Each unit is the # of components per 10^18 of a SetToken
* @param _modules List of modules to enable. All modules must be approved by the Controller
* @param _controller Address of the controller
* @param _manager Address of the manager
* @param _name Name of the SetToken
* @param _symbol Symbol of the SetToken
*/
constructor(
address[] memory _components,
int256[] memory _units,
address[] memory _modules,
IController _controller,
address _manager,
string memory _name,
string memory _symbol
)
public
ERC20(_name, _symbol)
{
controller = _controller;
manager = _manager;
positionMultiplier = PreciseUnitMath.preciseUnitInt();
components = _components;
// Modules are put in PENDING state, as they need to be individually initialized by the Module
for (uint256 i = 0; i < _modules.length; i++) {
moduleStates[_modules[i]] = ISetToken.ModuleState.PENDING;
}
// Positions are put in default state initially
for (uint256 j = 0; j < _components.length; j++) {
componentPositions[_components[j]].virtualUnit = _units[j];
}
}
/* ============ External Functions ============ */
/**
* PRIVELEGED MODULE FUNCTION. Low level function that allows a module to make an arbitrary function
* call to any contract.
*
* @param _target Address of the smart contract to call
* @param _value Quantity of Ether to provide the call (typically 0)
* @param _data Encoded function selector and arguments
* @return _returnValue Bytes encoded return value
*/
function invoke(
address _target,
uint256 _value,
bytes calldata _data
)
external
onlyModule
whenLockedOnlyLocker
returns (bytes memory _returnValue)
{
_returnValue = _target.functionCallWithValue(_data, _value);
emit Invoked(_target, _value, _data, _returnValue);
return _returnValue;
}
/**
* PRIVELEGED MODULE FUNCTION. Low level function that adds a component to the components array.
*/
function addComponent(address _component) external onlyModule whenLockedOnlyLocker {
require(!isComponent(_component), "Must not be component");
components.push(_component);
emit ComponentAdded(_component);
}
/**
* PRIVELEGED MODULE FUNCTION. Low level function that removes a component from the components array.
*/
function removeComponent(address _component) external onlyModule whenLockedOnlyLocker {
components.removeStorage(_component);
emit ComponentRemoved(_component);
}
/**
* PRIVELEGED MODULE FUNCTION. Low level function that edits a component's virtual unit. Takes a real unit
* and converts it to virtual before committing.
*/
function editDefaultPositionUnit(address _component, int256 _realUnit) external onlyModule whenLockedOnlyLocker {
int256 virtualUnit = _convertRealToVirtualUnit(_realUnit);
componentPositions[_component].virtualUnit = virtualUnit;
emit DefaultPositionUnitEdited(_component, _realUnit);
}
/**
* PRIVELEGED MODULE FUNCTION. Low level function that adds a module to a component's externalPositionModules array
*/
function addExternalPositionModule(address _component, address _positionModule) external onlyModule whenLockedOnlyLocker {
require(!isExternalPositionModule(_component, _positionModule), "Module already added");
componentPositions[_component].externalPositionModules.push(_positionModule);
emit PositionModuleAdded(_component, _positionModule);
}
/**
* PRIVELEGED MODULE FUNCTION. Low level function that removes a module from a component's
* externalPositionModules array and deletes the associated externalPosition.
*/
function removeExternalPositionModule(
address _component,
address _positionModule
)
external
onlyModule
whenLockedOnlyLocker
{
componentPositions[_component].externalPositionModules.removeStorage(_positionModule);
delete componentPositions[_component].externalPositions[_positionModule];
emit PositionModuleRemoved(_component, _positionModule);
}
/**
* PRIVELEGED MODULE FUNCTION. Low level function that edits a component's external position virtual unit.
* Takes a real unit and converts it to virtual before committing.
*/
function editExternalPositionUnit(
address _component,
address _positionModule,
int256 _realUnit
)
external
onlyModule
whenLockedOnlyLocker
{
int256 virtualUnit = _convertRealToVirtualUnit(_realUnit);
componentPositions[_component].externalPositions[_positionModule].virtualUnit = virtualUnit;
emit ExternalPositionUnitEdited(_component, _positionModule, _realUnit);
}
/**
* PRIVELEGED MODULE FUNCTION. Low level function that edits a component's external position data
*/
function editExternalPositionData(
address _component,
address _positionModule,
bytes calldata _data
)
external
onlyModule
whenLockedOnlyLocker
{
componentPositions[_component].externalPositions[_positionModule].data = _data;
emit ExternalPositionDataEdited(_component, _positionModule, _data);
}
/**
* PRIVELEGED MODULE FUNCTION. Modifies the position multiplier. This is typically used to efficiently
* update all the Positions' units at once in applications where inflation is awarded (e.g. subscription fees).
*/
function editPositionMultiplier(int256 _newMultiplier) external onlyModule whenLockedOnlyLocker {
_validateNewMultiplier(_newMultiplier);
positionMultiplier = _newMultiplier;
emit PositionMultiplierEdited(_newMultiplier);
}
/**
* PRIVELEGED MODULE FUNCTION. Increases the "account" balance by the "quantity".
*/
function mint(address _account, uint256 _quantity) external onlyModule whenLockedOnlyLocker {
_mint(_account, _quantity);
}
/**
* PRIVELEGED MODULE FUNCTION. Decreases the "account" balance by the "quantity".
* _burn checks that the "account" already has the required "quantity".
*/
function burn(address _account, uint256 _quantity) external onlyModule whenLockedOnlyLocker {
_burn(_account, _quantity);
}
/**
* PRIVELEGED MODULE FUNCTION. When a SetToken is locked, only the locker can call privileged functions.
*/
function lock() external onlyModule {
require(!isLocked, "Must not be locked");
locker = msg.sender;
isLocked = true;
}
/**
* PRIVELEGED MODULE FUNCTION. Unlocks the SetToken and clears the locker
*/
function unlock() external onlyModule {
require(isLocked, "Must be locked");
require(locker == msg.sender, "Must be locker");
delete locker;
isLocked = false;
}
/**
* MANAGER ONLY. Adds a module into a PENDING state; Module must later be initialized via
* module's initialize function
*/
function addModule(address _module) external onlyManager {
require(moduleStates[_module] == ISetToken.ModuleState.NONE, "Module must not be added");
require(controller.isModule(_module), "Must be enabled on Controller");
moduleStates[_module] = ISetToken.ModuleState.PENDING;
emit ModuleAdded(_module);
}
/**
* MANAGER ONLY. Removes a module from the SetToken. SetToken calls removeModule on module itself to confirm
* it is not needed to manage any remaining positions and to remove state.
*/
function removeModule(address _module) external onlyManager {
require(!isLocked, "Only when unlocked");
require(moduleStates[_module] == ISetToken.ModuleState.INITIALIZED, "Module must be added");
IModule(_module).removeModule();
moduleStates[_module] = ISetToken.ModuleState.NONE;
modules.removeStorage(_module);
emit ModuleRemoved(_module);
}
/**
* MANAGER ONLY. Removes a pending module from the SetToken.
*/
function removePendingModule(address _module) external onlyManager {
require(!isLocked, "Only when unlocked");
require(moduleStates[_module] == ISetToken.ModuleState.PENDING, "Module must be pending");
moduleStates[_module] = ISetToken.ModuleState.NONE;
emit PendingModuleRemoved(_module);
}
/**
* Initializes an added module from PENDING to INITIALIZED state. Can only call when unlocked.
* An address can only enter a PENDING state if it is an enabled module added by the manager.
* Only callable by the module itself, hence msg.sender is the subject of update.
*/
function initializeModule() external {
require(!isLocked, "Only when unlocked");
require(moduleStates[msg.sender] == ISetToken.ModuleState.PENDING, "Module must be pending");
moduleStates[msg.sender] = ISetToken.ModuleState.INITIALIZED;
modules.push(msg.sender);
emit ModuleInitialized(msg.sender);
}
/**
* MANAGER ONLY. Changes manager; We allow null addresses in case the manager wishes to wind down the SetToken.
* Modules may rely on the manager state, so only changable when unlocked
*/
function setManager(address _manager) external onlyManager {
require(!isLocked, "Only when unlocked");
address oldManager = manager;
manager = _manager;
emit ManagerEdited(_manager, oldManager);
}
/* ============ External Getter Functions ============ */
function getComponents() external view returns(address[] memory) {
return components;
}
function getDefaultPositionRealUnit(address _component) public view returns(int256) {
return _convertVirtualToRealUnit(_defaultPositionVirtualUnit(_component));
}
function getExternalPositionRealUnit(address _component, address _positionModule) public view returns(int256) {
return _convertVirtualToRealUnit(_externalPositionVirtualUnit(_component, _positionModule));
}
function getExternalPositionModules(address _component) external view returns(address[] memory) {
return _externalPositionModules(_component);
}
function getExternalPositionData(address _component,address _positionModule) external view returns(bytes memory) {
return _externalPositionData(_component, _positionModule);
}
function getModules() external view returns (address[] memory) {
return modules;
}
function isComponent(address _component) public view returns(bool) {
return components.contains(_component);
}
function isExternalPositionModule(address _component, address _module) public view returns(bool) {
return _externalPositionModules(_component).contains(_module);
}
/**
* Only ModuleStates of INITIALIZED modules are considered enabled
*/
function isInitializedModule(address _module) external view returns (bool) {
return moduleStates[_module] == ISetToken.ModuleState.INITIALIZED;
}
/**
* Returns whether the module is in a pending state
*/
function isPendingModule(address _module) external view returns (bool) {
return moduleStates[_module] == ISetToken.ModuleState.PENDING;
}
/**
* Returns a list of Positions, through traversing the components. Each component with a non-zero virtual unit
* is considered a Default Position, and each externalPositionModule will generate a unique position.
* Virtual units are converted to real units. This function is typically used off-chain for data presentation purposes.
*/
function getPositions() external view returns (ISetToken.Position[] memory) {
ISetToken.Position[] memory positions = new ISetToken.Position[](_getPositionCount());
uint256 positionCount = 0;
for (uint256 i = 0; i < components.length; i++) {
address component = components[i];
// A default position exists if the default virtual unit is > 0
if (_defaultPositionVirtualUnit(component) > 0) {
positions[positionCount] = ISetToken.Position({
component: component,
module: address(0),
unit: getDefaultPositionRealUnit(component),
positionState: DEFAULT,
data: ""
});
positionCount++;
}
address[] memory externalModules = _externalPositionModules(component);
for (uint256 j = 0; j < externalModules.length; j++) {
address currentModule = externalModules[j];
positions[positionCount] = ISetToken.Position({
component: component,
module: currentModule,
unit: getExternalPositionRealUnit(component, currentModule),
positionState: EXTERNAL,
data: _externalPositionData(component, currentModule)
});
positionCount++;
}
}
return positions;
}
/**
* Returns the total Real Units for a given component, summing the default and external position units.
*/
function getTotalComponentRealUnits(address _component) external view returns(int256) {
int256 totalUnits = getDefaultPositionRealUnit(_component);
address[] memory externalModules = _externalPositionModules(_component);
for (uint256 i = 0; i < externalModules.length; i++) {
// We will perform the summation no matter what, as an external position virtual unit can be negative
totalUnits = totalUnits.add(getExternalPositionRealUnit(_component, externalModules[i]));
}
return totalUnits;
}
receive() external payable {} // solium-disable-line quotes
/* ============ Internal Functions ============ */
function _defaultPositionVirtualUnit(address _component) internal view returns(int256) {
return componentPositions[_component].virtualUnit;
}
function _externalPositionModules(address _component) internal view returns(address[] memory) {
return componentPositions[_component].externalPositionModules;
}
function _externalPositionVirtualUnit(address _component, address _module) internal view returns(int256) {
return componentPositions[_component].externalPositions[_module].virtualUnit;
}
function _externalPositionData(address _component, address _module) internal view returns(bytes memory) {
return componentPositions[_component].externalPositions[_module].data;
}
/**
* Takes a real unit and divides by the position multiplier to return the virtual unit. Negative units will
* be rounded away from 0 so no need to check that unit will be rounded down to 0 in conversion.
*/
function _convertRealToVirtualUnit(int256 _realUnit) internal view returns(int256) {
int256 virtualUnit = _realUnit.conservativePreciseDiv(positionMultiplier);
// This check ensures that the virtual unit does not return a result that has rounded down to 0
if (_realUnit > 0 && virtualUnit == 0) {
revert("Real to Virtual unit conversion invalid");
}
// This check ensures that when converting back to realUnits the unit won't be rounded down to 0
if (_realUnit > 0 && _convertVirtualToRealUnit(virtualUnit) == 0) {
revert("Virtual to Real unit conversion invalid");
}
return virtualUnit;
}
/**
* Takes a virtual unit and multiplies by the position multiplier to return the real unit
*/
function _convertVirtualToRealUnit(int256 _virtualUnit) internal view returns(int256) {
return _virtualUnit.conservativePreciseMul(positionMultiplier);
}
/**
* To prevent virtual to real unit conversion issues (where real unit may be 0), the
* product of the positionMultiplier and the lowest absolute virtualUnit value (across default and
* external positions) must be greater than 0.
*/
function _validateNewMultiplier(int256 _newMultiplier) internal view {
int256 minVirtualUnit = _getPositionsAbsMinimumVirtualUnit();
require(minVirtualUnit.conservativePreciseMul(_newMultiplier) > 0, "New multiplier too small");
}
/**
* Loops through all of the positions and returns the smallest absolute value of
* the virtualUnit.
*
* @return Min virtual unit across positions denominated as int256
*/
function _getPositionsAbsMinimumVirtualUnit() internal view returns(int256) {
// Additional assignment happens in the loop below
uint256 minimumUnit = uint256(-1);
for (uint256 i = 0; i < components.length; i++) {
address component = components[i];
// A default position exists if the default virtual unit is > 0
uint256 defaultUnit = _defaultPositionVirtualUnit(component).toUint256();
if (defaultUnit > 0 && defaultUnit < minimumUnit) {
minimumUnit = defaultUnit;
}
address[] memory externalModules = _externalPositionModules(component);
for (uint256 j = 0; j < externalModules.length; j++) {
address currentModule = externalModules[j];
uint256 virtualUnit = _absoluteValue(
_externalPositionVirtualUnit(component, currentModule)
);
if (virtualUnit > 0 && virtualUnit < minimumUnit) {
minimumUnit = virtualUnit;
}
}
}
return minimumUnit.toInt256();
}
/**
* Gets the total number of positions, defined as the following:
* - Each component has a default position if its virtual unit is > 0
* - Each component's external positions module is counted as a position
*/
function _getPositionCount() internal view returns (uint256) {
uint256 positionCount;
for (uint256 i = 0; i < components.length; i++) {
address component = components[i];
// Increment the position count if the default position is > 0
if (_defaultPositionVirtualUnit(component) > 0) {
positionCount++;
}
// Increment the position count by each external position module
address[] memory externalModules = _externalPositionModules(component);
if (externalModules.length > 0) {
positionCount = positionCount.add(externalModules.length);
}
}
return positionCount;
}
/**
* Returns the absolute value of the signed integer value
* @param _a Signed interger value
* @return Returns the absolute value in uint256
*/
function _absoluteValue(int256 _a) internal pure returns(uint256) {
return _a >= 0 ? _a.toUint256() : (-_a).toUint256();
}
/**
* Due to reason error bloat, internal functions are used to reduce bytecode size
*
* Module must be initialized on the SetToken and enabled by the controller
*/
function _validateOnlyModule() internal view {
require(
moduleStates[msg.sender] == ISetToken.ModuleState.INITIALIZED,
"Only the module can call"
);
require(
controller.isModule(msg.sender),
"Module must be enabled on controller"
);
}
function _validateOnlyManager() internal view {
require(msg.sender == manager, "Only manager can call");
}
function _validateWhenLockedOnlyLocker() internal view {
if (isLocked) {
require(msg.sender == locker, "When locked, only the locker can call");
}
}
}File 27 of 30: BasicIssuanceModule
/**
*Submitted for verification at Etherscan.io on 2020-09-08
*/
// Dependency file: @openzeppelin/contracts/utils/Address.sol
// pragma solidity ^0.6.2;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [// importANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// According to EIP-1052, 0x0 is the value returned for not-yet created accounts
// and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
// for accounts without code, i.e. `keccak256('')`
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
// solhint-disable-next-line no-inline-assembly
assembly { codehash := extcodehash(account) }
return (codehash != accountHash && codehash != 0x0);
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* // importANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain`call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return _functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
return _functionCallWithValue(target, data, value, errorMessage);
}
function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) {
require(isContract(target), "Address: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.call{ value: weiValue }(data);
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
// solhint-disable-next-line no-inline-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
// Dependency file: @openzeppelin/contracts/token/ERC20/SafeERC20.sol
// pragma solidity ^0.6.0;
// import "./IERC20.sol";
// import "../../math/SafeMath.sol";
// import "../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
// solhint-disable-next-line max-line-length
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(value);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) { // Return data is optional
// solhint-disable-next-line max-line-length
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// Dependency file: @openzeppelin/contracts/math/SignedSafeMath.sol
// pragma solidity ^0.6.0;
/**
* @title SignedSafeMath
* @dev Signed math operations with safety checks that revert on error.
*/
library SignedSafeMath {
int256 constant private _INT256_MIN = -2**255;
/**
* @dev Returns the multiplication of two signed integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(int256 a, int256 b) internal pure returns (int256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
require(!(a == -1 && b == _INT256_MIN), "SignedSafeMath: multiplication overflow");
int256 c = a * b;
require(c / a == b, "SignedSafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two signed integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(int256 a, int256 b) internal pure returns (int256) {
require(b != 0, "SignedSafeMath: division by zero");
require(!(b == -1 && a == _INT256_MIN), "SignedSafeMath: division overflow");
int256 c = a / b;
return c;
}
/**
* @dev Returns the subtraction of two signed integers, reverting on
* overflow.
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(int256 a, int256 b) internal pure returns (int256) {
int256 c = a - b;
require((b >= 0 && c <= a) || (b < 0 && c > a), "SignedSafeMath: subtraction overflow");
return c;
}
/**
* @dev Returns the addition of two signed integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(int256 a, int256 b) internal pure returns (int256) {
int256 c = a + b;
require((b >= 0 && c >= a) || (b < 0 && c < a), "SignedSafeMath: addition overflow");
return c;
}
}
// Dependency file: contracts/interfaces/IModule.sol
/*
Copyright 2020 Set Labs Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
// pragma solidity 0.6.10;
/**
* @title IModule
* @author Set Protocol
*
* Interface for interacting with Modules.
*/
interface IModule {
/**
* Called by a SetToken to notify that this module was removed from the Set token. Any logic can be included
* in case checks need to be made or state needs to be cleared.
*/
function removeModule() external;
}
// Dependency file: contracts/lib/ExplicitERC20.sol
/*
Copyright 2020 Set Labs Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
// pragma solidity 0.6.10;
// import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
// import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
// import { SafeMath } from "@openzeppelin/contracts/math/SafeMath.sol";
/**
* @title ExplicitERC20
* @author Set Protocol
*
* Utility functions for ERC20 transfers that require the explicit amount to be transferred.
*/
library ExplicitERC20 {
using SafeMath for uint256;
/**
* When given allowance, transfers a token from the "_from" to the "_to" of quantity "_quantity".
* Ensures that the recipient has received the correct quantity (ie no fees taken on transfer)
*
* @param _token ERC20 token to approve
* @param _from The account to transfer tokens from
* @param _to The account to transfer tokens to
* @param _quantity The quantity to transfer
*/
function transferFrom(
IERC20 _token,
address _from,
address _to,
uint256 _quantity
)
internal
{
// Call specified ERC20 contract to transfer tokens (via proxy).
if (_quantity > 0) {
uint256 existingBalance = _token.balanceOf(_to);
SafeERC20.safeTransferFrom(
_token,
_from,
_to,
_quantity
);
uint256 newBalance = _token.balanceOf(_to);
// Verify transfer quantity is reflected in balance
require(
newBalance == existingBalance.add(_quantity),
"Invalid post transfer balance"
);
}
}
}
// Dependency file: contracts/lib/PreciseUnitMath.sol
/*
Copyright 2020 Set Labs Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
// pragma solidity 0.6.10;
// pragma experimental ABIEncoderV2;
// import { SafeMath } from "@openzeppelin/contracts/math/SafeMath.sol";
// import { SignedSafeMath } from "@openzeppelin/contracts/math/SignedSafeMath.sol";
/**
* @title PreciseUnitMath
* @author Set Protocol
*
* Arithmetic for fixed-point numbers with 18 decimals of precision. Some functions taken from
* dYdX's BaseMath library.
*/
library PreciseUnitMath {
using SafeMath for uint256;
using SignedSafeMath for int256;
// The number One in precise units.
uint256 constant internal PRECISE_UNIT = 10 ** 18;
int256 constant internal PRECISE_UNIT_INT = 10 ** 18;
// Max unsigned integer value
uint256 constant internal MAX_UINT_256 = type(uint256).max;
// Max and min signed integer value
int256 constant internal MAX_INT_256 = type(int256).max;
int256 constant internal MIN_INT_256 = type(int256).min;
/**
* @dev Getter function since constants can't be read directly from libraries.
*/
function preciseUnit() internal pure returns (uint256) {
return PRECISE_UNIT;
}
/**
* @dev Getter function since constants can't be read directly from libraries.
*/
function preciseUnitInt() internal pure returns (int256) {
return PRECISE_UNIT_INT;
}
/**
* @dev Getter function since constants can't be read directly from libraries.
*/
function maxUint256() internal pure returns (uint256) {
return MAX_UINT_256;
}
/**
* @dev Getter function since constants can't be read directly from libraries.
*/
function maxInt256() internal pure returns (int256) {
return MAX_INT_256;
}
/**
* @dev Getter function since constants can't be read directly from libraries.
*/
function minInt256() internal pure returns (int256) {
return MIN_INT_256;
}
/**
* @dev Multiplies value a by value b (result is rounded down). It's assumed that the value b is the significand
* of a number with 18 decimals precision.
*/
function preciseMul(uint256 a, uint256 b) internal pure returns (uint256) {
return a.mul(b).div(PRECISE_UNIT);
}
/**
* @dev Multiplies value a by value b (result is rounded towards zero). It's assumed that the value b is the
* significand of a number with 18 decimals precision.
*/
function preciseMul(int256 a, int256 b) internal pure returns (int256) {
return a.mul(b).div(PRECISE_UNIT_INT);
}
/**
* @dev Multiplies value a by value b (result is rounded up). It's assumed that the value b is the significand
* of a number with 18 decimals precision.
*/
function preciseMulCeil(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0 || b == 0) {
return 0;
}
return a.mul(b).sub(1).div(PRECISE_UNIT).add(1);
}
/**
* @dev Divides value a by value b (result is rounded down).
*/
function preciseDiv(uint256 a, uint256 b) internal pure returns (uint256) {
return a.mul(PRECISE_UNIT).div(b);
}
/**
* @dev Divides value a by value b (result is rounded towards 0).
*/
function preciseDiv(int256 a, int256 b) internal pure returns (int256) {
return a.mul(PRECISE_UNIT_INT).div(b);
}
/**
* @dev Divides value a by value b (result is rounded up or away from 0).
*/
function preciseDivCeil(uint256 a, uint256 b) internal pure returns (uint256) {
require(b != 0, "Cant divide by 0");
return a > 0 ? a.mul(PRECISE_UNIT).sub(1).div(b).add(1) : 0;
}
/**
* @dev Divides value a by value b (result is rounded down - positive numbers toward 0 and negative away from 0).
*/
function divDown(int256 a, int256 b) internal pure returns (int256) {
require(b != 0, "Cant divide by 0");
require(a != MIN_INT_256 || b != -1, "Invalid input");
int256 result = a.div(b);
if (a ^ b < 0 && a % b != 0) {
result = result.sub(1);
}
return result;
}
/**
* @dev Multiplies value a by value b where rounding is towards the lesser number.
* (positive values are rounded towards zero and negative values are rounded away from 0).
*/
function conservativePreciseMul(int256 a, int256 b) internal pure returns (int256) {
return divDown(a.mul(b), PRECISE_UNIT_INT);
}
/**
* @dev Divides value a by value b where rounding is towards the lesser number.
* (positive values are rounded towards zero and negative values are rounded away from 0).
*/
function conservativePreciseDiv(int256 a, int256 b) internal pure returns (int256) {
return divDown(a.mul(PRECISE_UNIT_INT), b);
}
}
// Dependency file: contracts/protocol/lib/Position.sol
/*
Copyright 2020 Set Labs Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
// pragma solidity 0.6.10;
// pragma experimental "ABIEncoderV2";
// import { SafeCast } from "@openzeppelin/contracts/utils/SafeCast.sol";
// import { SafeMath } from "@openzeppelin/contracts/math/SafeMath.sol";
// import { SignedSafeMath } from "@openzeppelin/contracts/math/SignedSafeMath.sol";
// import { ISetToken } from "../../interfaces/ISetToken.sol";
// import { PreciseUnitMath } from "../../lib/PreciseUnitMath.sol";
/**
* @title Position
* @author Set Protocol
*
* Collection of helper functions for handling and updating SetToken Positions
*/
library Position {
using SafeCast for uint256;
using SafeMath for uint256;
using SafeCast for int256;
using SignedSafeMath for int256;
using PreciseUnitMath for uint256;
/* ============ Helper ============ */
/**
* Returns whether the SetToken has a default position for a given component (if the real unit is > 0)
*/
function hasDefaultPosition(ISetToken _setToken, address _component) internal view returns(bool) {
return _setToken.getDefaultPositionRealUnit(_component) > 0;
}
/**
* Returns whether the SetToken has an external position for a given component (if # of position modules is > 0)
*/
function hasExternalPosition(ISetToken _setToken, address _component) internal view returns(bool) {
return _setToken.getExternalPositionModules(_component).length > 0;
}
/**
* Returns whether the SetToken component default position real unit is greater than or equal to units passed in.
*/
function hasSufficientDefaultUnits(ISetToken _setToken, address _component, uint256 _unit) internal view returns(bool) {
return _setToken.getDefaultPositionRealUnit(_component) >= _unit.toInt256();
}
/**
* Returns whether the SetToken component external position is greater than or equal to the real units passed in.
*/
function hasSufficientExternalUnits(
ISetToken _setToken,
address _component,
address _positionModule,
uint256 _unit
)
internal
view
returns(bool)
{
return _setToken.getExternalPositionRealUnit(_component, _positionModule) >= _unit.toInt256();
}
/**
* If the position does not exist, create a new Position and add to the SetToken. If it already exists,
* then set the position units. If the new units is 0, remove the position. Handles adding/removing of
* components where needed (in light of potential external positions).
*
* @param _setToken Address of SetToken being modified
* @param _component Address of the component
* @param _newUnit Quantity of Position units - must be >= 0
*/
function editDefaultPosition(ISetToken _setToken, address _component, uint256 _newUnit) internal {
bool isPositionFound = hasDefaultPosition(_setToken, _component);
if (!isPositionFound && _newUnit > 0) {
// If there is no Default Position and no External Modules, then component does not exist
if (!hasExternalPosition(_setToken, _component)) {
_setToken.addComponent(_component);
}
} else if (isPositionFound && _newUnit == 0) {
// If there is a Default Position and no external positions, remove the component
if (!hasExternalPosition(_setToken, _component)) {
_setToken.removeComponent(_component);
}
}
_setToken.editDefaultPositionUnit(_component, _newUnit.toInt256());
}
/**
* Update an external position and remove and external positions or components if necessary. The logic flows as follows:
* 1) If component is not already added then add component and external position.
* 2) If component is added but no existing external position using the passed module exists then add the external position.
* 3) If the existing position is being added to then just update the unit
* 4) If the position is being closed and no other external positions or default positions are associated with the component
* then untrack the component and remove external position.
* 5) If the position is being closed and other existing positions still exist for the component then just remove the
* external position.
*
* @param _setToken SetToken being updated
* @param _component Component position being updated
* @param _module Module external position is associated with
* @param _newUnit Position units of new external position
* @param _data Arbitrary data associated with the position
*/
function editExternalPosition(
ISetToken _setToken,
address _component,
address _module,
int256 _newUnit,
bytes memory _data
)
internal
{
if (!_setToken.isComponent(_component)) {
_setToken.addComponent(_component);
addExternalPosition(_setToken, _component, _module, _newUnit, _data);
} else if (!_setToken.isExternalPositionModule(_component, _module)) {
addExternalPosition(_setToken, _component, _module, _newUnit, _data);
} else if (_newUnit != 0) {
_setToken.editExternalPositionUnit(_component, _module, _newUnit);
} else {
// If no default or external position remaining then remove component from components array
if (_setToken.getDefaultPositionRealUnit(_component) == 0 && _setToken.getExternalPositionModules(_component).length == 1) {
_setToken.removeComponent(_component);
}
_setToken.removeExternalPositionModule(_component, _module);
}
}
/**
* Add a new external position from a previously untracked module.
*
* @param _setToken SetToken being updated
* @param _component Component position being updated
* @param _module Module external position is associated with
* @param _newUnit Position units of new external position
* @param _data Arbitrary data associated with the position
*/
function addExternalPosition(
ISetToken _setToken,
address _component,
address _module,
int256 _newUnit,
bytes memory _data
)
internal
{
_setToken.addExternalPositionModule(_component, _module);
_setToken.editExternalPositionUnit(_component, _module, _newUnit);
_setToken.editExternalPositionData(_component, _module, _data);
}
/**
* Get total notional amount of Default position
*
* @param _setTokenSupply Supply of SetToken in precise units (10^18)
* @param _positionUnit Quantity of Position units
*
* @return Total notional amount of units
*/
function getDefaultTotalNotional(uint256 _setTokenSupply, uint256 _positionUnit) internal pure returns (uint256) {
return _setTokenSupply.preciseMul(_positionUnit);
}
/**
* Get position unit from total notional amount
*
* @param _setTokenSupply Supply of SetToken in precise units (10^18)
* @param _totalNotional Total notional amount of component prior to
* @return Default position unit
*/
function getDefaultPositionUnit(uint256 _setTokenSupply, uint256 _totalNotional) internal pure returns (uint256) {
return _totalNotional.preciseDiv(_setTokenSupply);
}
/**
* Calculate the new position unit given total notional values pre and post executing an action that changes SetToken state
* The intention is to make updates to the units without accidentally picking up airdropped assets as well.
*
* @param _setTokenSupply Supply of SetToken in precise units (10^18)
* @param _preTotalNotional Total notional amount of component prior to executing action
* @param _postTotalNotional Total notional amount of component after the executing action
* @param _prePositionUnit Position unit of SetToken prior to executing action
* @return New position unit
*/
function calculateDefaultEditPositionUnit(
uint256 _setTokenSupply,
uint256 _preTotalNotional,
uint256 _postTotalNotional,
uint256 _prePositionUnit
)
internal
pure
returns (uint256)
{
// If pre action total notional amount is greater then subtract post action total notional and calculate new position units
if (_preTotalNotional >= _postTotalNotional) {
uint256 unitsToSub = _preTotalNotional.sub(_postTotalNotional).preciseDivCeil(_setTokenSupply);
return _prePositionUnit.sub(unitsToSub);
} else {
// Else subtract post action total notional from pre action total notional and calculate new position units
uint256 unitsToAdd = _postTotalNotional.sub(_preTotalNotional).preciseDiv(_setTokenSupply);
return _prePositionUnit.add(unitsToAdd);
}
}
}
// Dependency file: contracts/protocol/lib/ModuleBase.sol
/*
Copyright 2020 Set Labs Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
// pragma solidity 0.6.10;
// import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
// import { ExplicitERC20 } from "../../lib/ExplicitERC20.sol";
// import { IController } from "../../interfaces/IController.sol";
// import { IModule } from "../../interfaces/IModule.sol";
// import { ISetToken } from "../../interfaces/ISetToken.sol";
/**
* @title ModuleBase
* @author Set Protocol
*
* Abstract class that houses common Module-related state and functions.
*/
abstract contract ModuleBase is IModule {
/* ============ State Variables ============ */
// Address of the controller
IController public controller;
/* ============ Modifiers ============ */
modifier onlySetManager(ISetToken _setToken, address _caller) {
require(isSetManager(_setToken, _caller), "Must be the SetToken manager");
_;
}
modifier onlyValidAndInitializedSet(ISetToken _setToken) {
require(isSetValidAndInitialized(_setToken), "Must be a valid and initialized SetToken");
_;
}
/**
* Throws if the sender is not a SetToken's module or module not enabled
*/
modifier onlyModule(ISetToken _setToken) {
require(
_setToken.moduleStates(msg.sender) == ISetToken.ModuleState.INITIALIZED,
"Only the module can call"
);
require(
controller.isModule(msg.sender),
"Module must be enabled on controller"
);
_;
}
/**
* Utilized during module initializations to check that the module is in pending state
* and that the SetToken is valid
*/
modifier onlyValidAndPendingSet(ISetToken _setToken) {
require(controller.isSet(address(_setToken)), "Must be controller-enabled SetToken");
require(isSetPendingInitialization(_setToken), "Must be pending initialization");
_;
}
/* ============ Constructor ============ */
/**
* Set state variables and map asset pairs to their oracles
*
* @param _controller Address of controller contract
*/
constructor(IController _controller) public {
controller = _controller;
}
/* ============ Internal Functions ============ */
/**
* Transfers tokens from an address (that has set allowance on the module).
*
* @param _token The address of the ERC20 token
* @param _from The address to transfer from
* @param _to The address to transfer to
* @param _quantity The number of tokens to transfer
*/
function transferFrom(IERC20 _token, address _from, address _to, uint256 _quantity) internal {
ExplicitERC20.transferFrom(_token, _from, _to, _quantity);
}
/**
* Returns true if the module is in process of initialization on the SetToken
*/
function isSetPendingInitialization(ISetToken _setToken) internal view returns(bool) {
return _setToken.isPendingModule(address(this));
}
/**
* Returns true if the address is the SetToken's manager
*/
function isSetManager(ISetToken _setToken, address _toCheck) internal view returns(bool) {
return _setToken.manager() == _toCheck;
}
/**
* Returns true if SetToken must be enabled on the controller
* and module is registered on the SetToken
*/
function isSetValidAndInitialized(ISetToken _setToken) internal view returns(bool) {
return controller.isSet(address(_setToken)) &&
_setToken.isInitializedModule(address(this));
}
}
// Dependency file: @openzeppelin/contracts/token/ERC20/IERC20.sol
// pragma solidity ^0.6.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* // importANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// Dependency file: contracts/interfaces/ISetToken.sol
/*
Copyright 2020 Set Labs Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
// pragma solidity 0.6.10;
// pragma experimental "ABIEncoderV2";
// import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
/**
* @title ISetToken
* @author Set Protocol
*
* Interface for operating with SetTokens.
*/
interface ISetToken is IERC20 {
/* ============ Enums ============ */
enum ModuleState {
NONE,
PENDING,
INITIALIZED
}
/* ============ Structs ============ */
/**
* The base definition of a SetToken Position
*
* @param component Address of token in the Position
* @param module If not in default state, the address of associated module
* @param unit Each unit is the # of components per 10^18 of a SetToken
* @param positionState Position ENUM. Default is 0; External is 1
* @param data Arbitrary data
*/
struct Position {
address component;
address module;
int256 unit;
uint8 positionState;
bytes data;
}
/**
* A struct that stores a component's cash position details and external positions
* This data structure allows O(1) access to a component's cash position units and
* virtual units.
*
* @param virtualUnit Virtual value of a component's DEFAULT position. Stored as virtual for efficiency
* updating all units at once via the position multiplier. Virtual units are achieved
* by dividing a "real" value by the "positionMultiplier"
* @param componentIndex
* @param externalPositionModules List of external modules attached to each external position. Each module
* maps to an external position
* @param externalPositions Mapping of module => ExternalPosition struct for a given component
*/
struct ComponentPosition {
int256 virtualUnit;
address[] externalPositionModules;
mapping(address => ExternalPosition) externalPositions;
}
/**
* A struct that stores a component's external position details including virtual unit and any
* auxiliary data.
*
* @param virtualUnit Virtual value of a component's EXTERNAL position.
* @param data Arbitrary data
*/
struct ExternalPosition {
int256 virtualUnit;
bytes data;
}
/* ============ Functions ============ */
function addComponent(address _component) external;
function removeComponent(address _component) external;
function editDefaultPositionUnit(address _component, int256 _realUnit) external;
function addExternalPositionModule(address _component, address _positionModule) external;
function removeExternalPositionModule(address _component, address _positionModule) external;
function editExternalPositionUnit(address _component, address _positionModule, int256 _realUnit) external;
function editExternalPositionData(address _component, address _positionModule, bytes calldata _data) external;
function invoke(address _target, uint256 _value, bytes calldata _data) external returns(bytes memory);
function editPositionMultiplier(int256 _newMultiplier) external;
function mint(address _account, uint256 _quantity) external;
function burn(address _account, uint256 _quantity) external;
function lock() external;
function unlock() external;
function addModule(address _module) external;
function removeModule(address _module) external;
function initializeModule() external;
function setManager(address _manager) external;
function manager() external view returns (address);
function moduleStates(address _module) external view returns (ModuleState);
function getModules() external view returns (address[] memory);
function getDefaultPositionRealUnit(address _component) external view returns(int256);
function getExternalPositionRealUnit(address _component, address _positionModule) external view returns(int256);
function getComponents() external view returns(address[] memory);
function getExternalPositionModules(address _component) external view returns(address[] memory);
function getExternalPositionData(address _component, address _positionModule) external view returns(bytes memory);
function isExternalPositionModule(address _component, address _module) external view returns(bool);
function isComponent(address _component) external view returns(bool);
function positionMultiplier() external view returns (int256);
function getPositions() external view returns (Position[] memory);
function getTotalComponentRealUnits(address _component) external view returns(int256);
function isInitializedModule(address _module) external view returns(bool);
function isPendingModule(address _module) external view returns(bool);
function isLocked() external view returns (bool);
}
// Dependency file: contracts/protocol/lib/Invoke.sol
/*
Copyright 2020 Set Labs Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
// pragma solidity 0.6.10;
// import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
// import { SafeMath } from "@openzeppelin/contracts/math/SafeMath.sol";
// import { ISetToken } from "../../interfaces/ISetToken.sol";
/**
* @title Invoke
* @author Set Protocol
*
* A collection of common utility functions for interacting with the SetToken's invoke function
*/
library Invoke {
using SafeMath for uint256;
/* ============ Internal ============ */
/**
* Instructs the SetToken to set approvals of the ERC20 token to a spender.
*
* @param _setToken SetToken instance to invoke
* @param _token ERC20 token to approve
* @param _spender The account allowed to spend the SetToken's balance
* @param _quantity The quantity of allowance to allow
*/
function invokeApprove(
ISetToken _setToken,
address _token,
address _spender,
uint256 _quantity
)
internal
{
bytes memory callData = abi.encodeWithSignature("approve(address,uint256)", _spender, _quantity);
_setToken.invoke(_token, 0, callData);
}
/**
* Instructs the SetToken to transfer the ERC20 token to a recipient.
*
* @param _setToken SetToken instance to invoke
* @param _token ERC20 token to transfer
* @param _to The recipient account
* @param _quantity The quantity to transfer
*/
function invokeTransfer(
ISetToken _setToken,
address _token,
address _to,
uint256 _quantity
)
internal
{
if (_quantity > 0) {
bytes memory callData = abi.encodeWithSignature("transfer(address,uint256)", _to, _quantity);
_setToken.invoke(_token, 0, callData);
}
}
/**
* Instructs the SetToken to transfer the ERC20 token to a recipient.
* The new SetToken balance must equal the existing balance less the quantity transferred
*
* @param _setToken SetToken instance to invoke
* @param _token ERC20 token to transfer
* @param _to The recipient account
* @param _quantity The quantity to transfer
*/
function strictInvokeTransfer(
ISetToken _setToken,
address _token,
address _to,
uint256 _quantity
)
internal
{
if (_quantity > 0) {
// Retrieve current balance of token for the SetToken
uint256 existingBalance = IERC20(_token).balanceOf(address(_setToken));
Invoke.invokeTransfer(_setToken, _token, _to, _quantity);
// Get new balance of transferred token for SetToken
uint256 newBalance = IERC20(_token).balanceOf(address(_setToken));
// Verify only the transfer quantity is subtracted
require(
newBalance == existingBalance.sub(_quantity),
"Invalid post transfer balance"
);
}
}
/**
* Instructs the SetToken to unwrap the passed quantity of WETH
*
* @param _setToken SetToken instance to invoke
* @param _weth WETH address
* @param _quantity The quantity to unwrap
*/
function invokeUnwrapWETH(ISetToken _setToken, address _weth, uint256 _quantity) internal {
bytes memory callData = abi.encodeWithSignature("withdraw(uint256)", _quantity);
_setToken.invoke(_weth, 0, callData);
}
/**
* Instructs the SetToken to wrap the passed quantity of ETH
*
* @param _setToken SetToken instance to invoke
* @param _weth WETH address
* @param _quantity The quantity to unwrap
*/
function invokeWrapWETH(ISetToken _setToken, address _weth, uint256 _quantity) internal {
bytes memory callData = abi.encodeWithSignature("deposit()");
_setToken.invoke(_weth, _quantity, callData);
}
}
// Dependency file: contracts/interfaces/IManagerIssuanceHook.sol
/*
Copyright 2020 Set Labs Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
// pragma solidity 0.6.10;
// import { ISetToken } from "./ISetToken.sol";
interface IManagerIssuanceHook {
function invokePreIssueHook(ISetToken _setToken, uint256 _issueQuantity, address _sender, address _to) external;
}
// Dependency file: contracts/interfaces/IController.sol
/*
Copyright 2020 Set Labs Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
// pragma solidity 0.6.10;
interface IController {
function addSet(address _setToken) external;
function getModuleFee(address _module, uint256 _feeType) external view returns(uint256);
function resourceId(uint256 _id) external view returns(address);
function feeRecipient() external view returns(address);
function isModule(address _module) external view returns(bool);
function isSet(address _setToken) external view returns(bool);
function isSystemContract(address _contractAddress) external view returns (bool);
}
// Dependency file: @openzeppelin/contracts/math/SafeMath.sol
// pragma solidity ^0.6.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
// Dependency file: @openzeppelin/contracts/utils/SafeCast.sol
// pragma solidity ^0.6.0;
/**
* @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*
* Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing
* all math on `uint256` and `int256` and then downcasting.
*/
library SafeCast {
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
require(value < 2**128, "SafeCast: value doesn\'t fit in 128 bits");
return uint128(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
require(value < 2**64, "SafeCast: value doesn\'t fit in 64 bits");
return uint64(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
require(value < 2**32, "SafeCast: value doesn\'t fit in 32 bits");
return uint32(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
require(value < 2**16, "SafeCast: value doesn\'t fit in 16 bits");
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits.
*/
function toUint8(uint256 value) internal pure returns (uint8) {
require(value < 2**8, "SafeCast: value doesn\'t fit in 8 bits");
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
require(value >= 0, "SafeCast: value must be positive");
return uint256(value);
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*
* _Available since v3.1._
*/
function toInt128(int256 value) internal pure returns (int128) {
require(value >= -2**127 && value < 2**127, "SafeCast: value doesn\'t fit in 128 bits");
return int128(value);
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*
* _Available since v3.1._
*/
function toInt64(int256 value) internal pure returns (int64) {
require(value >= -2**63 && value < 2**63, "SafeCast: value doesn\'t fit in 64 bits");
return int64(value);
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*
* _Available since v3.1._
*/
function toInt32(int256 value) internal pure returns (int32) {
require(value >= -2**31 && value < 2**31, "SafeCast: value doesn\'t fit in 32 bits");
return int32(value);
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*
* _Available since v3.1._
*/
function toInt16(int256 value) internal pure returns (int16) {
require(value >= -2**15 && value < 2**15, "SafeCast: value doesn\'t fit in 16 bits");
return int16(value);
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits.
*
* _Available since v3.1._
*/
function toInt8(int256 value) internal pure returns (int8) {
require(value >= -2**7 && value < 2**7, "SafeCast: value doesn\'t fit in 8 bits");
return int8(value);
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
require(value < 2**255, "SafeCast: value doesn't fit in an int256");
return int256(value);
}
}
// Dependency file: @openzeppelin/contracts/utils/ReentrancyGuard.sol
// pragma solidity ^0.6.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor () internal {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and make it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
// On the first call to nonReentrant, _notEntered will be true
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
_;
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
/*
Copyright 2020 Set Labs Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
pragma solidity 0.6.10;
pragma experimental "ABIEncoderV2";
// import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
// import { ReentrancyGuard } from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
// import { SafeCast } from "@openzeppelin/contracts/utils/SafeCast.sol";
// import { SafeMath } from "@openzeppelin/contracts/math/SafeMath.sol";
// import { IController } from "../../interfaces/IController.sol";
// import { IManagerIssuanceHook } from "../../interfaces/IManagerIssuanceHook.sol";
// import { Invoke } from "../lib/Invoke.sol";
// import { ISetToken } from "../../interfaces/ISetToken.sol";
// import { ModuleBase } from "../lib/ModuleBase.sol";
// import { Position } from "../lib/Position.sol";
// import { PreciseUnitMath } from "../../lib/PreciseUnitMath.sol";
/**
* @title BasicIssuanceModule
* @author Set Protocol
*
* Module that enables issuance and redemption functionality on a SetToken. This is a module that is
* required to bring the totalSupply of a Set above 0.
*/
contract BasicIssuanceModule is ModuleBase, ReentrancyGuard {
using Invoke for ISetToken;
using Position for ISetToken.Position;
using Position for ISetToken;
using PreciseUnitMath for uint256;
using SafeMath for uint256;
using SafeCast for int256;
/* ============ Events ============ */
event SetTokenIssued(
address indexed _setToken,
address indexed _issuer,
address indexed _to,
address _hookContract,
uint256 _quantity
);
event SetTokenRedeemed(
address indexed _setToken,
address indexed _redeemer,
address indexed _to,
uint256 _quantity
);
/* ============ State Variables ============ */
// Mapping of SetToken to Issuance hook configurations
mapping(ISetToken => IManagerIssuanceHook) public managerIssuanceHook;
/* ============ Constructor ============ */
/**
* Set state controller state variable
*
* @param _controller Address of controller contract
*/
constructor(IController _controller) public ModuleBase(_controller) {}
/* ============ External Functions ============ */
/**
* Deposits the SetToken's position components into the SetToken and mints the SetToken of the given quantity
* to the specified _to address. This function only handles Default Positions (positionState = 0).
*
* @param _setToken Instance of the SetToken contract
* @param _quantity Quantity of the SetToken to mint
* @param _to Address to mint SetToken to
*/
function issue(
ISetToken _setToken,
uint256 _quantity,
address _to
)
external
nonReentrant
onlyValidAndInitializedSet(_setToken)
{
require(_quantity > 0, "Issue quantity must be > 0");
address hookContract = _callPreIssueHooks(_setToken, _quantity, msg.sender, _to);
(
address[] memory components,
uint256[] memory componentQuantities
) = getRequiredComponentUnitsForIssue(_setToken, _quantity);
// For each position, transfer the required underlying to the SetToken
for (uint256 i = 0; i < components.length; i++) {
// Transfer the component to the SetToken
transferFrom(
IERC20(components[i]),
msg.sender,
address(_setToken),
componentQuantities[i]
);
}
// Mint the SetToken
_setToken.mint(_to, _quantity);
emit SetTokenIssued(address(_setToken), msg.sender, _to, hookContract, _quantity);
}
/**
* Redeems the SetToken's positions and sends the components of the given
* quantity to the caller. This function only handles Default Positions (positionState = 0).
*
* @param _setToken Instance of the SetToken contract
* @param _quantity Quantity of the SetToken to redeem
* @param _to Address to send component assets to
*/
function redeem(
ISetToken _setToken,
uint256 _quantity,
address _to
)
external
nonReentrant
onlyValidAndInitializedSet(_setToken)
{
require(_quantity > 0, "Redeem quantity must be > 0");
// Burn the SetToken - ERC20's internal burn already checks that the user has enough balance
_setToken.burn(msg.sender, _quantity);
// For each position, invoke the SetToken to transfer the tokens to the user
address[] memory components = _setToken.getComponents();
for (uint256 i = 0; i < components.length; i++) {
address component = components[i];
require(!_setToken.hasExternalPosition(component), "Only default positions are supported");
uint256 unit = _setToken.getDefaultPositionRealUnit(component).toUint256();
// Use preciseMul to round down to ensure overcollateration when small redeem quantities are provided
uint256 componentQuantity = _quantity.preciseMul(unit);
// Instruct the SetToken to transfer the component to the user
_setToken.strictInvokeTransfer(
component,
_to,
componentQuantity
);
}
emit SetTokenRedeemed(address(_setToken), msg.sender, _to, _quantity);
}
/**
* Initializes this module to the SetToken with issuance-related hooks. Only callable by the SetToken's manager.
* Hook addresses are optional. Address(0) means that no hook will be called
*
* @param _setToken Instance of the SetToken to issue
* @param _preIssueHook Instance of the Manager Contract with the Pre-Issuance Hook function
*/
function initialize(
ISetToken _setToken,
IManagerIssuanceHook _preIssueHook
)
external
onlySetManager(_setToken, msg.sender)
onlyValidAndPendingSet(_setToken)
{
managerIssuanceHook[_setToken] = _preIssueHook;
_setToken.initializeModule();
}
/**
* Reverts as this module should not be removable after added. Users should always
* have a way to redeem their Sets
*/
function removeModule() external override {
revert("The BasicIssuanceModule module cannot be removed");
}
/* ============ External Getter Functions ============ */
/**
* Retrieves the addresses and units required to mint a particular quantity of SetToken.
*
* @param _setToken Instance of the SetToken to issue
* @param _quantity Quantity of SetToken to issue
* @return address[] List of component addresses
* @return uint256[] List of component units required to issue the quantity of SetTokens
*/
function getRequiredComponentUnitsForIssue(
ISetToken _setToken,
uint256 _quantity
)
public
view
onlyValidAndInitializedSet(_setToken)
returns (address[] memory, uint256[] memory)
{
address[] memory components = _setToken.getComponents();
uint256[] memory notionalUnits = new uint256[](components.length);
for (uint256 i = 0; i < components.length; i++) {
require(!_setToken.hasExternalPosition(components[i]), "Only default positions are supported");
notionalUnits[i] = _setToken.getDefaultPositionRealUnit(components[i]).toUint256().preciseMulCeil(_quantity);
}
return (components, notionalUnits);
}
/* ============ Internal Functions ============ */
/**
* If a pre-issue hook has been configured, call the external-protocol contract. Pre-issue hook logic
* can contain arbitrary logic including validations, external function calls, etc.
*/
function _callPreIssueHooks(
ISetToken _setToken,
uint256 _quantity,
address _caller,
address _to
)
internal
returns(address)
{
IManagerIssuanceHook preIssueHook = managerIssuanceHook[_setToken];
if (address(preIssueHook) != address(0)) {
preIssueHook.invokePreIssueHook(_setToken, _quantity, _caller, _to);
return address(preIssueHook);
}
return address(0);
}
}File 28 of 30: AppProxyUpgradeable
// File: contracts/common/UnstructuredStorage.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
library UnstructuredStorage {
function getStorageBool(bytes32 position) internal view returns (bool data) {
assembly { data := sload(position) }
}
function getStorageAddress(bytes32 position) internal view returns (address data) {
assembly { data := sload(position) }
}
function getStorageBytes32(bytes32 position) internal view returns (bytes32 data) {
assembly { data := sload(position) }
}
function getStorageUint256(bytes32 position) internal view returns (uint256 data) {
assembly { data := sload(position) }
}
function setStorageBool(bytes32 position, bool data) internal {
assembly { sstore(position, data) }
}
function setStorageAddress(bytes32 position, address data) internal {
assembly { sstore(position, data) }
}
function setStorageBytes32(bytes32 position, bytes32 data) internal {
assembly { sstore(position, data) }
}
function setStorageUint256(bytes32 position, uint256 data) internal {
assembly { sstore(position, data) }
}
}
// File: contracts/acl/IACL.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
interface IACL {
function initialize(address permissionsCreator) external;
// TODO: this should be external
// See https://github.com/ethereum/solidity/issues/4832
function hasPermission(address who, address where, bytes32 what, bytes how) public view returns (bool);
}
// File: contracts/common/IVaultRecoverable.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
interface IVaultRecoverable {
event RecoverToVault(address indexed vault, address indexed token, uint256 amount);
function transferToVault(address token) external;
function allowRecoverability(address token) external view returns (bool);
function getRecoveryVault() external view returns (address);
}
// File: contracts/kernel/IKernel.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
interface IKernelEvents {
event SetApp(bytes32 indexed namespace, bytes32 indexed appId, address app);
}
// This should be an interface, but interfaces can't inherit yet :(
contract IKernel is IKernelEvents, IVaultRecoverable {
function acl() public view returns (IACL);
function hasPermission(address who, address where, bytes32 what, bytes how) public view returns (bool);
function setApp(bytes32 namespace, bytes32 appId, address app) public;
function getApp(bytes32 namespace, bytes32 appId) public view returns (address);
}
// File: contracts/apps/AppStorage.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
contract AppStorage {
using UnstructuredStorage for bytes32;
/* Hardcoded constants to save gas
bytes32 internal constant KERNEL_POSITION = keccak256("aragonOS.appStorage.kernel");
bytes32 internal constant APP_ID_POSITION = keccak256("aragonOS.appStorage.appId");
*/
bytes32 internal constant KERNEL_POSITION = 0x4172f0f7d2289153072b0a6ca36959e0cbe2efc3afe50fc81636caa96338137b;
bytes32 internal constant APP_ID_POSITION = 0xd625496217aa6a3453eecb9c3489dc5a53e6c67b444329ea2b2cbc9ff547639b;
function kernel() public view returns (IKernel) {
return IKernel(KERNEL_POSITION.getStorageAddress());
}
function appId() public view returns (bytes32) {
return APP_ID_POSITION.getStorageBytes32();
}
function setKernel(IKernel _kernel) internal {
KERNEL_POSITION.setStorageAddress(address(_kernel));
}
function setAppId(bytes32 _appId) internal {
APP_ID_POSITION.setStorageBytes32(_appId);
}
}
// File: contracts/common/IsContract.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
contract IsContract {
/*
* NOTE: this should NEVER be used for authentication
* (see pitfalls: https://github.com/fergarrui/ethereum-security/tree/master/contracts/extcodesize).
*
* This is only intended to be used as a sanity check that an address is actually a contract,
* RATHER THAN an address not being a contract.
*/
function isContract(address _target) internal view returns (bool) {
if (_target == address(0)) {
return false;
}
uint256 size;
assembly { size := extcodesize(_target) }
return size > 0;
}
}
// File: contracts/lib/misc/ERCProxy.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
contract ERCProxy {
uint256 internal constant FORWARDING = 1;
uint256 internal constant UPGRADEABLE = 2;
function proxyType() public pure returns (uint256 proxyTypeId);
function implementation() public view returns (address codeAddr);
}
// File: contracts/common/DelegateProxy.sol
pragma solidity 0.4.24;
contract DelegateProxy is ERCProxy, IsContract {
uint256 internal constant FWD_GAS_LIMIT = 10000;
/**
* @dev Performs a delegatecall and returns whatever the delegatecall returned (entire context execution will return!)
* @param _dst Destination address to perform the delegatecall
* @param _calldata Calldata for the delegatecall
*/
function delegatedFwd(address _dst, bytes _calldata) internal {
require(isContract(_dst));
uint256 fwdGasLimit = FWD_GAS_LIMIT;
assembly {
let result := delegatecall(sub(gas, fwdGasLimit), _dst, add(_calldata, 0x20), mload(_calldata), 0, 0)
let size := returndatasize
let ptr := mload(0x40)
returndatacopy(ptr, 0, size)
// revert instead of invalid() bc if the underlying call failed with invalid() it already wasted gas.
// if the call returned error data, forward it
switch result case 0 { revert(ptr, size) }
default { return(ptr, size) }
}
}
}
// File: contracts/common/DepositableStorage.sol
pragma solidity 0.4.24;
contract DepositableStorage {
using UnstructuredStorage for bytes32;
// keccak256("aragonOS.depositableStorage.depositable")
bytes32 internal constant DEPOSITABLE_POSITION = 0x665fd576fbbe6f247aff98f5c94a561e3f71ec2d3c988d56f12d342396c50cea;
function isDepositable() public view returns (bool) {
return DEPOSITABLE_POSITION.getStorageBool();
}
function setDepositable(bool _depositable) internal {
DEPOSITABLE_POSITION.setStorageBool(_depositable);
}
}
// File: contracts/common/DepositableDelegateProxy.sol
pragma solidity 0.4.24;
contract DepositableDelegateProxy is DepositableStorage, DelegateProxy {
event ProxyDeposit(address sender, uint256 value);
function () external payable {
uint256 forwardGasThreshold = FWD_GAS_LIMIT;
bytes32 isDepositablePosition = DEPOSITABLE_POSITION;
// Optimized assembly implementation to prevent EIP-1884 from breaking deposits, reference code in Solidity:
// https://github.com/aragon/aragonOS/blob/v4.2.1/contracts/common/DepositableDelegateProxy.sol#L10-L20
assembly {
// Continue only if the gas left is lower than the threshold for forwarding to the implementation code,
// otherwise continue outside of the assembly block.
if lt(gas, forwardGasThreshold) {
// Only accept the deposit and emit an event if all of the following are true:
// the proxy accepts deposits (isDepositable), msg.data.length == 0, and msg.value > 0
if and(and(sload(isDepositablePosition), iszero(calldatasize)), gt(callvalue, 0)) {
// Equivalent Solidity code for emitting the event:
// emit ProxyDeposit(msg.sender, msg.value);
let logData := mload(0x40) // free memory pointer
mstore(logData, caller) // add 'msg.sender' to the log data (first event param)
mstore(add(logData, 0x20), callvalue) // add 'msg.value' to the log data (second event param)
// Emit an event with one topic to identify the event: keccak256('ProxyDeposit(address,uint256)') = 0x15ee...dee1
log1(logData, 0x40, 0x15eeaa57c7bd188c1388020bcadc2c436ec60d647d36ef5b9eb3c742217ddee1)
stop() // Stop. Exits execution context
}
// If any of above checks failed, revert the execution (if ETH was sent, it is returned to the sender)
revert(0, 0)
}
}
address target = implementation();
delegatedFwd(target, msg.data);
}
}
// File: contracts/kernel/KernelConstants.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
contract KernelAppIds {
/* Hardcoded constants to save gas
bytes32 internal constant KERNEL_CORE_APP_ID = apmNamehash("kernel");
bytes32 internal constant KERNEL_DEFAULT_ACL_APP_ID = apmNamehash("acl");
bytes32 internal constant KERNEL_DEFAULT_VAULT_APP_ID = apmNamehash("vault");
*/
bytes32 internal constant KERNEL_CORE_APP_ID = 0x3b4bf6bf3ad5000ecf0f989d5befde585c6860fea3e574a4fab4c49d1c177d9c;
bytes32 internal constant KERNEL_DEFAULT_ACL_APP_ID = 0xe3262375f45a6e2026b7e7b18c2b807434f2508fe1a2a3dfb493c7df8f4aad6a;
bytes32 internal constant KERNEL_DEFAULT_VAULT_APP_ID = 0x7e852e0fcfce6551c13800f1e7476f982525c2b5277ba14b24339c68416336d1;
}
contract KernelNamespaceConstants {
/* Hardcoded constants to save gas
bytes32 internal constant KERNEL_CORE_NAMESPACE = keccak256("core");
bytes32 internal constant KERNEL_APP_BASES_NAMESPACE = keccak256("base");
bytes32 internal constant KERNEL_APP_ADDR_NAMESPACE = keccak256("app");
*/
bytes32 internal constant KERNEL_CORE_NAMESPACE = 0xc681a85306374a5ab27f0bbc385296a54bcd314a1948b6cf61c4ea1bc44bb9f8;
bytes32 internal constant KERNEL_APP_BASES_NAMESPACE = 0xf1f3eb40f5bc1ad1344716ced8b8a0431d840b5783aea1fd01786bc26f35ac0f;
bytes32 internal constant KERNEL_APP_ADDR_NAMESPACE = 0xd6f028ca0e8edb4a8c9757ca4fdccab25fa1e0317da1188108f7d2dee14902fb;
}
// File: contracts/apps/AppProxyBase.sol
pragma solidity 0.4.24;
contract AppProxyBase is AppStorage, DepositableDelegateProxy, KernelNamespaceConstants {
/**
* @dev Initialize AppProxy
* @param _kernel Reference to organization kernel for the app
* @param _appId Identifier for app
* @param _initializePayload Payload for call to be made after setup to initialize
*/
constructor(IKernel _kernel, bytes32 _appId, bytes _initializePayload) public {
setKernel(_kernel);
setAppId(_appId);
// Implicit check that kernel is actually a Kernel
// The EVM doesn't actually provide a way for us to make sure, but we can force a revert to
// occur if the kernel is set to 0x0 or a non-code address when we try to call a method on
// it.
address appCode = getAppBase(_appId);
// If initialize payload is provided, it will be executed
if (_initializePayload.length > 0) {
require(isContract(appCode));
// Cannot make delegatecall as a delegateproxy.delegatedFwd as it
// returns ending execution context and halts contract deployment
require(appCode.delegatecall(_initializePayload));
}
}
function getAppBase(bytes32 _appId) internal view returns (address) {
return kernel().getApp(KERNEL_APP_BASES_NAMESPACE, _appId);
}
}
// File: contracts/apps/AppProxyUpgradeable.sol
pragma solidity 0.4.24;
contract AppProxyUpgradeable is AppProxyBase {
/**
* @dev Initialize AppProxyUpgradeable (makes it an upgradeable Aragon app)
* @param _kernel Reference to organization kernel for the app
* @param _appId Identifier for app
* @param _initializePayload Payload for call to be made after setup to initialize
*/
constructor(IKernel _kernel, bytes32 _appId, bytes _initializePayload)
AppProxyBase(_kernel, _appId, _initializePayload)
public // solium-disable-line visibility-first
{
// solium-disable-previous-line no-empty-blocks
}
/**
* @dev ERC897, the address the proxy would delegate calls to
*/
function implementation() public view returns (address) {
return getAppBase(appId());
}
/**
* @dev ERC897, whether it is a forwarding (1) or an upgradeable (2) proxy
*/
function proxyType() public pure returns (uint256 proxyTypeId) {
return UPGRADEABLE;
}
}File 29 of 30: KernelProxy
/**
*Submitted for verification at Etherscan.io on 2020-02-06
*/
// File: contracts/acl/IACL.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
interface IACL {
function initialize(address permissionsCreator) external;
// TODO: this should be external
// See https://github.com/ethereum/solidity/issues/4832
function hasPermission(address who, address where, bytes32 what, bytes how) public view returns (bool);
}
// File: contracts/common/IVaultRecoverable.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
interface IVaultRecoverable {
event RecoverToVault(address indexed vault, address indexed token, uint256 amount);
function transferToVault(address token) external;
function allowRecoverability(address token) external view returns (bool);
function getRecoveryVault() external view returns (address);
}
// File: contracts/kernel/IKernel.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
interface IKernelEvents {
event SetApp(bytes32 indexed namespace, bytes32 indexed appId, address app);
}
// This should be an interface, but interfaces can't inherit yet :(
contract IKernel is IKernelEvents, IVaultRecoverable {
function acl() public view returns (IACL);
function hasPermission(address who, address where, bytes32 what, bytes how) public view returns (bool);
function setApp(bytes32 namespace, bytes32 appId, address app) public;
function getApp(bytes32 namespace, bytes32 appId) public view returns (address);
}
// File: contracts/kernel/KernelConstants.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
contract KernelAppIds {
/* Hardcoded constants to save gas
bytes32 internal constant KERNEL_CORE_APP_ID = apmNamehash("kernel");
bytes32 internal constant KERNEL_DEFAULT_ACL_APP_ID = apmNamehash("acl");
bytes32 internal constant KERNEL_DEFAULT_VAULT_APP_ID = apmNamehash("vault");
*/
bytes32 internal constant KERNEL_CORE_APP_ID = 0x3b4bf6bf3ad5000ecf0f989d5befde585c6860fea3e574a4fab4c49d1c177d9c;
bytes32 internal constant KERNEL_DEFAULT_ACL_APP_ID = 0xe3262375f45a6e2026b7e7b18c2b807434f2508fe1a2a3dfb493c7df8f4aad6a;
bytes32 internal constant KERNEL_DEFAULT_VAULT_APP_ID = 0x7e852e0fcfce6551c13800f1e7476f982525c2b5277ba14b24339c68416336d1;
}
contract KernelNamespaceConstants {
/* Hardcoded constants to save gas
bytes32 internal constant KERNEL_CORE_NAMESPACE = keccak256("core");
bytes32 internal constant KERNEL_APP_BASES_NAMESPACE = keccak256("base");
bytes32 internal constant KERNEL_APP_ADDR_NAMESPACE = keccak256("app");
*/
bytes32 internal constant KERNEL_CORE_NAMESPACE = 0xc681a85306374a5ab27f0bbc385296a54bcd314a1948b6cf61c4ea1bc44bb9f8;
bytes32 internal constant KERNEL_APP_BASES_NAMESPACE = 0xf1f3eb40f5bc1ad1344716ced8b8a0431d840b5783aea1fd01786bc26f35ac0f;
bytes32 internal constant KERNEL_APP_ADDR_NAMESPACE = 0xd6f028ca0e8edb4a8c9757ca4fdccab25fa1e0317da1188108f7d2dee14902fb;
}
// File: contracts/kernel/KernelStorage.sol
pragma solidity 0.4.24;
contract KernelStorage {
// namespace => app id => address
mapping (bytes32 => mapping (bytes32 => address)) public apps;
bytes32 public recoveryVaultAppId;
}
// File: contracts/acl/ACLSyntaxSugar.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
contract ACLSyntaxSugar {
function arr() internal pure returns (uint256[]) {
return new uint256[](0);
}
function arr(bytes32 _a) internal pure returns (uint256[] r) {
return arr(uint256(_a));
}
function arr(bytes32 _a, bytes32 _b) internal pure returns (uint256[] r) {
return arr(uint256(_a), uint256(_b));
}
function arr(address _a) internal pure returns (uint256[] r) {
return arr(uint256(_a));
}
function arr(address _a, address _b) internal pure returns (uint256[] r) {
return arr(uint256(_a), uint256(_b));
}
function arr(address _a, uint256 _b, uint256 _c) internal pure returns (uint256[] r) {
return arr(uint256(_a), _b, _c);
}
function arr(address _a, uint256 _b, uint256 _c, uint256 _d) internal pure returns (uint256[] r) {
return arr(uint256(_a), _b, _c, _d);
}
function arr(address _a, uint256 _b) internal pure returns (uint256[] r) {
return arr(uint256(_a), uint256(_b));
}
function arr(address _a, address _b, uint256 _c, uint256 _d, uint256 _e) internal pure returns (uint256[] r) {
return arr(uint256(_a), uint256(_b), _c, _d, _e);
}
function arr(address _a, address _b, address _c) internal pure returns (uint256[] r) {
return arr(uint256(_a), uint256(_b), uint256(_c));
}
function arr(address _a, address _b, uint256 _c) internal pure returns (uint256[] r) {
return arr(uint256(_a), uint256(_b), uint256(_c));
}
function arr(uint256 _a) internal pure returns (uint256[] r) {
r = new uint256[](1);
r[0] = _a;
}
function arr(uint256 _a, uint256 _b) internal pure returns (uint256[] r) {
r = new uint256[](2);
r[0] = _a;
r[1] = _b;
}
function arr(uint256 _a, uint256 _b, uint256 _c) internal pure returns (uint256[] r) {
r = new uint256[](3);
r[0] = _a;
r[1] = _b;
r[2] = _c;
}
function arr(uint256 _a, uint256 _b, uint256 _c, uint256 _d) internal pure returns (uint256[] r) {
r = new uint256[](4);
r[0] = _a;
r[1] = _b;
r[2] = _c;
r[3] = _d;
}
function arr(uint256 _a, uint256 _b, uint256 _c, uint256 _d, uint256 _e) internal pure returns (uint256[] r) {
r = new uint256[](5);
r[0] = _a;
r[1] = _b;
r[2] = _c;
r[3] = _d;
r[4] = _e;
}
}
contract ACLHelpers {
function decodeParamOp(uint256 _x) internal pure returns (uint8 b) {
return uint8(_x >> (8 * 30));
}
function decodeParamId(uint256 _x) internal pure returns (uint8 b) {
return uint8(_x >> (8 * 31));
}
function decodeParamsList(uint256 _x) internal pure returns (uint32 a, uint32 b, uint32 c) {
a = uint32(_x);
b = uint32(_x >> (8 * 4));
c = uint32(_x >> (8 * 8));
}
}
// File: contracts/common/ConversionHelpers.sol
pragma solidity ^0.4.24;
library ConversionHelpers {
string private constant ERROR_IMPROPER_LENGTH = "CONVERSION_IMPROPER_LENGTH";
function dangerouslyCastUintArrayToBytes(uint256[] memory _input) internal pure returns (bytes memory output) {
// Force cast the uint256[] into a bytes array, by overwriting its length
// Note that the bytes array doesn't need to be initialized as we immediately overwrite it
// with the input and a new length. The input becomes invalid from this point forward.
uint256 byteLength = _input.length * 32;
assembly {
output := _input
mstore(output, byteLength)
}
}
function dangerouslyCastBytesToUintArray(bytes memory _input) internal pure returns (uint256[] memory output) {
// Force cast the bytes array into a uint256[], by overwriting its length
// Note that the uint256[] doesn't need to be initialized as we immediately overwrite it
// with the input and a new length. The input becomes invalid from this point forward.
uint256 intsLength = _input.length / 32;
require(_input.length == intsLength * 32, ERROR_IMPROPER_LENGTH);
assembly {
output := _input
mstore(output, intsLength)
}
}
}
// File: contracts/common/IsContract.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
contract IsContract {
/*
* NOTE: this should NEVER be used for authentication
* (see pitfalls: https://github.com/fergarrui/ethereum-security/tree/master/contracts/extcodesize).
*
* This is only intended to be used as a sanity check that an address is actually a contract,
* RATHER THAN an address not being a contract.
*/
function isContract(address _target) internal view returns (bool) {
if (_target == address(0)) {
return false;
}
uint256 size;
assembly { size := extcodesize(_target) }
return size > 0;
}
}
// File: contracts/common/Uint256Helpers.sol
pragma solidity ^0.4.24;
library Uint256Helpers {
uint256 private constant MAX_UINT64 = uint64(-1);
string private constant ERROR_NUMBER_TOO_BIG = "UINT64_NUMBER_TOO_BIG";
function toUint64(uint256 a) internal pure returns (uint64) {
require(a <= MAX_UINT64, ERROR_NUMBER_TOO_BIG);
return uint64(a);
}
}
// File: contracts/common/TimeHelpers.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
contract TimeHelpers {
using Uint256Helpers for uint256;
/**
* @dev Returns the current block number.
* Using a function rather than `block.number` allows us to easily mock the block number in
* tests.
*/
function getBlockNumber() internal view returns (uint256) {
return block.number;
}
/**
* @dev Returns the current block number, converted to uint64.
* Using a function rather than `block.number` allows us to easily mock the block number in
* tests.
*/
function getBlockNumber64() internal view returns (uint64) {
return getBlockNumber().toUint64();
}
/**
* @dev Returns the current timestamp.
* Using a function rather than `block.timestamp` allows us to easily mock it in
* tests.
*/
function getTimestamp() internal view returns (uint256) {
return block.timestamp; // solium-disable-line security/no-block-members
}
/**
* @dev Returns the current timestamp, converted to uint64.
* Using a function rather than `block.timestamp` allows us to easily mock it in
* tests.
*/
function getTimestamp64() internal view returns (uint64) {
return getTimestamp().toUint64();
}
}
// File: contracts/common/UnstructuredStorage.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
library UnstructuredStorage {
function getStorageBool(bytes32 position) internal view returns (bool data) {
assembly { data := sload(position) }
}
function getStorageAddress(bytes32 position) internal view returns (address data) {
assembly { data := sload(position) }
}
function getStorageBytes32(bytes32 position) internal view returns (bytes32 data) {
assembly { data := sload(position) }
}
function getStorageUint256(bytes32 position) internal view returns (uint256 data) {
assembly { data := sload(position) }
}
function setStorageBool(bytes32 position, bool data) internal {
assembly { sstore(position, data) }
}
function setStorageAddress(bytes32 position, address data) internal {
assembly { sstore(position, data) }
}
function setStorageBytes32(bytes32 position, bytes32 data) internal {
assembly { sstore(position, data) }
}
function setStorageUint256(bytes32 position, uint256 data) internal {
assembly { sstore(position, data) }
}
}
// File: contracts/common/Initializable.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
contract Initializable is TimeHelpers {
using UnstructuredStorage for bytes32;
// keccak256("aragonOS.initializable.initializationBlock")
bytes32 internal constant INITIALIZATION_BLOCK_POSITION = 0xebb05b386a8d34882b8711d156f463690983dc47815980fb82aeeff1aa43579e;
string private constant ERROR_ALREADY_INITIALIZED = "INIT_ALREADY_INITIALIZED";
string private constant ERROR_NOT_INITIALIZED = "INIT_NOT_INITIALIZED";
modifier onlyInit {
require(getInitializationBlock() == 0, ERROR_ALREADY_INITIALIZED);
_;
}
modifier isInitialized {
require(hasInitialized(), ERROR_NOT_INITIALIZED);
_;
}
/**
* @return Block number in which the contract was initialized
*/
function getInitializationBlock() public view returns (uint256) {
return INITIALIZATION_BLOCK_POSITION.getStorageUint256();
}
/**
* @return Whether the contract has been initialized by the time of the current block
*/
function hasInitialized() public view returns (bool) {
uint256 initializationBlock = getInitializationBlock();
return initializationBlock != 0 && getBlockNumber() >= initializationBlock;
}
/**
* @dev Function to be called by top level contract after initialization has finished.
*/
function initialized() internal onlyInit {
INITIALIZATION_BLOCK_POSITION.setStorageUint256(getBlockNumber());
}
/**
* @dev Function to be called by top level contract after initialization to enable the contract
* at a future block number rather than immediately.
*/
function initializedAt(uint256 _blockNumber) internal onlyInit {
INITIALIZATION_BLOCK_POSITION.setStorageUint256(_blockNumber);
}
}
// File: contracts/common/Petrifiable.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
contract Petrifiable is Initializable {
// Use block UINT256_MAX (which should be never) as the initializable date
uint256 internal constant PETRIFIED_BLOCK = uint256(-1);
function isPetrified() public view returns (bool) {
return getInitializationBlock() == PETRIFIED_BLOCK;
}
/**
* @dev Function to be called by top level contract to prevent being initialized.
* Useful for freezing base contracts when they're used behind proxies.
*/
function petrify() internal onlyInit {
initializedAt(PETRIFIED_BLOCK);
}
}
// File: contracts/lib/token/ERC20.sol
// See https://github.com/OpenZeppelin/openzeppelin-solidity/blob/a9f910d34f0ab33a1ae5e714f69f9596a02b4d91/contracts/token/ERC20/ERC20.sol
pragma solidity ^0.4.24;
/**
* @title ERC20 interface
* @dev see https://github.com/ethereum/EIPs/issues/20
*/
contract ERC20 {
function totalSupply() public view returns (uint256);
function balanceOf(address _who) public view returns (uint256);
function allowance(address _owner, address _spender)
public view returns (uint256);
function transfer(address _to, uint256 _value) public returns (bool);
function approve(address _spender, uint256 _value)
public returns (bool);
function transferFrom(address _from, address _to, uint256 _value)
public returns (bool);
event Transfer(
address indexed from,
address indexed to,
uint256 value
);
event Approval(
address indexed owner,
address indexed spender,
uint256 value
);
}
// File: contracts/common/EtherTokenConstant.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
// aragonOS and aragon-apps rely on address(0) to denote native ETH, in
// contracts where both tokens and ETH are accepted
contract EtherTokenConstant {
address internal constant ETH = address(0);
}
// File: contracts/common/SafeERC20.sol
// Inspired by AdEx (https://github.com/AdExNetwork/adex-protocol-eth/blob/b9df617829661a7518ee10f4cb6c4108659dd6d5/contracts/libs/SafeERC20.sol)
// and 0x (https://github.com/0xProject/0x-monorepo/blob/737d1dc54d72872e24abce5a1dbe1b66d35fa21a/contracts/protocol/contracts/protocol/AssetProxy/ERC20Proxy.sol#L143)
pragma solidity ^0.4.24;
library SafeERC20 {
// Before 0.5, solidity has a mismatch between `address.transfer()` and `token.transfer()`:
// https://github.com/ethereum/solidity/issues/3544
bytes4 private constant TRANSFER_SELECTOR = 0xa9059cbb;
string private constant ERROR_TOKEN_BALANCE_REVERTED = "SAFE_ERC_20_BALANCE_REVERTED";
string private constant ERROR_TOKEN_ALLOWANCE_REVERTED = "SAFE_ERC_20_ALLOWANCE_REVERTED";
function invokeAndCheckSuccess(address _addr, bytes memory _calldata)
private
returns (bool)
{
bool ret;
assembly {
let ptr := mload(0x40) // free memory pointer
let success := call(
gas, // forward all gas
_addr, // address
0, // no value
add(_calldata, 0x20), // calldata start
mload(_calldata), // calldata length
ptr, // write output over free memory
0x20 // uint256 return
)
if gt(success, 0) {
// Check number of bytes returned from last function call
switch returndatasize
// No bytes returned: assume success
case 0 {
ret := 1
}
// 32 bytes returned: check if non-zero
case 0x20 {
// Only return success if returned data was true
// Already have output in ptr
ret := eq(mload(ptr), 1)
}
// Not sure what was returned: don't mark as success
default { }
}
}
return ret;
}
function staticInvoke(address _addr, bytes memory _calldata)
private
view
returns (bool, uint256)
{
bool success;
uint256 ret;
assembly {
let ptr := mload(0x40) // free memory pointer
success := staticcall(
gas, // forward all gas
_addr, // address
add(_calldata, 0x20), // calldata start
mload(_calldata), // calldata length
ptr, // write output over free memory
0x20 // uint256 return
)
if gt(success, 0) {
ret := mload(ptr)
}
}
return (success, ret);
}
/**
* @dev Same as a standards-compliant ERC20.transfer() that never reverts (returns false).
* Note that this makes an external call to the token.
*/
function safeTransfer(ERC20 _token, address _to, uint256 _amount) internal returns (bool) {
bytes memory transferCallData = abi.encodeWithSelector(
TRANSFER_SELECTOR,
_to,
_amount
);
return invokeAndCheckSuccess(_token, transferCallData);
}
/**
* @dev Same as a standards-compliant ERC20.transferFrom() that never reverts (returns false).
* Note that this makes an external call to the token.
*/
function safeTransferFrom(ERC20 _token, address _from, address _to, uint256 _amount) internal returns (bool) {
bytes memory transferFromCallData = abi.encodeWithSelector(
_token.transferFrom.selector,
_from,
_to,
_amount
);
return invokeAndCheckSuccess(_token, transferFromCallData);
}
/**
* @dev Same as a standards-compliant ERC20.approve() that never reverts (returns false).
* Note that this makes an external call to the token.
*/
function safeApprove(ERC20 _token, address _spender, uint256 _amount) internal returns (bool) {
bytes memory approveCallData = abi.encodeWithSelector(
_token.approve.selector,
_spender,
_amount
);
return invokeAndCheckSuccess(_token, approveCallData);
}
/**
* @dev Static call into ERC20.balanceOf().
* Reverts if the call fails for some reason (should never fail).
*/
function staticBalanceOf(ERC20 _token, address _owner) internal view returns (uint256) {
bytes memory balanceOfCallData = abi.encodeWithSelector(
_token.balanceOf.selector,
_owner
);
(bool success, uint256 tokenBalance) = staticInvoke(_token, balanceOfCallData);
require(success, ERROR_TOKEN_BALANCE_REVERTED);
return tokenBalance;
}
/**
* @dev Static call into ERC20.allowance().
* Reverts if the call fails for some reason (should never fail).
*/
function staticAllowance(ERC20 _token, address _owner, address _spender) internal view returns (uint256) {
bytes memory allowanceCallData = abi.encodeWithSelector(
_token.allowance.selector,
_owner,
_spender
);
(bool success, uint256 allowance) = staticInvoke(_token, allowanceCallData);
require(success, ERROR_TOKEN_ALLOWANCE_REVERTED);
return allowance;
}
/**
* @dev Static call into ERC20.totalSupply().
* Reverts if the call fails for some reason (should never fail).
*/
function staticTotalSupply(ERC20 _token) internal view returns (uint256) {
bytes memory totalSupplyCallData = abi.encodeWithSelector(_token.totalSupply.selector);
(bool success, uint256 totalSupply) = staticInvoke(_token, totalSupplyCallData);
require(success, ERROR_TOKEN_ALLOWANCE_REVERTED);
return totalSupply;
}
}
// File: contracts/common/VaultRecoverable.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
contract VaultRecoverable is IVaultRecoverable, EtherTokenConstant, IsContract {
using SafeERC20 for ERC20;
string private constant ERROR_DISALLOWED = "RECOVER_DISALLOWED";
string private constant ERROR_VAULT_NOT_CONTRACT = "RECOVER_VAULT_NOT_CONTRACT";
string private constant ERROR_TOKEN_TRANSFER_FAILED = "RECOVER_TOKEN_TRANSFER_FAILED";
/**
* @notice Send funds to recovery Vault. This contract should never receive funds,
* but in case it does, this function allows one to recover them.
* @param _token Token balance to be sent to recovery vault.
*/
function transferToVault(address _token) external {
require(allowRecoverability(_token), ERROR_DISALLOWED);
address vault = getRecoveryVault();
require(isContract(vault), ERROR_VAULT_NOT_CONTRACT);
uint256 balance;
if (_token == ETH) {
balance = address(this).balance;
vault.transfer(balance);
} else {
ERC20 token = ERC20(_token);
balance = token.staticBalanceOf(this);
require(token.safeTransfer(vault, balance), ERROR_TOKEN_TRANSFER_FAILED);
}
emit RecoverToVault(vault, _token, balance);
}
/**
* @dev By default deriving from AragonApp makes it recoverable
* @param token Token address that would be recovered
* @return bool whether the app allows the recovery
*/
function allowRecoverability(address token) public view returns (bool) {
return true;
}
// Cast non-implemented interface to be public so we can use it internally
function getRecoveryVault() public view returns (address);
}
// File: contracts/apps/AppStorage.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
contract AppStorage {
using UnstructuredStorage for bytes32;
/* Hardcoded constants to save gas
bytes32 internal constant KERNEL_POSITION = keccak256("aragonOS.appStorage.kernel");
bytes32 internal constant APP_ID_POSITION = keccak256("aragonOS.appStorage.appId");
*/
bytes32 internal constant KERNEL_POSITION = 0x4172f0f7d2289153072b0a6ca36959e0cbe2efc3afe50fc81636caa96338137b;
bytes32 internal constant APP_ID_POSITION = 0xd625496217aa6a3453eecb9c3489dc5a53e6c67b444329ea2b2cbc9ff547639b;
function kernel() public view returns (IKernel) {
return IKernel(KERNEL_POSITION.getStorageAddress());
}
function appId() public view returns (bytes32) {
return APP_ID_POSITION.getStorageBytes32();
}
function setKernel(IKernel _kernel) internal {
KERNEL_POSITION.setStorageAddress(address(_kernel));
}
function setAppId(bytes32 _appId) internal {
APP_ID_POSITION.setStorageBytes32(_appId);
}
}
// File: contracts/lib/misc/ERCProxy.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
contract ERCProxy {
uint256 internal constant FORWARDING = 1;
uint256 internal constant UPGRADEABLE = 2;
function proxyType() public pure returns (uint256 proxyTypeId);
function implementation() public view returns (address codeAddr);
}
// File: contracts/common/DelegateProxy.sol
pragma solidity 0.4.24;
contract DelegateProxy is ERCProxy, IsContract {
uint256 internal constant FWD_GAS_LIMIT = 10000;
/**
* @dev Performs a delegatecall and returns whatever the delegatecall returned (entire context execution will return!)
* @param _dst Destination address to perform the delegatecall
* @param _calldata Calldata for the delegatecall
*/
function delegatedFwd(address _dst, bytes _calldata) internal {
require(isContract(_dst));
uint256 fwdGasLimit = FWD_GAS_LIMIT;
assembly {
let result := delegatecall(sub(gas, fwdGasLimit), _dst, add(_calldata, 0x20), mload(_calldata), 0, 0)
let size := returndatasize
let ptr := mload(0x40)
returndatacopy(ptr, 0, size)
// revert instead of invalid() bc if the underlying call failed with invalid() it already wasted gas.
// if the call returned error data, forward it
switch result case 0 { revert(ptr, size) }
default { return(ptr, size) }
}
}
}
// File: contracts/common/DepositableStorage.sol
pragma solidity 0.4.24;
contract DepositableStorage {
using UnstructuredStorage for bytes32;
// keccak256("aragonOS.depositableStorage.depositable")
bytes32 internal constant DEPOSITABLE_POSITION = 0x665fd576fbbe6f247aff98f5c94a561e3f71ec2d3c988d56f12d342396c50cea;
function isDepositable() public view returns (bool) {
return DEPOSITABLE_POSITION.getStorageBool();
}
function setDepositable(bool _depositable) internal {
DEPOSITABLE_POSITION.setStorageBool(_depositable);
}
}
// File: contracts/common/DepositableDelegateProxy.sol
pragma solidity 0.4.24;
contract DepositableDelegateProxy is DepositableStorage, DelegateProxy {
event ProxyDeposit(address sender, uint256 value);
function () external payable {
uint256 forwardGasThreshold = FWD_GAS_LIMIT;
bytes32 isDepositablePosition = DEPOSITABLE_POSITION;
// Optimized assembly implementation to prevent EIP-1884 from breaking deposits, reference code in Solidity:
// https://github.com/aragon/aragonOS/blob/v4.2.1/contracts/common/DepositableDelegateProxy.sol#L10-L20
assembly {
// Continue only if the gas left is lower than the threshold for forwarding to the implementation code,
// otherwise continue outside of the assembly block.
if lt(gas, forwardGasThreshold) {
// Only accept the deposit and emit an event if all of the following are true:
// the proxy accepts deposits (isDepositable), msg.data.length == 0, and msg.value > 0
if and(and(sload(isDepositablePosition), iszero(calldatasize)), gt(callvalue, 0)) {
// Equivalent Solidity code for emitting the event:
// emit ProxyDeposit(msg.sender, msg.value);
let logData := mload(0x40) // free memory pointer
mstore(logData, caller) // add 'msg.sender' to the log data (first event param)
mstore(add(logData, 0x20), callvalue) // add 'msg.value' to the log data (second event param)
// Emit an event with one topic to identify the event: keccak256('ProxyDeposit(address,uint256)') = 0x15ee...dee1
log1(logData, 0x40, 0x15eeaa57c7bd188c1388020bcadc2c436ec60d647d36ef5b9eb3c742217ddee1)
stop() // Stop. Exits execution context
}
// If any of above checks failed, revert the execution (if ETH was sent, it is returned to the sender)
revert(0, 0)
}
}
address target = implementation();
delegatedFwd(target, msg.data);
}
}
// File: contracts/apps/AppProxyBase.sol
pragma solidity 0.4.24;
contract AppProxyBase is AppStorage, DepositableDelegateProxy, KernelNamespaceConstants {
/**
* @dev Initialize AppProxy
* @param _kernel Reference to organization kernel for the app
* @param _appId Identifier for app
* @param _initializePayload Payload for call to be made after setup to initialize
*/
constructor(IKernel _kernel, bytes32 _appId, bytes _initializePayload) public {
setKernel(_kernel);
setAppId(_appId);
// Implicit check that kernel is actually a Kernel
// The EVM doesn't actually provide a way for us to make sure, but we can force a revert to
// occur if the kernel is set to 0x0 or a non-code address when we try to call a method on
// it.
address appCode = getAppBase(_appId);
// If initialize payload is provided, it will be executed
if (_initializePayload.length > 0) {
require(isContract(appCode));
// Cannot make delegatecall as a delegateproxy.delegatedFwd as it
// returns ending execution context and halts contract deployment
require(appCode.delegatecall(_initializePayload));
}
}
function getAppBase(bytes32 _appId) internal view returns (address) {
return kernel().getApp(KERNEL_APP_BASES_NAMESPACE, _appId);
}
}
// File: contracts/apps/AppProxyUpgradeable.sol
pragma solidity 0.4.24;
contract AppProxyUpgradeable is AppProxyBase {
/**
* @dev Initialize AppProxyUpgradeable (makes it an upgradeable Aragon app)
* @param _kernel Reference to organization kernel for the app
* @param _appId Identifier for app
* @param _initializePayload Payload for call to be made after setup to initialize
*/
constructor(IKernel _kernel, bytes32 _appId, bytes _initializePayload)
AppProxyBase(_kernel, _appId, _initializePayload)
public // solium-disable-line visibility-first
{
// solium-disable-previous-line no-empty-blocks
}
/**
* @dev ERC897, the address the proxy would delegate calls to
*/
function implementation() public view returns (address) {
return getAppBase(appId());
}
/**
* @dev ERC897, whether it is a forwarding (1) or an upgradeable (2) proxy
*/
function proxyType() public pure returns (uint256 proxyTypeId) {
return UPGRADEABLE;
}
}
// File: contracts/apps/AppProxyPinned.sol
pragma solidity 0.4.24;
contract AppProxyPinned is IsContract, AppProxyBase {
using UnstructuredStorage for bytes32;
// keccak256("aragonOS.appStorage.pinnedCode")
bytes32 internal constant PINNED_CODE_POSITION = 0xdee64df20d65e53d7f51cb6ab6d921a0a6a638a91e942e1d8d02df28e31c038e;
/**
* @dev Initialize AppProxyPinned (makes it an un-upgradeable Aragon app)
* @param _kernel Reference to organization kernel for the app
* @param _appId Identifier for app
* @param _initializePayload Payload for call to be made after setup to initialize
*/
constructor(IKernel _kernel, bytes32 _appId, bytes _initializePayload)
AppProxyBase(_kernel, _appId, _initializePayload)
public // solium-disable-line visibility-first
{
setPinnedCode(getAppBase(_appId));
require(isContract(pinnedCode()));
}
/**
* @dev ERC897, the address the proxy would delegate calls to
*/
function implementation() public view returns (address) {
return pinnedCode();
}
/**
* @dev ERC897, whether it is a forwarding (1) or an upgradeable (2) proxy
*/
function proxyType() public pure returns (uint256 proxyTypeId) {
return FORWARDING;
}
function setPinnedCode(address _pinnedCode) internal {
PINNED_CODE_POSITION.setStorageAddress(_pinnedCode);
}
function pinnedCode() internal view returns (address) {
return PINNED_CODE_POSITION.getStorageAddress();
}
}
// File: contracts/factory/AppProxyFactory.sol
pragma solidity 0.4.24;
contract AppProxyFactory {
event NewAppProxy(address proxy, bool isUpgradeable, bytes32 appId);
/**
* @notice Create a new upgradeable app instance on `_kernel` with identifier `_appId`
* @param _kernel App's Kernel reference
* @param _appId Identifier for app
* @return AppProxyUpgradeable
*/
function newAppProxy(IKernel _kernel, bytes32 _appId) public returns (AppProxyUpgradeable) {
return newAppProxy(_kernel, _appId, new bytes(0));
}
/**
* @notice Create a new upgradeable app instance on `_kernel` with identifier `_appId` and initialization payload `_initializePayload`
* @param _kernel App's Kernel reference
* @param _appId Identifier for app
* @return AppProxyUpgradeable
*/
function newAppProxy(IKernel _kernel, bytes32 _appId, bytes _initializePayload) public returns (AppProxyUpgradeable) {
AppProxyUpgradeable proxy = new AppProxyUpgradeable(_kernel, _appId, _initializePayload);
emit NewAppProxy(address(proxy), true, _appId);
return proxy;
}
/**
* @notice Create a new pinned app instance on `_kernel` with identifier `_appId`
* @param _kernel App's Kernel reference
* @param _appId Identifier for app
* @return AppProxyPinned
*/
function newAppProxyPinned(IKernel _kernel, bytes32 _appId) public returns (AppProxyPinned) {
return newAppProxyPinned(_kernel, _appId, new bytes(0));
}
/**
* @notice Create a new pinned app instance on `_kernel` with identifier `_appId` and initialization payload `_initializePayload`
* @param _kernel App's Kernel reference
* @param _appId Identifier for app
* @param _initializePayload Proxy initialization payload
* @return AppProxyPinned
*/
function newAppProxyPinned(IKernel _kernel, bytes32 _appId, bytes _initializePayload) public returns (AppProxyPinned) {
AppProxyPinned proxy = new AppProxyPinned(_kernel, _appId, _initializePayload);
emit NewAppProxy(address(proxy), false, _appId);
return proxy;
}
}
// File: contracts/kernel/Kernel.sol
pragma solidity 0.4.24;
// solium-disable-next-line max-len
contract Kernel is IKernel, KernelStorage, KernelAppIds, KernelNamespaceConstants, Petrifiable, IsContract, VaultRecoverable, AppProxyFactory, ACLSyntaxSugar {
/* Hardcoded constants to save gas
bytes32 public constant APP_MANAGER_ROLE = keccak256("APP_MANAGER_ROLE");
*/
bytes32 public constant APP_MANAGER_ROLE = 0xb6d92708f3d4817afc106147d969e229ced5c46e65e0a5002a0d391287762bd0;
string private constant ERROR_APP_NOT_CONTRACT = "KERNEL_APP_NOT_CONTRACT";
string private constant ERROR_INVALID_APP_CHANGE = "KERNEL_INVALID_APP_CHANGE";
string private constant ERROR_AUTH_FAILED = "KERNEL_AUTH_FAILED";
/**
* @dev Constructor that allows the deployer to choose if the base instance should be petrified immediately.
* @param _shouldPetrify Immediately petrify this instance so that it can never be initialized
*/
constructor(bool _shouldPetrify) public {
if (_shouldPetrify) {
petrify();
}
}
/**
* @dev Initialize can only be called once. It saves the block number in which it was initialized.
* @notice Initialize this kernel instance along with its ACL and set `_permissionsCreator` as the entity that can create other permissions
* @param _baseAcl Address of base ACL app
* @param _permissionsCreator Entity that will be given permission over createPermission
*/
function initialize(IACL _baseAcl, address _permissionsCreator) public onlyInit {
initialized();
// Set ACL base
_setApp(KERNEL_APP_BASES_NAMESPACE, KERNEL_DEFAULT_ACL_APP_ID, _baseAcl);
// Create ACL instance and attach it as the default ACL app
IACL acl = IACL(newAppProxy(this, KERNEL_DEFAULT_ACL_APP_ID));
acl.initialize(_permissionsCreator);
_setApp(KERNEL_APP_ADDR_NAMESPACE, KERNEL_DEFAULT_ACL_APP_ID, acl);
recoveryVaultAppId = KERNEL_DEFAULT_VAULT_APP_ID;
}
/**
* @dev Create a new instance of an app linked to this kernel
* @notice Create a new upgradeable instance of `_appId` app linked to the Kernel, setting its code to `_appBase`
* @param _appId Identifier for app
* @param _appBase Address of the app's base implementation
* @return AppProxy instance
*/
function newAppInstance(bytes32 _appId, address _appBase)
public
auth(APP_MANAGER_ROLE, arr(KERNEL_APP_BASES_NAMESPACE, _appId))
returns (ERCProxy appProxy)
{
return newAppInstance(_appId, _appBase, new bytes(0), false);
}
/**
* @dev Create a new instance of an app linked to this kernel and set its base
* implementation if it was not already set
* @notice Create a new upgradeable instance of `_appId` app linked to the Kernel, setting its code to `_appBase`. `_setDefault ? 'Also sets it as the default app instance.':''`
* @param _appId Identifier for app
* @param _appBase Address of the app's base implementation
* @param _initializePayload Payload for call made by the proxy during its construction to initialize
* @param _setDefault Whether the app proxy app is the default one.
* Useful when the Kernel needs to know of an instance of a particular app,
* like Vault for escape hatch mechanism.
* @return AppProxy instance
*/
function newAppInstance(bytes32 _appId, address _appBase, bytes _initializePayload, bool _setDefault)
public
auth(APP_MANAGER_ROLE, arr(KERNEL_APP_BASES_NAMESPACE, _appId))
returns (ERCProxy appProxy)
{
_setAppIfNew(KERNEL_APP_BASES_NAMESPACE, _appId, _appBase);
appProxy = newAppProxy(this, _appId, _initializePayload);
// By calling setApp directly and not the internal functions, we make sure the params are checked
// and it will only succeed if sender has permissions to set something to the namespace.
if (_setDefault) {
setApp(KERNEL_APP_ADDR_NAMESPACE, _appId, appProxy);
}
}
/**
* @dev Create a new pinned instance of an app linked to this kernel
* @notice Create a new non-upgradeable instance of `_appId` app linked to the Kernel, setting its code to `_appBase`.
* @param _appId Identifier for app
* @param _appBase Address of the app's base implementation
* @return AppProxy instance
*/
function newPinnedAppInstance(bytes32 _appId, address _appBase)
public
auth(APP_MANAGER_ROLE, arr(KERNEL_APP_BASES_NAMESPACE, _appId))
returns (ERCProxy appProxy)
{
return newPinnedAppInstance(_appId, _appBase, new bytes(0), false);
}
/**
* @dev Create a new pinned instance of an app linked to this kernel and set
* its base implementation if it was not already set
* @notice Create a new non-upgradeable instance of `_appId` app linked to the Kernel, setting its code to `_appBase`. `_setDefault ? 'Also sets it as the default app instance.':''`
* @param _appId Identifier for app
* @param _appBase Address of the app's base implementation
* @param _initializePayload Payload for call made by the proxy during its construction to initialize
* @param _setDefault Whether the app proxy app is the default one.
* Useful when the Kernel needs to know of an instance of a particular app,
* like Vault for escape hatch mechanism.
* @return AppProxy instance
*/
function newPinnedAppInstance(bytes32 _appId, address _appBase, bytes _initializePayload, bool _setDefault)
public
auth(APP_MANAGER_ROLE, arr(KERNEL_APP_BASES_NAMESPACE, _appId))
returns (ERCProxy appProxy)
{
_setAppIfNew(KERNEL_APP_BASES_NAMESPACE, _appId, _appBase);
appProxy = newAppProxyPinned(this, _appId, _initializePayload);
// By calling setApp directly and not the internal functions, we make sure the params are checked
// and it will only succeed if sender has permissions to set something to the namespace.
if (_setDefault) {
setApp(KERNEL_APP_ADDR_NAMESPACE, _appId, appProxy);
}
}
/**
* @dev Set the resolving address of an app instance or base implementation
* @notice Set the resolving address of `_appId` in namespace `_namespace` to `_app`
* @param _namespace App namespace to use
* @param _appId Identifier for app
* @param _app Address of the app instance or base implementation
* @return ID of app
*/
function setApp(bytes32 _namespace, bytes32 _appId, address _app)
public
auth(APP_MANAGER_ROLE, arr(_namespace, _appId))
{
_setApp(_namespace, _appId, _app);
}
/**
* @dev Set the default vault id for the escape hatch mechanism
* @param _recoveryVaultAppId Identifier of the recovery vault app
*/
function setRecoveryVaultAppId(bytes32 _recoveryVaultAppId)
public
auth(APP_MANAGER_ROLE, arr(KERNEL_APP_ADDR_NAMESPACE, _recoveryVaultAppId))
{
recoveryVaultAppId = _recoveryVaultAppId;
}
// External access to default app id and namespace constants to mimic default getters for constants
/* solium-disable function-order, mixedcase */
function CORE_NAMESPACE() external pure returns (bytes32) { return KERNEL_CORE_NAMESPACE; }
function APP_BASES_NAMESPACE() external pure returns (bytes32) { return KERNEL_APP_BASES_NAMESPACE; }
function APP_ADDR_NAMESPACE() external pure returns (bytes32) { return KERNEL_APP_ADDR_NAMESPACE; }
function KERNEL_APP_ID() external pure returns (bytes32) { return KERNEL_CORE_APP_ID; }
function DEFAULT_ACL_APP_ID() external pure returns (bytes32) { return KERNEL_DEFAULT_ACL_APP_ID; }
/* solium-enable function-order, mixedcase */
/**
* @dev Get the address of an app instance or base implementation
* @param _namespace App namespace to use
* @param _appId Identifier for app
* @return Address of the app
*/
function getApp(bytes32 _namespace, bytes32 _appId) public view returns (address) {
return apps[_namespace][_appId];
}
/**
* @dev Get the address of the recovery Vault instance (to recover funds)
* @return Address of the Vault
*/
function getRecoveryVault() public view returns (address) {
return apps[KERNEL_APP_ADDR_NAMESPACE][recoveryVaultAppId];
}
/**
* @dev Get the installed ACL app
* @return ACL app
*/
function acl() public view returns (IACL) {
return IACL(getApp(KERNEL_APP_ADDR_NAMESPACE, KERNEL_DEFAULT_ACL_APP_ID));
}
/**
* @dev Function called by apps to check ACL on kernel or to check permission status
* @param _who Sender of the original call
* @param _where Address of the app
* @param _what Identifier for a group of actions in app
* @param _how Extra data for ACL auth
* @return Boolean indicating whether the ACL allows the role or not.
* Always returns false if the kernel hasn't been initialized yet.
*/
function hasPermission(address _who, address _where, bytes32 _what, bytes _how) public view returns (bool) {
IACL defaultAcl = acl();
return address(defaultAcl) != address(0) && // Poor man's initialization check (saves gas)
defaultAcl.hasPermission(_who, _where, _what, _how);
}
function _setApp(bytes32 _namespace, bytes32 _appId, address _app) internal {
require(isContract(_app), ERROR_APP_NOT_CONTRACT);
apps[_namespace][_appId] = _app;
emit SetApp(_namespace, _appId, _app);
}
function _setAppIfNew(bytes32 _namespace, bytes32 _appId, address _app) internal {
address app = getApp(_namespace, _appId);
if (app != address(0)) {
// The only way to set an app is if it passes the isContract check, so no need to check it again
require(app == _app, ERROR_INVALID_APP_CHANGE);
} else {
_setApp(_namespace, _appId, _app);
}
}
modifier auth(bytes32 _role, uint256[] memory _params) {
require(
hasPermission(msg.sender, address(this), _role, ConversionHelpers.dangerouslyCastUintArrayToBytes(_params)),
ERROR_AUTH_FAILED
);
_;
}
}
// File: contracts/kernel/KernelProxy.sol
pragma solidity 0.4.24;
contract KernelProxy is IKernelEvents, KernelStorage, KernelAppIds, KernelNamespaceConstants, IsContract, DepositableDelegateProxy {
/**
* @dev KernelProxy is a proxy contract to a kernel implementation. The implementation
* can update the reference, which effectively upgrades the contract
* @param _kernelImpl Address of the contract used as implementation for kernel
*/
constructor(IKernel _kernelImpl) public {
require(isContract(address(_kernelImpl)));
apps[KERNEL_CORE_NAMESPACE][KERNEL_CORE_APP_ID] = _kernelImpl;
// Note that emitting this event is important for verifying that a KernelProxy instance
// was never upgraded to a malicious Kernel logic contract over its lifespan.
// This starts the "chain of trust", that can be followed through later SetApp() events
// emitted during kernel upgrades.
emit SetApp(KERNEL_CORE_NAMESPACE, KERNEL_CORE_APP_ID, _kernelImpl);
}
/**
* @dev ERC897, whether it is a forwarding (1) or an upgradeable (2) proxy
*/
function proxyType() public pure returns (uint256 proxyTypeId) {
return UPGRADEABLE;
}
/**
* @dev ERC897, the address the proxy would delegate calls to
*/
function implementation() public view returns (address) {
return apps[KERNEL_CORE_NAMESPACE][KERNEL_CORE_APP_ID];
}
}
// File: contracts/common/Autopetrified.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
contract Autopetrified is Petrifiable {
constructor() public {
// Immediately petrify base (non-proxy) instances of inherited contracts on deploy.
// This renders them uninitializable (and unusable without a proxy).
petrify();
}
}
// File: contracts/common/ReentrancyGuard.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
contract ReentrancyGuard {
using UnstructuredStorage for bytes32;
/* Hardcoded constants to save gas
bytes32 internal constant REENTRANCY_MUTEX_POSITION = keccak256("aragonOS.reentrancyGuard.mutex");
*/
bytes32 private constant REENTRANCY_MUTEX_POSITION = 0xe855346402235fdd185c890e68d2c4ecad599b88587635ee285bce2fda58dacb;
string private constant ERROR_REENTRANT = "REENTRANCY_REENTRANT_CALL";
modifier nonReentrant() {
// Ensure mutex is unlocked
require(!REENTRANCY_MUTEX_POSITION.getStorageBool(), ERROR_REENTRANT);
// Lock mutex before function call
REENTRANCY_MUTEX_POSITION.setStorageBool(true);
// Perform function call
_;
// Unlock mutex after function call
REENTRANCY_MUTEX_POSITION.setStorageBool(false);
}
}
// File: contracts/evmscript/IEVMScriptExecutor.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
interface IEVMScriptExecutor {
function execScript(bytes script, bytes input, address[] blacklist) external returns (bytes);
function executorType() external pure returns (bytes32);
}
// File: contracts/evmscript/IEVMScriptRegistry.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
contract EVMScriptRegistryConstants {
/* Hardcoded constants to save gas
bytes32 internal constant EVMSCRIPT_REGISTRY_APP_ID = apmNamehash("evmreg");
*/
bytes32 internal constant EVMSCRIPT_REGISTRY_APP_ID = 0xddbcfd564f642ab5627cf68b9b7d374fb4f8a36e941a75d89c87998cef03bd61;
}
interface IEVMScriptRegistry {
function addScriptExecutor(IEVMScriptExecutor executor) external returns (uint id);
function disableScriptExecutor(uint256 executorId) external;
// TODO: this should be external
// See https://github.com/ethereum/solidity/issues/4832
function getScriptExecutor(bytes script) public view returns (IEVMScriptExecutor);
}
// File: contracts/evmscript/EVMScriptRunner.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
contract EVMScriptRunner is AppStorage, Initializable, EVMScriptRegistryConstants, KernelNamespaceConstants {
string private constant ERROR_EXECUTOR_UNAVAILABLE = "EVMRUN_EXECUTOR_UNAVAILABLE";
string private constant ERROR_PROTECTED_STATE_MODIFIED = "EVMRUN_PROTECTED_STATE_MODIFIED";
/* This is manually crafted in assembly
string private constant ERROR_EXECUTOR_INVALID_RETURN = "EVMRUN_EXECUTOR_INVALID_RETURN";
*/
event ScriptResult(address indexed executor, bytes script, bytes input, bytes returnData);
function getEVMScriptExecutor(bytes _script) public view returns (IEVMScriptExecutor) {
return IEVMScriptExecutor(getEVMScriptRegistry().getScriptExecutor(_script));
}
function getEVMScriptRegistry() public view returns (IEVMScriptRegistry) {
address registryAddr = kernel().getApp(KERNEL_APP_ADDR_NAMESPACE, EVMSCRIPT_REGISTRY_APP_ID);
return IEVMScriptRegistry(registryAddr);
}
function runScript(bytes _script, bytes _input, address[] _blacklist)
internal
isInitialized
protectState
returns (bytes)
{
IEVMScriptExecutor executor = getEVMScriptExecutor(_script);
require(address(executor) != address(0), ERROR_EXECUTOR_UNAVAILABLE);
bytes4 sig = executor.execScript.selector;
bytes memory data = abi.encodeWithSelector(sig, _script, _input, _blacklist);
bytes memory output;
assembly {
let success := delegatecall(
gas, // forward all gas
executor, // address
add(data, 0x20), // calldata start
mload(data), // calldata length
0, // don't write output (we'll handle this ourselves)
0 // don't write output
)
output := mload(0x40) // free mem ptr get
switch success
case 0 {
// If the call errored, forward its full error data
returndatacopy(output, 0, returndatasize)
revert(output, returndatasize)
}
default {
switch gt(returndatasize, 0x3f)
case 0 {
// Need at least 0x40 bytes returned for properly ABI-encoded bytes values,
// revert with "EVMRUN_EXECUTOR_INVALID_RETURN"
// See remix: doing a `revert("EVMRUN_EXECUTOR_INVALID_RETURN")` always results in
// this memory layout
mstore(output, 0x08c379a000000000000000000000000000000000000000000000000000000000) // error identifier
mstore(add(output, 0x04), 0x0000000000000000000000000000000000000000000000000000000000000020) // starting offset
mstore(add(output, 0x24), 0x000000000000000000000000000000000000000000000000000000000000001e) // reason length
mstore(add(output, 0x44), 0x45564d52554e5f4558454355544f525f494e56414c49445f52455455524e0000) // reason
revert(output, 100) // 100 = 4 + 3 * 32 (error identifier + 3 words for the ABI encoded error)
}
default {
// Copy result
//
// Needs to perform an ABI decode for the expected `bytes` return type of
// `executor.execScript()` as solidity will automatically ABI encode the returned bytes as:
// [ position of the first dynamic length return value = 0x20 (32 bytes) ]
// [ output length (32 bytes) ]
// [ output content (N bytes) ]
//
// Perform the ABI decode by ignoring the first 32 bytes of the return data
let copysize := sub(returndatasize, 0x20)
returndatacopy(output, 0x20, copysize)
mstore(0x40, add(output, copysize)) // free mem ptr set
}
}
}
emit ScriptResult(address(executor), _script, _input, output);
return output;
}
modifier protectState {
address preKernel = address(kernel());
bytes32 preAppId = appId();
_; // exec
require(address(kernel()) == preKernel, ERROR_PROTECTED_STATE_MODIFIED);
require(appId() == preAppId, ERROR_PROTECTED_STATE_MODIFIED);
}
}
// File: contracts/apps/AragonApp.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
// Contracts inheriting from AragonApp are, by default, immediately petrified upon deployment so
// that they can never be initialized.
// Unless overriden, this behaviour enforces those contracts to be usable only behind an AppProxy.
// ReentrancyGuard, EVMScriptRunner, and ACLSyntaxSugar are not directly used by this contract, but
// are included so that they are automatically usable by subclassing contracts
contract AragonApp is AppStorage, Autopetrified, VaultRecoverable, ReentrancyGuard, EVMScriptRunner, ACLSyntaxSugar {
string private constant ERROR_AUTH_FAILED = "APP_AUTH_FAILED";
modifier auth(bytes32 _role) {
require(canPerform(msg.sender, _role, new uint256[](0)), ERROR_AUTH_FAILED);
_;
}
modifier authP(bytes32 _role, uint256[] _params) {
require(canPerform(msg.sender, _role, _params), ERROR_AUTH_FAILED);
_;
}
/**
* @dev Check whether an action can be performed by a sender for a particular role on this app
* @param _sender Sender of the call
* @param _role Role on this app
* @param _params Permission params for the role
* @return Boolean indicating whether the sender has the permissions to perform the action.
* Always returns false if the app hasn't been initialized yet.
*/
function canPerform(address _sender, bytes32 _role, uint256[] _params) public view returns (bool) {
if (!hasInitialized()) {
return false;
}
IKernel linkedKernel = kernel();
if (address(linkedKernel) == address(0)) {
return false;
}
return linkedKernel.hasPermission(
_sender,
address(this),
_role,
ConversionHelpers.dangerouslyCastUintArrayToBytes(_params)
);
}
/**
* @dev Get the recovery vault for the app
* @return Recovery vault address for the app
*/
function getRecoveryVault() public view returns (address) {
// Funds recovery via a vault is only available when used with a kernel
return kernel().getRecoveryVault(); // if kernel is not set, it will revert
}
}
// File: contracts/acl/IACLOracle.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
interface IACLOracle {
function canPerform(address who, address where, bytes32 what, uint256[] how) external view returns (bool);
}
// File: contracts/acl/ACL.sol
pragma solidity 0.4.24;
/* solium-disable function-order */
// Allow public initialize() to be first
contract ACL is IACL, TimeHelpers, AragonApp, ACLHelpers {
/* Hardcoded constants to save gas
bytes32 public constant CREATE_PERMISSIONS_ROLE = keccak256("CREATE_PERMISSIONS_ROLE");
*/
bytes32 public constant CREATE_PERMISSIONS_ROLE = 0x0b719b33c83b8e5d300c521cb8b54ae9bd933996a14bef8c2f4e0285d2d2400a;
enum Op { NONE, EQ, NEQ, GT, LT, GTE, LTE, RET, NOT, AND, OR, XOR, IF_ELSE } // op types
struct Param {
uint8 id;
uint8 op;
uint240 value; // even though value is an uint240 it can store addresses
// in the case of 32 byte hashes losing 2 bytes precision isn't a huge deal
// op and id take less than 1 byte each so it can be kept in 1 sstore
}
uint8 internal constant BLOCK_NUMBER_PARAM_ID = 200;
uint8 internal constant TIMESTAMP_PARAM_ID = 201;
// 202 is unused
uint8 internal constant ORACLE_PARAM_ID = 203;
uint8 internal constant LOGIC_OP_PARAM_ID = 204;
uint8 internal constant PARAM_VALUE_PARAM_ID = 205;
// TODO: Add execution times param type?
/* Hardcoded constant to save gas
bytes32 public constant EMPTY_PARAM_HASH = keccak256(uint256(0));
*/
bytes32 public constant EMPTY_PARAM_HASH = 0x290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e563;
bytes32 public constant NO_PERMISSION = bytes32(0);
address public constant ANY_ENTITY = address(-1);
address public constant BURN_ENTITY = address(1); // address(0) is already used as "no permission manager"
string private constant ERROR_AUTH_INIT_KERNEL = "ACL_AUTH_INIT_KERNEL";
string private constant ERROR_AUTH_NO_MANAGER = "ACL_AUTH_NO_MANAGER";
string private constant ERROR_EXISTENT_MANAGER = "ACL_EXISTENT_MANAGER";
// Whether someone has a permission
mapping (bytes32 => bytes32) internal permissions; // permissions hash => params hash
mapping (bytes32 => Param[]) internal permissionParams; // params hash => params
// Who is the manager of a permission
mapping (bytes32 => address) internal permissionManager;
event SetPermission(address indexed entity, address indexed app, bytes32 indexed role, bool allowed);
event SetPermissionParams(address indexed entity, address indexed app, bytes32 indexed role, bytes32 paramsHash);
event ChangePermissionManager(address indexed app, bytes32 indexed role, address indexed manager);
modifier onlyPermissionManager(address _app, bytes32 _role) {
require(msg.sender == getPermissionManager(_app, _role), ERROR_AUTH_NO_MANAGER);
_;
}
modifier noPermissionManager(address _app, bytes32 _role) {
// only allow permission creation (or re-creation) when there is no manager
require(getPermissionManager(_app, _role) == address(0), ERROR_EXISTENT_MANAGER);
_;
}
/**
* @dev Initialize can only be called once. It saves the block number in which it was initialized.
* @notice Initialize an ACL instance and set `_permissionsCreator` as the entity that can create other permissions
* @param _permissionsCreator Entity that will be given permission over createPermission
*/
function initialize(address _permissionsCreator) public onlyInit {
initialized();
require(msg.sender == address(kernel()), ERROR_AUTH_INIT_KERNEL);
_createPermission(_permissionsCreator, this, CREATE_PERMISSIONS_ROLE, _permissionsCreator);
}
/**
* @dev Creates a permission that wasn't previously set and managed.
* If a created permission is removed it is possible to reset it with createPermission.
* This is the **ONLY** way to create permissions and set managers to permissions that don't
* have a manager.
* In terms of the ACL being initialized, this function implicitly protects all the other
* state-changing external functions, as they all require the sender to be a manager.
* @notice Create a new permission granting `_entity` the ability to perform actions requiring `_role` on `_app`, setting `_manager` as the permission's manager
* @param _entity Address of the whitelisted entity that will be able to perform the role
* @param _app Address of the app in which the role will be allowed (requires app to depend on kernel for ACL)
* @param _role Identifier for the group of actions in app given access to perform
* @param _manager Address of the entity that will be able to grant and revoke the permission further.
*/
function createPermission(address _entity, address _app, bytes32 _role, address _manager)
external
auth(CREATE_PERMISSIONS_ROLE)
noPermissionManager(_app, _role)
{
_createPermission(_entity, _app, _role, _manager);
}
/**
* @dev Grants permission if allowed. This requires `msg.sender` to be the permission manager
* @notice Grant `_entity` the ability to perform actions requiring `_role` on `_app`
* @param _entity Address of the whitelisted entity that will be able to perform the role
* @param _app Address of the app in which the role will be allowed (requires app to depend on kernel for ACL)
* @param _role Identifier for the group of actions in app given access to perform
*/
function grantPermission(address _entity, address _app, bytes32 _role)
external
{
grantPermissionP(_entity, _app, _role, new uint256[](0));
}
/**
* @dev Grants a permission with parameters if allowed. This requires `msg.sender` to be the permission manager
* @notice Grant `_entity` the ability to perform actions requiring `_role` on `_app`
* @param _entity Address of the whitelisted entity that will be able to perform the role
* @param _app Address of the app in which the role will be allowed (requires app to depend on kernel for ACL)
* @param _role Identifier for the group of actions in app given access to perform
* @param _params Permission parameters
*/
function grantPermissionP(address _entity, address _app, bytes32 _role, uint256[] _params)
public
onlyPermissionManager(_app, _role)
{
bytes32 paramsHash = _params.length > 0 ? _saveParams(_params) : EMPTY_PARAM_HASH;
_setPermission(_entity, _app, _role, paramsHash);
}
/**
* @dev Revokes permission if allowed. This requires `msg.sender` to be the the permission manager
* @notice Revoke from `_entity` the ability to perform actions requiring `_role` on `_app`
* @param _entity Address of the whitelisted entity to revoke access from
* @param _app Address of the app in which the role will be revoked
* @param _role Identifier for the group of actions in app being revoked
*/
function revokePermission(address _entity, address _app, bytes32 _role)
external
onlyPermissionManager(_app, _role)
{
_setPermission(_entity, _app, _role, NO_PERMISSION);
}
/**
* @notice Set `_newManager` as the manager of `_role` in `_app`
* @param _newManager Address for the new manager
* @param _app Address of the app in which the permission management is being transferred
* @param _role Identifier for the group of actions being transferred
*/
function setPermissionManager(address _newManager, address _app, bytes32 _role)
external
onlyPermissionManager(_app, _role)
{
_setPermissionManager(_newManager, _app, _role);
}
/**
* @notice Remove the manager of `_role` in `_app`
* @param _app Address of the app in which the permission is being unmanaged
* @param _role Identifier for the group of actions being unmanaged
*/
function removePermissionManager(address _app, bytes32 _role)
external
onlyPermissionManager(_app, _role)
{
_setPermissionManager(address(0), _app, _role);
}
/**
* @notice Burn non-existent `_role` in `_app`, so no modification can be made to it (grant, revoke, permission manager)
* @param _app Address of the app in which the permission is being burned
* @param _role Identifier for the group of actions being burned
*/
function createBurnedPermission(address _app, bytes32 _role)
external
auth(CREATE_PERMISSIONS_ROLE)
noPermissionManager(_app, _role)
{
_setPermissionManager(BURN_ENTITY, _app, _role);
}
/**
* @notice Burn `_role` in `_app`, so no modification can be made to it (grant, revoke, permission manager)
* @param _app Address of the app in which the permission is being burned
* @param _role Identifier for the group of actions being burned
*/
function burnPermissionManager(address _app, bytes32 _role)
external
onlyPermissionManager(_app, _role)
{
_setPermissionManager(BURN_ENTITY, _app, _role);
}
/**
* @notice Get parameters for permission array length
* @param _entity Address of the whitelisted entity that will be able to perform the role
* @param _app Address of the app
* @param _role Identifier for a group of actions in app
* @return Length of the array
*/
function getPermissionParamsLength(address _entity, address _app, bytes32 _role) external view returns (uint) {
return permissionParams[permissions[permissionHash(_entity, _app, _role)]].length;
}
/**
* @notice Get parameter for permission
* @param _entity Address of the whitelisted entity that will be able to perform the role
* @param _app Address of the app
* @param _role Identifier for a group of actions in app
* @param _index Index of parameter in the array
* @return Parameter (id, op, value)
*/
function getPermissionParam(address _entity, address _app, bytes32 _role, uint _index)
external
view
returns (uint8, uint8, uint240)
{
Param storage param = permissionParams[permissions[permissionHash(_entity, _app, _role)]][_index];
return (param.id, param.op, param.value);
}
/**
* @dev Get manager for permission
* @param _app Address of the app
* @param _role Identifier for a group of actions in app
* @return address of the manager for the permission
*/
function getPermissionManager(address _app, bytes32 _role) public view returns (address) {
return permissionManager[roleHash(_app, _role)];
}
/**
* @dev Function called by apps to check ACL on kernel or to check permission statu
* @param _who Sender of the original call
* @param _where Address of the app
* @param _where Identifier for a group of actions in app
* @param _how Permission parameters
* @return boolean indicating whether the ACL allows the role or not
*/
function hasPermission(address _who, address _where, bytes32 _what, bytes memory _how) public view returns (bool) {
return hasPermission(_who, _where, _what, ConversionHelpers.dangerouslyCastBytesToUintArray(_how));
}
function hasPermission(address _who, address _where, bytes32 _what, uint256[] memory _how) public view returns (bool) {
bytes32 whoParams = permissions[permissionHash(_who, _where, _what)];
if (whoParams != NO_PERMISSION && evalParams(whoParams, _who, _where, _what, _how)) {
return true;
}
bytes32 anyParams = permissions[permissionHash(ANY_ENTITY, _where, _what)];
if (anyParams != NO_PERMISSION && evalParams(anyParams, ANY_ENTITY, _where, _what, _how)) {
return true;
}
return false;
}
function hasPermission(address _who, address _where, bytes32 _what) public view returns (bool) {
uint256[] memory empty = new uint256[](0);
return hasPermission(_who, _where, _what, empty);
}
function evalParams(
bytes32 _paramsHash,
address _who,
address _where,
bytes32 _what,
uint256[] _how
) public view returns (bool)
{
if (_paramsHash == EMPTY_PARAM_HASH) {
return true;
}
return _evalParam(_paramsHash, 0, _who, _where, _what, _how);
}
/**
* @dev Internal createPermission for access inside the kernel (on instantiation)
*/
function _createPermission(address _entity, address _app, bytes32 _role, address _manager) internal {
_setPermission(_entity, _app, _role, EMPTY_PARAM_HASH);
_setPermissionManager(_manager, _app, _role);
}
/**
* @dev Internal function called to actually save the permission
*/
function _setPermission(address _entity, address _app, bytes32 _role, bytes32 _paramsHash) internal {
permissions[permissionHash(_entity, _app, _role)] = _paramsHash;
bool entityHasPermission = _paramsHash != NO_PERMISSION;
bool permissionHasParams = entityHasPermission && _paramsHash != EMPTY_PARAM_HASH;
emit SetPermission(_entity, _app, _role, entityHasPermission);
if (permissionHasParams) {
emit SetPermissionParams(_entity, _app, _role, _paramsHash);
}
}
function _saveParams(uint256[] _encodedParams) internal returns (bytes32) {
bytes32 paramHash = keccak256(abi.encodePacked(_encodedParams));
Param[] storage params = permissionParams[paramHash];
if (params.length == 0) { // params not saved before
for (uint256 i = 0; i < _encodedParams.length; i++) {
uint256 encodedParam = _encodedParams[i];
Param memory param = Param(decodeParamId(encodedParam), decodeParamOp(encodedParam), uint240(encodedParam));
params.push(param);
}
}
return paramHash;
}
function _evalParam(
bytes32 _paramsHash,
uint32 _paramId,
address _who,
address _where,
bytes32 _what,
uint256[] _how
) internal view returns (bool)
{
if (_paramId >= permissionParams[_paramsHash].length) {
return false; // out of bounds
}
Param memory param = permissionParams[_paramsHash][_paramId];
if (param.id == LOGIC_OP_PARAM_ID) {
return _evalLogic(param, _paramsHash, _who, _where, _what, _how);
}
uint256 value;
uint256 comparedTo = uint256(param.value);
// get value
if (param.id == ORACLE_PARAM_ID) {
value = checkOracle(IACLOracle(param.value), _who, _where, _what, _how) ? 1 : 0;
comparedTo = 1;
} else if (param.id == BLOCK_NUMBER_PARAM_ID) {
value = getBlockNumber();
} else if (param.id == TIMESTAMP_PARAM_ID) {
value = getTimestamp();
} else if (param.id == PARAM_VALUE_PARAM_ID) {
value = uint256(param.value);
} else {
if (param.id >= _how.length) {
return false;
}
value = uint256(uint240(_how[param.id])); // force lost precision
}
if (Op(param.op) == Op.RET) {
return uint256(value) > 0;
}
return compare(value, Op(param.op), comparedTo);
}
function _evalLogic(Param _param, bytes32 _paramsHash, address _who, address _where, bytes32 _what, uint256[] _how)
internal
view
returns (bool)
{
if (Op(_param.op) == Op.IF_ELSE) {
uint32 conditionParam;
uint32 successParam;
uint32 failureParam;
(conditionParam, successParam, failureParam) = decodeParamsList(uint256(_param.value));
bool result = _evalParam(_paramsHash, conditionParam, _who, _where, _what, _how);
return _evalParam(_paramsHash, result ? successParam : failureParam, _who, _where, _what, _how);
}
uint32 param1;
uint32 param2;
(param1, param2,) = decodeParamsList(uint256(_param.value));
bool r1 = _evalParam(_paramsHash, param1, _who, _where, _what, _how);
if (Op(_param.op) == Op.NOT) {
return !r1;
}
if (r1 && Op(_param.op) == Op.OR) {
return true;
}
if (!r1 && Op(_param.op) == Op.AND) {
return false;
}
bool r2 = _evalParam(_paramsHash, param2, _who, _where, _what, _how);
if (Op(_param.op) == Op.XOR) {
return r1 != r2;
}
return r2; // both or and and depend on result of r2 after checks
}
function compare(uint256 _a, Op _op, uint256 _b) internal pure returns (bool) {
if (_op == Op.EQ) return _a == _b; // solium-disable-line lbrace
if (_op == Op.NEQ) return _a != _b; // solium-disable-line lbrace
if (_op == Op.GT) return _a > _b; // solium-disable-line lbrace
if (_op == Op.LT) return _a < _b; // solium-disable-line lbrace
if (_op == Op.GTE) return _a >= _b; // solium-disable-line lbrace
if (_op == Op.LTE) return _a <= _b; // solium-disable-line lbrace
return false;
}
function checkOracle(IACLOracle _oracleAddr, address _who, address _where, bytes32 _what, uint256[] _how) internal view returns (bool) {
bytes4 sig = _oracleAddr.canPerform.selector;
// a raw call is required so we can return false if the call reverts, rather than reverting
bytes memory checkCalldata = abi.encodeWithSelector(sig, _who, _where, _what, _how);
bool ok;
assembly {
// send all available gas; if the oracle eats up all the gas, we will eventually revert
// note that we are currently guaranteed to still have some gas after the call from
// EIP-150's 63/64 gas forward rule
ok := staticcall(gas, _oracleAddr, add(checkCalldata, 0x20), mload(checkCalldata), 0, 0)
}
if (!ok) {
return false;
}
uint256 size;
assembly { size := returndatasize }
if (size != 32) {
return false;
}
bool result;
assembly {
let ptr := mload(0x40) // get next free memory ptr
returndatacopy(ptr, 0, size) // copy return from above `staticcall`
result := mload(ptr) // read data at ptr and set it to result
mstore(ptr, 0) // set pointer memory to 0 so it still is the next free ptr
}
return result;
}
/**
* @dev Internal function that sets management
*/
function _setPermissionManager(address _newManager, address _app, bytes32 _role) internal {
permissionManager[roleHash(_app, _role)] = _newManager;
emit ChangePermissionManager(_app, _role, _newManager);
}
function roleHash(address _where, bytes32 _what) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("ROLE", _where, _what));
}
function permissionHash(address _who, address _where, bytes32 _what) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("PERMISSION", _who, _where, _what));
}
}
// File: contracts/evmscript/ScriptHelpers.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
library ScriptHelpers {
function getSpecId(bytes _script) internal pure returns (uint32) {
return uint32At(_script, 0);
}
function uint256At(bytes _data, uint256 _location) internal pure returns (uint256 result) {
assembly {
result := mload(add(_data, add(0x20, _location)))
}
}
function addressAt(bytes _data, uint256 _location) internal pure returns (address result) {
uint256 word = uint256At(_data, _location);
assembly {
result := div(and(word, 0xffffffffffffffffffffffffffffffffffffffff000000000000000000000000),
0x1000000000000000000000000)
}
}
function uint32At(bytes _data, uint256 _location) internal pure returns (uint32 result) {
uint256 word = uint256At(_data, _location);
assembly {
result := div(and(word, 0xffffffff00000000000000000000000000000000000000000000000000000000),
0x100000000000000000000000000000000000000000000000000000000)
}
}
function locationOf(bytes _data, uint256 _location) internal pure returns (uint256 result) {
assembly {
result := add(_data, add(0x20, _location))
}
}
function toBytes(bytes4 _sig) internal pure returns (bytes) {
bytes memory payload = new bytes(4);
assembly { mstore(add(payload, 0x20), _sig) }
return payload;
}
}
// File: contracts/evmscript/EVMScriptRegistry.sol
pragma solidity 0.4.24;
/* solium-disable function-order */
// Allow public initialize() to be first
contract EVMScriptRegistry is IEVMScriptRegistry, EVMScriptRegistryConstants, AragonApp {
using ScriptHelpers for bytes;
/* Hardcoded constants to save gas
bytes32 public constant REGISTRY_ADD_EXECUTOR_ROLE = keccak256("REGISTRY_ADD_EXECUTOR_ROLE");
bytes32 public constant REGISTRY_MANAGER_ROLE = keccak256("REGISTRY_MANAGER_ROLE");
*/
bytes32 public constant REGISTRY_ADD_EXECUTOR_ROLE = 0xc4e90f38eea8c4212a009ca7b8947943ba4d4a58d19b683417f65291d1cd9ed2;
// WARN: Manager can censor all votes and the like happening in an org
bytes32 public constant REGISTRY_MANAGER_ROLE = 0xf7a450ef335e1892cb42c8ca72e7242359d7711924b75db5717410da3f614aa3;
uint256 internal constant SCRIPT_START_LOCATION = 4;
string private constant ERROR_INEXISTENT_EXECUTOR = "EVMREG_INEXISTENT_EXECUTOR";
string private constant ERROR_EXECUTOR_ENABLED = "EVMREG_EXECUTOR_ENABLED";
string private constant ERROR_EXECUTOR_DISABLED = "EVMREG_EXECUTOR_DISABLED";
string private constant ERROR_SCRIPT_LENGTH_TOO_SHORT = "EVMREG_SCRIPT_LENGTH_TOO_SHORT";
struct ExecutorEntry {
IEVMScriptExecutor executor;
bool enabled;
}
uint256 private executorsNextIndex;
mapping (uint256 => ExecutorEntry) public executors;
event EnableExecutor(uint256 indexed executorId, address indexed executorAddress);
event DisableExecutor(uint256 indexed executorId, address indexed executorAddress);
modifier executorExists(uint256 _executorId) {
require(_executorId > 0 && _executorId < executorsNextIndex, ERROR_INEXISTENT_EXECUTOR);
_;
}
/**
* @notice Initialize the registry
*/
function initialize() public onlyInit {
initialized();
// Create empty record to begin executor IDs at 1
executorsNextIndex = 1;
}
/**
* @notice Add a new script executor with address `_executor` to the registry
* @param _executor Address of the IEVMScriptExecutor that will be added to the registry
* @return id Identifier of the executor in the registry
*/
function addScriptExecutor(IEVMScriptExecutor _executor) external auth(REGISTRY_ADD_EXECUTOR_ROLE) returns (uint256 id) {
uint256 executorId = executorsNextIndex++;
executors[executorId] = ExecutorEntry(_executor, true);
emit EnableExecutor(executorId, _executor);
return executorId;
}
/**
* @notice Disable script executor with ID `_executorId`
* @param _executorId Identifier of the executor in the registry
*/
function disableScriptExecutor(uint256 _executorId)
external
authP(REGISTRY_MANAGER_ROLE, arr(_executorId))
{
// Note that we don't need to check for an executor's existence in this case, as only
// existing executors can be enabled
ExecutorEntry storage executorEntry = executors[_executorId];
require(executorEntry.enabled, ERROR_EXECUTOR_DISABLED);
executorEntry.enabled = false;
emit DisableExecutor(_executorId, executorEntry.executor);
}
/**
* @notice Enable script executor with ID `_executorId`
* @param _executorId Identifier of the executor in the registry
*/
function enableScriptExecutor(uint256 _executorId)
external
authP(REGISTRY_MANAGER_ROLE, arr(_executorId))
executorExists(_executorId)
{
ExecutorEntry storage executorEntry = executors[_executorId];
require(!executorEntry.enabled, ERROR_EXECUTOR_ENABLED);
executorEntry.enabled = true;
emit EnableExecutor(_executorId, executorEntry.executor);
}
/**
* @dev Get the script executor that can execute a particular script based on its first 4 bytes
* @param _script EVMScript being inspected
*/
function getScriptExecutor(bytes _script) public view returns (IEVMScriptExecutor) {
require(_script.length >= SCRIPT_START_LOCATION, ERROR_SCRIPT_LENGTH_TOO_SHORT);
uint256 id = _script.getSpecId();
// Note that we don't need to check for an executor's existence in this case, as only
// existing executors can be enabled
ExecutorEntry storage entry = executors[id];
return entry.enabled ? entry.executor : IEVMScriptExecutor(0);
}
}
// File: contracts/evmscript/executors/BaseEVMScriptExecutor.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
contract BaseEVMScriptExecutor is IEVMScriptExecutor, Autopetrified {
uint256 internal constant SCRIPT_START_LOCATION = 4;
}
// File: contracts/evmscript/executors/CallsScript.sol
pragma solidity 0.4.24;
// Inspired by https://github.com/reverendus/tx-manager
contract CallsScript is BaseEVMScriptExecutor {
using ScriptHelpers for bytes;
/* Hardcoded constants to save gas
bytes32 internal constant EXECUTOR_TYPE = keccak256("CALLS_SCRIPT");
*/
bytes32 internal constant EXECUTOR_TYPE = 0x2dc858a00f3e417be1394b87c07158e989ec681ce8cc68a9093680ac1a870302;
string private constant ERROR_BLACKLISTED_CALL = "EVMCALLS_BLACKLISTED_CALL";
string private constant ERROR_INVALID_LENGTH = "EVMCALLS_INVALID_LENGTH";
/* This is manually crafted in assembly
string private constant ERROR_CALL_REVERTED = "EVMCALLS_CALL_REVERTED";
*/
event LogScriptCall(address indexed sender, address indexed src, address indexed dst);
/**
* @notice Executes a number of call scripts
* @param _script [ specId (uint32) ] many calls with this structure ->
* [ to (address: 20 bytes) ] [ calldataLength (uint32: 4 bytes) ] [ calldata (calldataLength bytes) ]
* @param _blacklist Addresses the script cannot call to, or will revert.
* @return Always returns empty byte array
*/
function execScript(bytes _script, bytes, address[] _blacklist) external isInitialized returns (bytes) {
uint256 location = SCRIPT_START_LOCATION; // first 32 bits are spec id
while (location < _script.length) {
// Check there's at least address + calldataLength available
require(_script.length - location >= 0x18, ERROR_INVALID_LENGTH);
address contractAddress = _script.addressAt(location);
// Check address being called is not blacklist
for (uint256 i = 0; i < _blacklist.length; i++) {
require(contractAddress != _blacklist[i], ERROR_BLACKLISTED_CALL);
}
// logged before execution to ensure event ordering in receipt
// if failed entire execution is reverted regardless
emit LogScriptCall(msg.sender, address(this), contractAddress);
uint256 calldataLength = uint256(_script.uint32At(location + 0x14));
uint256 startOffset = location + 0x14 + 0x04;
uint256 calldataStart = _script.locationOf(startOffset);
// compute end of script / next location
location = startOffset + calldataLength;
require(location <= _script.length, ERROR_INVALID_LENGTH);
bool success;
assembly {
success := call(
sub(gas, 5000), // forward gas left - 5000
contractAddress, // address
0, // no value
calldataStart, // calldata start
calldataLength, // calldata length
0, // don't write output
0 // don't write output
)
switch success
case 0 {
let ptr := mload(0x40)
switch returndatasize
case 0 {
// No error data was returned, revert with "EVMCALLS_CALL_REVERTED"
// See remix: doing a `revert("EVMCALLS_CALL_REVERTED")` always results in
// this memory layout
mstore(ptr, 0x08c379a000000000000000000000000000000000000000000000000000000000) // error identifier
mstore(add(ptr, 0x04), 0x0000000000000000000000000000000000000000000000000000000000000020) // starting offset
mstore(add(ptr, 0x24), 0x0000000000000000000000000000000000000000000000000000000000000016) // reason length
mstore(add(ptr, 0x44), 0x45564d43414c4c535f43414c4c5f524556455254454400000000000000000000) // reason
revert(ptr, 100) // 100 = 4 + 3 * 32 (error identifier + 3 words for the ABI encoded error)
}
default {
// Forward the full error data
returndatacopy(ptr, 0, returndatasize)
revert(ptr, returndatasize)
}
}
default { }
}
}
// No need to allocate empty bytes for the return as this can only be called via an delegatecall
// (due to the isInitialized modifier)
}
function executorType() external pure returns (bytes32) {
return EXECUTOR_TYPE;
}
}
// File: contracts/factory/EVMScriptRegistryFactory.sol
pragma solidity 0.4.24;
contract EVMScriptRegistryFactory is EVMScriptRegistryConstants {
EVMScriptRegistry public baseReg;
IEVMScriptExecutor public baseCallScript;
/**
* @notice Create a new EVMScriptRegistryFactory.
*/
constructor() public {
baseReg = new EVMScriptRegistry();
baseCallScript = IEVMScriptExecutor(new CallsScript());
}
/**
* @notice Install a new pinned instance of EVMScriptRegistry on `_dao`.
* @param _dao Kernel
* @return Installed EVMScriptRegistry
*/
function newEVMScriptRegistry(Kernel _dao) public returns (EVMScriptRegistry reg) {
bytes memory initPayload = abi.encodeWithSelector(reg.initialize.selector);
reg = EVMScriptRegistry(_dao.newPinnedAppInstance(EVMSCRIPT_REGISTRY_APP_ID, baseReg, initPayload, true));
ACL acl = ACL(_dao.acl());
acl.createPermission(this, reg, reg.REGISTRY_ADD_EXECUTOR_ROLE(), this);
reg.addScriptExecutor(baseCallScript); // spec 1 = CallsScript
// Clean up the permissions
acl.revokePermission(this, reg, reg.REGISTRY_ADD_EXECUTOR_ROLE());
acl.removePermissionManager(reg, reg.REGISTRY_ADD_EXECUTOR_ROLE());
return reg;
}
}
// File: contracts/factory/DAOFactory.sol
pragma solidity 0.4.24;
contract DAOFactory {
IKernel public baseKernel;
IACL public baseACL;
EVMScriptRegistryFactory public regFactory;
event DeployDAO(address dao);
event DeployEVMScriptRegistry(address reg);
/**
* @notice Create a new DAOFactory, creating DAOs with Kernels proxied to `_baseKernel`, ACLs proxied to `_baseACL`, and new EVMScriptRegistries created from `_regFactory`.
* @param _baseKernel Base Kernel
* @param _baseACL Base ACL
* @param _regFactory EVMScriptRegistry factory
*/
constructor(IKernel _baseKernel, IACL _baseACL, EVMScriptRegistryFactory _regFactory) public {
// No need to init as it cannot be killed by devops199
if (address(_regFactory) != address(0)) {
regFactory = _regFactory;
}
baseKernel = _baseKernel;
baseACL = _baseACL;
}
/**
* @notice Create a new DAO with `_root` set as the initial admin
* @param _root Address that will be granted control to setup DAO permissions
* @return Newly created DAO
*/
function newDAO(address _root) public returns (Kernel) {
Kernel dao = Kernel(new KernelProxy(baseKernel));
if (address(regFactory) == address(0)) {
dao.initialize(baseACL, _root);
} else {
dao.initialize(baseACL, this);
ACL acl = ACL(dao.acl());
bytes32 permRole = acl.CREATE_PERMISSIONS_ROLE();
bytes32 appManagerRole = dao.APP_MANAGER_ROLE();
acl.grantPermission(regFactory, acl, permRole);
acl.createPermission(regFactory, dao, appManagerRole, this);
EVMScriptRegistry reg = regFactory.newEVMScriptRegistry(dao);
emit DeployEVMScriptRegistry(address(reg));
// Clean up permissions
// First, completely reset the APP_MANAGER_ROLE
acl.revokePermission(regFactory, dao, appManagerRole);
acl.removePermissionManager(dao, appManagerRole);
// Then, make root the only holder and manager of CREATE_PERMISSIONS_ROLE
acl.revokePermission(regFactory, acl, permRole);
acl.revokePermission(this, acl, permRole);
acl.grantPermission(_root, acl, permRole);
acl.setPermissionManager(_root, acl, permRole);
}
emit DeployDAO(address(dao));
return dao;
}
}File 30 of 30: TokenManager
// File: @aragon/os/contracts/common/UnstructuredStorage.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
library UnstructuredStorage {
function getStorageBool(bytes32 position) internal view returns (bool data) {
assembly { data := sload(position) }
}
function getStorageAddress(bytes32 position) internal view returns (address data) {
assembly { data := sload(position) }
}
function getStorageBytes32(bytes32 position) internal view returns (bytes32 data) {
assembly { data := sload(position) }
}
function getStorageUint256(bytes32 position) internal view returns (uint256 data) {
assembly { data := sload(position) }
}
function setStorageBool(bytes32 position, bool data) internal {
assembly { sstore(position, data) }
}
function setStorageAddress(bytes32 position, address data) internal {
assembly { sstore(position, data) }
}
function setStorageBytes32(bytes32 position, bytes32 data) internal {
assembly { sstore(position, data) }
}
function setStorageUint256(bytes32 position, uint256 data) internal {
assembly { sstore(position, data) }
}
}
// File: @aragon/os/contracts/acl/IACL.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
interface IACL {
function initialize(address permissionsCreator) external;
// TODO: this should be external
// See https://github.com/ethereum/solidity/issues/4832
function hasPermission(address who, address where, bytes32 what, bytes how) public view returns (bool);
}
// File: @aragon/os/contracts/common/IVaultRecoverable.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
interface IVaultRecoverable {
event RecoverToVault(address indexed vault, address indexed token, uint256 amount);
function transferToVault(address token) external;
function allowRecoverability(address token) external view returns (bool);
function getRecoveryVault() external view returns (address);
}
// File: @aragon/os/contracts/kernel/IKernel.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
interface IKernelEvents {
event SetApp(bytes32 indexed namespace, bytes32 indexed appId, address app);
}
// This should be an interface, but interfaces can't inherit yet :(
contract IKernel is IKernelEvents, IVaultRecoverable {
function acl() public view returns (IACL);
function hasPermission(address who, address where, bytes32 what, bytes how) public view returns (bool);
function setApp(bytes32 namespace, bytes32 appId, address app) public;
function getApp(bytes32 namespace, bytes32 appId) public view returns (address);
}
// File: @aragon/os/contracts/apps/AppStorage.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
contract AppStorage {
using UnstructuredStorage for bytes32;
/* Hardcoded constants to save gas
bytes32 internal constant KERNEL_POSITION = keccak256("aragonOS.appStorage.kernel");
bytes32 internal constant APP_ID_POSITION = keccak256("aragonOS.appStorage.appId");
*/
bytes32 internal constant KERNEL_POSITION = 0x4172f0f7d2289153072b0a6ca36959e0cbe2efc3afe50fc81636caa96338137b;
bytes32 internal constant APP_ID_POSITION = 0xd625496217aa6a3453eecb9c3489dc5a53e6c67b444329ea2b2cbc9ff547639b;
function kernel() public view returns (IKernel) {
return IKernel(KERNEL_POSITION.getStorageAddress());
}
function appId() public view returns (bytes32) {
return APP_ID_POSITION.getStorageBytes32();
}
function setKernel(IKernel _kernel) internal {
KERNEL_POSITION.setStorageAddress(address(_kernel));
}
function setAppId(bytes32 _appId) internal {
APP_ID_POSITION.setStorageBytes32(_appId);
}
}
// File: @aragon/os/contracts/acl/ACLSyntaxSugar.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
contract ACLSyntaxSugar {
function arr() internal pure returns (uint256[]) {
return new uint256[](0);
}
function arr(bytes32 _a) internal pure returns (uint256[] r) {
return arr(uint256(_a));
}
function arr(bytes32 _a, bytes32 _b) internal pure returns (uint256[] r) {
return arr(uint256(_a), uint256(_b));
}
function arr(address _a) internal pure returns (uint256[] r) {
return arr(uint256(_a));
}
function arr(address _a, address _b) internal pure returns (uint256[] r) {
return arr(uint256(_a), uint256(_b));
}
function arr(address _a, uint256 _b, uint256 _c) internal pure returns (uint256[] r) {
return arr(uint256(_a), _b, _c);
}
function arr(address _a, uint256 _b, uint256 _c, uint256 _d) internal pure returns (uint256[] r) {
return arr(uint256(_a), _b, _c, _d);
}
function arr(address _a, uint256 _b) internal pure returns (uint256[] r) {
return arr(uint256(_a), uint256(_b));
}
function arr(address _a, address _b, uint256 _c, uint256 _d, uint256 _e) internal pure returns (uint256[] r) {
return arr(uint256(_a), uint256(_b), _c, _d, _e);
}
function arr(address _a, address _b, address _c) internal pure returns (uint256[] r) {
return arr(uint256(_a), uint256(_b), uint256(_c));
}
function arr(address _a, address _b, uint256 _c) internal pure returns (uint256[] r) {
return arr(uint256(_a), uint256(_b), uint256(_c));
}
function arr(uint256 _a) internal pure returns (uint256[] r) {
r = new uint256[](1);
r[0] = _a;
}
function arr(uint256 _a, uint256 _b) internal pure returns (uint256[] r) {
r = new uint256[](2);
r[0] = _a;
r[1] = _b;
}
function arr(uint256 _a, uint256 _b, uint256 _c) internal pure returns (uint256[] r) {
r = new uint256[](3);
r[0] = _a;
r[1] = _b;
r[2] = _c;
}
function arr(uint256 _a, uint256 _b, uint256 _c, uint256 _d) internal pure returns (uint256[] r) {
r = new uint256[](4);
r[0] = _a;
r[1] = _b;
r[2] = _c;
r[3] = _d;
}
function arr(uint256 _a, uint256 _b, uint256 _c, uint256 _d, uint256 _e) internal pure returns (uint256[] r) {
r = new uint256[](5);
r[0] = _a;
r[1] = _b;
r[2] = _c;
r[3] = _d;
r[4] = _e;
}
}
contract ACLHelpers {
function decodeParamOp(uint256 _x) internal pure returns (uint8 b) {
return uint8(_x >> (8 * 30));
}
function decodeParamId(uint256 _x) internal pure returns (uint8 b) {
return uint8(_x >> (8 * 31));
}
function decodeParamsList(uint256 _x) internal pure returns (uint32 a, uint32 b, uint32 c) {
a = uint32(_x);
b = uint32(_x >> (8 * 4));
c = uint32(_x >> (8 * 8));
}
}
// File: @aragon/os/contracts/common/Uint256Helpers.sol
pragma solidity ^0.4.24;
library Uint256Helpers {
uint256 private constant MAX_UINT64 = uint64(-1);
string private constant ERROR_NUMBER_TOO_BIG = "UINT64_NUMBER_TOO_BIG";
function toUint64(uint256 a) internal pure returns (uint64) {
require(a <= MAX_UINT64, ERROR_NUMBER_TOO_BIG);
return uint64(a);
}
}
// File: @aragon/os/contracts/common/TimeHelpers.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
contract TimeHelpers {
using Uint256Helpers for uint256;
/**
* @dev Returns the current block number.
* Using a function rather than `block.number` allows us to easily mock the block number in
* tests.
*/
function getBlockNumber() internal view returns (uint256) {
return block.number;
}
/**
* @dev Returns the current block number, converted to uint64.
* Using a function rather than `block.number` allows us to easily mock the block number in
* tests.
*/
function getBlockNumber64() internal view returns (uint64) {
return getBlockNumber().toUint64();
}
/**
* @dev Returns the current timestamp.
* Using a function rather than `block.timestamp` allows us to easily mock it in
* tests.
*/
function getTimestamp() internal view returns (uint256) {
return block.timestamp; // solium-disable-line security/no-block-members
}
/**
* @dev Returns the current timestamp, converted to uint64.
* Using a function rather than `block.timestamp` allows us to easily mock it in
* tests.
*/
function getTimestamp64() internal view returns (uint64) {
return getTimestamp().toUint64();
}
}
// File: @aragon/os/contracts/common/Initializable.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
contract Initializable is TimeHelpers {
using UnstructuredStorage for bytes32;
// keccak256("aragonOS.initializable.initializationBlock")
bytes32 internal constant INITIALIZATION_BLOCK_POSITION = 0xebb05b386a8d34882b8711d156f463690983dc47815980fb82aeeff1aa43579e;
string private constant ERROR_ALREADY_INITIALIZED = "INIT_ALREADY_INITIALIZED";
string private constant ERROR_NOT_INITIALIZED = "INIT_NOT_INITIALIZED";
modifier onlyInit {
require(getInitializationBlock() == 0, ERROR_ALREADY_INITIALIZED);
_;
}
modifier isInitialized {
require(hasInitialized(), ERROR_NOT_INITIALIZED);
_;
}
/**
* @return Block number in which the contract was initialized
*/
function getInitializationBlock() public view returns (uint256) {
return INITIALIZATION_BLOCK_POSITION.getStorageUint256();
}
/**
* @return Whether the contract has been initialized by the time of the current block
*/
function hasInitialized() public view returns (bool) {
uint256 initializationBlock = getInitializationBlock();
return initializationBlock != 0 && getBlockNumber() >= initializationBlock;
}
/**
* @dev Function to be called by top level contract after initialization has finished.
*/
function initialized() internal onlyInit {
INITIALIZATION_BLOCK_POSITION.setStorageUint256(getBlockNumber());
}
/**
* @dev Function to be called by top level contract after initialization to enable the contract
* at a future block number rather than immediately.
*/
function initializedAt(uint256 _blockNumber) internal onlyInit {
INITIALIZATION_BLOCK_POSITION.setStorageUint256(_blockNumber);
}
}
// File: @aragon/os/contracts/common/Petrifiable.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
contract Petrifiable is Initializable {
// Use block UINT256_MAX (which should be never) as the initializable date
uint256 internal constant PETRIFIED_BLOCK = uint256(-1);
function isPetrified() public view returns (bool) {
return getInitializationBlock() == PETRIFIED_BLOCK;
}
/**
* @dev Function to be called by top level contract to prevent being initialized.
* Useful for freezing base contracts when they're used behind proxies.
*/
function petrify() internal onlyInit {
initializedAt(PETRIFIED_BLOCK);
}
}
// File: @aragon/os/contracts/common/Autopetrified.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
contract Autopetrified is Petrifiable {
constructor() public {
// Immediately petrify base (non-proxy) instances of inherited contracts on deploy.
// This renders them uninitializable (and unusable without a proxy).
petrify();
}
}
// File: @aragon/os/contracts/common/ConversionHelpers.sol
pragma solidity ^0.4.24;
library ConversionHelpers {
string private constant ERROR_IMPROPER_LENGTH = "CONVERSION_IMPROPER_LENGTH";
function dangerouslyCastUintArrayToBytes(uint256[] memory _input) internal pure returns (bytes memory output) {
// Force cast the uint256[] into a bytes array, by overwriting its length
// Note that the bytes array doesn't need to be initialized as we immediately overwrite it
// with the input and a new length. The input becomes invalid from this point forward.
uint256 byteLength = _input.length * 32;
assembly {
output := _input
mstore(output, byteLength)
}
}
function dangerouslyCastBytesToUintArray(bytes memory _input) internal pure returns (uint256[] memory output) {
// Force cast the bytes array into a uint256[], by overwriting its length
// Note that the uint256[] doesn't need to be initialized as we immediately overwrite it
// with the input and a new length. The input becomes invalid from this point forward.
uint256 intsLength = _input.length / 32;
require(_input.length == intsLength * 32, ERROR_IMPROPER_LENGTH);
assembly {
output := _input
mstore(output, intsLength)
}
}
}
// File: @aragon/os/contracts/common/ReentrancyGuard.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
contract ReentrancyGuard {
using UnstructuredStorage for bytes32;
/* Hardcoded constants to save gas
bytes32 internal constant REENTRANCY_MUTEX_POSITION = keccak256("aragonOS.reentrancyGuard.mutex");
*/
bytes32 private constant REENTRANCY_MUTEX_POSITION = 0xe855346402235fdd185c890e68d2c4ecad599b88587635ee285bce2fda58dacb;
string private constant ERROR_REENTRANT = "REENTRANCY_REENTRANT_CALL";
modifier nonReentrant() {
// Ensure mutex is unlocked
require(!REENTRANCY_MUTEX_POSITION.getStorageBool(), ERROR_REENTRANT);
// Lock mutex before function call
REENTRANCY_MUTEX_POSITION.setStorageBool(true);
// Perform function call
_;
// Unlock mutex after function call
REENTRANCY_MUTEX_POSITION.setStorageBool(false);
}
}
// File: @aragon/os/contracts/lib/token/ERC20.sol
// See https://github.com/OpenZeppelin/openzeppelin-solidity/blob/a9f910d34f0ab33a1ae5e714f69f9596a02b4d91/contracts/token/ERC20/ERC20.sol
pragma solidity ^0.4.24;
/**
* @title ERC20 interface
* @dev see https://github.com/ethereum/EIPs/issues/20
*/
contract ERC20 {
function totalSupply() public view returns (uint256);
function balanceOf(address _who) public view returns (uint256);
function allowance(address _owner, address _spender)
public view returns (uint256);
function transfer(address _to, uint256 _value) public returns (bool);
function approve(address _spender, uint256 _value)
public returns (bool);
function transferFrom(address _from, address _to, uint256 _value)
public returns (bool);
event Transfer(
address indexed from,
address indexed to,
uint256 value
);
event Approval(
address indexed owner,
address indexed spender,
uint256 value
);
}
// File: @aragon/os/contracts/common/EtherTokenConstant.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
// aragonOS and aragon-apps rely on address(0) to denote native ETH, in
// contracts where both tokens and ETH are accepted
contract EtherTokenConstant {
address internal constant ETH = address(0);
}
// File: @aragon/os/contracts/common/IsContract.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
contract IsContract {
/*
* NOTE: this should NEVER be used for authentication
* (see pitfalls: https://github.com/fergarrui/ethereum-security/tree/master/contracts/extcodesize).
*
* This is only intended to be used as a sanity check that an address is actually a contract,
* RATHER THAN an address not being a contract.
*/
function isContract(address _target) internal view returns (bool) {
if (_target == address(0)) {
return false;
}
uint256 size;
assembly { size := extcodesize(_target) }
return size > 0;
}
}
// File: @aragon/os/contracts/common/SafeERC20.sol
// Inspired by AdEx (https://github.com/AdExNetwork/adex-protocol-eth/blob/b9df617829661a7518ee10f4cb6c4108659dd6d5/contracts/libs/SafeERC20.sol)
// and 0x (https://github.com/0xProject/0x-monorepo/blob/737d1dc54d72872e24abce5a1dbe1b66d35fa21a/contracts/protocol/contracts/protocol/AssetProxy/ERC20Proxy.sol#L143)
pragma solidity ^0.4.24;
library SafeERC20 {
// Before 0.5, solidity has a mismatch between `address.transfer()` and `token.transfer()`:
// https://github.com/ethereum/solidity/issues/3544
bytes4 private constant TRANSFER_SELECTOR = 0xa9059cbb;
string private constant ERROR_TOKEN_BALANCE_REVERTED = "SAFE_ERC_20_BALANCE_REVERTED";
string private constant ERROR_TOKEN_ALLOWANCE_REVERTED = "SAFE_ERC_20_ALLOWANCE_REVERTED";
function invokeAndCheckSuccess(address _addr, bytes memory _calldata)
private
returns (bool)
{
bool ret;
assembly {
let ptr := mload(0x40) // free memory pointer
let success := call(
gas, // forward all gas
_addr, // address
0, // no value
add(_calldata, 0x20), // calldata start
mload(_calldata), // calldata length
ptr, // write output over free memory
0x20 // uint256 return
)
if gt(success, 0) {
// Check number of bytes returned from last function call
switch returndatasize
// No bytes returned: assume success
case 0 {
ret := 1
}
// 32 bytes returned: check if non-zero
case 0x20 {
// Only return success if returned data was true
// Already have output in ptr
ret := eq(mload(ptr), 1)
}
// Not sure what was returned: don't mark as success
default { }
}
}
return ret;
}
function staticInvoke(address _addr, bytes memory _calldata)
private
view
returns (bool, uint256)
{
bool success;
uint256 ret;
assembly {
let ptr := mload(0x40) // free memory pointer
success := staticcall(
gas, // forward all gas
_addr, // address
add(_calldata, 0x20), // calldata start
mload(_calldata), // calldata length
ptr, // write output over free memory
0x20 // uint256 return
)
if gt(success, 0) {
ret := mload(ptr)
}
}
return (success, ret);
}
/**
* @dev Same as a standards-compliant ERC20.transfer() that never reverts (returns false).
* Note that this makes an external call to the token.
*/
function safeTransfer(ERC20 _token, address _to, uint256 _amount) internal returns (bool) {
bytes memory transferCallData = abi.encodeWithSelector(
TRANSFER_SELECTOR,
_to,
_amount
);
return invokeAndCheckSuccess(_token, transferCallData);
}
/**
* @dev Same as a standards-compliant ERC20.transferFrom() that never reverts (returns false).
* Note that this makes an external call to the token.
*/
function safeTransferFrom(ERC20 _token, address _from, address _to, uint256 _amount) internal returns (bool) {
bytes memory transferFromCallData = abi.encodeWithSelector(
_token.transferFrom.selector,
_from,
_to,
_amount
);
return invokeAndCheckSuccess(_token, transferFromCallData);
}
/**
* @dev Same as a standards-compliant ERC20.approve() that never reverts (returns false).
* Note that this makes an external call to the token.
*/
function safeApprove(ERC20 _token, address _spender, uint256 _amount) internal returns (bool) {
bytes memory approveCallData = abi.encodeWithSelector(
_token.approve.selector,
_spender,
_amount
);
return invokeAndCheckSuccess(_token, approveCallData);
}
/**
* @dev Static call into ERC20.balanceOf().
* Reverts if the call fails for some reason (should never fail).
*/
function staticBalanceOf(ERC20 _token, address _owner) internal view returns (uint256) {
bytes memory balanceOfCallData = abi.encodeWithSelector(
_token.balanceOf.selector,
_owner
);
(bool success, uint256 tokenBalance) = staticInvoke(_token, balanceOfCallData);
require(success, ERROR_TOKEN_BALANCE_REVERTED);
return tokenBalance;
}
/**
* @dev Static call into ERC20.allowance().
* Reverts if the call fails for some reason (should never fail).
*/
function staticAllowance(ERC20 _token, address _owner, address _spender) internal view returns (uint256) {
bytes memory allowanceCallData = abi.encodeWithSelector(
_token.allowance.selector,
_owner,
_spender
);
(bool success, uint256 allowance) = staticInvoke(_token, allowanceCallData);
require(success, ERROR_TOKEN_ALLOWANCE_REVERTED);
return allowance;
}
}
// File: @aragon/os/contracts/common/VaultRecoverable.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
contract VaultRecoverable is IVaultRecoverable, EtherTokenConstant, IsContract {
using SafeERC20 for ERC20;
string private constant ERROR_DISALLOWED = "RECOVER_DISALLOWED";
string private constant ERROR_VAULT_NOT_CONTRACT = "RECOVER_VAULT_NOT_CONTRACT";
string private constant ERROR_TOKEN_TRANSFER_FAILED = "RECOVER_TOKEN_TRANSFER_FAILED";
/**
* @notice Send funds to recovery Vault. This contract should never receive funds,
* but in case it does, this function allows one to recover them.
* @param _token Token balance to be sent to recovery vault.
*/
function transferToVault(address _token) external {
require(allowRecoverability(_token), ERROR_DISALLOWED);
address vault = getRecoveryVault();
require(isContract(vault), ERROR_VAULT_NOT_CONTRACT);
uint256 balance;
if (_token == ETH) {
balance = address(this).balance;
vault.transfer(balance);
} else {
ERC20 token = ERC20(_token);
balance = token.staticBalanceOf(this);
require(token.safeTransfer(vault, balance), ERROR_TOKEN_TRANSFER_FAILED);
}
emit RecoverToVault(vault, _token, balance);
}
/**
* @dev By default deriving from AragonApp makes it recoverable
* @param token Token address that would be recovered
* @return bool whether the app allows the recovery
*/
function allowRecoverability(address token) public view returns (bool) {
return true;
}
// Cast non-implemented interface to be public so we can use it internally
function getRecoveryVault() public view returns (address);
}
// File: @aragon/os/contracts/evmscript/IEVMScriptExecutor.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
interface IEVMScriptExecutor {
function execScript(bytes script, bytes input, address[] blacklist) external returns (bytes);
function executorType() external pure returns (bytes32);
}
// File: @aragon/os/contracts/evmscript/IEVMScriptRegistry.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
contract EVMScriptRegistryConstants {
/* Hardcoded constants to save gas
bytes32 internal constant EVMSCRIPT_REGISTRY_APP_ID = apmNamehash("evmreg");
*/
bytes32 internal constant EVMSCRIPT_REGISTRY_APP_ID = 0xddbcfd564f642ab5627cf68b9b7d374fb4f8a36e941a75d89c87998cef03bd61;
}
interface IEVMScriptRegistry {
function addScriptExecutor(IEVMScriptExecutor executor) external returns (uint id);
function disableScriptExecutor(uint256 executorId) external;
// TODO: this should be external
// See https://github.com/ethereum/solidity/issues/4832
function getScriptExecutor(bytes script) public view returns (IEVMScriptExecutor);
}
// File: @aragon/os/contracts/kernel/KernelConstants.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
contract KernelAppIds {
/* Hardcoded constants to save gas
bytes32 internal constant KERNEL_CORE_APP_ID = apmNamehash("kernel");
bytes32 internal constant KERNEL_DEFAULT_ACL_APP_ID = apmNamehash("acl");
bytes32 internal constant KERNEL_DEFAULT_VAULT_APP_ID = apmNamehash("vault");
*/
bytes32 internal constant KERNEL_CORE_APP_ID = 0x3b4bf6bf3ad5000ecf0f989d5befde585c6860fea3e574a4fab4c49d1c177d9c;
bytes32 internal constant KERNEL_DEFAULT_ACL_APP_ID = 0xe3262375f45a6e2026b7e7b18c2b807434f2508fe1a2a3dfb493c7df8f4aad6a;
bytes32 internal constant KERNEL_DEFAULT_VAULT_APP_ID = 0x7e852e0fcfce6551c13800f1e7476f982525c2b5277ba14b24339c68416336d1;
}
contract KernelNamespaceConstants {
/* Hardcoded constants to save gas
bytes32 internal constant KERNEL_CORE_NAMESPACE = keccak256("core");
bytes32 internal constant KERNEL_APP_BASES_NAMESPACE = keccak256("base");
bytes32 internal constant KERNEL_APP_ADDR_NAMESPACE = keccak256("app");
*/
bytes32 internal constant KERNEL_CORE_NAMESPACE = 0xc681a85306374a5ab27f0bbc385296a54bcd314a1948b6cf61c4ea1bc44bb9f8;
bytes32 internal constant KERNEL_APP_BASES_NAMESPACE = 0xf1f3eb40f5bc1ad1344716ced8b8a0431d840b5783aea1fd01786bc26f35ac0f;
bytes32 internal constant KERNEL_APP_ADDR_NAMESPACE = 0xd6f028ca0e8edb4a8c9757ca4fdccab25fa1e0317da1188108f7d2dee14902fb;
}
// File: @aragon/os/contracts/evmscript/EVMScriptRunner.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
contract EVMScriptRunner is AppStorage, Initializable, EVMScriptRegistryConstants, KernelNamespaceConstants {
string private constant ERROR_EXECUTOR_UNAVAILABLE = "EVMRUN_EXECUTOR_UNAVAILABLE";
string private constant ERROR_PROTECTED_STATE_MODIFIED = "EVMRUN_PROTECTED_STATE_MODIFIED";
/* This is manually crafted in assembly
string private constant ERROR_EXECUTOR_INVALID_RETURN = "EVMRUN_EXECUTOR_INVALID_RETURN";
*/
event ScriptResult(address indexed executor, bytes script, bytes input, bytes returnData);
function getEVMScriptExecutor(bytes _script) public view returns (IEVMScriptExecutor) {
return IEVMScriptExecutor(getEVMScriptRegistry().getScriptExecutor(_script));
}
function getEVMScriptRegistry() public view returns (IEVMScriptRegistry) {
address registryAddr = kernel().getApp(KERNEL_APP_ADDR_NAMESPACE, EVMSCRIPT_REGISTRY_APP_ID);
return IEVMScriptRegistry(registryAddr);
}
function runScript(bytes _script, bytes _input, address[] _blacklist)
internal
isInitialized
protectState
returns (bytes)
{
IEVMScriptExecutor executor = getEVMScriptExecutor(_script);
require(address(executor) != address(0), ERROR_EXECUTOR_UNAVAILABLE);
bytes4 sig = executor.execScript.selector;
bytes memory data = abi.encodeWithSelector(sig, _script, _input, _blacklist);
bytes memory output;
assembly {
let success := delegatecall(
gas, // forward all gas
executor, // address
add(data, 0x20), // calldata start
mload(data), // calldata length
0, // don't write output (we'll handle this ourselves)
0 // don't write output
)
output := mload(0x40) // free mem ptr get
switch success
case 0 {
// If the call errored, forward its full error data
returndatacopy(output, 0, returndatasize)
revert(output, returndatasize)
}
default {
switch gt(returndatasize, 0x3f)
case 0 {
// Need at least 0x40 bytes returned for properly ABI-encoded bytes values,
// revert with "EVMRUN_EXECUTOR_INVALID_RETURN"
// See remix: doing a `revert("EVMRUN_EXECUTOR_INVALID_RETURN")` always results in
// this memory layout
mstore(output, 0x08c379a000000000000000000000000000000000000000000000000000000000) // error identifier
mstore(add(output, 0x04), 0x0000000000000000000000000000000000000000000000000000000000000020) // starting offset
mstore(add(output, 0x24), 0x000000000000000000000000000000000000000000000000000000000000001e) // reason length
mstore(add(output, 0x44), 0x45564d52554e5f4558454355544f525f494e56414c49445f52455455524e0000) // reason
revert(output, 100) // 100 = 4 + 3 * 32 (error identifier + 3 words for the ABI encoded error)
}
default {
// Copy result
//
// Needs to perform an ABI decode for the expected `bytes` return type of
// `executor.execScript()` as solidity will automatically ABI encode the returned bytes as:
// [ position of the first dynamic length return value = 0x20 (32 bytes) ]
// [ output length (32 bytes) ]
// [ output content (N bytes) ]
//
// Perform the ABI decode by ignoring the first 32 bytes of the return data
let copysize := sub(returndatasize, 0x20)
returndatacopy(output, 0x20, copysize)
mstore(0x40, add(output, copysize)) // free mem ptr set
}
}
}
emit ScriptResult(address(executor), _script, _input, output);
return output;
}
modifier protectState {
address preKernel = address(kernel());
bytes32 preAppId = appId();
_; // exec
require(address(kernel()) == preKernel, ERROR_PROTECTED_STATE_MODIFIED);
require(appId() == preAppId, ERROR_PROTECTED_STATE_MODIFIED);
}
}
// File: @aragon/os/contracts/apps/AragonApp.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
// Contracts inheriting from AragonApp are, by default, immediately petrified upon deployment so
// that they can never be initialized.
// Unless overriden, this behaviour enforces those contracts to be usable only behind an AppProxy.
// ReentrancyGuard, EVMScriptRunner, and ACLSyntaxSugar are not directly used by this contract, but
// are included so that they are automatically usable by subclassing contracts
contract AragonApp is AppStorage, Autopetrified, VaultRecoverable, ReentrancyGuard, EVMScriptRunner, ACLSyntaxSugar {
string private constant ERROR_AUTH_FAILED = "APP_AUTH_FAILED";
modifier auth(bytes32 _role) {
require(canPerform(msg.sender, _role, new uint256[](0)), ERROR_AUTH_FAILED);
_;
}
modifier authP(bytes32 _role, uint256[] _params) {
require(canPerform(msg.sender, _role, _params), ERROR_AUTH_FAILED);
_;
}
/**
* @dev Check whether an action can be performed by a sender for a particular role on this app
* @param _sender Sender of the call
* @param _role Role on this app
* @param _params Permission params for the role
* @return Boolean indicating whether the sender has the permissions to perform the action.
* Always returns false if the app hasn't been initialized yet.
*/
function canPerform(address _sender, bytes32 _role, uint256[] _params) public view returns (bool) {
if (!hasInitialized()) {
return false;
}
IKernel linkedKernel = kernel();
if (address(linkedKernel) == address(0)) {
return false;
}
return linkedKernel.hasPermission(
_sender,
address(this),
_role,
ConversionHelpers.dangerouslyCastUintArrayToBytes(_params)
);
}
/**
* @dev Get the recovery vault for the app
* @return Recovery vault address for the app
*/
function getRecoveryVault() public view returns (address) {
// Funds recovery via a vault is only available when used with a kernel
return kernel().getRecoveryVault(); // if kernel is not set, it will revert
}
}
// File: @aragon/os/contracts/common/IForwarder.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
interface IForwarder {
function isForwarder() external pure returns (bool);
// TODO: this should be external
// See https://github.com/ethereum/solidity/issues/4832
function canForward(address sender, bytes evmCallScript) public view returns (bool);
// TODO: this should be external
// See https://github.com/ethereum/solidity/issues/4832
function forward(bytes evmCallScript) public;
}
// File: @aragon/os/contracts/lib/math/SafeMath.sol
// See https://github.com/OpenZeppelin/openzeppelin-solidity/blob/d51e38758e1d985661534534d5c61e27bece5042/contracts/math/SafeMath.sol
// Adapted to use pragma ^0.4.24 and satisfy our linter rules
pragma solidity ^0.4.24;
/**
* @title SafeMath
* @dev Math operations with safety checks that revert on error
*/
library SafeMath {
string private constant ERROR_ADD_OVERFLOW = "MATH_ADD_OVERFLOW";
string private constant ERROR_SUB_UNDERFLOW = "MATH_SUB_UNDERFLOW";
string private constant ERROR_MUL_OVERFLOW = "MATH_MUL_OVERFLOW";
string private constant ERROR_DIV_ZERO = "MATH_DIV_ZERO";
/**
* @dev Multiplies two numbers, reverts on overflow.
*/
function mul(uint256 _a, uint256 _b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522
if (_a == 0) {
return 0;
}
uint256 c = _a * _b;
require(c / _a == _b, ERROR_MUL_OVERFLOW);
return c;
}
/**
* @dev Integer division of two numbers truncating the quotient, reverts on division by zero.
*/
function div(uint256 _a, uint256 _b) internal pure returns (uint256) {
require(_b > 0, ERROR_DIV_ZERO); // Solidity only automatically asserts when dividing by 0
uint256 c = _a / _b;
// assert(_a == _b * c + _a % _b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Subtracts two numbers, reverts on overflow (i.e. if subtrahend is greater than minuend).
*/
function sub(uint256 _a, uint256 _b) internal pure returns (uint256) {
require(_b <= _a, ERROR_SUB_UNDERFLOW);
uint256 c = _a - _b;
return c;
}
/**
* @dev Adds two numbers, reverts on overflow.
*/
function add(uint256 _a, uint256 _b) internal pure returns (uint256) {
uint256 c = _a + _b;
require(c >= _a, ERROR_ADD_OVERFLOW);
return c;
}
/**
* @dev Divides two numbers and returns the remainder (unsigned integer modulo),
* reverts when dividing by zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
require(b != 0, ERROR_DIV_ZERO);
return a % b;
}
}
// File: @aragon/apps-shared-minime/contracts/ITokenController.sol
pragma solidity ^0.4.24;
/// @dev The token controller contract must implement these functions
interface ITokenController {
/// @notice Called when `_owner` sends ether to the MiniMe Token contract
/// @param _owner The address that sent the ether to create tokens
/// @return True if the ether is accepted, false if it throws
function proxyPayment(address _owner) external payable returns(bool);
/// @notice Notifies the controller about a token transfer allowing the
/// controller to react if desired
/// @param _from The origin of the transfer
/// @param _to The destination of the transfer
/// @param _amount The amount of the transfer
/// @return False if the controller does not authorize the transfer
function onTransfer(address _from, address _to, uint _amount) external returns(bool);
/// @notice Notifies the controller about an approval allowing the
/// controller to react if desired
/// @param _owner The address that calls `approve()`
/// @param _spender The spender in the `approve()` call
/// @param _amount The amount in the `approve()` call
/// @return False if the controller does not authorize the approval
function onApprove(address _owner, address _spender, uint _amount) external returns(bool);
}
// File: @aragon/apps-shared-minime/contracts/MiniMeToken.sol
pragma solidity ^0.4.24;
/*
Copyright 2016, Jordi Baylina
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/// @title MiniMeToken Contract
/// @author Jordi Baylina
/// @dev This token contract's goal is to make it easy for anyone to clone this
/// token using the token distribution at a given block, this will allow DAO's
/// and DApps to upgrade their features in a decentralized manner without
/// affecting the original token
/// @dev It is ERC20 compliant, but still needs to under go further testing.
contract Controlled {
/// @notice The address of the controller is the only address that can call
/// a function with this modifier
modifier onlyController {
require(msg.sender == controller);
_;
}
address public controller;
function Controlled() public { controller = msg.sender;}
/// @notice Changes the controller of the contract
/// @param _newController The new controller of the contract
function changeController(address _newController) onlyController public {
controller = _newController;
}
}
contract ApproveAndCallFallBack {
function receiveApproval(
address from,
uint256 _amount,
address _token,
bytes _data
) public;
}
/// @dev The actual token contract, the default controller is the msg.sender
/// that deploys the contract, so usually this token will be deployed by a
/// token controller contract, which Giveth will call a "Campaign"
contract MiniMeToken is Controlled {
string public name; //The Token's name: e.g. DigixDAO Tokens
uint8 public decimals; //Number of decimals of the smallest unit
string public symbol; //An identifier: e.g. REP
string public version = "MMT_0.1"; //An arbitrary versioning scheme
/// @dev `Checkpoint` is the structure that attaches a block number to a
/// given value, the block number attached is the one that last changed the
/// value
struct Checkpoint {
// `fromBlock` is the block number that the value was generated from
uint128 fromBlock;
// `value` is the amount of tokens at a specific block number
uint128 value;
}
// `parentToken` is the Token address that was cloned to produce this token;
// it will be 0x0 for a token that was not cloned
MiniMeToken public parentToken;
// `parentSnapShotBlock` is the block number from the Parent Token that was
// used to determine the initial distribution of the Clone Token
uint public parentSnapShotBlock;
// `creationBlock` is the block number that the Clone Token was created
uint public creationBlock;
// `balances` is the map that tracks the balance of each address, in this
// contract when the balance changes the block number that the change
// occurred is also included in the map
mapping (address => Checkpoint[]) balances;
// `allowed` tracks any extra transfer rights as in all ERC20 tokens
mapping (address => mapping (address => uint256)) allowed;
// Tracks the history of the `totalSupply` of the token
Checkpoint[] totalSupplyHistory;
// Flag that determines if the token is transferable or not.
bool public transfersEnabled;
// The factory used to create new clone tokens
MiniMeTokenFactory public tokenFactory;
////////////////
// Constructor
////////////////
/// @notice Constructor to create a MiniMeToken
/// @param _tokenFactory The address of the MiniMeTokenFactory contract that
/// will create the Clone token contracts, the token factory needs to be
/// deployed first
/// @param _parentToken Address of the parent token, set to 0x0 if it is a
/// new token
/// @param _parentSnapShotBlock Block of the parent token that will
/// determine the initial distribution of the clone token, set to 0 if it
/// is a new token
/// @param _tokenName Name of the new token
/// @param _decimalUnits Number of decimals of the new token
/// @param _tokenSymbol Token Symbol for the new token
/// @param _transfersEnabled If true, tokens will be able to be transferred
function MiniMeToken(
MiniMeTokenFactory _tokenFactory,
MiniMeToken _parentToken,
uint _parentSnapShotBlock,
string _tokenName,
uint8 _decimalUnits,
string _tokenSymbol,
bool _transfersEnabled
) public
{
tokenFactory = _tokenFactory;
name = _tokenName; // Set the name
decimals = _decimalUnits; // Set the decimals
symbol = _tokenSymbol; // Set the symbol
parentToken = _parentToken;
parentSnapShotBlock = _parentSnapShotBlock;
transfersEnabled = _transfersEnabled;
creationBlock = block.number;
}
///////////////////
// ERC20 Methods
///////////////////
/// @notice Send `_amount` tokens to `_to` from `msg.sender`
/// @param _to The address of the recipient
/// @param _amount The amount of tokens to be transferred
/// @return Whether the transfer was successful or not
function transfer(address _to, uint256 _amount) public returns (bool success) {
require(transfersEnabled);
return doTransfer(msg.sender, _to, _amount);
}
/// @notice Send `_amount` tokens to `_to` from `_from` on the condition it
/// is approved by `_from`
/// @param _from The address holding the tokens being transferred
/// @param _to The address of the recipient
/// @param _amount The amount of tokens to be transferred
/// @return True if the transfer was successful
function transferFrom(address _from, address _to, uint256 _amount) public returns (bool success) {
// The controller of this contract can move tokens around at will,
// this is important to recognize! Confirm that you trust the
// controller of this contract, which in most situations should be
// another open source smart contract or 0x0
if (msg.sender != controller) {
require(transfersEnabled);
// The standard ERC 20 transferFrom functionality
if (allowed[_from][msg.sender] < _amount)
return false;
allowed[_from][msg.sender] -= _amount;
}
return doTransfer(_from, _to, _amount);
}
/// @dev This is the actual transfer function in the token contract, it can
/// only be called by other functions in this contract.
/// @param _from The address holding the tokens being transferred
/// @param _to The address of the recipient
/// @param _amount The amount of tokens to be transferred
/// @return True if the transfer was successful
function doTransfer(address _from, address _to, uint _amount) internal returns(bool) {
if (_amount == 0) {
return true;
}
require(parentSnapShotBlock < block.number);
// Do not allow transfer to 0x0 or the token contract itself
require((_to != 0) && (_to != address(this)));
// If the amount being transfered is more than the balance of the
// account the transfer returns false
var previousBalanceFrom = balanceOfAt(_from, block.number);
if (previousBalanceFrom < _amount) {
return false;
}
// Alerts the token controller of the transfer
if (isContract(controller)) {
// Adding the ` == true` makes the linter shut up so...
require(ITokenController(controller).onTransfer(_from, _to, _amount) == true);
}
// First update the balance array with the new value for the address
// sending the tokens
updateValueAtNow(balances[_from], previousBalanceFrom - _amount);
// Then update the balance array with the new value for the address
// receiving the tokens
var previousBalanceTo = balanceOfAt(_to, block.number);
require(previousBalanceTo + _amount >= previousBalanceTo); // Check for overflow
updateValueAtNow(balances[_to], previousBalanceTo + _amount);
// An event to make the transfer easy to find on the blockchain
Transfer(_from, _to, _amount);
return true;
}
/// @param _owner The address that's balance is being requested
/// @return The balance of `_owner` at the current block
function balanceOf(address _owner) public constant returns (uint256 balance) {
return balanceOfAt(_owner, block.number);
}
/// @notice `msg.sender` approves `_spender` to spend `_amount` tokens on
/// its behalf. This is a modified version of the ERC20 approve function
/// to be a little bit safer
/// @param _spender The address of the account able to transfer the tokens
/// @param _amount The amount of tokens to be approved for transfer
/// @return True if the approval was successful
function approve(address _spender, uint256 _amount) public returns (bool success) {
require(transfersEnabled);
// To change the approve amount you first have to reduce the addresses`
// allowance to zero by calling `approve(_spender,0)` if it is not
// already 0 to mitigate the race condition described here:
// https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
require((_amount == 0) || (allowed[msg.sender][_spender] == 0));
// Alerts the token controller of the approve function call
if (isContract(controller)) {
// Adding the ` == true` makes the linter shut up so...
require(ITokenController(controller).onApprove(msg.sender, _spender, _amount) == true);
}
allowed[msg.sender][_spender] = _amount;
Approval(msg.sender, _spender, _amount);
return true;
}
/// @dev This function makes it easy to read the `allowed[]` map
/// @param _owner The address of the account that owns the token
/// @param _spender The address of the account able to transfer the tokens
/// @return Amount of remaining tokens of _owner that _spender is allowed
/// to spend
function allowance(address _owner, address _spender) public constant returns (uint256 remaining) {
return allowed[_owner][_spender];
}
/// @notice `msg.sender` approves `_spender` to send `_amount` tokens on
/// its behalf, and then a function is triggered in the contract that is
/// being approved, `_spender`. This allows users to use their tokens to
/// interact with contracts in one function call instead of two
/// @param _spender The address of the contract able to transfer the tokens
/// @param _amount The amount of tokens to be approved for transfer
/// @return True if the function call was successful
function approveAndCall(ApproveAndCallFallBack _spender, uint256 _amount, bytes _extraData) public returns (bool success) {
require(approve(_spender, _amount));
_spender.receiveApproval(
msg.sender,
_amount,
this,
_extraData
);
return true;
}
/// @dev This function makes it easy to get the total number of tokens
/// @return The total number of tokens
function totalSupply() public constant returns (uint) {
return totalSupplyAt(block.number);
}
////////////////
// Query balance and totalSupply in History
////////////////
/// @dev Queries the balance of `_owner` at a specific `_blockNumber`
/// @param _owner The address from which the balance will be retrieved
/// @param _blockNumber The block number when the balance is queried
/// @return The balance at `_blockNumber`
function balanceOfAt(address _owner, uint _blockNumber) public constant returns (uint) {
// These next few lines are used when the balance of the token is
// requested before a check point was ever created for this token, it
// requires that the `parentToken.balanceOfAt` be queried at the
// genesis block for that token as this contains initial balance of
// this token
if ((balances[_owner].length == 0) || (balances[_owner][0].fromBlock > _blockNumber)) {
if (address(parentToken) != 0) {
return parentToken.balanceOfAt(_owner, min(_blockNumber, parentSnapShotBlock));
} else {
// Has no parent
return 0;
}
// This will return the expected balance during normal situations
} else {
return getValueAt(balances[_owner], _blockNumber);
}
}
/// @notice Total amount of tokens at a specific `_blockNumber`.
/// @param _blockNumber The block number when the totalSupply is queried
/// @return The total amount of tokens at `_blockNumber`
function totalSupplyAt(uint _blockNumber) public constant returns(uint) {
// These next few lines are used when the totalSupply of the token is
// requested before a check point was ever created for this token, it
// requires that the `parentToken.totalSupplyAt` be queried at the
// genesis block for this token as that contains totalSupply of this
// token at this block number.
if ((totalSupplyHistory.length == 0) || (totalSupplyHistory[0].fromBlock > _blockNumber)) {
if (address(parentToken) != 0) {
return parentToken.totalSupplyAt(min(_blockNumber, parentSnapShotBlock));
} else {
return 0;
}
// This will return the expected totalSupply during normal situations
} else {
return getValueAt(totalSupplyHistory, _blockNumber);
}
}
////////////////
// Clone Token Method
////////////////
/// @notice Creates a new clone token with the initial distribution being
/// this token at `_snapshotBlock`
/// @param _cloneTokenName Name of the clone token
/// @param _cloneDecimalUnits Number of decimals of the smallest unit
/// @param _cloneTokenSymbol Symbol of the clone token
/// @param _snapshotBlock Block when the distribution of the parent token is
/// copied to set the initial distribution of the new clone token;
/// if the block is zero than the actual block, the current block is used
/// @param _transfersEnabled True if transfers are allowed in the clone
/// @return The address of the new MiniMeToken Contract
function createCloneToken(
string _cloneTokenName,
uint8 _cloneDecimalUnits,
string _cloneTokenSymbol,
uint _snapshotBlock,
bool _transfersEnabled
) public returns(MiniMeToken)
{
uint256 snapshot = _snapshotBlock == 0 ? block.number - 1 : _snapshotBlock;
MiniMeToken cloneToken = tokenFactory.createCloneToken(
this,
snapshot,
_cloneTokenName,
_cloneDecimalUnits,
_cloneTokenSymbol,
_transfersEnabled
);
cloneToken.changeController(msg.sender);
// An event to make the token easy to find on the blockchain
NewCloneToken(address(cloneToken), snapshot);
return cloneToken;
}
////////////////
// Generate and destroy tokens
////////////////
/// @notice Generates `_amount` tokens that are assigned to `_owner`
/// @param _owner The address that will be assigned the new tokens
/// @param _amount The quantity of tokens generated
/// @return True if the tokens are generated correctly
function generateTokens(address _owner, uint _amount) onlyController public returns (bool) {
uint curTotalSupply = totalSupply();
require(curTotalSupply + _amount >= curTotalSupply); // Check for overflow
uint previousBalanceTo = balanceOf(_owner);
require(previousBalanceTo + _amount >= previousBalanceTo); // Check for overflow
updateValueAtNow(totalSupplyHistory, curTotalSupply + _amount);
updateValueAtNow(balances[_owner], previousBalanceTo + _amount);
Transfer(0, _owner, _amount);
return true;
}
/// @notice Burns `_amount` tokens from `_owner`
/// @param _owner The address that will lose the tokens
/// @param _amount The quantity of tokens to burn
/// @return True if the tokens are burned correctly
function destroyTokens(address _owner, uint _amount) onlyController public returns (bool) {
uint curTotalSupply = totalSupply();
require(curTotalSupply >= _amount);
uint previousBalanceFrom = balanceOf(_owner);
require(previousBalanceFrom >= _amount);
updateValueAtNow(totalSupplyHistory, curTotalSupply - _amount);
updateValueAtNow(balances[_owner], previousBalanceFrom - _amount);
Transfer(_owner, 0, _amount);
return true;
}
////////////////
// Enable tokens transfers
////////////////
/// @notice Enables token holders to transfer their tokens freely if true
/// @param _transfersEnabled True if transfers are allowed in the clone
function enableTransfers(bool _transfersEnabled) onlyController public {
transfersEnabled = _transfersEnabled;
}
////////////////
// Internal helper functions to query and set a value in a snapshot array
////////////////
/// @dev `getValueAt` retrieves the number of tokens at a given block number
/// @param checkpoints The history of values being queried
/// @param _block The block number to retrieve the value at
/// @return The number of tokens being queried
function getValueAt(Checkpoint[] storage checkpoints, uint _block) constant internal returns (uint) {
if (checkpoints.length == 0)
return 0;
// Shortcut for the actual value
if (_block >= checkpoints[checkpoints.length-1].fromBlock)
return checkpoints[checkpoints.length-1].value;
if (_block < checkpoints[0].fromBlock)
return 0;
// Binary search of the value in the array
uint min = 0;
uint max = checkpoints.length-1;
while (max > min) {
uint mid = (max + min + 1) / 2;
if (checkpoints[mid].fromBlock<=_block) {
min = mid;
} else {
max = mid-1;
}
}
return checkpoints[min].value;
}
/// @dev `updateValueAtNow` used to update the `balances` map and the
/// `totalSupplyHistory`
/// @param checkpoints The history of data being updated
/// @param _value The new number of tokens
function updateValueAtNow(Checkpoint[] storage checkpoints, uint _value) internal {
if ((checkpoints.length == 0) || (checkpoints[checkpoints.length - 1].fromBlock < block.number)) {
Checkpoint storage newCheckPoint = checkpoints[checkpoints.length++];
newCheckPoint.fromBlock = uint128(block.number);
newCheckPoint.value = uint128(_value);
} else {
Checkpoint storage oldCheckPoint = checkpoints[checkpoints.length - 1];
oldCheckPoint.value = uint128(_value);
}
}
/// @dev Internal function to determine if an address is a contract
/// @param _addr The address being queried
/// @return True if `_addr` is a contract
function isContract(address _addr) constant internal returns(bool) {
uint size;
if (_addr == 0)
return false;
assembly {
size := extcodesize(_addr)
}
return size>0;
}
/// @dev Helper function to return a min betwen the two uints
function min(uint a, uint b) pure internal returns (uint) {
return a < b ? a : b;
}
/// @notice The fallback function: If the contract's controller has not been
/// set to 0, then the `proxyPayment` method is called which relays the
/// ether and creates tokens as described in the token controller contract
function () external payable {
require(isContract(controller));
// Adding the ` == true` makes the linter shut up so...
require(ITokenController(controller).proxyPayment.value(msg.value)(msg.sender) == true);
}
//////////
// Safety Methods
//////////
/// @notice This method can be used by the controller to extract mistakenly
/// sent tokens to this contract.
/// @param _token The address of the token contract that you want to recover
/// set to 0 in case you want to extract ether.
function claimTokens(address _token) onlyController public {
if (_token == 0x0) {
controller.transfer(this.balance);
return;
}
MiniMeToken token = MiniMeToken(_token);
uint balance = token.balanceOf(this);
token.transfer(controller, balance);
ClaimedTokens(_token, controller, balance);
}
////////////////
// Events
////////////////
event ClaimedTokens(address indexed _token, address indexed _controller, uint _amount);
event Transfer(address indexed _from, address indexed _to, uint256 _amount);
event NewCloneToken(address indexed _cloneToken, uint _snapshotBlock);
event Approval(
address indexed _owner,
address indexed _spender,
uint256 _amount
);
}
////////////////
// MiniMeTokenFactory
////////////////
/// @dev This contract is used to generate clone contracts from a contract.
/// In solidity this is the way to create a contract from a contract of the
/// same class
contract MiniMeTokenFactory {
/// @notice Update the DApp by creating a new token with new functionalities
/// the msg.sender becomes the controller of this clone token
/// @param _parentToken Address of the token being cloned
/// @param _snapshotBlock Block of the parent token that will
/// determine the initial distribution of the clone token
/// @param _tokenName Name of the new token
/// @param _decimalUnits Number of decimals of the new token
/// @param _tokenSymbol Token Symbol for the new token
/// @param _transfersEnabled If true, tokens will be able to be transferred
/// @return The address of the new token contract
function createCloneToken(
MiniMeToken _parentToken,
uint _snapshotBlock,
string _tokenName,
uint8 _decimalUnits,
string _tokenSymbol,
bool _transfersEnabled
) public returns (MiniMeToken)
{
MiniMeToken newToken = new MiniMeToken(
this,
_parentToken,
_snapshotBlock,
_tokenName,
_decimalUnits,
_tokenSymbol,
_transfersEnabled
);
newToken.changeController(msg.sender);
return newToken;
}
}
// File: contracts/TokenManager.sol
/*
* SPDX-License-Identitifer: GPL-3.0-or-later
*/
/* solium-disable function-order */
pragma solidity 0.4.24;
contract TokenManager is ITokenController, IForwarder, AragonApp {
using SafeMath for uint256;
bytes32 public constant MINT_ROLE = keccak256("MINT_ROLE");
bytes32 public constant ISSUE_ROLE = keccak256("ISSUE_ROLE");
bytes32 public constant ASSIGN_ROLE = keccak256("ASSIGN_ROLE");
bytes32 public constant REVOKE_VESTINGS_ROLE = keccak256("REVOKE_VESTINGS_ROLE");
bytes32 public constant BURN_ROLE = keccak256("BURN_ROLE");
uint256 public constant MAX_VESTINGS_PER_ADDRESS = 50;
string private constant ERROR_CALLER_NOT_TOKEN = "TM_CALLER_NOT_TOKEN";
string private constant ERROR_NO_VESTING = "TM_NO_VESTING";
string private constant ERROR_TOKEN_CONTROLLER = "TM_TOKEN_CONTROLLER";
string private constant ERROR_MINT_RECEIVER_IS_TM = "TM_MINT_RECEIVER_IS_TM";
string private constant ERROR_VESTING_TO_TM = "TM_VESTING_TO_TM";
string private constant ERROR_TOO_MANY_VESTINGS = "TM_TOO_MANY_VESTINGS";
string private constant ERROR_WRONG_CLIFF_DATE = "TM_WRONG_CLIFF_DATE";
string private constant ERROR_VESTING_NOT_REVOKABLE = "TM_VESTING_NOT_REVOKABLE";
string private constant ERROR_REVOKE_TRANSFER_FROM_REVERTED = "TM_REVOKE_TRANSFER_FROM_REVERTED";
string private constant ERROR_CAN_NOT_FORWARD = "TM_CAN_NOT_FORWARD";
string private constant ERROR_BALANCE_INCREASE_NOT_ALLOWED = "TM_BALANCE_INC_NOT_ALLOWED";
string private constant ERROR_ASSIGN_TRANSFER_FROM_REVERTED = "TM_ASSIGN_TRANSFER_FROM_REVERTED";
struct TokenVesting {
uint256 amount;
uint64 start;
uint64 cliff;
uint64 vesting;
bool revokable;
}
// Note that we COMPLETELY trust this MiniMeToken to not be malicious for proper operation of this contract
MiniMeToken public token;
uint256 public maxAccountTokens;
// We are mimicing an array in the inner mapping, we use a mapping instead to make app upgrade more graceful
mapping (address => mapping (uint256 => TokenVesting)) internal vestings;
mapping (address => uint256) public vestingsLengths;
// Other token specific events can be watched on the token address directly (avoids duplication)
event NewVesting(address indexed receiver, uint256 vestingId, uint256 amount);
event RevokeVesting(address indexed receiver, uint256 vestingId, uint256 nonVestedAmount);
modifier onlyToken() {
require(msg.sender == address(token), ERROR_CALLER_NOT_TOKEN);
_;
}
modifier vestingExists(address _holder, uint256 _vestingId) {
// TODO: it's not checking for gaps that may appear because of deletes in revokeVesting function
require(_vestingId < vestingsLengths[_holder], ERROR_NO_VESTING);
_;
}
/**
* @notice Initialize Token Manager for `_token.symbol(): string`, whose tokens are `transferable ? 'not' : ''` transferable`_maxAccountTokens > 0 ? ' and limited to a maximum of ' + @tokenAmount(_token, _maxAccountTokens, false) + ' per account' : ''`
* @param _token MiniMeToken address for the managed token (Token Manager instance must be already set as the token controller)
* @param _transferable whether the token can be transferred by holders
* @param _maxAccountTokens Maximum amount of tokens an account can have (0 for infinite tokens)
*/
function initialize(
MiniMeToken _token,
bool _transferable,
uint256 _maxAccountTokens
)
external
onlyInit
{
initialized();
require(_token.controller() == address(this), ERROR_TOKEN_CONTROLLER);
token = _token;
maxAccountTokens = _maxAccountTokens == 0 ? uint256(-1) : _maxAccountTokens;
if (token.transfersEnabled() != _transferable) {
token.enableTransfers(_transferable);
}
}
/**
* @notice Mint `@tokenAmount(self.token(): address, _amount, false)` tokens for `_receiver`
* @param _receiver The address receiving the tokens, cannot be the Token Manager itself (use `issue()` instead)
* @param _amount Number of tokens minted
*/
function mint(address _receiver, uint256 _amount) external authP(MINT_ROLE, arr(_receiver, _amount)) {
require(_receiver != address(this), ERROR_MINT_RECEIVER_IS_TM);
_mint(_receiver, _amount);
}
/**
* @notice Mint `@tokenAmount(self.token(): address, _amount, false)` tokens for the Token Manager
* @param _amount Number of tokens minted
*/
function issue(uint256 _amount) external authP(ISSUE_ROLE, arr(_amount)) {
_mint(address(this), _amount);
}
/**
* @notice Assign `@tokenAmount(self.token(): address, _amount, false)` tokens to `_receiver` from the Token Manager's holdings
* @param _receiver The address receiving the tokens
* @param _amount Number of tokens transferred
*/
function assign(address _receiver, uint256 _amount) external authP(ASSIGN_ROLE, arr(_receiver, _amount)) {
_assign(_receiver, _amount);
}
/**
* @notice Burn `@tokenAmount(self.token(): address, _amount, false)` tokens from `_holder`
* @param _holder Holder of tokens being burned
* @param _amount Number of tokens being burned
*/
function burn(address _holder, uint256 _amount) external authP(BURN_ROLE, arr(_holder, _amount)) {
// minime.destroyTokens() never returns false, only reverts on failure
token.destroyTokens(_holder, _amount);
}
/**
* @notice Assign `@tokenAmount(self.token(): address, _amount, false)` tokens to `_receiver` from the Token Manager's holdings with a `_revokable : 'revokable' : ''` vesting starting at `@formatDate(_start)`, cliff at `@formatDate(_cliff)` (first portion of tokens transferable), and completed vesting at `@formatDate(_vested)` (all tokens transferable)
* @param _receiver The address receiving the tokens, cannot be Token Manager itself
* @param _amount Number of tokens vested
* @param _start Date the vesting calculations start
* @param _cliff Date when the initial portion of tokens are transferable
* @param _vested Date when all tokens are transferable
* @param _revokable Whether the vesting can be revoked by the Token Manager
*/
function assignVested(
address _receiver,
uint256 _amount,
uint64 _start,
uint64 _cliff,
uint64 _vested,
bool _revokable
)
external
authP(ASSIGN_ROLE, arr(_receiver, _amount))
returns (uint256)
{
require(_receiver != address(this), ERROR_VESTING_TO_TM);
require(vestingsLengths[_receiver] < MAX_VESTINGS_PER_ADDRESS, ERROR_TOO_MANY_VESTINGS);
require(_start <= _cliff && _cliff <= _vested, ERROR_WRONG_CLIFF_DATE);
uint256 vestingId = vestingsLengths[_receiver]++;
vestings[_receiver][vestingId] = TokenVesting(
_amount,
_start,
_cliff,
_vested,
_revokable
);
_assign(_receiver, _amount);
emit NewVesting(_receiver, vestingId, _amount);
return vestingId;
}
/**
* @notice Revoke vesting #`_vestingId` from `_holder`, returning unvested tokens to the Token Manager
* @param _holder Address whose vesting to revoke
* @param _vestingId Numeric id of the vesting
*/
function revokeVesting(address _holder, uint256 _vestingId)
external
authP(REVOKE_VESTINGS_ROLE, arr(_holder))
vestingExists(_holder, _vestingId)
{
TokenVesting storage v = vestings[_holder][_vestingId];
require(v.revokable, ERROR_VESTING_NOT_REVOKABLE);
uint256 nonVested = _calculateNonVestedTokens(
v.amount,
getTimestamp(),
v.start,
v.cliff,
v.vesting
);
// To make vestingIds immutable over time, we just zero out the revoked vesting
// Clearing this out also allows the token transfer back to the Token Manager to succeed
delete vestings[_holder][_vestingId];
// transferFrom always works as controller
// onTransfer hook always allows if transfering to token controller
require(token.transferFrom(_holder, address(this), nonVested), ERROR_REVOKE_TRANSFER_FROM_REVERTED);
emit RevokeVesting(_holder, _vestingId, nonVested);
}
// ITokenController fns
// `onTransfer()`, `onApprove()`, and `proxyPayment()` are callbacks from the MiniMe token
// contract and are only meant to be called through the managed MiniMe token that gets assigned
// during initialization.
/*
* @dev Notifies the controller about a token transfer allowing the controller to decide whether
* to allow it or react if desired (only callable from the token).
* Initialization check is implicitly provided by `onlyToken()`.
* @param _from The origin of the transfer
* @param _to The destination of the transfer
* @param _amount The amount of the transfer
* @return False if the controller does not authorize the transfer
*/
function onTransfer(address _from, address _to, uint256 _amount) external onlyToken returns (bool) {
return _isBalanceIncreaseAllowed(_to, _amount) && _transferableBalance(_from, getTimestamp()) >= _amount;
}
/**
* @dev Notifies the controller about an approval allowing the controller to react if desired
* Initialization check is implicitly provided by `onlyToken()`.
* @return False if the controller does not authorize the approval
*/
function onApprove(address, address, uint) external onlyToken returns (bool) {
return true;
}
/**
* @dev Called when ether is sent to the MiniMe Token contract
* Initialization check is implicitly provided by `onlyToken()`.
* @return True if the ether is accepted, false for it to throw
*/
function proxyPayment(address) external payable onlyToken returns (bool) {
return false;
}
// Forwarding fns
function isForwarder() external pure returns (bool) {
return true;
}
/**
* @notice Execute desired action as a token holder
* @dev IForwarder interface conformance. Forwards any token holder action.
* @param _evmScript Script being executed
*/
function forward(bytes _evmScript) public {
require(canForward(msg.sender, _evmScript), ERROR_CAN_NOT_FORWARD);
bytes memory input = new bytes(0); // TODO: Consider input for this
// Add the managed token to the blacklist to disallow a token holder from executing actions
// on the token controller's (this contract) behalf
address[] memory blacklist = new address[](1);
blacklist[0] = address(token);
runScript(_evmScript, input, blacklist);
}
function canForward(address _sender, bytes) public view returns (bool) {
return hasInitialized() && token.balanceOf(_sender) > 0;
}
// Getter fns
function getVesting(
address _recipient,
uint256 _vestingId
)
public
view
vestingExists(_recipient, _vestingId)
returns (
uint256 amount,
uint64 start,
uint64 cliff,
uint64 vesting,
bool revokable
)
{
TokenVesting storage tokenVesting = vestings[_recipient][_vestingId];
amount = tokenVesting.amount;
start = tokenVesting.start;
cliff = tokenVesting.cliff;
vesting = tokenVesting.vesting;
revokable = tokenVesting.revokable;
}
function spendableBalanceOf(address _holder) public view isInitialized returns (uint256) {
return _transferableBalance(_holder, getTimestamp());
}
function transferableBalance(address _holder, uint256 _time) public view isInitialized returns (uint256) {
return _transferableBalance(_holder, _time);
}
/**
* @dev Disable recovery escape hatch for own token,
* as the it has the concept of issuing tokens without assigning them
*/
function allowRecoverability(address _token) public view returns (bool) {
return _token != address(token);
}
// Internal fns
function _assign(address _receiver, uint256 _amount) internal {
require(_isBalanceIncreaseAllowed(_receiver, _amount), ERROR_BALANCE_INCREASE_NOT_ALLOWED);
// Must use transferFrom() as transfer() does not give the token controller full control
require(token.transferFrom(address(this), _receiver, _amount), ERROR_ASSIGN_TRANSFER_FROM_REVERTED);
}
function _mint(address _receiver, uint256 _amount) internal {
require(_isBalanceIncreaseAllowed(_receiver, _amount), ERROR_BALANCE_INCREASE_NOT_ALLOWED);
token.generateTokens(_receiver, _amount); // minime.generateTokens() never returns false
}
function _isBalanceIncreaseAllowed(address _receiver, uint256 _inc) internal view returns (bool) {
// Max balance doesn't apply to the token manager itself
if (_receiver == address(this)) {
return true;
}
return token.balanceOf(_receiver).add(_inc) <= maxAccountTokens;
}
/**
* @dev Calculate amount of non-vested tokens at a specifc time
* @param tokens The total amount of tokens vested
* @param time The time at which to check
* @param start The date vesting started
* @param cliff The cliff period
* @param vested The fully vested date
* @return The amount of non-vested tokens of a specific grant
* transferableTokens
* | _/-------- vestedTokens rect
* | _/
* | _/
* | _/
* | _/
* | /
* | .|
* | . |
* | . |
* | . |
* | . |
* | . |
* +===+===========+---------+----------> time
* Start Cliff Vested
*/
function _calculateNonVestedTokens(
uint256 tokens,
uint256 time,
uint256 start,
uint256 cliff,
uint256 vested
)
private
pure
returns (uint256)
{
// Shortcuts for before cliff and after vested cases.
if (time >= vested) {
return 0;
}
if (time < cliff) {
return tokens;
}
// Interpolate all vested tokens.
// As before cliff the shortcut returns 0, we can just calculate a value
// in the vesting rect (as shown in above's figure)
// vestedTokens = tokens * (time - start) / (vested - start)
// In assignVesting we enforce start <= cliff <= vested
// Here we shortcut time >= vested and time < cliff,
// so no division by 0 is possible
uint256 vestedTokens = tokens.mul(time.sub(start)) / vested.sub(start);
// tokens - vestedTokens
return tokens.sub(vestedTokens);
}
function _transferableBalance(address _holder, uint256 _time) internal view returns (uint256) {
uint256 transferable = token.balanceOf(_holder);
// This check is not strictly necessary for the current version of this contract, as
// Token Managers now cannot assign vestings to themselves.
// However, this was a possibility in the past, so in case there were vestings assigned to
// themselves, this will still return the correct value (entire balance, as the Token
// Manager does not have a spending limit on its own balance).
if (_holder != address(this)) {
uint256 vestingsCount = vestingsLengths[_holder];
for (uint256 i = 0; i < vestingsCount; i++) {
TokenVesting storage v = vestings[_holder][i];
uint256 nonTransferable = _calculateNonVestedTokens(
v.amount,
_time,
v.start,
v.cliff,
v.vesting
);
transferable = transferable.sub(nonTransferable);
}
}
return transferable;
}
}