ETH Price: $1,979.42 (+0.14%)

Transaction Decoder

Block:
24509023 at Feb-22-2026 01:08:23 AM +UTC
Transaction Fee:
0.00000970840179603 ETH $0.02
Gas Used:
124,005 Gas / 0.078290406 Gwei

Emitted Events:

189 EntryPoint.Deposited( account=0xa31642f44293a9d9dab519873e0d2f9f1a3c0660, totalDeposit=31726519652688 )
190 EntryPoint.BeforeExecution( )
191 0x9eb6e2025b64f340691e424b7fe7022ffde12438.0x17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31( 0x17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31, 0x000000000000000000000000a31642f44293a9d9dab519873e0d2f9f1a3c0660, 0x0000000000000000000000001e0049783f008a0085193e00003d00cd54003c71, 0000000000000000000000000000000000000000000000000000000000000001 )
192 EntryPoint.UserOperationEvent( userOpHash=D656A532B5CFFE2B327CF82439B5774CC65CF8894AD6FCF1B507F1EFB9226EAD, sender=0xa31642f44293a9d9dab519873e0d2f9f1a3c0660, paymaster=0x00000000...000000000, nonce=2, success=True, actualGasCost=22167555833552, actualGasUsed=172792 )

Account State Difference:

  Address   Before After State Difference Code
(quasarbuilder)
21.065083957254747252 Eth21.065090157504747252 Eth0.00000620025
0x3D406BF7...AbA845dB8
(Bundler: 0x3d4...db8)
0.207856282133063756 Eth
Nonce: 3238
0.207868741287101278 Eth
Nonce: 3239
0.000012459154037522
0x5FF137D4...a026d2789
(Entry Point 0.6.0)
319.703608202796186626 Eth319.703595402066797034 Eth0.000012800729389592
0x9Eb6E202...fFDE12438
0xA31642F4...F1A3C0660 0.000346732532095638 Eth0.000337365705651678 Eth0.00000936682644396

Execution Trace

EntryPoint.handleOps( ops=, beneficiary=0x3D406BF77a3a97C41650997aeB8F5B8AbA845dB8 )
  • 0xa31642f44293a9d9dab519873e0d2f9f1a3c0660.3a871cdd( )
    • CoinbaseSmartWallet.validateUserOp( userOp=[{name:sender, type:address, order:1, indexed:false, value:0xA31642F44293a9d9DAb519873e0D2f9F1A3C0660, valueString:0xA31642F44293a9d9DAb519873e0D2f9F1A3C0660}, {name:nonce, type:uint256, order:2, indexed:false, value:2, valueString:2}, {name:initCode, type:bytes, order:3, indexed:false, value:0x, valueString:0x}, {name:callData, type:bytes, order:4, indexed:false, value:0x34FCD5BE0000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000200000000000000000000000009EB6E2025B64F340691E424B7FE7022FFDE12438000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000600000000000000000000000000000000000000000000000000000000000000044A22CB4650000000000000000000000001E0049783F008A0085193E00003D00CD54003C7100000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000062635F6939686D393933740B0080218021802180218021802180218021, valueString:0x34FCD5BE0000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000200000000000000000000000009EB6E2025B64F340691E424B7FE7022FFDE12438000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000600000000000000000000000000000000000000000000000000000000000000044A22CB4650000000000000000000000001E0049783F008A0085193E00003D00CD54003C7100000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000062635F6939686D393933740B0080218021802180218021802180218021}, {name:callGasLimit, type:uint256, order:5, indexed:false, value:34195, valueString:34195}, {name:verificationGasLimit, type:uint256, order:6, indexed:false, value:80368, valueString:80368}, {name:preVerificationGas, type:uint256, order:7, indexed:false, value:96480, valueString:96480}, {name:maxFeePerGas, type:uint256, order:8, indexed:false, value:150332016, valueString:150332016}, {name:maxPriorityFeePerGas, type:uint256, order:9, indexed:false, value:100000000, valueString:100000000}, {name:paymasterAndData, type:bytes, order:10, indexed:false, value:0x, valueString:0x}, {name:signature, type:bytes, order:11, indexed:false, value:0x0000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000000041B3478A932746C964553296ECA95EDC2E5A34278C5304E0B83FA491511DFFCE9D444440F60D5F0E99758D431056B1A705CE5FF8EB527B0AA2B58A043DD84D074B1C00000000000000000000000000000000000000000000000000000000000000, valueString:0x0000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000000041B3478A932746C964553296ECA95EDC2E5A34278C5304E0B83FA491511DFFCE9D444440F60D5F0E99758D431056B1A705CE5FF8EB527B0AA2B58A043DD84D074B1C00000000000000000000000000000000000000000000000000000000000000}], userOpHash=D656A532B5CFFE2B327CF82439B5774CC65CF8894AD6FCF1B507F1EFB9226EAD, missingAccountFunds=9366826443960 ) => ( validationData=0 )
      • Null: 0x000...001.d656a532( )
      • ETH 0.00000936682644396 EntryPoint.CALL( )
      • EntryPoint.innerHandleOp( callData=0x34FCD5BE0000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000200000000000000000000000009EB6E2025B64F340691E424B7FE7022FFDE12438000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000600000000000000000000000000000000000000000000000000000000000000044A22CB4650000000000000000000000001E0049783F008A0085193E00003D00CD54003C7100000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000062635F6939686D393933740B0080218021802180218021802180218021, opInfo=[{name:mUserOp, type:tuple, order:1, indexed:false, value:[{name:sender, type:address, order:1, indexed:false, value:0xA31642F44293a9d9DAb519873e0D2f9F1A3C0660, valueString:0xA31642F44293a9d9DAb519873e0D2f9F1A3C0660}, {name:nonce, type:uint256, order:2, indexed:false, value:2, valueString:2}, {name:callGasLimit, type:uint256, order:3, indexed:false, value:34195, valueString:34195}, {name:verificationGasLimit, type:uint256, order:4, indexed:false, value:80368, valueString:80368}, {name:preVerificationGas, type:uint256, order:5, indexed:false, value:96480, valueString:96480}, {name:paymaster, type:address, order:6, indexed:false, value:0x0000000000000000000000000000000000000000, valueString:0x0000000000000000000000000000000000000000}, {name:maxFeePerGas, type:uint256, order:7, indexed:false, value:150332016, valueString:150332016}, {name:maxPriorityFeePerGas, type:uint256, order:8, indexed:false, value:100000000, valueString:100000000}], valueString:[{name:sender, type:address, order:1, indexed:false, value:0xA31642F44293a9d9DAb519873e0D2f9F1A3C0660, valueString:0xA31642F44293a9d9DAb519873e0D2f9F1A3C0660}, {name:nonce, type:uint256, order:2, indexed:false, value:2, valueString:2}, {name:callGasLimit, type:uint256, order:3, indexed:false, value:34195, valueString:34195}, {name:verificationGasLimit, type:uint256, order:4, indexed:false, value:80368, valueString:80368}, {name:preVerificationGas, type:uint256, order:5, indexed:false, value:96480, valueString:96480}, {name:paymaster, type:address, order:6, indexed:false, value:0x0000000000000000000000000000000000000000, valueString:0x0000000000000000000000000000000000000000}, {name:maxFeePerGas, type:uint256, order:7, indexed:false, value:150332016, valueString:150332016}, {name:maxPriorityFeePerGas, type:uint256, order:8, indexed:false, value:100000000, valueString:100000000}]}, {name:userOpHash, type:bytes32, order:2, indexed:false, value:D656A532B5CFFE2B327CF82439B5774CC65CF8894AD6FCF1B507F1EFB9226EAD, valueString:D656A532B5CFFE2B327CF82439B5774CC65CF8894AD6FCF1B507F1EFB9226EAD}, {name:prefund, type:uint256, order:3, indexed:false, value:31726519652688, valueString:31726519652688}, {name:contextOffset, type:uint256, order:4, indexed:false, value:96, valueString:96}, {name:preOpGas, type:uint256, order:5, indexed:false, value:142190, valueString:142190}], context=0x ) => ( actualGasCost=22167555833552 )
        • 0xa31642f44293a9d9dab519873e0d2f9f1a3c0660.34fcd5be( )
          • CoinbaseSmartWallet.executeBatch( calls= )
            • 0x9eb6e2025b64f340691e424b7fe7022ffde12438.a22cb465( )
            • ETH 0.000022167555833552 Bundler: 0x3d4...db8.CALL( )
              handleOps[EntryPoint (ln:137)]
              File 1 of 2: EntryPoint
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Contract module that helps prevent reentrant calls to a function.
               *
               * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
               * available, which can be applied to functions to make sure there are no nested
               * (reentrant) calls to them.
               *
               * Note that because there is a single `nonReentrant` guard, functions marked as
               * `nonReentrant` may not call one another. This can be worked around by making
               * those functions `private`, and then adding `external` `nonReentrant` entry
               * points to them.
               *
               * TIP: If you would like to learn more about reentrancy and alternative ways
               * to protect against it, check out our blog post
               * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
               */
              abstract contract ReentrancyGuard {
                  // Booleans are more expensive than uint256 or any type that takes up a full
                  // word because each write operation emits an extra SLOAD to first read the
                  // slot's contents, replace the bits taken up by the boolean, and then write
                  // back. This is the compiler's defense against contract upgrades and
                  // pointer aliasing, and it cannot be disabled.
                  // The values being non-zero value makes deployment a bit more expensive,
                  // but in exchange the refund on every call to nonReentrant will be lower in
                  // amount. Since refunds are capped to a percentage of the total
                  // transaction's gas, it is best to keep them low in cases like this one, to
                  // increase the likelihood of the full refund coming into effect.
                  uint256 private constant _NOT_ENTERED = 1;
                  uint256 private constant _ENTERED = 2;
                  uint256 private _status;
                  constructor() {
                      _status = _NOT_ENTERED;
                  }
                  /**
                   * @dev Prevents a contract from calling itself, directly or indirectly.
                   * Calling a `nonReentrant` function from another `nonReentrant`
                   * function is not supported. It is possible to prevent this from happening
                   * by making the `nonReentrant` function external, and making it call a
                   * `private` function that does the actual work.
                   */
                  modifier nonReentrant() {
                      _nonReentrantBefore();
                      _;
                      _nonReentrantAfter();
                  }
                  function _nonReentrantBefore() private {
                      // On the first call to nonReentrant, _status will be _NOT_ENTERED
                      require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
                      // Any calls to nonReentrant after this point will fail
                      _status = _ENTERED;
                  }
                  function _nonReentrantAfter() private {
                      // By storing the original value once again, a refund is triggered (see
                      // https://eips.ethereum.org/EIPS/eip-2200)
                      _status = _NOT_ENTERED;
                  }
              }
              /**
               ** Account-Abstraction (EIP-4337) singleton EntryPoint implementation.
               ** Only one instance required on each chain.
               **/
              // SPDX-License-Identifier: GPL-3.0
              pragma solidity ^0.8.12;
              /* solhint-disable avoid-low-level-calls */
              /* solhint-disable no-inline-assembly */
              import "../interfaces/IAccount.sol";
              import "../interfaces/IPaymaster.sol";
              import "../interfaces/IEntryPoint.sol";
              import "../utils/Exec.sol";
              import "./StakeManager.sol";
              import "./SenderCreator.sol";
              import "./Helpers.sol";
              import "./NonceManager.sol";
              import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
              contract EntryPoint is IEntryPoint, StakeManager, NonceManager, ReentrancyGuard {
                  using UserOperationLib for UserOperation;
                  SenderCreator private immutable senderCreator = new SenderCreator();
                  // internal value used during simulation: need to query aggregator.
                  address private constant SIMULATE_FIND_AGGREGATOR = address(1);
                  // marker for inner call revert on out of gas
                  bytes32 private constant INNER_OUT_OF_GAS = hex'deaddead';
                  uint256 private constant REVERT_REASON_MAX_LEN = 2048;
                  /**
                   * for simulation purposes, validateUserOp (and validatePaymasterUserOp) must return this value
                   * in case of signature failure, instead of revert.
                   */
                  uint256 public constant SIG_VALIDATION_FAILED = 1;
                  /**
                   * compensate the caller's beneficiary address with the collected fees of all UserOperations.
                   * @param beneficiary the address to receive the fees
                   * @param amount amount to transfer.
                   */
                  function _compensate(address payable beneficiary, uint256 amount) internal {
                      require(beneficiary != address(0), "AA90 invalid beneficiary");
                      (bool success,) = beneficiary.call{value : amount}("");
                      require(success, "AA91 failed send to beneficiary");
                  }
                  /**
                   * execute a user op
                   * @param opIndex index into the opInfo array
                   * @param userOp the userOp to execute
                   * @param opInfo the opInfo filled by validatePrepayment for this userOp.
                   * @return collected the total amount this userOp paid.
                   */
                  function _executeUserOp(uint256 opIndex, UserOperation calldata userOp, UserOpInfo memory opInfo) private returns (uint256 collected) {
                      uint256 preGas = gasleft();
                      bytes memory context = getMemoryBytesFromOffset(opInfo.contextOffset);
                      try this.innerHandleOp(userOp.callData, opInfo, context) returns (uint256 _actualGasCost) {
                          collected = _actualGasCost;
                      } catch {
                          bytes32 innerRevertCode;
                          assembly {
                              returndatacopy(0, 0, 32)
                              innerRevertCode := mload(0)
                          }
                          // handleOps was called with gas limit too low. abort entire bundle.
                          if (innerRevertCode == INNER_OUT_OF_GAS) {
                              //report paymaster, since if it is not deliberately caused by the bundler,
                              // it must be a revert caused by paymaster.
                              revert FailedOp(opIndex, "AA95 out of gas");
                          }
                          uint256 actualGas = preGas - gasleft() + opInfo.preOpGas;
                          collected = _handlePostOp(opIndex, IPaymaster.PostOpMode.postOpReverted, opInfo, context, actualGas);
                      }
                  }
                  /**
                   * Execute a batch of UserOperations.
                   * no signature aggregator is used.
                   * if any account requires an aggregator (that is, it returned an aggregator when
                   * performing simulateValidation), then handleAggregatedOps() must be used instead.
                   * @param ops the operations to execute
                   * @param beneficiary the address to receive the fees
                   */
                  function handleOps(UserOperation[] calldata ops, address payable beneficiary) public nonReentrant {
                      uint256 opslen = ops.length;
                      UserOpInfo[] memory opInfos = new UserOpInfo[](opslen);
                  unchecked {
                      for (uint256 i = 0; i < opslen; i++) {
                          UserOpInfo memory opInfo = opInfos[i];
                          (uint256 validationData, uint256 pmValidationData) = _validatePrepayment(i, ops[i], opInfo);
                          _validateAccountAndPaymasterValidationData(i, validationData, pmValidationData, address(0));
                      }
                      uint256 collected = 0;
                      emit BeforeExecution();
                      for (uint256 i = 0; i < opslen; i++) {
                          collected += _executeUserOp(i, ops[i], opInfos[i]);
                      }
                      _compensate(beneficiary, collected);
                  } //unchecked
                  }
                  /**
                   * Execute a batch of UserOperation with Aggregators
                   * @param opsPerAggregator the operations to execute, grouped by aggregator (or address(0) for no-aggregator accounts)
                   * @param beneficiary the address to receive the fees
                   */
                  function handleAggregatedOps(
                      UserOpsPerAggregator[] calldata opsPerAggregator,
                      address payable beneficiary
                  ) public nonReentrant {
                      uint256 opasLen = opsPerAggregator.length;
                      uint256 totalOps = 0;
                      for (uint256 i = 0; i < opasLen; i++) {
                          UserOpsPerAggregator calldata opa = opsPerAggregator[i];
                          UserOperation[] calldata ops = opa.userOps;
                          IAggregator aggregator = opa.aggregator;
                          //address(1) is special marker of "signature error"
                          require(address(aggregator) != address(1), "AA96 invalid aggregator");
                          if (address(aggregator) != address(0)) {
                              // solhint-disable-next-line no-empty-blocks
                              try aggregator.validateSignatures(ops, opa.signature) {}
                              catch {
                                  revert SignatureValidationFailed(address(aggregator));
                              }
                          }
                          totalOps += ops.length;
                      }
                      UserOpInfo[] memory opInfos = new UserOpInfo[](totalOps);
                      emit BeforeExecution();
                      uint256 opIndex = 0;
                      for (uint256 a = 0; a < opasLen; a++) {
                          UserOpsPerAggregator calldata opa = opsPerAggregator[a];
                          UserOperation[] calldata ops = opa.userOps;
                          IAggregator aggregator = opa.aggregator;
                          uint256 opslen = ops.length;
                          for (uint256 i = 0; i < opslen; i++) {
                              UserOpInfo memory opInfo = opInfos[opIndex];
                              (uint256 validationData, uint256 paymasterValidationData) = _validatePrepayment(opIndex, ops[i], opInfo);
                              _validateAccountAndPaymasterValidationData(i, validationData, paymasterValidationData, address(aggregator));
                              opIndex++;
                          }
                      }
                      uint256 collected = 0;
                      opIndex = 0;
                      for (uint256 a = 0; a < opasLen; a++) {
                          UserOpsPerAggregator calldata opa = opsPerAggregator[a];
                          emit SignatureAggregatorChanged(address(opa.aggregator));
                          UserOperation[] calldata ops = opa.userOps;
                          uint256 opslen = ops.length;
                          for (uint256 i = 0; i < opslen; i++) {
                              collected += _executeUserOp(opIndex, ops[i], opInfos[opIndex]);
                              opIndex++;
                          }
                      }
                      emit SignatureAggregatorChanged(address(0));
                      _compensate(beneficiary, collected);
                  }
                  /// @inheritdoc IEntryPoint
                  function simulateHandleOp(UserOperation calldata op, address target, bytes calldata targetCallData) external override {
                      UserOpInfo memory opInfo;
                      _simulationOnlyValidations(op);
                      (uint256 validationData, uint256 paymasterValidationData) = _validatePrepayment(0, op, opInfo);
                      ValidationData memory data = _intersectTimeRange(validationData, paymasterValidationData);
                      numberMarker();
                      uint256 paid = _executeUserOp(0, op, opInfo);
                      numberMarker();
                      bool targetSuccess;
                      bytes memory targetResult;
                      if (target != address(0)) {
                          (targetSuccess, targetResult) = target.call(targetCallData);
                      }
                      revert ExecutionResult(opInfo.preOpGas, paid, data.validAfter, data.validUntil, targetSuccess, targetResult);
                  }
                  // A memory copy of UserOp static fields only.
                  // Excluding: callData, initCode and signature. Replacing paymasterAndData with paymaster.
                  struct MemoryUserOp {
                      address sender;
                      uint256 nonce;
                      uint256 callGasLimit;
                      uint256 verificationGasLimit;
                      uint256 preVerificationGas;
                      address paymaster;
                      uint256 maxFeePerGas;
                      uint256 maxPriorityFeePerGas;
                  }
                  struct UserOpInfo {
                      MemoryUserOp mUserOp;
                      bytes32 userOpHash;
                      uint256 prefund;
                      uint256 contextOffset;
                      uint256 preOpGas;
                  }
                  /**
                   * inner function to handle a UserOperation.
                   * Must be declared "external" to open a call context, but it can only be called by handleOps.
                   */
                  function innerHandleOp(bytes memory callData, UserOpInfo memory opInfo, bytes calldata context) external returns (uint256 actualGasCost) {
                      uint256 preGas = gasleft();
                      require(msg.sender == address(this), "AA92 internal call only");
                      MemoryUserOp memory mUserOp = opInfo.mUserOp;
                      uint callGasLimit = mUserOp.callGasLimit;
                  unchecked {
                      // handleOps was called with gas limit too low. abort entire bundle.
                      if (gasleft() < callGasLimit + mUserOp.verificationGasLimit + 5000) {
                          assembly {
                              mstore(0, INNER_OUT_OF_GAS)
                              revert(0, 32)
                          }
                      }
                  }
                      IPaymaster.PostOpMode mode = IPaymaster.PostOpMode.opSucceeded;
                      if (callData.length > 0) {
                          bool success = Exec.call(mUserOp.sender, 0, callData, callGasLimit);
                          if (!success) {
                              bytes memory result = Exec.getReturnData(REVERT_REASON_MAX_LEN);
                              if (result.length > 0) {
                                  emit UserOperationRevertReason(opInfo.userOpHash, mUserOp.sender, mUserOp.nonce, result);
                              }
                              mode = IPaymaster.PostOpMode.opReverted;
                          }
                      }
                  unchecked {
                      uint256 actualGas = preGas - gasleft() + opInfo.preOpGas;
                      //note: opIndex is ignored (relevant only if mode==postOpReverted, which is only possible outside of innerHandleOp)
                      return _handlePostOp(0, mode, opInfo, context, actualGas);
                  }
                  }
                  /**
                   * generate a request Id - unique identifier for this request.
                   * the request ID is a hash over the content of the userOp (except the signature), the entrypoint and the chainid.
                   */
                  function getUserOpHash(UserOperation calldata userOp) public view returns (bytes32) {
                      return keccak256(abi.encode(userOp.hash(), address(this), block.chainid));
                  }
                  /**
                   * copy general fields from userOp into the memory opInfo structure.
                   */
                  function _copyUserOpToMemory(UserOperation calldata userOp, MemoryUserOp memory mUserOp) internal pure {
                      mUserOp.sender = userOp.sender;
                      mUserOp.nonce = userOp.nonce;
                      mUserOp.callGasLimit = userOp.callGasLimit;
                      mUserOp.verificationGasLimit = userOp.verificationGasLimit;
                      mUserOp.preVerificationGas = userOp.preVerificationGas;
                      mUserOp.maxFeePerGas = userOp.maxFeePerGas;
                      mUserOp.maxPriorityFeePerGas = userOp.maxPriorityFeePerGas;
                      bytes calldata paymasterAndData = userOp.paymasterAndData;
                      if (paymasterAndData.length > 0) {
                          require(paymasterAndData.length >= 20, "AA93 invalid paymasterAndData");
                          mUserOp.paymaster = address(bytes20(paymasterAndData[: 20]));
                      } else {
                          mUserOp.paymaster = address(0);
                      }
                  }
                  /**
                   * Simulate a call to account.validateUserOp and paymaster.validatePaymasterUserOp.
                   * @dev this method always revert. Successful result is ValidationResult error. other errors are failures.
                   * @dev The node must also verify it doesn't use banned opcodes, and that it doesn't reference storage outside the account's data.
                   * @param userOp the user operation to validate.
                   */
                  function simulateValidation(UserOperation calldata userOp) external {
                      UserOpInfo memory outOpInfo;
                      _simulationOnlyValidations(userOp);
                      (uint256 validationData, uint256 paymasterValidationData) = _validatePrepayment(0, userOp, outOpInfo);
                      StakeInfo memory paymasterInfo = _getStakeInfo(outOpInfo.mUserOp.paymaster);
                      StakeInfo memory senderInfo = _getStakeInfo(outOpInfo.mUserOp.sender);
                      StakeInfo memory factoryInfo;
                      {
                          bytes calldata initCode = userOp.initCode;
                          address factory = initCode.length >= 20 ? address(bytes20(initCode[0 : 20])) : address(0);
                          factoryInfo = _getStakeInfo(factory);
                      }
                      ValidationData memory data = _intersectTimeRange(validationData, paymasterValidationData);
                      address aggregator = data.aggregator;
                      bool sigFailed = aggregator == address(1);
                      ReturnInfo memory returnInfo = ReturnInfo(outOpInfo.preOpGas, outOpInfo.prefund,
                          sigFailed, data.validAfter, data.validUntil, getMemoryBytesFromOffset(outOpInfo.contextOffset));
                      if (aggregator != address(0) && aggregator != address(1)) {
                          AggregatorStakeInfo memory aggregatorInfo = AggregatorStakeInfo(aggregator, _getStakeInfo(aggregator));
                          revert ValidationResultWithAggregation(returnInfo, senderInfo, factoryInfo, paymasterInfo, aggregatorInfo);
                      }
                      revert ValidationResult(returnInfo, senderInfo, factoryInfo, paymasterInfo);
                  }
                  function _getRequiredPrefund(MemoryUserOp memory mUserOp) internal pure returns (uint256 requiredPrefund) {
                  unchecked {
                      //when using a Paymaster, the verificationGasLimit is used also to as a limit for the postOp call.
                      // our security model might call postOp eventually twice
                      uint256 mul = mUserOp.paymaster != address(0) ? 3 : 1;
                      uint256 requiredGas = mUserOp.callGasLimit + mUserOp.verificationGasLimit * mul + mUserOp.preVerificationGas;
                      requiredPrefund = requiredGas * mUserOp.maxFeePerGas;
                  }
                  }
                  // create the sender's contract if needed.
                  function _createSenderIfNeeded(uint256 opIndex, UserOpInfo memory opInfo, bytes calldata initCode) internal {
                      if (initCode.length != 0) {
                          address sender = opInfo.mUserOp.sender;
                          if (sender.code.length != 0) revert FailedOp(opIndex, "AA10 sender already constructed");
                          address sender1 = senderCreator.createSender{gas : opInfo.mUserOp.verificationGasLimit}(initCode);
                          if (sender1 == address(0)) revert FailedOp(opIndex, "AA13 initCode failed or OOG");
                          if (sender1 != sender) revert FailedOp(opIndex, "AA14 initCode must return sender");
                          if (sender1.code.length == 0) revert FailedOp(opIndex, "AA15 initCode must create sender");
                          address factory = address(bytes20(initCode[0 : 20]));
                          emit AccountDeployed(opInfo.userOpHash, sender, factory, opInfo.mUserOp.paymaster);
                      }
                  }
                  /**
                   * Get counterfactual sender address.
                   *  Calculate the sender contract address that will be generated by the initCode and salt in the UserOperation.
                   * this method always revert, and returns the address in SenderAddressResult error
                   * @param initCode the constructor code to be passed into the UserOperation.
                   */
                  function getSenderAddress(bytes calldata initCode) public {
                      address sender = senderCreator.createSender(initCode);
                      revert SenderAddressResult(sender);
                  }
                  function _simulationOnlyValidations(UserOperation calldata userOp) internal view {
                      // solhint-disable-next-line no-empty-blocks
                      try this._validateSenderAndPaymaster(userOp.initCode, userOp.sender, userOp.paymasterAndData) {}
                      catch Error(string memory revertReason) {
                          if (bytes(revertReason).length != 0) {
                              revert FailedOp(0, revertReason);
                          }
                      }
                  }
                  /**
                  * Called only during simulation.
                  * This function always reverts to prevent warm/cold storage differentiation in simulation vs execution.
                  */
                  function _validateSenderAndPaymaster(bytes calldata initCode, address sender, bytes calldata paymasterAndData) external view {
                      if (initCode.length == 0 && sender.code.length == 0) {
                          // it would revert anyway. but give a meaningful message
                          revert("AA20 account not deployed");
                      }
                      if (paymasterAndData.length >= 20) {
                          address paymaster = address(bytes20(paymasterAndData[0 : 20]));
                          if (paymaster.code.length == 0) {
                              // it would revert anyway. but give a meaningful message
                              revert("AA30 paymaster not deployed");
                          }
                      }
                      // always revert
                      revert("");
                  }
                  /**
                   * call account.validateUserOp.
                   * revert (with FailedOp) in case validateUserOp reverts, or account didn't send required prefund.
                   * decrement account's deposit if needed
                   */
                  function _validateAccountPrepayment(uint256 opIndex, UserOperation calldata op, UserOpInfo memory opInfo, uint256 requiredPrefund)
                  internal returns (uint256 gasUsedByValidateAccountPrepayment, uint256 validationData) {
                  unchecked {
                      uint256 preGas = gasleft();
                      MemoryUserOp memory mUserOp = opInfo.mUserOp;
                      address sender = mUserOp.sender;
                      _createSenderIfNeeded(opIndex, opInfo, op.initCode);
                      address paymaster = mUserOp.paymaster;
                      numberMarker();
                      uint256 missingAccountFunds = 0;
                      if (paymaster == address(0)) {
                          uint256 bal = balanceOf(sender);
                          missingAccountFunds = bal > requiredPrefund ? 0 : requiredPrefund - bal;
                      }
                      try IAccount(sender).validateUserOp{gas : mUserOp.verificationGasLimit}(op, opInfo.userOpHash, missingAccountFunds)
                      returns (uint256 _validationData) {
                          validationData = _validationData;
                      } catch Error(string memory revertReason) {
                          revert FailedOp(opIndex, string.concat("AA23 reverted: ", revertReason));
                      } catch {
                          revert FailedOp(opIndex, "AA23 reverted (or OOG)");
                      }
                      if (paymaster == address(0)) {
                          DepositInfo storage senderInfo = deposits[sender];
                          uint256 deposit = senderInfo.deposit;
                          if (requiredPrefund > deposit) {
                              revert FailedOp(opIndex, "AA21 didn't pay prefund");
                          }
                          senderInfo.deposit = uint112(deposit - requiredPrefund);
                      }
                      gasUsedByValidateAccountPrepayment = preGas - gasleft();
                  }
                  }
                  /**
                   * In case the request has a paymaster:
                   * Validate paymaster has enough deposit.
                   * Call paymaster.validatePaymasterUserOp.
                   * Revert with proper FailedOp in case paymaster reverts.
                   * Decrement paymaster's deposit
                   */
                  function _validatePaymasterPrepayment(uint256 opIndex, UserOperation calldata op, UserOpInfo memory opInfo, uint256 requiredPreFund, uint256 gasUsedByValidateAccountPrepayment)
                  internal returns (bytes memory context, uint256 validationData) {
                  unchecked {
                      MemoryUserOp memory mUserOp = opInfo.mUserOp;
                      uint256 verificationGasLimit = mUserOp.verificationGasLimit;
                      require(verificationGasLimit > gasUsedByValidateAccountPrepayment, "AA41 too little verificationGas");
                      uint256 gas = verificationGasLimit - gasUsedByValidateAccountPrepayment;
                      address paymaster = mUserOp.paymaster;
                      DepositInfo storage paymasterInfo = deposits[paymaster];
                      uint256 deposit = paymasterInfo.deposit;
                      if (deposit < requiredPreFund) {
                          revert FailedOp(opIndex, "AA31 paymaster deposit too low");
                      }
                      paymasterInfo.deposit = uint112(deposit - requiredPreFund);
                      try IPaymaster(paymaster).validatePaymasterUserOp{gas : gas}(op, opInfo.userOpHash, requiredPreFund) returns (bytes memory _context, uint256 _validationData){
                          context = _context;
                          validationData = _validationData;
                      } catch Error(string memory revertReason) {
                          revert FailedOp(opIndex, string.concat("AA33 reverted: ", revertReason));
                      } catch {
                          revert FailedOp(opIndex, "AA33 reverted (or OOG)");
                      }
                  }
                  }
                  /**
                   * revert if either account validationData or paymaster validationData is expired
                   */
                  function _validateAccountAndPaymasterValidationData(uint256 opIndex, uint256 validationData, uint256 paymasterValidationData, address expectedAggregator) internal view {
                      (address aggregator, bool outOfTimeRange) = _getValidationData(validationData);
                      if (expectedAggregator != aggregator) {
                          revert FailedOp(opIndex, "AA24 signature error");
                      }
                      if (outOfTimeRange) {
                          revert FailedOp(opIndex, "AA22 expired or not due");
                      }
                      //pmAggregator is not a real signature aggregator: we don't have logic to handle it as address.
                      // non-zero address means that the paymaster fails due to some signature check (which is ok only during estimation)
                      address pmAggregator;
                      (pmAggregator, outOfTimeRange) = _getValidationData(paymasterValidationData);
                      if (pmAggregator != address(0)) {
                          revert FailedOp(opIndex, "AA34 signature error");
                      }
                      if (outOfTimeRange) {
                          revert FailedOp(opIndex, "AA32 paymaster expired or not due");
                      }
                  }
                  function _getValidationData(uint256 validationData) internal view returns (address aggregator, bool outOfTimeRange) {
                      if (validationData == 0) {
                          return (address(0), false);
                      }
                      ValidationData memory data = _parseValidationData(validationData);
                      // solhint-disable-next-line not-rely-on-time
                      outOfTimeRange = block.timestamp > data.validUntil || block.timestamp < data.validAfter;
                      aggregator = data.aggregator;
                  }
                  /**
                   * validate account and paymaster (if defined).
                   * also make sure total validation doesn't exceed verificationGasLimit
                   * this method is called off-chain (simulateValidation()) and on-chain (from handleOps)
                   * @param opIndex the index of this userOp into the "opInfos" array
                   * @param userOp the userOp to validate
                   */
                  function _validatePrepayment(uint256 opIndex, UserOperation calldata userOp, UserOpInfo memory outOpInfo)
                  private returns (uint256 validationData, uint256 paymasterValidationData) {
                      uint256 preGas = gasleft();
                      MemoryUserOp memory mUserOp = outOpInfo.mUserOp;
                      _copyUserOpToMemory(userOp, mUserOp);
                      outOpInfo.userOpHash = getUserOpHash(userOp);
                      // validate all numeric values in userOp are well below 128 bit, so they can safely be added
                      // and multiplied without causing overflow
                      uint256 maxGasValues = mUserOp.preVerificationGas | mUserOp.verificationGasLimit | mUserOp.callGasLimit |
                      userOp.maxFeePerGas | userOp.maxPriorityFeePerGas;
                      require(maxGasValues <= type(uint120).max, "AA94 gas values overflow");
                      uint256 gasUsedByValidateAccountPrepayment;
                      (uint256 requiredPreFund) = _getRequiredPrefund(mUserOp);
                      (gasUsedByValidateAccountPrepayment, validationData) = _validateAccountPrepayment(opIndex, userOp, outOpInfo, requiredPreFund);
                      if (!_validateAndUpdateNonce(mUserOp.sender, mUserOp.nonce)) {
                          revert FailedOp(opIndex, "AA25 invalid account nonce");
                      }
                      //a "marker" where account opcode validation is done and paymaster opcode validation is about to start
                      // (used only by off-chain simulateValidation)
                      numberMarker();
                      bytes memory context;
                      if (mUserOp.paymaster != address(0)) {
                          (context, paymasterValidationData) = _validatePaymasterPrepayment(opIndex, userOp, outOpInfo, requiredPreFund, gasUsedByValidateAccountPrepayment);
                      }
                  unchecked {
                      uint256 gasUsed = preGas - gasleft();
                      if (userOp.verificationGasLimit < gasUsed) {
                          revert FailedOp(opIndex, "AA40 over verificationGasLimit");
                      }
                      outOpInfo.prefund = requiredPreFund;
                      outOpInfo.contextOffset = getOffsetOfMemoryBytes(context);
                      outOpInfo.preOpGas = preGas - gasleft() + userOp.preVerificationGas;
                  }
                  }
                  /**
                   * process post-operation.
                   * called just after the callData is executed.
                   * if a paymaster is defined and its validation returned a non-empty context, its postOp is called.
                   * the excess amount is refunded to the account (or paymaster - if it was used in the request)
                   * @param opIndex index in the batch
                   * @param mode - whether is called from innerHandleOp, or outside (postOpReverted)
                   * @param opInfo userOp fields and info collected during validation
                   * @param context the context returned in validatePaymasterUserOp
                   * @param actualGas the gas used so far by this user operation
                   */
                  function _handlePostOp(uint256 opIndex, IPaymaster.PostOpMode mode, UserOpInfo memory opInfo, bytes memory context, uint256 actualGas) private returns (uint256 actualGasCost) {
                      uint256 preGas = gasleft();
                  unchecked {
                      address refundAddress;
                      MemoryUserOp memory mUserOp = opInfo.mUserOp;
                      uint256 gasPrice = getUserOpGasPrice(mUserOp);
                      address paymaster = mUserOp.paymaster;
                      if (paymaster == address(0)) {
                          refundAddress = mUserOp.sender;
                      } else {
                          refundAddress = paymaster;
                          if (context.length > 0) {
                              actualGasCost = actualGas * gasPrice;
                              if (mode != IPaymaster.PostOpMode.postOpReverted) {
                                  IPaymaster(paymaster).postOp{gas : mUserOp.verificationGasLimit}(mode, context, actualGasCost);
                              } else {
                                  // solhint-disable-next-line no-empty-blocks
                                  try IPaymaster(paymaster).postOp{gas : mUserOp.verificationGasLimit}(mode, context, actualGasCost) {}
                                  catch Error(string memory reason) {
                                      revert FailedOp(opIndex, string.concat("AA50 postOp reverted: ", reason));
                                  }
                                  catch {
                                      revert FailedOp(opIndex, "AA50 postOp revert");
                                  }
                              }
                          }
                      }
                      actualGas += preGas - gasleft();
                      actualGasCost = actualGas * gasPrice;
                      if (opInfo.prefund < actualGasCost) {
                          revert FailedOp(opIndex, "AA51 prefund below actualGasCost");
                      }
                      uint256 refund = opInfo.prefund - actualGasCost;
                      _incrementDeposit(refundAddress, refund);
                      bool success = mode == IPaymaster.PostOpMode.opSucceeded;
                      emit UserOperationEvent(opInfo.userOpHash, mUserOp.sender, mUserOp.paymaster, mUserOp.nonce, success, actualGasCost, actualGas);
                  } // unchecked
                  }
                  /**
                   * the gas price this UserOp agrees to pay.
                   * relayer/block builder might submit the TX with higher priorityFee, but the user should not
                   */
                  function getUserOpGasPrice(MemoryUserOp memory mUserOp) internal view returns (uint256) {
                  unchecked {
                      uint256 maxFeePerGas = mUserOp.maxFeePerGas;
                      uint256 maxPriorityFeePerGas = mUserOp.maxPriorityFeePerGas;
                      if (maxFeePerGas == maxPriorityFeePerGas) {
                          //legacy mode (for networks that don't support basefee opcode)
                          return maxFeePerGas;
                      }
                      return min(maxFeePerGas, maxPriorityFeePerGas + block.basefee);
                  }
                  }
                  function min(uint256 a, uint256 b) internal pure returns (uint256) {
                      return a < b ? a : b;
                  }
                  function getOffsetOfMemoryBytes(bytes memory data) internal pure returns (uint256 offset) {
                      assembly {offset := data}
                  }
                  function getMemoryBytesFromOffset(uint256 offset) internal pure returns (bytes memory data) {
                      assembly {data := offset}
                  }
                  //place the NUMBER opcode in the code.
                  // this is used as a marker during simulation, as this OP is completely banned from the simulated code of the
                  // account and paymaster.
                  function numberMarker() internal view {
                      assembly {mstore(0, number())}
                  }
              }
              // SPDX-License-Identifier: GPL-3.0
              pragma solidity ^0.8.12;
              /* solhint-disable no-inline-assembly */
              /**
               * returned data from validateUserOp.
               * validateUserOp returns a uint256, with is created by `_packedValidationData` and parsed by `_parseValidationData`
               * @param aggregator - address(0) - the account validated the signature by itself.
               *              address(1) - the account failed to validate the signature.
               *              otherwise - this is an address of a signature aggregator that must be used to validate the signature.
               * @param validAfter - this UserOp is valid only after this timestamp.
               * @param validaUntil - this UserOp is valid only up to this timestamp.
               */
                  struct ValidationData {
                      address aggregator;
                      uint48 validAfter;
                      uint48 validUntil;
                  }
              //extract sigFailed, validAfter, validUntil.
              // also convert zero validUntil to type(uint48).max
                  function _parseValidationData(uint validationData) pure returns (ValidationData memory data) {
                      address aggregator = address(uint160(validationData));
                      uint48 validUntil = uint48(validationData >> 160);
                      if (validUntil == 0) {
                          validUntil = type(uint48).max;
                      }
                      uint48 validAfter = uint48(validationData >> (48 + 160));
                      return ValidationData(aggregator, validAfter, validUntil);
                  }
              // intersect account and paymaster ranges.
                  function _intersectTimeRange(uint256 validationData, uint256 paymasterValidationData) pure returns (ValidationData memory) {
                      ValidationData memory accountValidationData = _parseValidationData(validationData);
                      ValidationData memory pmValidationData = _parseValidationData(paymasterValidationData);
                      address aggregator = accountValidationData.aggregator;
                      if (aggregator == address(0)) {
                          aggregator = pmValidationData.aggregator;
                      }
                      uint48 validAfter = accountValidationData.validAfter;
                      uint48 validUntil = accountValidationData.validUntil;
                      uint48 pmValidAfter = pmValidationData.validAfter;
                      uint48 pmValidUntil = pmValidationData.validUntil;
                      if (validAfter < pmValidAfter) validAfter = pmValidAfter;
                      if (validUntil > pmValidUntil) validUntil = pmValidUntil;
                      return ValidationData(aggregator, validAfter, validUntil);
                  }
              /**
               * helper to pack the return value for validateUserOp
               * @param data - the ValidationData to pack
               */
                  function _packValidationData(ValidationData memory data) pure returns (uint256) {
                      return uint160(data.aggregator) | (uint256(data.validUntil) << 160) | (uint256(data.validAfter) << (160 + 48));
                  }
              /**
               * helper to pack the return value for validateUserOp, when not using an aggregator
               * @param sigFailed - true for signature failure, false for success
               * @param validUntil last timestamp this UserOperation is valid (or zero for infinite)
               * @param validAfter first timestamp this UserOperation is valid
               */
                  function _packValidationData(bool sigFailed, uint48 validUntil, uint48 validAfter) pure returns (uint256) {
                      return (sigFailed ? 1 : 0) | (uint256(validUntil) << 160) | (uint256(validAfter) << (160 + 48));
                  }
              /**
               * keccak function over calldata.
               * @dev copy calldata into memory, do keccak and drop allocated memory. Strangely, this is more efficient than letting solidity do it.
               */
                  function calldataKeccak(bytes calldata data) pure returns (bytes32 ret) {
                      assembly {
                          let mem := mload(0x40)
                          let len := data.length
                          calldatacopy(mem, data.offset, len)
                          ret := keccak256(mem, len)
                      }
                  }
              // SPDX-License-Identifier: GPL-3.0
              pragma solidity ^0.8.12;
              import "../interfaces/IEntryPoint.sol";
              /**
               * nonce management functionality
               */
              contract NonceManager is INonceManager {
                  /**
                   * The next valid sequence number for a given nonce key.
                   */
                  mapping(address => mapping(uint192 => uint256)) public nonceSequenceNumber;
                  function getNonce(address sender, uint192 key)
                  public view override returns (uint256 nonce) {
                      return nonceSequenceNumber[sender][key] | (uint256(key) << 64);
                  }
                  // allow an account to manually increment its own nonce.
                  // (mainly so that during construction nonce can be made non-zero,
                  // to "absorb" the gas cost of first nonce increment to 1st transaction (construction),
                  // not to 2nd transaction)
                  function incrementNonce(uint192 key) public override {
                      nonceSequenceNumber[msg.sender][key]++;
                  }
                  /**
                   * validate nonce uniqueness for this account.
                   * called just after validateUserOp()
                   */
                  function _validateAndUpdateNonce(address sender, uint256 nonce) internal returns (bool) {
                      uint192 key = uint192(nonce >> 64);
                      uint64 seq = uint64(nonce);
                      return nonceSequenceNumber[sender][key]++ == seq;
                  }
              }
              // SPDX-License-Identifier: GPL-3.0
              pragma solidity ^0.8.12;
              /**
               * helper contract for EntryPoint, to call userOp.initCode from a "neutral" address,
               * which is explicitly not the entryPoint itself.
               */
              contract SenderCreator {
                  /**
                   * call the "initCode" factory to create and return the sender account address
                   * @param initCode the initCode value from a UserOp. contains 20 bytes of factory address, followed by calldata
                   * @return sender the returned address of the created account, or zero address on failure.
                   */
                  function createSender(bytes calldata initCode) external returns (address sender) {
                      address factory = address(bytes20(initCode[0 : 20]));
                      bytes memory initCallData = initCode[20 :];
                      bool success;
                      /* solhint-disable no-inline-assembly */
                      assembly {
                          success := call(gas(), factory, 0, add(initCallData, 0x20), mload(initCallData), 0, 32)
                          sender := mload(0)
                      }
                      if (!success) {
                          sender = address(0);
                      }
                  }
              }
              // SPDX-License-Identifier: GPL-3.0-only
              pragma solidity ^0.8.12;
              import "../interfaces/IStakeManager.sol";
              /* solhint-disable avoid-low-level-calls */
              /* solhint-disable not-rely-on-time */
              /**
               * manage deposits and stakes.
               * deposit is just a balance used to pay for UserOperations (either by a paymaster or an account)
               * stake is value locked for at least "unstakeDelay" by a paymaster.
               */
              abstract contract StakeManager is IStakeManager {
                  /// maps paymaster to their deposits and stakes
                  mapping(address => DepositInfo) public deposits;
                  /// @inheritdoc IStakeManager
                  function getDepositInfo(address account) public view returns (DepositInfo memory info) {
                      return deposits[account];
                  }
                  // internal method to return just the stake info
                  function _getStakeInfo(address addr) internal view returns (StakeInfo memory info) {
                      DepositInfo storage depositInfo = deposits[addr];
                      info.stake = depositInfo.stake;
                      info.unstakeDelaySec = depositInfo.unstakeDelaySec;
                  }
                  /// return the deposit (for gas payment) of the account
                  function balanceOf(address account) public view returns (uint256) {
                      return deposits[account].deposit;
                  }
                  receive() external payable {
                      depositTo(msg.sender);
                  }
                  function _incrementDeposit(address account, uint256 amount) internal {
                      DepositInfo storage info = deposits[account];
                      uint256 newAmount = info.deposit + amount;
                      require(newAmount <= type(uint112).max, "deposit overflow");
                      info.deposit = uint112(newAmount);
                  }
                  /**
                   * add to the deposit of the given account
                   */
                  function depositTo(address account) public payable {
                      _incrementDeposit(account, msg.value);
                      DepositInfo storage info = deposits[account];
                      emit Deposited(account, info.deposit);
                  }
                  /**
                   * add to the account's stake - amount and delay
                   * any pending unstake is first cancelled.
                   * @param unstakeDelaySec the new lock duration before the deposit can be withdrawn.
                   */
                  function addStake(uint32 unstakeDelaySec) public payable {
                      DepositInfo storage info = deposits[msg.sender];
                      require(unstakeDelaySec > 0, "must specify unstake delay");
                      require(unstakeDelaySec >= info.unstakeDelaySec, "cannot decrease unstake time");
                      uint256 stake = info.stake + msg.value;
                      require(stake > 0, "no stake specified");
                      require(stake <= type(uint112).max, "stake overflow");
                      deposits[msg.sender] = DepositInfo(
                          info.deposit,
                          true,
                          uint112(stake),
                          unstakeDelaySec,
                          0
                      );
                      emit StakeLocked(msg.sender, stake, unstakeDelaySec);
                  }
                  /**
                   * attempt to unlock the stake.
                   * the value can be withdrawn (using withdrawStake) after the unstake delay.
                   */
                  function unlockStake() external {
                      DepositInfo storage info = deposits[msg.sender];
                      require(info.unstakeDelaySec != 0, "not staked");
                      require(info.staked, "already unstaking");
                      uint48 withdrawTime = uint48(block.timestamp) + info.unstakeDelaySec;
                      info.withdrawTime = withdrawTime;
                      info.staked = false;
                      emit StakeUnlocked(msg.sender, withdrawTime);
                  }
                  /**
                   * withdraw from the (unlocked) stake.
                   * must first call unlockStake and wait for the unstakeDelay to pass
                   * @param withdrawAddress the address to send withdrawn value.
                   */
                  function withdrawStake(address payable withdrawAddress) external {
                      DepositInfo storage info = deposits[msg.sender];
                      uint256 stake = info.stake;
                      require(stake > 0, "No stake to withdraw");
                      require(info.withdrawTime > 0, "must call unlockStake() first");
                      require(info.withdrawTime <= block.timestamp, "Stake withdrawal is not due");
                      info.unstakeDelaySec = 0;
                      info.withdrawTime = 0;
                      info.stake = 0;
                      emit StakeWithdrawn(msg.sender, withdrawAddress, stake);
                      (bool success,) = withdrawAddress.call{value : stake}("");
                      require(success, "failed to withdraw stake");
                  }
                  /**
                   * withdraw from the deposit.
                   * @param withdrawAddress the address to send withdrawn value.
                   * @param withdrawAmount the amount to withdraw.
                   */
                  function withdrawTo(address payable withdrawAddress, uint256 withdrawAmount) external {
                      DepositInfo storage info = deposits[msg.sender];
                      require(withdrawAmount <= info.deposit, "Withdraw amount too large");
                      info.deposit = uint112(info.deposit - withdrawAmount);
                      emit Withdrawn(msg.sender, withdrawAddress, withdrawAmount);
                      (bool success,) = withdrawAddress.call{value : withdrawAmount}("");
                      require(success, "failed to withdraw");
                  }
              }
              // SPDX-License-Identifier: GPL-3.0
              pragma solidity ^0.8.12;
              import "./UserOperation.sol";
              interface IAccount {
                  /**
                   * Validate user's signature and nonce
                   * the entryPoint will make the call to the recipient only if this validation call returns successfully.
                   * signature failure should be reported by returning SIG_VALIDATION_FAILED (1).
                   * This allows making a "simulation call" without a valid signature
                   * Other failures (e.g. nonce mismatch, or invalid signature format) should still revert to signal failure.
                   *
                   * @dev Must validate caller is the entryPoint.
                   *      Must validate the signature and nonce
                   * @param userOp the operation that is about to be executed.
                   * @param userOpHash hash of the user's request data. can be used as the basis for signature.
                   * @param missingAccountFunds missing funds on the account's deposit in the entrypoint.
                   *      This is the minimum amount to transfer to the sender(entryPoint) to be able to make the call.
                   *      The excess is left as a deposit in the entrypoint, for future calls.
                   *      can be withdrawn anytime using "entryPoint.withdrawTo()"
                   *      In case there is a paymaster in the request (or the current deposit is high enough), this value will be zero.
                   * @return validationData packaged ValidationData structure. use `_packValidationData` and `_unpackValidationData` to encode and decode
                   *      <20-byte> sigAuthorizer - 0 for valid signature, 1 to mark signature failure,
                   *         otherwise, an address of an "authorizer" contract.
                   *      <6-byte> validUntil - last timestamp this operation is valid. 0 for "indefinite"
                   *      <6-byte> validAfter - first timestamp this operation is valid
                   *      If an account doesn't use time-range, it is enough to return SIG_VALIDATION_FAILED value (1) for signature failure.
                   *      Note that the validation code cannot use block.timestamp (or block.number) directly.
                   */
                  function validateUserOp(UserOperation calldata userOp, bytes32 userOpHash, uint256 missingAccountFunds)
                  external returns (uint256 validationData);
              }
              // SPDX-License-Identifier: GPL-3.0
              pragma solidity ^0.8.12;
              import "./UserOperation.sol";
              /**
               * Aggregated Signatures validator.
               */
              interface IAggregator {
                  /**
                   * validate aggregated signature.
                   * revert if the aggregated signature does not match the given list of operations.
                   */
                  function validateSignatures(UserOperation[] calldata userOps, bytes calldata signature) external view;
                  /**
                   * validate signature of a single userOp
                   * This method is should be called by bundler after EntryPoint.simulateValidation() returns (reverts) with ValidationResultWithAggregation
                   * First it validates the signature over the userOp. Then it returns data to be used when creating the handleOps.
                   * @param userOp the userOperation received from the user.
                   * @return sigForUserOp the value to put into the signature field of the userOp when calling handleOps.
                   *    (usually empty, unless account and aggregator support some kind of "multisig"
                   */
                  function validateUserOpSignature(UserOperation calldata userOp)
                  external view returns (bytes memory sigForUserOp);
                  /**
                   * aggregate multiple signatures into a single value.
                   * This method is called off-chain to calculate the signature to pass with handleOps()
                   * bundler MAY use optimized custom code perform this aggregation
                   * @param userOps array of UserOperations to collect the signatures from.
                   * @return aggregatedSignature the aggregated signature
                   */
                  function aggregateSignatures(UserOperation[] calldata userOps) external view returns (bytes memory aggregatedSignature);
              }
              /**
               ** Account-Abstraction (EIP-4337) singleton EntryPoint implementation.
               ** Only one instance required on each chain.
               **/
              // SPDX-License-Identifier: GPL-3.0
              pragma solidity ^0.8.12;
              /* solhint-disable avoid-low-level-calls */
              /* solhint-disable no-inline-assembly */
              /* solhint-disable reason-string */
              import "./UserOperation.sol";
              import "./IStakeManager.sol";
              import "./IAggregator.sol";
              import "./INonceManager.sol";
              interface IEntryPoint is IStakeManager, INonceManager {
                  /***
                   * An event emitted after each successful request
                   * @param userOpHash - unique identifier for the request (hash its entire content, except signature).
                   * @param sender - the account that generates this request.
                   * @param paymaster - if non-null, the paymaster that pays for this request.
                   * @param nonce - the nonce value from the request.
                   * @param success - true if the sender transaction succeeded, false if reverted.
                   * @param actualGasCost - actual amount paid (by account or paymaster) for this UserOperation.
                   * @param actualGasUsed - total gas used by this UserOperation (including preVerification, creation, validation and execution).
                   */
                  event UserOperationEvent(bytes32 indexed userOpHash, address indexed sender, address indexed paymaster, uint256 nonce, bool success, uint256 actualGasCost, uint256 actualGasUsed);
                  /**
                   * account "sender" was deployed.
                   * @param userOpHash the userOp that deployed this account. UserOperationEvent will follow.
                   * @param sender the account that is deployed
                   * @param factory the factory used to deploy this account (in the initCode)
                   * @param paymaster the paymaster used by this UserOp
                   */
                  event AccountDeployed(bytes32 indexed userOpHash, address indexed sender, address factory, address paymaster);
                  /**
                   * An event emitted if the UserOperation "callData" reverted with non-zero length
                   * @param userOpHash the request unique identifier.
                   * @param sender the sender of this request
                   * @param nonce the nonce used in the request
                   * @param revertReason - the return bytes from the (reverted) call to "callData".
                   */
                  event UserOperationRevertReason(bytes32 indexed userOpHash, address indexed sender, uint256 nonce, bytes revertReason);
                  /**
                   * an event emitted by handleOps(), before starting the execution loop.
                   * any event emitted before this event, is part of the validation.
                   */
                  event BeforeExecution();
                  /**
                   * signature aggregator used by the following UserOperationEvents within this bundle.
                   */
                  event SignatureAggregatorChanged(address indexed aggregator);
                  /**
                   * a custom revert error of handleOps, to identify the offending op.
                   *  NOTE: if simulateValidation passes successfully, there should be no reason for handleOps to fail on it.
                   *  @param opIndex - index into the array of ops to the failed one (in simulateValidation, this is always zero)
                   *  @param reason - revert reason
                   *      The string starts with a unique code "AAmn", where "m" is "1" for factory, "2" for account and "3" for paymaster issues,
                   *      so a failure can be attributed to the correct entity.
                   *   Should be caught in off-chain handleOps simulation and not happen on-chain.
                   *   Useful for mitigating DoS attempts against batchers or for troubleshooting of factory/account/paymaster reverts.
                   */
                  error FailedOp(uint256 opIndex, string reason);
                  /**
                   * error case when a signature aggregator fails to verify the aggregated signature it had created.
                   */
                  error SignatureValidationFailed(address aggregator);
                  /**
                   * Successful result from simulateValidation.
                   * @param returnInfo gas and time-range returned values
                   * @param senderInfo stake information about the sender
                   * @param factoryInfo stake information about the factory (if any)
                   * @param paymasterInfo stake information about the paymaster (if any)
                   */
                  error ValidationResult(ReturnInfo returnInfo,
                      StakeInfo senderInfo, StakeInfo factoryInfo, StakeInfo paymasterInfo);
                  /**
                   * Successful result from simulateValidation, if the account returns a signature aggregator
                   * @param returnInfo gas and time-range returned values
                   * @param senderInfo stake information about the sender
                   * @param factoryInfo stake information about the factory (if any)
                   * @param paymasterInfo stake information about the paymaster (if any)
                   * @param aggregatorInfo signature aggregation info (if the account requires signature aggregator)
                   *      bundler MUST use it to verify the signature, or reject the UserOperation
                   */
                  error ValidationResultWithAggregation(ReturnInfo returnInfo,
                      StakeInfo senderInfo, StakeInfo factoryInfo, StakeInfo paymasterInfo,
                      AggregatorStakeInfo aggregatorInfo);
                  /**
                   * return value of getSenderAddress
                   */
                  error SenderAddressResult(address sender);
                  /**
                   * return value of simulateHandleOp
                   */
                  error ExecutionResult(uint256 preOpGas, uint256 paid, uint48 validAfter, uint48 validUntil, bool targetSuccess, bytes targetResult);
                  //UserOps handled, per aggregator
                  struct UserOpsPerAggregator {
                      UserOperation[] userOps;
                      // aggregator address
                      IAggregator aggregator;
                      // aggregated signature
                      bytes signature;
                  }
                  /**
                   * Execute a batch of UserOperation.
                   * no signature aggregator is used.
                   * if any account requires an aggregator (that is, it returned an aggregator when
                   * performing simulateValidation), then handleAggregatedOps() must be used instead.
                   * @param ops the operations to execute
                   * @param beneficiary the address to receive the fees
                   */
                  function handleOps(UserOperation[] calldata ops, address payable beneficiary) external;
                  /**
                   * Execute a batch of UserOperation with Aggregators
                   * @param opsPerAggregator the operations to execute, grouped by aggregator (or address(0) for no-aggregator accounts)
                   * @param beneficiary the address to receive the fees
                   */
                  function handleAggregatedOps(
                      UserOpsPerAggregator[] calldata opsPerAggregator,
                      address payable beneficiary
                  ) external;
                  /**
                   * generate a request Id - unique identifier for this request.
                   * the request ID is a hash over the content of the userOp (except the signature), the entrypoint and the chainid.
                   */
                  function getUserOpHash(UserOperation calldata userOp) external view returns (bytes32);
                  /**
                   * Simulate a call to account.validateUserOp and paymaster.validatePaymasterUserOp.
                   * @dev this method always revert. Successful result is ValidationResult error. other errors are failures.
                   * @dev The node must also verify it doesn't use banned opcodes, and that it doesn't reference storage outside the account's data.
                   * @param userOp the user operation to validate.
                   */
                  function simulateValidation(UserOperation calldata userOp) external;
                  /**
                   * gas and return values during simulation
                   * @param preOpGas the gas used for validation (including preValidationGas)
                   * @param prefund the required prefund for this operation
                   * @param sigFailed validateUserOp's (or paymaster's) signature check failed
                   * @param validAfter - first timestamp this UserOp is valid (merging account and paymaster time-range)
                   * @param validUntil - last timestamp this UserOp is valid (merging account and paymaster time-range)
                   * @param paymasterContext returned by validatePaymasterUserOp (to be passed into postOp)
                   */
                  struct ReturnInfo {
                      uint256 preOpGas;
                      uint256 prefund;
                      bool sigFailed;
                      uint48 validAfter;
                      uint48 validUntil;
                      bytes paymasterContext;
                  }
                  /**
                   * returned aggregated signature info.
                   * the aggregator returned by the account, and its current stake.
                   */
                  struct AggregatorStakeInfo {
                      address aggregator;
                      StakeInfo stakeInfo;
                  }
                  /**
                   * Get counterfactual sender address.
                   *  Calculate the sender contract address that will be generated by the initCode and salt in the UserOperation.
                   * this method always revert, and returns the address in SenderAddressResult error
                   * @param initCode the constructor code to be passed into the UserOperation.
                   */
                  function getSenderAddress(bytes memory initCode) external;
                  /**
                   * simulate full execution of a UserOperation (including both validation and target execution)
                   * this method will always revert with "ExecutionResult".
                   * it performs full validation of the UserOperation, but ignores signature error.
                   * an optional target address is called after the userop succeeds, and its value is returned
                   * (before the entire call is reverted)
                   * Note that in order to collect the the success/failure of the target call, it must be executed
                   * with trace enabled to track the emitted events.
                   * @param op the UserOperation to simulate
                   * @param target if nonzero, a target address to call after userop simulation. If called, the targetSuccess and targetResult
                   *        are set to the return from that call.
                   * @param targetCallData callData to pass to target address
                   */
                  function simulateHandleOp(UserOperation calldata op, address target, bytes calldata targetCallData) external;
              }
              // SPDX-License-Identifier: GPL-3.0
              pragma solidity ^0.8.12;
              interface INonceManager {
                  /**
                   * Return the next nonce for this sender.
                   * Within a given key, the nonce values are sequenced (starting with zero, and incremented by one on each userop)
                   * But UserOp with different keys can come with arbitrary order.
                   *
                   * @param sender the account address
                   * @param key the high 192 bit of the nonce
                   * @return nonce a full nonce to pass for next UserOp with this sender.
                   */
                  function getNonce(address sender, uint192 key)
                  external view returns (uint256 nonce);
                  /**
                   * Manually increment the nonce of the sender.
                   * This method is exposed just for completeness..
                   * Account does NOT need to call it, neither during validation, nor elsewhere,
                   * as the EntryPoint will update the nonce regardless.
                   * Possible use-case is call it with various keys to "initialize" their nonces to one, so that future
                   * UserOperations will not pay extra for the first transaction with a given key.
                   */
                  function incrementNonce(uint192 key) external;
              }
              // SPDX-License-Identifier: GPL-3.0
              pragma solidity ^0.8.12;
              import "./UserOperation.sol";
              /**
               * the interface exposed by a paymaster contract, who agrees to pay the gas for user's operations.
               * a paymaster must hold a stake to cover the required entrypoint stake and also the gas for the transaction.
               */
              interface IPaymaster {
                  enum PostOpMode {
                      opSucceeded, // user op succeeded
                      opReverted, // user op reverted. still has to pay for gas.
                      postOpReverted //user op succeeded, but caused postOp to revert. Now it's a 2nd call, after user's op was deliberately reverted.
                  }
                  /**
                   * payment validation: check if paymaster agrees to pay.
                   * Must verify sender is the entryPoint.
                   * Revert to reject this request.
                   * Note that bundlers will reject this method if it changes the state, unless the paymaster is trusted (whitelisted)
                   * The paymaster pre-pays using its deposit, and receive back a refund after the postOp method returns.
                   * @param userOp the user operation
                   * @param userOpHash hash of the user's request data.
                   * @param maxCost the maximum cost of this transaction (based on maximum gas and gas price from userOp)
                   * @return context value to send to a postOp
                   *      zero length to signify postOp is not required.
                   * @return validationData signature and time-range of this operation, encoded the same as the return value of validateUserOperation
                   *      <20-byte> sigAuthorizer - 0 for valid signature, 1 to mark signature failure,
                   *         otherwise, an address of an "authorizer" contract.
                   *      <6-byte> validUntil - last timestamp this operation is valid. 0 for "indefinite"
                   *      <6-byte> validAfter - first timestamp this operation is valid
                   *      Note that the validation code cannot use block.timestamp (or block.number) directly.
                   */
                  function validatePaymasterUserOp(UserOperation calldata userOp, bytes32 userOpHash, uint256 maxCost)
                  external returns (bytes memory context, uint256 validationData);
                  /**
                   * post-operation handler.
                   * Must verify sender is the entryPoint
                   * @param mode enum with the following options:
                   *      opSucceeded - user operation succeeded.
                   *      opReverted  - user op reverted. still has to pay for gas.
                   *      postOpReverted - user op succeeded, but caused postOp (in mode=opSucceeded) to revert.
                   *                       Now this is the 2nd call, after user's op was deliberately reverted.
                   * @param context - the context value returned by validatePaymasterUserOp
                   * @param actualGasCost - actual gas used so far (without this postOp call).
                   */
                  function postOp(PostOpMode mode, bytes calldata context, uint256 actualGasCost) external;
              }
              // SPDX-License-Identifier: GPL-3.0-only
              pragma solidity ^0.8.12;
              /**
               * manage deposits and stakes.
               * deposit is just a balance used to pay for UserOperations (either by a paymaster or an account)
               * stake is value locked for at least "unstakeDelay" by the staked entity.
               */
              interface IStakeManager {
                  event Deposited(
                      address indexed account,
                      uint256 totalDeposit
                  );
                  event Withdrawn(
                      address indexed account,
                      address withdrawAddress,
                      uint256 amount
                  );
                  /// Emitted when stake or unstake delay are modified
                  event StakeLocked(
                      address indexed account,
                      uint256 totalStaked,
                      uint256 unstakeDelaySec
                  );
                  /// Emitted once a stake is scheduled for withdrawal
                  event StakeUnlocked(
                      address indexed account,
                      uint256 withdrawTime
                  );
                  event StakeWithdrawn(
                      address indexed account,
                      address withdrawAddress,
                      uint256 amount
                  );
                  /**
                   * @param deposit the entity's deposit
                   * @param staked true if this entity is staked.
                   * @param stake actual amount of ether staked for this entity.
                   * @param unstakeDelaySec minimum delay to withdraw the stake.
                   * @param withdrawTime - first block timestamp where 'withdrawStake' will be callable, or zero if already locked
                   * @dev sizes were chosen so that (deposit,staked, stake) fit into one cell (used during handleOps)
                   *    and the rest fit into a 2nd cell.
                   *    112 bit allows for 10^15 eth
                   *    48 bit for full timestamp
                   *    32 bit allows 150 years for unstake delay
                   */
                  struct DepositInfo {
                      uint112 deposit;
                      bool staked;
                      uint112 stake;
                      uint32 unstakeDelaySec;
                      uint48 withdrawTime;
                  }
                  //API struct used by getStakeInfo and simulateValidation
                  struct StakeInfo {
                      uint256 stake;
                      uint256 unstakeDelaySec;
                  }
                  /// @return info - full deposit information of given account
                  function getDepositInfo(address account) external view returns (DepositInfo memory info);
                  /// @return the deposit (for gas payment) of the account
                  function balanceOf(address account) external view returns (uint256);
                  /**
                   * add to the deposit of the given account
                   */
                  function depositTo(address account) external payable;
                  /**
                   * add to the account's stake - amount and delay
                   * any pending unstake is first cancelled.
                   * @param _unstakeDelaySec the new lock duration before the deposit can be withdrawn.
                   */
                  function addStake(uint32 _unstakeDelaySec) external payable;
                  /**
                   * attempt to unlock the stake.
                   * the value can be withdrawn (using withdrawStake) after the unstake delay.
                   */
                  function unlockStake() external;
                  /**
                   * withdraw from the (unlocked) stake.
                   * must first call unlockStake and wait for the unstakeDelay to pass
                   * @param withdrawAddress the address to send withdrawn value.
                   */
                  function withdrawStake(address payable withdrawAddress) external;
                  /**
                   * withdraw from the deposit.
                   * @param withdrawAddress the address to send withdrawn value.
                   * @param withdrawAmount the amount to withdraw.
                   */
                  function withdrawTo(address payable withdrawAddress, uint256 withdrawAmount) external;
              }
              // SPDX-License-Identifier: GPL-3.0
              pragma solidity ^0.8.12;
              /* solhint-disable no-inline-assembly */
              import {calldataKeccak} from "../core/Helpers.sol";
              /**
               * User Operation struct
               * @param sender the sender account of this request.
                   * @param nonce unique value the sender uses to verify it is not a replay.
                   * @param initCode if set, the account contract will be created by this constructor/
                   * @param callData the method call to execute on this account.
                   * @param callGasLimit the gas limit passed to the callData method call.
                   * @param verificationGasLimit gas used for validateUserOp and validatePaymasterUserOp.
                   * @param preVerificationGas gas not calculated by the handleOps method, but added to the gas paid. Covers batch overhead.
                   * @param maxFeePerGas same as EIP-1559 gas parameter.
                   * @param maxPriorityFeePerGas same as EIP-1559 gas parameter.
                   * @param paymasterAndData if set, this field holds the paymaster address and paymaster-specific data. the paymaster will pay for the transaction instead of the sender.
                   * @param signature sender-verified signature over the entire request, the EntryPoint address and the chain ID.
                   */
                  struct UserOperation {
                      address sender;
                      uint256 nonce;
                      bytes initCode;
                      bytes callData;
                      uint256 callGasLimit;
                      uint256 verificationGasLimit;
                      uint256 preVerificationGas;
                      uint256 maxFeePerGas;
                      uint256 maxPriorityFeePerGas;
                      bytes paymasterAndData;
                      bytes signature;
                  }
              /**
               * Utility functions helpful when working with UserOperation structs.
               */
              library UserOperationLib {
                  function getSender(UserOperation calldata userOp) internal pure returns (address) {
                      address data;
                      //read sender from userOp, which is first userOp member (saves 800 gas...)
                      assembly {data := calldataload(userOp)}
                      return address(uint160(data));
                  }
                  //relayer/block builder might submit the TX with higher priorityFee, but the user should not
                  // pay above what he signed for.
                  function gasPrice(UserOperation calldata userOp) internal view returns (uint256) {
                  unchecked {
                      uint256 maxFeePerGas = userOp.maxFeePerGas;
                      uint256 maxPriorityFeePerGas = userOp.maxPriorityFeePerGas;
                      if (maxFeePerGas == maxPriorityFeePerGas) {
                          //legacy mode (for networks that don't support basefee opcode)
                          return maxFeePerGas;
                      }
                      return min(maxFeePerGas, maxPriorityFeePerGas + block.basefee);
                  }
                  }
                  function pack(UserOperation calldata userOp) internal pure returns (bytes memory ret) {
                      address sender = getSender(userOp);
                      uint256 nonce = userOp.nonce;
                      bytes32 hashInitCode = calldataKeccak(userOp.initCode);
                      bytes32 hashCallData = calldataKeccak(userOp.callData);
                      uint256 callGasLimit = userOp.callGasLimit;
                      uint256 verificationGasLimit = userOp.verificationGasLimit;
                      uint256 preVerificationGas = userOp.preVerificationGas;
                      uint256 maxFeePerGas = userOp.maxFeePerGas;
                      uint256 maxPriorityFeePerGas = userOp.maxPriorityFeePerGas;
                      bytes32 hashPaymasterAndData = calldataKeccak(userOp.paymasterAndData);
                      return abi.encode(
                          sender, nonce,
                          hashInitCode, hashCallData,
                          callGasLimit, verificationGasLimit, preVerificationGas,
                          maxFeePerGas, maxPriorityFeePerGas,
                          hashPaymasterAndData
                      );
                  }
                  function hash(UserOperation calldata userOp) internal pure returns (bytes32) {
                      return keccak256(pack(userOp));
                  }
                  function min(uint256 a, uint256 b) internal pure returns (uint256) {
                      return a < b ? a : b;
                  }
              }
              // SPDX-License-Identifier: LGPL-3.0-only
              pragma solidity >=0.7.5 <0.9.0;
              // solhint-disable no-inline-assembly
              /**
               * Utility functions helpful when making different kinds of contract calls in Solidity.
               */
              library Exec {
                  function call(
                      address to,
                      uint256 value,
                      bytes memory data,
                      uint256 txGas
                  ) internal returns (bool success) {
                      assembly {
                          success := call(txGas, to, value, add(data, 0x20), mload(data), 0, 0)
                      }
                  }
                  function staticcall(
                      address to,
                      bytes memory data,
                      uint256 txGas
                  ) internal view returns (bool success) {
                      assembly {
                          success := staticcall(txGas, to, add(data, 0x20), mload(data), 0, 0)
                      }
                  }
                  function delegateCall(
                      address to,
                      bytes memory data,
                      uint256 txGas
                  ) internal returns (bool success) {
                      assembly {
                          success := delegatecall(txGas, to, add(data, 0x20), mload(data), 0, 0)
                      }
                  }
                  // get returned data from last call or calldelegate
                  function getReturnData(uint256 maxLen) internal pure returns (bytes memory returnData) {
                      assembly {
                          let len := returndatasize()
                          if gt(len, maxLen) {
                              len := maxLen
                          }
                          let ptr := mload(0x40)
                          mstore(0x40, add(ptr, add(len, 0x20)))
                          mstore(ptr, len)
                          returndatacopy(add(ptr, 0x20), 0, len)
                          returnData := ptr
                      }
                  }
                  // revert with explicit byte array (probably reverted info from call)
                  function revertWithData(bytes memory returnData) internal pure {
                      assembly {
                          revert(add(returnData, 32), mload(returnData))
                      }
                  }
                  function callAndRevert(address to, bytes memory data, uint256 maxLen) internal {
                      bool success = call(to,0,data,gasleft());
                      if (!success) {
                          revertWithData(getReturnData(maxLen));
                      }
                  }
              }
              

              File 2 of 2: CoinbaseSmartWallet
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.23;
              import {IAccount} from "account-abstraction/interfaces/IAccount.sol";
              import {UserOperation, UserOperationLib} from "account-abstraction/interfaces/UserOperation.sol";
              import {Receiver} from "solady/accounts/Receiver.sol";
              import {SignatureCheckerLib} from "solady/utils/SignatureCheckerLib.sol";
              import {UUPSUpgradeable} from "solady/utils/UUPSUpgradeable.sol";
              import {WebAuthn} from "webauthn-sol/WebAuthn.sol";
              import {ERC1271} from "./ERC1271.sol";
              import {MultiOwnable} from "./MultiOwnable.sol";
              /// @title Coinbase Smart Wallet
              ///
              /// @notice ERC-4337-compatible smart account, based on Solady's ERC4337 account implementation
              ///         with inspiration from Alchemy's LightAccount and Daimo's DaimoAccount. Verified by z0r0z.eth from (⌘) NANI.eth
              ///
              /// @author Coinbase (https://github.com/coinbase/smart-wallet)
              /// @author Solady (https://github.com/vectorized/solady/blob/main/src/accounts/ERC4337.sol)
              contract CoinbaseSmartWallet is ERC1271, IAccount, MultiOwnable, UUPSUpgradeable, Receiver {
                  /// @notice A wrapper struct used for signature validation so that callers
                  ///         can identify the owner that signed.
                  struct SignatureWrapper {
                      /// @dev The index of the owner that signed, see `MultiOwnable.ownerAtIndex`
                      uint256 ownerIndex;
                      /// @dev If `MultiOwnable.ownerAtIndex` is an Ethereum address, this should be `abi.encodePacked(r, s, v)`
                      ///      If `MultiOwnable.ownerAtIndex` is a public key, this should be `abi.encode(WebAuthnAuth)`.
                      bytes signatureData;
                  }
                  /// @notice Represents a call to make.
                  struct Call {
                      /// @dev The address to call.
                      address target;
                      /// @dev The value to send when making the call.
                      uint256 value;
                      /// @dev The data of the call.
                      bytes data;
                  }
                  /// @notice Reserved nonce key (upper 192 bits of `UserOperation.nonce`) for cross-chain replayable
                  ///         transactions.
                  ///
                  /// @dev MUST BE the `UserOperation.nonce` key when `UserOperation.calldata` is calling
                  ///      `executeWithoutChainIdValidation`and MUST NOT BE `UserOperation.nonce` key when `UserOperation.calldata` is
                  ///      NOT calling `executeWithoutChainIdValidation`.
                  ///
                  /// @dev Helps enforce sequential sequencing of replayable transactions.
                  uint256 public constant REPLAYABLE_NONCE_KEY = 8453;
                  /// @notice Thrown when `initialize` is called but the account already has had at least one owner.
                  error Initialized();
                  /// @notice Thrown when a call is passed to `executeWithoutChainIdValidation` that is not allowed by
                  ///         `canSkipChainIdValidation`
                  ///
                  /// @param selector The selector of the call.
                  error SelectorNotAllowed(bytes4 selector);
                  /// @notice Thrown in validateUserOp if the key of `UserOperation.nonce` does not match the calldata.
                  ///
                  /// @dev Calls to `this.executeWithoutChainIdValidation` MUST use `REPLAYABLE_NONCE_KEY` and
                  ///      calls NOT to `this.executeWithoutChainIdValidation` MUST NOT use `REPLAYABLE_NONCE_KEY`.
                  ///
                  /// @param key The invalid `UserOperation.nonce` key.
                  error InvalidNonceKey(uint256 key);
                  /// @notice Reverts if the caller is not the EntryPoint.
                  modifier onlyEntryPoint() virtual {
                      if (msg.sender != entryPoint()) {
                          revert Unauthorized();
                      }
                      _;
                  }
                  /// @notice Reverts if the caller is neither the EntryPoint, the owner, nor the account itself.
                  modifier onlyEntryPointOrOwner() virtual {
                      if (msg.sender != entryPoint()) {
                          _checkOwner();
                      }
                      _;
                  }
                  /// @notice Sends to the EntryPoint (i.e. `msg.sender`) the missing funds for this transaction.
                  ///
                  /// @dev Subclass MAY override this modifier for better funds management (e.g. send to the
                  ///      EntryPoint more than the minimum required, so that in future transactions it will not
                  ///      be required to send again).
                  ///
                  /// @param missingAccountFunds The minimum value this modifier should send the EntryPoint which
                  ///                            MAY be zero, in case there is enough deposit, or the userOp has a
                  ///                            paymaster.
                  modifier payPrefund(uint256 missingAccountFunds) virtual {
                      _;
                      assembly ("memory-safe") {
                          if missingAccountFunds {
                              // Ignore failure (it's EntryPoint's job to verify, not the account's).
                              pop(call(gas(), caller(), missingAccountFunds, codesize(), 0x00, codesize(), 0x00))
                          }
                      }
                  }
                  constructor() {
                      // Implementation should not be initializable (does not affect proxies which use their own storage).
                      bytes[] memory owners = new bytes[](1);
                      owners[0] = abi.encode(address(0));
                      _initializeOwners(owners);
                  }
                  /// @notice Initializes the account with the `owners`.
                  ///
                  /// @dev Reverts if the account has had at least one owner, i.e. has been initialized.
                  ///
                  /// @param owners Array of initial owners for this account. Each item should be
                  ///               an ABI encoded Ethereum address, i.e. 32 bytes with 12 leading 0 bytes,
                  ///               or a 64 byte public key.
                  function initialize(bytes[] calldata owners) external payable virtual {
                      if (nextOwnerIndex() != 0) {
                          revert Initialized();
                      }
                      _initializeOwners(owners);
                  }
                  /// @inheritdoc IAccount
                  ///
                  /// @notice ERC-4337 `validateUserOp` method. The EntryPoint will
                  ///         call `UserOperation.sender.call(UserOperation.callData)` only if this validation call returns
                  ///         successfully.
                  ///
                  /// @dev Signature failure should be reported by returning 1 (see: `this._isValidSignature`). This
                  ///      allows making a "simulation call" without a valid signature. Other failures (e.g. invalid signature format)
                  ///      should still revert to signal failure.
                  /// @dev Reverts if the `UserOperation.nonce` key is invalid for `UserOperation.calldata`.
                  /// @dev Reverts if the signature format is incorrect or invalid for owner type.
                  ///
                  /// @param userOp              The `UserOperation` to validate.
                  /// @param userOpHash          The `UserOperation` hash, as computed by `EntryPoint.getUserOpHash(UserOperation)`.
                  /// @param missingAccountFunds The missing account funds that must be deposited on the Entrypoint.
                  ///
                  /// @return validationData The encoded `ValidationData` structure:
                  ///                        `(uint256(validAfter) << (160 + 48)) | (uint256(validUntil) << 160) | (success ? 0 : 1)`
                  ///                        where `validUntil` is 0 (indefinite) and `validAfter` is 0.
                  function validateUserOp(UserOperation calldata userOp, bytes32 userOpHash, uint256 missingAccountFunds)
                      external
                      virtual
                      onlyEntryPoint
                      payPrefund(missingAccountFunds)
                      returns (uint256 validationData)
                  {
                      uint256 key = userOp.nonce >> 64;
                      if (bytes4(userOp.callData) == this.executeWithoutChainIdValidation.selector) {
                          userOpHash = getUserOpHashWithoutChainId(userOp);
                          if (key != REPLAYABLE_NONCE_KEY) {
                              revert InvalidNonceKey(key);
                          }
                      } else {
                          if (key == REPLAYABLE_NONCE_KEY) {
                              revert InvalidNonceKey(key);
                          }
                      }
                      // Return 0 if the recovered address matches the owner.
                      if (_isValidSignature(userOpHash, userOp.signature)) {
                          return 0;
                      }
                      // Else return 1
                      return 1;
                  }
                  /// @notice Executes `calls` on this account (i.e. self call).
                  ///
                  /// @dev Can only be called by the Entrypoint.
                  /// @dev Reverts if the given call is not authorized to skip the chain ID validtion.
                  /// @dev `validateUserOp()` will recompute the `userOpHash` without the chain ID before validating
                  ///      it if the `UserOperation.calldata` is calling this function. This allows certain UserOperations
                  ///      to be replayed for all accounts sharing the same address across chains. E.g. This may be
                  ///      useful for syncing owner changes.
                  ///
                  /// @param calls An array of calldata to use for separate self calls.
                  function executeWithoutChainIdValidation(bytes[] calldata calls) external payable virtual onlyEntryPoint {
                      for (uint256 i; i < calls.length; i++) {
                          bytes calldata call = calls[i];
                          bytes4 selector = bytes4(call);
                          if (!canSkipChainIdValidation(selector)) {
                              revert SelectorNotAllowed(selector);
                          }
                          _call(address(this), 0, call);
                      }
                  }
                  /// @notice Executes the given call from this account.
                  ///
                  /// @dev Can only be called by the Entrypoint or an owner of this account (including itself).
                  ///
                  /// @param target The address to call.
                  /// @param value  The value to send with the call.
                  /// @param data   The data of the call.
                  function execute(address target, uint256 value, bytes calldata data)
                      external
                      payable
                      virtual
                      onlyEntryPointOrOwner
                  {
                      _call(target, value, data);
                  }
                  /// @notice Executes batch of `Call`s.
                  ///
                  /// @dev Can only be called by the Entrypoint or an owner of this account (including itself).
                  ///
                  /// @param calls The list of `Call`s to execute.
                  function executeBatch(Call[] calldata calls) external payable virtual onlyEntryPointOrOwner {
                      for (uint256 i; i < calls.length; i++) {
                          _call(calls[i].target, calls[i].value, calls[i].data);
                      }
                  }
                  /// @notice Returns the address of the EntryPoint v0.6.
                  ///
                  /// @return The address of the EntryPoint v0.6
                  function entryPoint() public view virtual returns (address) {
                      return 0x5FF137D4b0FDCD49DcA30c7CF57E578a026d2789;
                  }
                  /// @notice Computes the hash of the `UserOperation` in the same way as EntryPoint v0.6, but
                  ///         leaves out the chain ID.
                  ///
                  /// @dev This allows accounts to sign a hash that can be used on many chains.
                  ///
                  /// @param userOp The `UserOperation` to compute the hash for.
                  ///
                  /// @return The `UserOperation` hash, which does not depend on chain ID.
                  function getUserOpHashWithoutChainId(UserOperation calldata userOp) public view virtual returns (bytes32) {
                      return keccak256(abi.encode(UserOperationLib.hash(userOp), entryPoint()));
                  }
                  /// @notice Returns the implementation of the ERC1967 proxy.
                  ///
                  /// @return $ The address of implementation contract.
                  function implementation() public view returns (address $) {
                      assembly {
                          $ := sload(_ERC1967_IMPLEMENTATION_SLOT)
                      }
                  }
                  /// @notice Returns whether `functionSelector` can be called in `executeWithoutChainIdValidation`.
                  ///
                  /// @param functionSelector The function selector to check.
                  ////
                  /// @return `true` is the function selector is allowed to skip the chain ID validation, else `false`.
                  function canSkipChainIdValidation(bytes4 functionSelector) public pure returns (bool) {
                      if (
                          functionSelector == MultiOwnable.addOwnerPublicKey.selector
                              || functionSelector == MultiOwnable.addOwnerAddress.selector
                              || functionSelector == MultiOwnable.removeOwnerAtIndex.selector
                              || functionSelector == MultiOwnable.removeLastOwner.selector
                              || functionSelector == UUPSUpgradeable.upgradeToAndCall.selector
                      ) {
                          return true;
                      }
                      return false;
                  }
                  /// @notice Executes the given call from this account.
                  ///
                  /// @dev Reverts if the call reverted.
                  /// @dev Implementation taken from
                  /// https://github.com/alchemyplatform/light-account/blob/43f625afdda544d5e5af9c370c9f4be0943e4e90/src/common/BaseLightAccount.sol#L125
                  ///
                  /// @param target The target call address.
                  /// @param value  The call value to user.
                  /// @param data   The raw call data.
                  function _call(address target, uint256 value, bytes memory data) internal {
                      (bool success, bytes memory result) = target.call{value: value}(data);
                      if (!success) {
                          assembly ("memory-safe") {
                              revert(add(result, 32), mload(result))
                          }
                      }
                  }
                  /// @inheritdoc ERC1271
                  ///
                  /// @dev Used by both `ERC1271.isValidSignature` AND `IAccount.validateUserOp` signature validation.
                  /// @dev Reverts if owner at `ownerIndex` is not compatible with `signature` format.
                  ///
                  /// @param signature ABI encoded `SignatureWrapper`.
                  function _isValidSignature(bytes32 hash, bytes calldata signature) internal view virtual override returns (bool) {
                      SignatureWrapper memory sigWrapper = abi.decode(signature, (SignatureWrapper));
                      bytes memory ownerBytes = ownerAtIndex(sigWrapper.ownerIndex);
                      if (ownerBytes.length == 32) {
                          if (uint256(bytes32(ownerBytes)) > type(uint160).max) {
                              // technically should be impossible given owners can only be added with
                              // addOwnerAddress and addOwnerPublicKey, but we leave incase of future changes.
                              revert InvalidEthereumAddressOwner(ownerBytes);
                          }
                          address owner;
                          assembly ("memory-safe") {
                              owner := mload(add(ownerBytes, 32))
                          }
                          return SignatureCheckerLib.isValidSignatureNow(owner, hash, sigWrapper.signatureData);
                      }
                      if (ownerBytes.length == 64) {
                          (uint256 x, uint256 y) = abi.decode(ownerBytes, (uint256, uint256));
                          WebAuthn.WebAuthnAuth memory auth = abi.decode(sigWrapper.signatureData, (WebAuthn.WebAuthnAuth));
                          return WebAuthn.verify({challenge: abi.encode(hash), requireUV: false, webAuthnAuth: auth, x: x, y: y});
                      }
                      revert InvalidOwnerBytesLength(ownerBytes);
                  }
                  /// @inheritdoc UUPSUpgradeable
                  ///
                  /// @dev Authorization logic is only based on the `msg.sender` being an owner of this account,
                  ///      or `address(this)`.
                  function _authorizeUpgrade(address) internal view virtual override(UUPSUpgradeable) onlyOwner {}
                  /// @inheritdoc ERC1271
                  function _domainNameAndVersion() internal pure override(ERC1271) returns (string memory, string memory) {
                      return ("Coinbase Smart Wallet", "1");
                  }
              }
              // SPDX-License-Identifier: GPL-3.0
              pragma solidity ^0.8.12;
              import "./UserOperation.sol";
              interface IAccount {
                  /**
                   * Validate user's signature and nonce
                   * the entryPoint will make the call to the recipient only if this validation call returns successfully.
                   * signature failure should be reported by returning SIG_VALIDATION_FAILED (1).
                   * This allows making a "simulation call" without a valid signature
                   * Other failures (e.g. nonce mismatch, or invalid signature format) should still revert to signal failure.
                   *
                   * @dev Must validate caller is the entryPoint.
                   *      Must validate the signature and nonce
                   * @param userOp the operation that is about to be executed.
                   * @param userOpHash hash of the user's request data. can be used as the basis for signature.
                   * @param missingAccountFunds missing funds on the account's deposit in the entrypoint.
                   *      This is the minimum amount to transfer to the sender(entryPoint) to be able to make the call.
                   *      The excess is left as a deposit in the entrypoint, for future calls.
                   *      can be withdrawn anytime using "entryPoint.withdrawTo()"
                   *      In case there is a paymaster in the request (or the current deposit is high enough), this value will be zero.
                   * @return validationData packaged ValidationData structure. use `_packValidationData` and `_unpackValidationData` to encode and decode
                   *      <20-byte> sigAuthorizer - 0 for valid signature, 1 to mark signature failure,
                   *         otherwise, an address of an "authorizer" contract.
                   *      <6-byte> validUntil - last timestamp this operation is valid. 0 for "indefinite"
                   *      <6-byte> validAfter - first timestamp this operation is valid
                   *      If an account doesn't use time-range, it is enough to return SIG_VALIDATION_FAILED value (1) for signature failure.
                   *      Note that the validation code cannot use block.timestamp (or block.number) directly.
                   */
                  function validateUserOp(UserOperation calldata userOp, bytes32 userOpHash, uint256 missingAccountFunds)
                  external returns (uint256 validationData);
              }
              // SPDX-License-Identifier: GPL-3.0
              pragma solidity ^0.8.12;
              /* solhint-disable no-inline-assembly */
              import {calldataKeccak} from "../core/Helpers.sol";
              /**
               * User Operation struct
               * @param sender the sender account of this request.
                   * @param nonce unique value the sender uses to verify it is not a replay.
                   * @param initCode if set, the account contract will be created by this constructor/
                   * @param callData the method call to execute on this account.
                   * @param callGasLimit the gas limit passed to the callData method call.
                   * @param verificationGasLimit gas used for validateUserOp and validatePaymasterUserOp.
                   * @param preVerificationGas gas not calculated by the handleOps method, but added to the gas paid. Covers batch overhead.
                   * @param maxFeePerGas same as EIP-1559 gas parameter.
                   * @param maxPriorityFeePerGas same as EIP-1559 gas parameter.
                   * @param paymasterAndData if set, this field holds the paymaster address and paymaster-specific data. the paymaster will pay for the transaction instead of the sender.
                   * @param signature sender-verified signature over the entire request, the EntryPoint address and the chain ID.
                   */
                  struct UserOperation {
                      address sender;
                      uint256 nonce;
                      bytes initCode;
                      bytes callData;
                      uint256 callGasLimit;
                      uint256 verificationGasLimit;
                      uint256 preVerificationGas;
                      uint256 maxFeePerGas;
                      uint256 maxPriorityFeePerGas;
                      bytes paymasterAndData;
                      bytes signature;
                  }
              /**
               * Utility functions helpful when working with UserOperation structs.
               */
              library UserOperationLib {
                  function getSender(UserOperation calldata userOp) internal pure returns (address) {
                      address data;
                      //read sender from userOp, which is first userOp member (saves 800 gas...)
                      assembly {data := calldataload(userOp)}
                      return address(uint160(data));
                  }
                  //relayer/block builder might submit the TX with higher priorityFee, but the user should not
                  // pay above what he signed for.
                  function gasPrice(UserOperation calldata userOp) internal view returns (uint256) {
                  unchecked {
                      uint256 maxFeePerGas = userOp.maxFeePerGas;
                      uint256 maxPriorityFeePerGas = userOp.maxPriorityFeePerGas;
                      if (maxFeePerGas == maxPriorityFeePerGas) {
                          //legacy mode (for networks that don't support basefee opcode)
                          return maxFeePerGas;
                      }
                      return min(maxFeePerGas, maxPriorityFeePerGas + block.basefee);
                  }
                  }
                  function pack(UserOperation calldata userOp) internal pure returns (bytes memory ret) {
                      address sender = getSender(userOp);
                      uint256 nonce = userOp.nonce;
                      bytes32 hashInitCode = calldataKeccak(userOp.initCode);
                      bytes32 hashCallData = calldataKeccak(userOp.callData);
                      uint256 callGasLimit = userOp.callGasLimit;
                      uint256 verificationGasLimit = userOp.verificationGasLimit;
                      uint256 preVerificationGas = userOp.preVerificationGas;
                      uint256 maxFeePerGas = userOp.maxFeePerGas;
                      uint256 maxPriorityFeePerGas = userOp.maxPriorityFeePerGas;
                      bytes32 hashPaymasterAndData = calldataKeccak(userOp.paymasterAndData);
                      return abi.encode(
                          sender, nonce,
                          hashInitCode, hashCallData,
                          callGasLimit, verificationGasLimit, preVerificationGas,
                          maxFeePerGas, maxPriorityFeePerGas,
                          hashPaymasterAndData
                      );
                  }
                  function hash(UserOperation calldata userOp) internal pure returns (bytes32) {
                      return keccak256(pack(userOp));
                  }
                  function min(uint256 a, uint256 b) internal pure returns (uint256) {
                      return a < b ? a : b;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.4;
              /// @notice Receiver mixin for ETH and safe-transferred ERC721 and ERC1155 tokens.
              /// @author Solady (https://github.com/Vectorized/solady/blob/main/src/accounts/Receiver.sol)
              ///
              /// @dev Note:
              /// - Handles all ERC721 and ERC1155 token safety callbacks.
              /// - Collapses function table gas overhead and code size.
              /// - Utilizes fallback so unknown calldata will pass on.
              abstract contract Receiver {
                  /// @dev For receiving ETH.
                  receive() external payable virtual {}
                  /// @dev Fallback function with the `receiverFallback` modifier.
                  fallback() external payable virtual receiverFallback {}
                  /// @dev Modifier for the fallback function to handle token callbacks.
                  modifier receiverFallback() virtual {
                      /// @solidity memory-safe-assembly
                      assembly {
                          let s := shr(224, calldataload(0))
                          // 0x150b7a02: `onERC721Received(address,address,uint256,bytes)`.
                          // 0xf23a6e61: `onERC1155Received(address,address,uint256,uint256,bytes)`.
                          // 0xbc197c81: `onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)`.
                          if or(eq(s, 0x150b7a02), or(eq(s, 0xf23a6e61), eq(s, 0xbc197c81))) {
                              mstore(0x20, s) // Store `msg.sig`.
                              return(0x3c, 0x20) // Return `msg.sig`.
                          }
                      }
                      _;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.4;
              /// @notice Signature verification helper that supports both ECDSA signatures from EOAs
              /// and ERC1271 signatures from smart contract wallets like Argent and Gnosis safe.
              /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SignatureCheckerLib.sol)
              /// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/SignatureChecker.sol)
              ///
              /// @dev Note:
              /// - The signature checking functions use the ecrecover precompile (0x1).
              /// - The `bytes memory signature` variants use the identity precompile (0x4)
              ///   to copy memory internally.
              /// - Unlike ECDSA signatures, contract signatures are revocable.
              /// - As of Solady version 0.0.134, all `bytes signature` variants accept both
              ///   regular 65-byte `(r, s, v)` and EIP-2098 `(r, vs)` short form signatures.
              ///   See: https://eips.ethereum.org/EIPS/eip-2098
              ///   This is for calldata efficiency on smart accounts prevalent on L2s.
              ///
              /// WARNING! Do NOT use signatures as unique identifiers:
              /// - Use a nonce in the digest to prevent replay attacks on the same contract.
              /// - Use EIP-712 for the digest to prevent replay attacks across different chains and contracts.
              ///   EIP-712 also enables readable signing of typed data for better user safety.
              /// This implementation does NOT check if a signature is non-malleable.
              library SignatureCheckerLib {
                  /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                  /*               SIGNATURE CHECKING OPERATIONS                */
                  /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                  /// @dev Returns whether `signature` is valid for `signer` and `hash`.
                  /// If `signer` is a smart contract, the signature is validated with ERC1271.
                  /// Otherwise, the signature is validated with `ECDSA.recover`.
                  function isValidSignatureNow(address signer, bytes32 hash, bytes memory signature)
                      internal
                      view
                      returns (bool isValid)
                  {
                      /// @solidity memory-safe-assembly
                      assembly {
                          // Clean the upper 96 bits of `signer` in case they are dirty.
                          for { signer := shr(96, shl(96, signer)) } signer {} {
                              let m := mload(0x40)
                              mstore(0x00, hash)
                              mstore(0x40, mload(add(signature, 0x20))) // `r`.
                              if eq(mload(signature), 64) {
                                  let vs := mload(add(signature, 0x40))
                                  mstore(0x20, add(shr(255, vs), 27)) // `v`.
                                  mstore(0x60, shr(1, shl(1, vs))) // `s`.
                                  let t :=
                                      staticcall(
                                          gas(), // Amount of gas left for the transaction.
                                          1, // Address of `ecrecover`.
                                          0x00, // Start of input.
                                          0x80, // Size of input.
                                          0x01, // Start of output.
                                          0x20 // Size of output.
                                      )
                                  // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                                  if iszero(or(iszero(returndatasize()), xor(signer, mload(t)))) {
                                      isValid := 1
                                      mstore(0x60, 0) // Restore the zero slot.
                                      mstore(0x40, m) // Restore the free memory pointer.
                                      break
                                  }
                              }
                              if eq(mload(signature), 65) {
                                  mstore(0x20, byte(0, mload(add(signature, 0x60)))) // `v`.
                                  mstore(0x60, mload(add(signature, 0x40))) // `s`.
                                  let t :=
                                      staticcall(
                                          gas(), // Amount of gas left for the transaction.
                                          1, // Address of `ecrecover`.
                                          0x00, // Start of input.
                                          0x80, // Size of input.
                                          0x01, // Start of output.
                                          0x20 // Size of output.
                                      )
                                  // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                                  if iszero(or(iszero(returndatasize()), xor(signer, mload(t)))) {
                                      isValid := 1
                                      mstore(0x60, 0) // Restore the zero slot.
                                      mstore(0x40, m) // Restore the free memory pointer.
                                      break
                                  }
                              }
                              mstore(0x60, 0) // Restore the zero slot.
                              mstore(0x40, m) // Restore the free memory pointer.
                              let f := shl(224, 0x1626ba7e)
                              mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                              mstore(add(m, 0x04), hash)
                              let d := add(m, 0x24)
                              mstore(d, 0x40) // The offset of the `signature` in the calldata.
                              // Copy the `signature` over.
                              let n := add(0x20, mload(signature))
                              pop(staticcall(gas(), 4, signature, n, add(m, 0x44), n))
                              // forgefmt: disable-next-item
                              isValid := and(
                                  // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                                  eq(mload(d), f),
                                  // Whether the staticcall does not revert.
                                  // This must be placed at the end of the `and` clause,
                                  // as the arguments are evaluated from right to left.
                                  staticcall(
                                      gas(), // Remaining gas.
                                      signer, // The `signer` address.
                                      m, // Offset of calldata in memory.
                                      add(returndatasize(), 0x44), // Length of calldata in memory.
                                      d, // Offset of returndata.
                                      0x20 // Length of returndata to write.
                                  )
                              )
                              break
                          }
                      }
                  }
                  /// @dev Returns whether `signature` is valid for `signer` and `hash`.
                  /// If `signer` is a smart contract, the signature is validated with ERC1271.
                  /// Otherwise, the signature is validated with `ECDSA.recover`.
                  function isValidSignatureNowCalldata(address signer, bytes32 hash, bytes calldata signature)
                      internal
                      view
                      returns (bool isValid)
                  {
                      /// @solidity memory-safe-assembly
                      assembly {
                          // Clean the upper 96 bits of `signer` in case they are dirty.
                          for { signer := shr(96, shl(96, signer)) } signer {} {
                              let m := mload(0x40)
                              mstore(0x00, hash)
                              if eq(signature.length, 64) {
                                  let vs := calldataload(add(signature.offset, 0x20))
                                  mstore(0x20, add(shr(255, vs), 27)) // `v`.
                                  mstore(0x40, calldataload(signature.offset)) // `r`.
                                  mstore(0x60, shr(1, shl(1, vs))) // `s`.
                                  let t :=
                                      staticcall(
                                          gas(), // Amount of gas left for the transaction.
                                          1, // Address of `ecrecover`.
                                          0x00, // Start of input.
                                          0x80, // Size of input.
                                          0x01, // Start of output.
                                          0x20 // Size of output.
                                      )
                                  // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                                  if iszero(or(iszero(returndatasize()), xor(signer, mload(t)))) {
                                      isValid := 1
                                      mstore(0x60, 0) // Restore the zero slot.
                                      mstore(0x40, m) // Restore the free memory pointer.
                                      break
                                  }
                              }
                              if eq(signature.length, 65) {
                                  mstore(0x20, byte(0, calldataload(add(signature.offset, 0x40)))) // `v`.
                                  calldatacopy(0x40, signature.offset, 0x40) // `r`, `s`.
                                  let t :=
                                      staticcall(
                                          gas(), // Amount of gas left for the transaction.
                                          1, // Address of `ecrecover`.
                                          0x00, // Start of input.
                                          0x80, // Size of input.
                                          0x01, // Start of output.
                                          0x20 // Size of output.
                                      )
                                  // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                                  if iszero(or(iszero(returndatasize()), xor(signer, mload(t)))) {
                                      isValid := 1
                                      mstore(0x60, 0) // Restore the zero slot.
                                      mstore(0x40, m) // Restore the free memory pointer.
                                      break
                                  }
                              }
                              mstore(0x60, 0) // Restore the zero slot.
                              mstore(0x40, m) // Restore the free memory pointer.
                              let f := shl(224, 0x1626ba7e)
                              mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                              mstore(add(m, 0x04), hash)
                              let d := add(m, 0x24)
                              mstore(d, 0x40) // The offset of the `signature` in the calldata.
                              mstore(add(m, 0x44), signature.length)
                              // Copy the `signature` over.
                              calldatacopy(add(m, 0x64), signature.offset, signature.length)
                              // forgefmt: disable-next-item
                              isValid := and(
                                  // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                                  eq(mload(d), f),
                                  // Whether the staticcall does not revert.
                                  // This must be placed at the end of the `and` clause,
                                  // as the arguments are evaluated from right to left.
                                  staticcall(
                                      gas(), // Remaining gas.
                                      signer, // The `signer` address.
                                      m, // Offset of calldata in memory.
                                      add(signature.length, 0x64), // Length of calldata in memory.
                                      d, // Offset of returndata.
                                      0x20 // Length of returndata to write.
                                  )
                              )
                              break
                          }
                      }
                  }
                  /// @dev Returns whether the signature (`r`, `vs`) is valid for `signer` and `hash`.
                  /// If `signer` is a smart contract, the signature is validated with ERC1271.
                  /// Otherwise, the signature is validated with `ECDSA.recover`.
                  function isValidSignatureNow(address signer, bytes32 hash, bytes32 r, bytes32 vs)
                      internal
                      view
                      returns (bool isValid)
                  {
                      /// @solidity memory-safe-assembly
                      assembly {
                          // Clean the upper 96 bits of `signer` in case they are dirty.
                          for { signer := shr(96, shl(96, signer)) } signer {} {
                              let m := mload(0x40)
                              mstore(0x00, hash)
                              mstore(0x20, add(shr(255, vs), 27)) // `v`.
                              mstore(0x40, r) // `r`.
                              mstore(0x60, shr(1, shl(1, vs))) // `s`.
                              let t :=
                                  staticcall(
                                      gas(), // Amount of gas left for the transaction.
                                      1, // Address of `ecrecover`.
                                      0x00, // Start of input.
                                      0x80, // Size of input.
                                      0x01, // Start of output.
                                      0x20 // Size of output.
                                  )
                              // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                              if iszero(or(iszero(returndatasize()), xor(signer, mload(t)))) {
                                  isValid := 1
                                  mstore(0x60, 0) // Restore the zero slot.
                                  mstore(0x40, m) // Restore the free memory pointer.
                                  break
                              }
                              let f := shl(224, 0x1626ba7e)
                              mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                              mstore(add(m, 0x04), hash)
                              let d := add(m, 0x24)
                              mstore(d, 0x40) // The offset of the `signature` in the calldata.
                              mstore(add(m, 0x44), 65) // Length of the signature.
                              mstore(add(m, 0x64), r) // `r`.
                              mstore(add(m, 0x84), mload(0x60)) // `s`.
                              mstore8(add(m, 0xa4), mload(0x20)) // `v`.
                              // forgefmt: disable-next-item
                              isValid := and(
                                  // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                                  eq(mload(d), f),
                                  // Whether the staticcall does not revert.
                                  // This must be placed at the end of the `and` clause,
                                  // as the arguments are evaluated from right to left.
                                  staticcall(
                                      gas(), // Remaining gas.
                                      signer, // The `signer` address.
                                      m, // Offset of calldata in memory.
                                      0xa5, // Length of calldata in memory.
                                      d, // Offset of returndata.
                                      0x20 // Length of returndata to write.
                                  )
                              )
                              mstore(0x60, 0) // Restore the zero slot.
                              mstore(0x40, m) // Restore the free memory pointer.
                              break
                          }
                      }
                  }
                  /// @dev Returns whether the signature (`v`, `r`, `s`) is valid for `signer` and `hash`.
                  /// If `signer` is a smart contract, the signature is validated with ERC1271.
                  /// Otherwise, the signature is validated with `ECDSA.recover`.
                  function isValidSignatureNow(address signer, bytes32 hash, uint8 v, bytes32 r, bytes32 s)
                      internal
                      view
                      returns (bool isValid)
                  {
                      /// @solidity memory-safe-assembly
                      assembly {
                          // Clean the upper 96 bits of `signer` in case they are dirty.
                          for { signer := shr(96, shl(96, signer)) } signer {} {
                              let m := mload(0x40)
                              mstore(0x00, hash)
                              mstore(0x20, and(v, 0xff)) // `v`.
                              mstore(0x40, r) // `r`.
                              mstore(0x60, s) // `s`.
                              let t :=
                                  staticcall(
                                      gas(), // Amount of gas left for the transaction.
                                      1, // Address of `ecrecover`.
                                      0x00, // Start of input.
                                      0x80, // Size of input.
                                      0x01, // Start of output.
                                      0x20 // Size of output.
                                  )
                              // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                              if iszero(or(iszero(returndatasize()), xor(signer, mload(t)))) {
                                  isValid := 1
                                  mstore(0x60, 0) // Restore the zero slot.
                                  mstore(0x40, m) // Restore the free memory pointer.
                                  break
                              }
                              let f := shl(224, 0x1626ba7e)
                              mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                              mstore(add(m, 0x04), hash)
                              let d := add(m, 0x24)
                              mstore(d, 0x40) // The offset of the `signature` in the calldata.
                              mstore(add(m, 0x44), 65) // Length of the signature.
                              mstore(add(m, 0x64), r) // `r`.
                              mstore(add(m, 0x84), s) // `s`.
                              mstore8(add(m, 0xa4), v) // `v`.
                              // forgefmt: disable-next-item
                              isValid := and(
                                  // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                                  eq(mload(d), f),
                                  // Whether the staticcall does not revert.
                                  // This must be placed at the end of the `and` clause,
                                  // as the arguments are evaluated from right to left.
                                  staticcall(
                                      gas(), // Remaining gas.
                                      signer, // The `signer` address.
                                      m, // Offset of calldata in memory.
                                      0xa5, // Length of calldata in memory.
                                      d, // Offset of returndata.
                                      0x20 // Length of returndata to write.
                                  )
                              )
                              mstore(0x60, 0) // Restore the zero slot.
                              mstore(0x40, m) // Restore the free memory pointer.
                              break
                          }
                      }
                  }
                  /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                  /*                     ERC1271 OPERATIONS                     */
                  /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                  /// @dev Returns whether `signature` is valid for `hash` for an ERC1271 `signer` contract.
                  function isValidERC1271SignatureNow(address signer, bytes32 hash, bytes memory signature)
                      internal
                      view
                      returns (bool isValid)
                  {
                      /// @solidity memory-safe-assembly
                      assembly {
                          let m := mload(0x40)
                          let f := shl(224, 0x1626ba7e)
                          mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                          mstore(add(m, 0x04), hash)
                          let d := add(m, 0x24)
                          mstore(d, 0x40) // The offset of the `signature` in the calldata.
                          // Copy the `signature` over.
                          let n := add(0x20, mload(signature))
                          pop(staticcall(gas(), 4, signature, n, add(m, 0x44), n))
                          // forgefmt: disable-next-item
                          isValid := and(
                              // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                              eq(mload(d), f),
                              // Whether the staticcall does not revert.
                              // This must be placed at the end of the `and` clause,
                              // as the arguments are evaluated from right to left.
                              staticcall(
                                  gas(), // Remaining gas.
                                  signer, // The `signer` address.
                                  m, // Offset of calldata in memory.
                                  add(returndatasize(), 0x44), // Length of calldata in memory.
                                  d, // Offset of returndata.
                                  0x20 // Length of returndata to write.
                              )
                          )
                      }
                  }
                  /// @dev Returns whether `signature` is valid for `hash` for an ERC1271 `signer` contract.
                  function isValidERC1271SignatureNowCalldata(
                      address signer,
                      bytes32 hash,
                      bytes calldata signature
                  ) internal view returns (bool isValid) {
                      /// @solidity memory-safe-assembly
                      assembly {
                          let m := mload(0x40)
                          let f := shl(224, 0x1626ba7e)
                          mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                          mstore(add(m, 0x04), hash)
                          let d := add(m, 0x24)
                          mstore(d, 0x40) // The offset of the `signature` in the calldata.
                          mstore(add(m, 0x44), signature.length)
                          // Copy the `signature` over.
                          calldatacopy(add(m, 0x64), signature.offset, signature.length)
                          // forgefmt: disable-next-item
                          isValid := and(
                              // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                              eq(mload(d), f),
                              // Whether the staticcall does not revert.
                              // This must be placed at the end of the `and` clause,
                              // as the arguments are evaluated from right to left.
                              staticcall(
                                  gas(), // Remaining gas.
                                  signer, // The `signer` address.
                                  m, // Offset of calldata in memory.
                                  add(signature.length, 0x64), // Length of calldata in memory.
                                  d, // Offset of returndata.
                                  0x20 // Length of returndata to write.
                              )
                          )
                      }
                  }
                  /// @dev Returns whether the signature (`r`, `vs`) is valid for `hash`
                  /// for an ERC1271 `signer` contract.
                  function isValidERC1271SignatureNow(address signer, bytes32 hash, bytes32 r, bytes32 vs)
                      internal
                      view
                      returns (bool isValid)
                  {
                      /// @solidity memory-safe-assembly
                      assembly {
                          let m := mload(0x40)
                          let f := shl(224, 0x1626ba7e)
                          mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                          mstore(add(m, 0x04), hash)
                          let d := add(m, 0x24)
                          mstore(d, 0x40) // The offset of the `signature` in the calldata.
                          mstore(add(m, 0x44), 65) // Length of the signature.
                          mstore(add(m, 0x64), r) // `r`.
                          mstore(add(m, 0x84), shr(1, shl(1, vs))) // `s`.
                          mstore8(add(m, 0xa4), add(shr(255, vs), 27)) // `v`.
                          // forgefmt: disable-next-item
                          isValid := and(
                              // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                              eq(mload(d), f),
                              // Whether the staticcall does not revert.
                              // This must be placed at the end of the `and` clause,
                              // as the arguments are evaluated from right to left.
                              staticcall(
                                  gas(), // Remaining gas.
                                  signer, // The `signer` address.
                                  m, // Offset of calldata in memory.
                                  0xa5, // Length of calldata in memory.
                                  d, // Offset of returndata.
                                  0x20 // Length of returndata to write.
                              )
                          )
                      }
                  }
                  /// @dev Returns whether the signature (`v`, `r`, `s`) is valid for `hash`
                  /// for an ERC1271 `signer` contract.
                  function isValidERC1271SignatureNow(address signer, bytes32 hash, uint8 v, bytes32 r, bytes32 s)
                      internal
                      view
                      returns (bool isValid)
                  {
                      /// @solidity memory-safe-assembly
                      assembly {
                          let m := mload(0x40)
                          let f := shl(224, 0x1626ba7e)
                          mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                          mstore(add(m, 0x04), hash)
                          let d := add(m, 0x24)
                          mstore(d, 0x40) // The offset of the `signature` in the calldata.
                          mstore(add(m, 0x44), 65) // Length of the signature.
                          mstore(add(m, 0x64), r) // `r`.
                          mstore(add(m, 0x84), s) // `s`.
                          mstore8(add(m, 0xa4), v) // `v`.
                          // forgefmt: disable-next-item
                          isValid := and(
                              // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                              eq(mload(d), f),
                              // Whether the staticcall does not revert.
                              // This must be placed at the end of the `and` clause,
                              // as the arguments are evaluated from right to left.
                              staticcall(
                                  gas(), // Remaining gas.
                                  signer, // The `signer` address.
                                  m, // Offset of calldata in memory.
                                  0xa5, // Length of calldata in memory.
                                  d, // Offset of returndata.
                                  0x20 // Length of returndata to write.
                              )
                          )
                      }
                  }
                  /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                  /*                     HASHING OPERATIONS                     */
                  /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                  /// @dev Returns an Ethereum Signed Message, created from a `hash`.
                  /// This produces a hash corresponding to the one signed with the
                  /// [`eth_sign`](https://eth.wiki/json-rpc/API#eth_sign)
                  /// JSON-RPC method as part of EIP-191.
                  function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 result) {
                      /// @solidity memory-safe-assembly
                      assembly {
                          mstore(0x20, hash) // Store into scratch space for keccak256.
                          mstore(0x00, "\\x00\\x00\\x00\\x00\\x19Ethereum Signed Message:\
              32") // 28 bytes.
                          result := keccak256(0x04, 0x3c) // `32 * 2 - (32 - 28) = 60 = 0x3c`.
                      }
                  }
                  /// @dev Returns an Ethereum Signed Message, created from `s`.
                  /// This produces a hash corresponding to the one signed with the
                  /// [`eth_sign`](https://eth.wiki/json-rpc/API#eth_sign)
                  /// JSON-RPC method as part of EIP-191.
                  /// Note: Supports lengths of `s` up to 999999 bytes.
                  function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32 result) {
                      /// @solidity memory-safe-assembly
                      assembly {
                          let sLength := mload(s)
                          let o := 0x20
                          mstore(o, "\\x19Ethereum Signed Message:\
              ") // 26 bytes, zero-right-padded.
                          mstore(0x00, 0x00)
                          // Convert the `s.length` to ASCII decimal representation: `base10(s.length)`.
                          for { let temp := sLength } 1 {} {
                              o := sub(o, 1)
                              mstore8(o, add(48, mod(temp, 10)))
                              temp := div(temp, 10)
                              if iszero(temp) { break }
                          }
                          let n := sub(0x3a, o) // Header length: `26 + 32 - o`.
                          // Throw an out-of-offset error (consumes all gas) if the header exceeds 32 bytes.
                          returndatacopy(returndatasize(), returndatasize(), gt(n, 0x20))
                          mstore(s, or(mload(0x00), mload(n))) // Temporarily store the header.
                          result := keccak256(add(s, sub(0x20, n)), add(n, sLength))
                          mstore(s, sLength) // Restore the length.
                      }
                  }
                  /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                  /*                   EMPTY CALLDATA HELPERS                   */
                  /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                  /// @dev Returns an empty calldata bytes.
                  function emptySignature() internal pure returns (bytes calldata signature) {
                      /// @solidity memory-safe-assembly
                      assembly {
                          signature.length := 0
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.4;
              /// @notice UUPS proxy mixin.
              /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/UUPSUpgradeable.sol)
              /// @author Modified from OpenZeppelin
              /// (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/proxy/utils/UUPSUpgradeable.sol)
              ///
              /// Note:
              /// - This implementation is intended to be used with ERC1967 proxies.
              /// See: `LibClone.deployERC1967` and related functions.
              /// - This implementation is NOT compatible with legacy OpenZeppelin proxies
              /// which do not store the implementation at `_ERC1967_IMPLEMENTATION_SLOT`.
              abstract contract UUPSUpgradeable {
                  /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                  /*                       CUSTOM ERRORS                        */
                  /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                  /// @dev The upgrade failed.
                  error UpgradeFailed();
                  /// @dev The call is from an unauthorized call context.
                  error UnauthorizedCallContext();
                  /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                  /*                         IMMUTABLES                         */
                  /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                  /// @dev For checking if the context is a delegate call.
                  uint256 private immutable __self = uint256(uint160(address(this)));
                  /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                  /*                           EVENTS                           */
                  /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                  /// @dev Emitted when the proxy's implementation is upgraded.
                  event Upgraded(address indexed implementation);
                  /// @dev `keccak256(bytes("Upgraded(address)"))`.
                  uint256 private constant _UPGRADED_EVENT_SIGNATURE =
                      0xbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b;
                  /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                  /*                          STORAGE                           */
                  /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                  /// @dev The ERC-1967 storage slot for the implementation in the proxy.
                  /// `uint256(keccak256("eip1967.proxy.implementation")) - 1`.
                  bytes32 internal constant _ERC1967_IMPLEMENTATION_SLOT =
                      0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                  /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                  /*                      UUPS OPERATIONS                       */
                  /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                  /// @dev Please override this function to check if `msg.sender` is authorized
                  /// to upgrade the proxy to `newImplementation`, reverting if not.
                  /// ```
                  ///     function _authorizeUpgrade(address) internal override onlyOwner {}
                  /// ```
                  function _authorizeUpgrade(address newImplementation) internal virtual;
                  /// @dev Returns the storage slot used by the implementation,
                  /// as specified in [ERC1822](https://eips.ethereum.org/EIPS/eip-1822).
                  ///
                  /// Note: The `notDelegated` modifier prevents accidental upgrades to
                  /// an implementation that is a proxy contract.
                  function proxiableUUID() public view virtual notDelegated returns (bytes32) {
                      // This function must always return `_ERC1967_IMPLEMENTATION_SLOT` to comply with ERC1967.
                      return _ERC1967_IMPLEMENTATION_SLOT;
                  }
                  /// @dev Upgrades the proxy's implementation to `newImplementation`.
                  /// Emits a {Upgraded} event.
                  ///
                  /// Note: Passing in empty `data` skips the delegatecall to `newImplementation`.
                  function upgradeToAndCall(address newImplementation, bytes calldata data)
                      public
                      payable
                      virtual
                      onlyProxy
                  {
                      _authorizeUpgrade(newImplementation);
                      /// @solidity memory-safe-assembly
                      assembly {
                          newImplementation := shr(96, shl(96, newImplementation)) // Clears upper 96 bits.
                          mstore(0x01, 0x52d1902d) // `proxiableUUID()`.
                          let s := _ERC1967_IMPLEMENTATION_SLOT
                          // Check if `newImplementation` implements `proxiableUUID` correctly.
                          if iszero(eq(mload(staticcall(gas(), newImplementation, 0x1d, 0x04, 0x01, 0x20)), s)) {
                              mstore(0x01, 0x55299b49) // `UpgradeFailed()`.
                              revert(0x1d, 0x04)
                          }
                          // Emit the {Upgraded} event.
                          log2(codesize(), 0x00, _UPGRADED_EVENT_SIGNATURE, newImplementation)
                          sstore(s, newImplementation) // Updates the implementation.
                          // Perform a delegatecall to `newImplementation` if `data` is non-empty.
                          if data.length {
                              // Forwards the `data` to `newImplementation` via delegatecall.
                              let m := mload(0x40)
                              calldatacopy(m, data.offset, data.length)
                              if iszero(delegatecall(gas(), newImplementation, m, data.length, codesize(), 0x00))
                              {
                                  // Bubble up the revert if the call reverts.
                                  returndatacopy(m, 0x00, returndatasize())
                                  revert(m, returndatasize())
                              }
                          }
                      }
                  }
                  /// @dev Requires that the execution is performed through a proxy.
                  modifier onlyProxy() {
                      uint256 s = __self;
                      /// @solidity memory-safe-assembly
                      assembly {
                          // To enable use cases with an immutable default implementation in the bytecode,
                          // (see: ERC6551Proxy), we don't require that the proxy address must match the
                          // value stored in the implementation slot, which may not be initialized.
                          if eq(s, address()) {
                              mstore(0x00, 0x9f03a026) // `UnauthorizedCallContext()`.
                              revert(0x1c, 0x04)
                          }
                      }
                      _;
                  }
                  /// @dev Requires that the execution is NOT performed via delegatecall.
                  /// This is the opposite of `onlyProxy`.
                  modifier notDelegated() {
                      uint256 s = __self;
                      /// @solidity memory-safe-assembly
                      assembly {
                          if iszero(eq(s, address())) {
                              mstore(0x00, 0x9f03a026) // `UnauthorizedCallContext()`.
                              revert(0x1c, 0x04)
                          }
                      }
                      _;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import {FCL_ecdsa} from "FreshCryptoLib/FCL_ecdsa.sol";
              import {FCL_Elliptic_ZZ} from "FreshCryptoLib/FCL_elliptic.sol";
              import {Base64} from "openzeppelin-contracts/contracts/utils/Base64.sol";
              import {LibString} from "solady/utils/LibString.sol";
              /// @title WebAuthn
              ///
              /// @notice A library for verifying WebAuthn Authentication Assertions, built off the work
              ///         of Daimo.
              ///
              /// @dev Attempts to use the RIP-7212 precompile for signature verification.
              ///      If precompile verification fails, it falls back to FreshCryptoLib.
              ///
              /// @author Coinbase (https://github.com/base-org/webauthn-sol)
              /// @author Daimo (https://github.com/daimo-eth/p256-verifier/blob/master/src/WebAuthn.sol)
              library WebAuthn {
                  using LibString for string;
                  struct WebAuthnAuth {
                      /// @dev The WebAuthn authenticator data.
                      ///      See https://www.w3.org/TR/webauthn-2/#dom-authenticatorassertionresponse-authenticatordata.
                      bytes authenticatorData;
                      /// @dev The WebAuthn client data JSON.
                      ///      See https://www.w3.org/TR/webauthn-2/#dom-authenticatorresponse-clientdatajson.
                      string clientDataJSON;
                      /// @dev The index at which "challenge":"..." occurs in `clientDataJSON`.
                      uint256 challengeIndex;
                      /// @dev The index at which "type":"..." occurs in `clientDataJSON`.
                      uint256 typeIndex;
                      /// @dev The r value of secp256r1 signature
                      uint256 r;
                      /// @dev The s value of secp256r1 signature
                      uint256 s;
                  }
                  /// @dev Bit 0 of the authenticator data struct, corresponding to the "User Present" bit.
                  ///      See https://www.w3.org/TR/webauthn-2/#flags.
                  bytes1 private constant _AUTH_DATA_FLAGS_UP = 0x01;
                  /// @dev Bit 2 of the authenticator data struct, corresponding to the "User Verified" bit.
                  ///      See https://www.w3.org/TR/webauthn-2/#flags.
                  bytes1 private constant _AUTH_DATA_FLAGS_UV = 0x04;
                  /// @dev Secp256r1 curve order / 2 used as guard to prevent signature malleability issue.
                  uint256 private constant _P256_N_DIV_2 = FCL_Elliptic_ZZ.n / 2;
                  /// @dev The precompiled contract address to use for signature verification in the “secp256r1” elliptic curve.
                  ///      See https://github.com/ethereum/RIPs/blob/master/RIPS/rip-7212.md.
                  address private constant _VERIFIER = address(0x100);
                  /// @dev The expected type (hash) in the client data JSON when verifying assertion signatures.
                  ///      See https://www.w3.org/TR/webauthn-2/#dom-collectedclientdata-type
                  bytes32 private constant _EXPECTED_TYPE_HASH = keccak256('"type":"webauthn.get"');
                  ///
                  /// @notice Verifies a Webauthn Authentication Assertion as described
                  /// in https://www.w3.org/TR/webauthn-2/#sctn-verifying-assertion.
                  ///
                  /// @dev We do not verify all the steps as described in the specification, only ones relevant to our context.
                  ///      Please carefully read through this list before usage.
                  ///
                  ///      Specifically, we do verify the following:
                  ///         - Verify that authenticatorData (which comes from the authenticator, such as iCloud Keychain) indicates
                  ///           a well-formed assertion with the user present bit set. If `requireUV` is set, checks that the authenticator
                  ///           enforced user verification. User verification should be required if, and only if, options.userVerification
                  ///           is set to required in the request.
                  ///         - Verifies that the client JSON is of type "webauthn.get", i.e. the client was responding to a request to
                  ///           assert authentication.
                  ///         - Verifies that the client JSON contains the requested challenge.
                  ///         - Verifies that (r, s) constitute a valid signature over both the authenicatorData and client JSON, for public
                  ///            key (x, y).
                  ///
                  ///      We make some assumptions about the particular use case of this verifier, so we do NOT verify the following:
                  ///         - Does NOT verify that the origin in the `clientDataJSON` matches the Relying Party's origin: tt is considered
                  ///           the authenticator's responsibility to ensure that the user is interacting with the correct RP. This is
                  ///           enforced by most high quality authenticators properly, particularly the iCloud Keychain and Google Password
                  ///           Manager were tested.
                  ///         - Does NOT verify That `topOrigin` in `clientDataJSON` is well-formed: We assume it would never be present, i.e.
                  ///           the credentials are never used in a cross-origin/iframe context. The website/app set up should disallow
                  ///           cross-origin usage of the credentials. This is the default behaviour for created credentials in common settings.
                  ///         - Does NOT verify that the `rpIdHash` in `authenticatorData` is the SHA-256 hash of the RP ID expected by the Relying
                  ///           Party: this means that we rely on the authenticator to properly enforce credentials to be used only by the correct RP.
                  ///           This is generally enforced with features like Apple App Site Association and Google Asset Links. To protect from
                  ///           edge cases in which a previously-linked RP ID is removed from the authorised RP IDs, we recommend that messages
                  ///           signed by the authenticator include some expiry mechanism.
                  ///         - Does NOT verify the credential backup state: this assumes the credential backup state is NOT used as part of Relying
                  ///           Party business logic or policy.
                  ///         - Does NOT verify the values of the client extension outputs: this assumes that the Relying Party does not use client
                  ///           extension outputs.
                  ///         - Does NOT verify the signature counter: signature counters are intended to enable risk scoring for the Relying Party.
                  ///           This assumes risk scoring is not used as part of Relying Party business logic or policy.
                  ///         - Does NOT verify the attestation object: this assumes that response.attestationObject is NOT present in the response,
                  ///           i.e. the RP does not intend to verify an attestation.
                  ///
                  /// @param challenge    The challenge that was provided by the relying party.
                  /// @param requireUV    A boolean indicating whether user verification is required.
                  /// @param webAuthnAuth The `WebAuthnAuth` struct.
                  /// @param x            The x coordinate of the public key.
                  /// @param y            The y coordinate of the public key.
                  ///
                  /// @return `true` if the authentication assertion passed validation, else `false`.
                  function verify(bytes memory challenge, bool requireUV, WebAuthnAuth memory webAuthnAuth, uint256 x, uint256 y)
                      internal
                      view
                      returns (bool)
                  {
                      if (webAuthnAuth.s > _P256_N_DIV_2) {
                          // guard against signature malleability
                          return false;
                      }
                      // 11. Verify that the value of C.type is the string webauthn.get.
                      //     bytes("type":"webauthn.get").length = 21
                      string memory _type = webAuthnAuth.clientDataJSON.slice(webAuthnAuth.typeIndex, webAuthnAuth.typeIndex + 21);
                      if (keccak256(bytes(_type)) != _EXPECTED_TYPE_HASH) {
                          return false;
                      }
                      // 12. Verify that the value of C.challenge equals the base64url encoding of options.challenge.
                      bytes memory expectedChallenge = bytes(string.concat('"challenge":"', Base64.encodeURL(challenge), '"'));
                      string memory actualChallenge =
                          webAuthnAuth.clientDataJSON.slice(webAuthnAuth.challengeIndex, webAuthnAuth.challengeIndex + expectedChallenge.length);
                      if (keccak256(bytes(actualChallenge)) != keccak256(expectedChallenge)) {
                          return false;
                      }
                      // Skip 13., 14., 15.
                      // 16. Verify that the UP bit of the flags in authData is set.
                      if (webAuthnAuth.authenticatorData[32] & _AUTH_DATA_FLAGS_UP != _AUTH_DATA_FLAGS_UP) {
                          return false;
                      }
                      // 17. If user verification is required for this assertion, verify that the User Verified bit of the flags in
                      //     authData is set.
                      if (requireUV && (webAuthnAuth.authenticatorData[32] & _AUTH_DATA_FLAGS_UV) != _AUTH_DATA_FLAGS_UV) {
                          return false;
                      }
                      // skip 18.
                      // 19. Let hash be the result of computing a hash over the cData using SHA-256.
                      bytes32 clientDataJSONHash = sha256(bytes(webAuthnAuth.clientDataJSON));
                      // 20. Using credentialPublicKey, verify that sig is a valid signature over the binary concatenation of authData
                      //     and hash.
                      bytes32 messageHash = sha256(abi.encodePacked(webAuthnAuth.authenticatorData, clientDataJSONHash));
                      bytes memory args = abi.encode(messageHash, webAuthnAuth.r, webAuthnAuth.s, x, y);
                      // try the RIP-7212 precompile address
                      (bool success, bytes memory ret) = _VERIFIER.staticcall(args);
                      // staticcall will not revert if address has no code
                      // check return length
                      // note that even if precompile exists, ret.length is 0 when verification returns false
                      // so an invalid signature will be checked twice: once by the precompile and once by FCL.
                      // Ideally this signature failure is simulated offchain and no one actually pay this gas.
                      bool valid = ret.length > 0;
                      if (success && valid) return abi.decode(ret, (uint256)) == 1;
                      return FCL_ecdsa.ecdsa_verify(messageHash, webAuthnAuth.r, webAuthnAuth.s, x, y);
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.4;
              /// @title ERC-1271
              ///
              /// @notice Abstract ERC-1271 implementation (based on Solady's) with guards to handle the same
              ///         signer being used on multiple accounts.
              ///
              /// @dev To prevent the same signature from being validated on different accounts owned by the samer signer,
              ///      we introduce an anti cross-account-replay layer: the original hash is input into a new EIP-712 compliant
              ///      hash. The domain separator of this outer hash contains the chain id and address of this contract, so that
              ///      it cannot be used on two accounts (see `replaySafeHash()` for the implementation details).
              ///
              /// @author Coinbase (https://github.com/coinbase/smart-wallet)
              /// @author Solady (https://github.com/vectorized/solady/blob/main/src/accounts/ERC1271.sol)
              abstract contract ERC1271 {
                  /// @dev Precomputed `typeHash` used to produce EIP-712 compliant hash when applying the anti
                  ///      cross-account-replay layer.
                  ///
                  ///      The original hash must either be:
                  ///         - An EIP-191 hash: keccak256("\\x19Ethereum Signed Message:\
              " || len(someMessage) || someMessage)
                  ///         - An EIP-712 hash: keccak256("\\x19\\x01" || someDomainSeparator || hashStruct(someStruct))
                  bytes32 private constant _MESSAGE_TYPEHASH = keccak256("CoinbaseSmartWalletMessage(bytes32 hash)");
                  /// @notice Returns information about the `EIP712Domain` used to create EIP-712 compliant hashes.
                  ///
                  /// @dev Follows ERC-5267 (see https://eips.ethereum.org/EIPS/eip-5267).
                  ///
                  /// @return fields The bitmap of used fields.
                  /// @return name The value of the `EIP712Domain.name` field.
                  /// @return version The value of the `EIP712Domain.version` field.
                  /// @return chainId The value of the `EIP712Domain.chainId` field.
                  /// @return verifyingContract The value of the `EIP712Domain.verifyingContract` field.
                  /// @return salt The value of the `EIP712Domain.salt` field.
                  /// @return extensions The list of EIP numbers, that extends EIP-712 with new domain fields.
                  function eip712Domain()
                      external
                      view
                      virtual
                      returns (
                          bytes1 fields,
                          string memory name,
                          string memory version,
                          uint256 chainId,
                          address verifyingContract,
                          bytes32 salt,
                          uint256[] memory extensions
                      )
                  {
                      fields = hex"0f"; // `0b1111`.
                      (name, version) = _domainNameAndVersion();
                      chainId = block.chainid;
                      verifyingContract = address(this);
                      salt = salt; // `bytes32(0)`.
                      extensions = extensions; // `new uint256[](0)`.
                  }
                  /// @notice Validates the `signature` against the given `hash`.
                  ///
                  /// @dev This implementation follows ERC-1271. See https://eips.ethereum.org/EIPS/eip-1271.
                  /// @dev IMPORTANT: Signature verification is performed on the hash produced AFTER applying the anti
                  ///      cross-account-replay layer on the given `hash` (i.e., verification is run on the replay-safe
                  ///      hash version).
                  ///
                  /// @param hash      The original hash.
                  /// @param signature The signature of the replay-safe hash to validate.
                  ///
                  /// @return result `0x1626ba7e` if validation succeeded, else `0xffffffff`.
                  function isValidSignature(bytes32 hash, bytes calldata signature) public view virtual returns (bytes4 result) {
                      if (_isValidSignature({hash: replaySafeHash(hash), signature: signature})) {
                          // bytes4(keccak256("isValidSignature(bytes32,bytes)"))
                          return 0x1626ba7e;
                      }
                      return 0xffffffff;
                  }
                  /// @notice Wrapper around `_eip712Hash()` to produce a replay-safe hash fron the given `hash`.
                  ///
                  /// @dev The returned EIP-712 compliant replay-safe hash is the result of:
                  ///      keccak256(
                  ///         \\x19\\x01 ||
                  ///         this.domainSeparator ||
                  ///         hashStruct(CoinbaseSmartWalletMessage({ hash: `hash`}))
                  ///      )
                  ///
                  /// @param hash The original hash.
                  ///
                  /// @return The corresponding replay-safe hash.
                  function replaySafeHash(bytes32 hash) public view virtual returns (bytes32) {
                      return _eip712Hash(hash);
                  }
                  /// @notice Returns the `domainSeparator` used to create EIP-712 compliant hashes.
                  ///
                  /// @dev Implements domainSeparator = hashStruct(eip712Domain).
                  ///      See https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator.
                  ///
                  /// @return The 32 bytes domain separator result.
                  function domainSeparator() public view returns (bytes32) {
                      (string memory name, string memory version) = _domainNameAndVersion();
                      return keccak256(
                          abi.encode(
                              keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
                              keccak256(bytes(name)),
                              keccak256(bytes(version)),
                              block.chainid,
                              address(this)
                          )
                      );
                  }
                  /// @notice Returns the EIP-712 typed hash of the `CoinbaseSmartWalletMessage(bytes32 hash)` data structure.
                  ///
                  /// @dev Implements encode(domainSeparator : 𝔹²⁵⁶, message : 𝕊) = "\\x19\\x01" || domainSeparator ||
                  ///      hashStruct(message).
                  /// @dev See https://eips.ethereum.org/EIPS/eip-712#specification.
                  ///
                  /// @param hash The `CoinbaseSmartWalletMessage.hash` field to hash.
                  ////
                  /// @return The resulting EIP-712 hash.
                  function _eip712Hash(bytes32 hash) internal view virtual returns (bytes32) {
                      return keccak256(abi.encodePacked("\\x19\\x01", domainSeparator(), _hashStruct(hash)));
                  }
                  /// @notice Returns the EIP-712 `hashStruct` result of the `CoinbaseSmartWalletMessage(bytes32 hash)` data
                  ///         structure.
                  ///
                  /// @dev Implements hashStruct(s : 𝕊) = keccak256(typeHash || encodeData(s)).
                  /// @dev See https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct.
                  ///
                  /// @param hash The `CoinbaseSmartWalletMessage.hash` field.
                  ///
                  /// @return The EIP-712 `hashStruct` result.
                  function _hashStruct(bytes32 hash) internal view virtual returns (bytes32) {
                      return keccak256(abi.encode(_MESSAGE_TYPEHASH, hash));
                  }
                  /// @notice Returns the domain name and version to use when creating EIP-712 signatures.
                  ///
                  /// @dev MUST be defined by the implementation.
                  ///
                  /// @return name    The user readable name of signing domain.
                  /// @return version The current major version of the signing domain.
                  function _domainNameAndVersion() internal view virtual returns (string memory name, string memory version);
                  /// @notice Validates the `signature` against the given `hash`.
                  ///
                  /// @dev MUST be defined by the implementation.
                  ///
                  /// @param hash      The hash whose signature has been performed on.
                  /// @param signature The signature associated with `hash`.
                  ///
                  /// @return `true` is the signature is valid, else `false`.
                  function _isValidSignature(bytes32 hash, bytes calldata signature) internal view virtual returns (bool);
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.18;
              /// @notice Storage layout used by this contract.
              ///
              /// @custom:storage-location erc7201:coinbase.storage.MultiOwnable
              struct MultiOwnableStorage {
                  /// @dev Tracks the index of the next owner to add.
                  uint256 nextOwnerIndex;
                  /// @dev Tracks number of owners that have been removed.
                  uint256 removedOwnersCount;
                  /// @dev Maps index to owner bytes, used to idenfitied owners via a uint256 index.
                  ///
                  ///      Some uses—-such as signature validation for secp256r1 public key owners—-
                  ///      requires the caller to assert the public key of the caller. To economize calldata,
                  ///      we allow an index to identify an owner, so that the full owner bytes do
                  ///      not need to be passed.
                  ///
                  ///      The `owner` bytes should either be
                  ///         - An ABI encoded Ethereum address
                  ///         - An ABI encoded public key
                  mapping(uint256 index => bytes owner) ownerAtIndex;
                  /// @dev Mapping of bytes to booleans indicating whether or not
                  ///      bytes_ is an owner of this contract.
                  mapping(bytes bytes_ => bool isOwner_) isOwner;
              }
              /// @title Multi Ownable
              ///
              /// @notice Auth contract allowing multiple owners, each identified as bytes.
              ///
              /// @author Coinbase (https://github.com/coinbase/smart-wallet)
              contract MultiOwnable {
                  /// @dev Slot for the `MultiOwnableStorage` struct in storage.
                  ///      Computed from
                  ///      keccak256(abi.encode(uint256(keccak256("coinbase.storage.MultiOwnable")) - 1)) & ~bytes32(uint256(0xff))
                  ///      Follows ERC-7201 (see https://eips.ethereum.org/EIPS/eip-7201).
                  bytes32 private constant MUTLI_OWNABLE_STORAGE_LOCATION =
                      0x97e2c6aad4ce5d562ebfaa00db6b9e0fb66ea5d8162ed5b243f51a2e03086f00;
                  /// @notice Thrown when the `msg.sender` is not an owner and is trying to call a privileged function.
                  error Unauthorized();
                  /// @notice Thrown when trying to add an already registered owner.
                  ///
                  /// @param owner The owner bytes.
                  error AlreadyOwner(bytes owner);
                  /// @notice Thrown when trying to remove an owner from an index that is empty.
                  ///
                  /// @param index The targeted index for removal.
                  error NoOwnerAtIndex(uint256 index);
                  /// @notice Thrown when `owner` argument does not match owner found at index.
                  ///
                  /// @param index         The index of the owner to be removed.
                  /// @param expectedOwner The owner passed in the remove call.
                  /// @param actualOwner   The actual owner at `index`.
                  error WrongOwnerAtIndex(uint256 index, bytes expectedOwner, bytes actualOwner);
                  /// @notice Thrown when a provided owner is neither 64 bytes long (for public key)
                  ///         nor a ABI encoded address.
                  ///
                  /// @param owner The invalid owner.
                  error InvalidOwnerBytesLength(bytes owner);
                  /// @notice Thrown if a provided owner is 32 bytes long but does not fit in an `address` type.
                  ///
                  /// @param owner The invalid owner.
                  error InvalidEthereumAddressOwner(bytes owner);
                  /// @notice Thrown when removeOwnerAtIndex is called and there is only one current owner.
                  error LastOwner();
                  /// @notice Thrown when removeLastOwner is called and there is more than one current owner.
                  ///
                  /// @param ownersRemaining The number of current owners.
                  error NotLastOwner(uint256 ownersRemaining);
                  /// @notice Emitted when a new owner is registered.
                  ///
                  /// @param index The owner index of the owner added.
                  /// @param owner The owner added.
                  event AddOwner(uint256 indexed index, bytes owner);
                  /// @notice Emitted when an owner is removed.
                  ///
                  /// @param index The owner index of the owner removed.
                  /// @param owner The owner removed.
                  event RemoveOwner(uint256 indexed index, bytes owner);
                  /// @notice Access control modifier ensuring the caller is an authorized owner
                  modifier onlyOwner() virtual {
                      _checkOwner();
                      _;
                  }
                  /// @notice Adds a new Ethereum-address owner.
                  ///
                  /// @param owner The owner address.
                  function addOwnerAddress(address owner) external virtual onlyOwner {
                      _addOwnerAtIndex(abi.encode(owner), _getMultiOwnableStorage().nextOwnerIndex++);
                  }
                  /// @notice Adds a new public-key owner.
                  ///
                  /// @param x The owner public key x coordinate.
                  /// @param y The owner public key y coordinate.
                  function addOwnerPublicKey(bytes32 x, bytes32 y) external virtual onlyOwner {
                      _addOwnerAtIndex(abi.encode(x, y), _getMultiOwnableStorage().nextOwnerIndex++);
                  }
                  /// @notice Removes owner at the given `index`.
                  ///
                  /// @dev Reverts if the owner is not registered at `index`.
                  /// @dev Reverts if there is currently only one owner.
                  /// @dev Reverts if `owner` does not match bytes found at `index`.
                  ///
                  /// @param index The index of the owner to be removed.
                  /// @param owner The ABI encoded bytes of the owner to be removed.
                  function removeOwnerAtIndex(uint256 index, bytes calldata owner) external virtual onlyOwner {
                      if (ownerCount() == 1) {
                          revert LastOwner();
                      }
                      _removeOwnerAtIndex(index, owner);
                  }
                  /// @notice Removes owner at the given `index`, which should be the only current owner.
                  ///
                  /// @dev Reverts if the owner is not registered at `index`.
                  /// @dev Reverts if there is currently more than one owner.
                  /// @dev Reverts if `owner` does not match bytes found at `index`.
                  ///
                  /// @param index The index of the owner to be removed.
                  /// @param owner The ABI encoded bytes of the owner to be removed.
                  function removeLastOwner(uint256 index, bytes calldata owner) external virtual onlyOwner {
                      uint256 ownersRemaining = ownerCount();
                      if (ownersRemaining > 1) {
                          revert NotLastOwner(ownersRemaining);
                      }
                      _removeOwnerAtIndex(index, owner);
                  }
                  /// @notice Checks if the given `account` address is registered as owner.
                  ///
                  /// @param account The account address to check.
                  ///
                  /// @return `true` if the account is an owner else `false`.
                  function isOwnerAddress(address account) public view virtual returns (bool) {
                      return _getMultiOwnableStorage().isOwner[abi.encode(account)];
                  }
                  /// @notice Checks if the given `x`, `y` public key is registered as owner.
                  ///
                  /// @param x The public key x coordinate.
                  /// @param y The public key y coordinate.
                  ///
                  /// @return `true` if the account is an owner else `false`.
                  function isOwnerPublicKey(bytes32 x, bytes32 y) public view virtual returns (bool) {
                      return _getMultiOwnableStorage().isOwner[abi.encode(x, y)];
                  }
                  /// @notice Checks if the given `account` bytes is registered as owner.
                  ///
                  /// @param account The account, should be ABI encoded address or public key.
                  ///
                  /// @return `true` if the account is an owner else `false`.
                  function isOwnerBytes(bytes memory account) public view virtual returns (bool) {
                      return _getMultiOwnableStorage().isOwner[account];
                  }
                  /// @notice Returns the owner bytes at the given `index`.
                  ///
                  /// @param index The index to lookup.
                  ///
                  /// @return The owner bytes (empty if no owner is registered at this `index`).
                  function ownerAtIndex(uint256 index) public view virtual returns (bytes memory) {
                      return _getMultiOwnableStorage().ownerAtIndex[index];
                  }
                  /// @notice Returns the next index that will be used to add a new owner.
                  ///
                  /// @return The next index that will be used to add a new owner.
                  function nextOwnerIndex() public view virtual returns (uint256) {
                      return _getMultiOwnableStorage().nextOwnerIndex;
                  }
                  /// @notice Returns the current number of owners
                  ///
                  /// @return The current owner count
                  function ownerCount() public view virtual returns (uint256) {
                      MultiOwnableStorage storage $ = _getMultiOwnableStorage();
                      return $.nextOwnerIndex - $.removedOwnersCount;
                  }
                  /// @notice Tracks the number of owners removed
                  ///
                  /// @dev Used with `this.nextOwnerIndex` to avoid removing all owners
                  ///
                  /// @return The number of owners that have been removed.
                  function removedOwnersCount() public view virtual returns (uint256) {
                      return _getMultiOwnableStorage().removedOwnersCount;
                  }
                  /// @notice Initialize the owners of this contract.
                  ///
                  /// @dev Intended to be called contract is first deployed and never again.
                  /// @dev Reverts if a provided owner is neither 64 bytes long (for public key) nor a valid address.
                  ///
                  /// @param owners The initial set of owners.
                  function _initializeOwners(bytes[] memory owners) internal virtual {
                      MultiOwnableStorage storage $ = _getMultiOwnableStorage();
                      uint256 nextOwnerIndex_ = $.nextOwnerIndex;
                      for (uint256 i; i < owners.length; i++) {
                          if (owners[i].length != 32 && owners[i].length != 64) {
                              revert InvalidOwnerBytesLength(owners[i]);
                          }
                          if (owners[i].length == 32 && uint256(bytes32(owners[i])) > type(uint160).max) {
                              revert InvalidEthereumAddressOwner(owners[i]);
                          }
                          _addOwnerAtIndex(owners[i], nextOwnerIndex_++);
                      }
                      $.nextOwnerIndex = nextOwnerIndex_;
                  }
                  /// @notice Adds an owner at the given `index`.
                  ///
                  /// @dev Reverts if `owner` is already registered as an owner.
                  ///
                  /// @param owner The owner raw bytes to register.
                  /// @param index The index to write to.
                  function _addOwnerAtIndex(bytes memory owner, uint256 index) internal virtual {
                      if (isOwnerBytes(owner)) revert AlreadyOwner(owner);
                      MultiOwnableStorage storage $ = _getMultiOwnableStorage();
                      $.isOwner[owner] = true;
                      $.ownerAtIndex[index] = owner;
                      emit AddOwner(index, owner);
                  }
                  /// @notice Removes owner at the given `index`.
                  ///
                  /// @dev Reverts if the owner is not registered at `index`.
                  /// @dev Reverts if `owner` does not match bytes found at `index`.
                  ///
                  /// @param index The index of the owner to be removed.
                  /// @param owner The ABI encoded bytes of the owner to be removed.
                  function _removeOwnerAtIndex(uint256 index, bytes calldata owner) internal virtual {
                      bytes memory owner_ = ownerAtIndex(index);
                      if (owner_.length == 0) revert NoOwnerAtIndex(index);
                      if (keccak256(owner_) != keccak256(owner)) {
                          revert WrongOwnerAtIndex({index: index, expectedOwner: owner, actualOwner: owner_});
                      }
                      MultiOwnableStorage storage $ = _getMultiOwnableStorage();
                      delete $.isOwner[owner];
                      delete $.ownerAtIndex[index];
                      $.removedOwnersCount++;
                      emit RemoveOwner(index, owner);
                  }
                  /// @notice Checks if the sender is an owner of this contract or the contract itself.
                  ///
                  /// @dev Revert if the sender is not an owner fo the contract itself.
                  function _checkOwner() internal view virtual {
                      if (isOwnerAddress(msg.sender) || (msg.sender == address(this))) {
                          return;
                      }
                      revert Unauthorized();
                  }
                  /// @notice Helper function to get a storage reference to the `MultiOwnableStorage` struct.
                  ///
                  /// @return $ A storage reference to the `MultiOwnableStorage` struct.
                  function _getMultiOwnableStorage() internal pure returns (MultiOwnableStorage storage $) {
                      assembly ("memory-safe") {
                          $.slot := MUTLI_OWNABLE_STORAGE_LOCATION
                      }
                  }
              }
              // SPDX-License-Identifier: GPL-3.0
              pragma solidity ^0.8.12;
              /* solhint-disable no-inline-assembly */
              /**
               * returned data from validateUserOp.
               * validateUserOp returns a uint256, with is created by `_packedValidationData` and parsed by `_parseValidationData`
               * @param aggregator - address(0) - the account validated the signature by itself.
               *              address(1) - the account failed to validate the signature.
               *              otherwise - this is an address of a signature aggregator that must be used to validate the signature.
               * @param validAfter - this UserOp is valid only after this timestamp.
               * @param validaUntil - this UserOp is valid only up to this timestamp.
               */
                  struct ValidationData {
                      address aggregator;
                      uint48 validAfter;
                      uint48 validUntil;
                  }
              //extract sigFailed, validAfter, validUntil.
              // also convert zero validUntil to type(uint48).max
                  function _parseValidationData(uint validationData) pure returns (ValidationData memory data) {
                      address aggregator = address(uint160(validationData));
                      uint48 validUntil = uint48(validationData >> 160);
                      if (validUntil == 0) {
                          validUntil = type(uint48).max;
                      }
                      uint48 validAfter = uint48(validationData >> (48 + 160));
                      return ValidationData(aggregator, validAfter, validUntil);
                  }
              // intersect account and paymaster ranges.
                  function _intersectTimeRange(uint256 validationData, uint256 paymasterValidationData) pure returns (ValidationData memory) {
                      ValidationData memory accountValidationData = _parseValidationData(validationData);
                      ValidationData memory pmValidationData = _parseValidationData(paymasterValidationData);
                      address aggregator = accountValidationData.aggregator;
                      if (aggregator == address(0)) {
                          aggregator = pmValidationData.aggregator;
                      }
                      uint48 validAfter = accountValidationData.validAfter;
                      uint48 validUntil = accountValidationData.validUntil;
                      uint48 pmValidAfter = pmValidationData.validAfter;
                      uint48 pmValidUntil = pmValidationData.validUntil;
                      if (validAfter < pmValidAfter) validAfter = pmValidAfter;
                      if (validUntil > pmValidUntil) validUntil = pmValidUntil;
                      return ValidationData(aggregator, validAfter, validUntil);
                  }
              /**
               * helper to pack the return value for validateUserOp
               * @param data - the ValidationData to pack
               */
                  function _packValidationData(ValidationData memory data) pure returns (uint256) {
                      return uint160(data.aggregator) | (uint256(data.validUntil) << 160) | (uint256(data.validAfter) << (160 + 48));
                  }
              /**
               * helper to pack the return value for validateUserOp, when not using an aggregator
               * @param sigFailed - true for signature failure, false for success
               * @param validUntil last timestamp this UserOperation is valid (or zero for infinite)
               * @param validAfter first timestamp this UserOperation is valid
               */
                  function _packValidationData(bool sigFailed, uint48 validUntil, uint48 validAfter) pure returns (uint256) {
                      return (sigFailed ? 1 : 0) | (uint256(validUntil) << 160) | (uint256(validAfter) << (160 + 48));
                  }
              /**
               * keccak function over calldata.
               * @dev copy calldata into memory, do keccak and drop allocated memory. Strangely, this is more efficient than letting solidity do it.
               */
                  function calldataKeccak(bytes calldata data) pure returns (bytes32 ret) {
                      assembly {
                          let mem := mload(0x40)
                          let len := data.length
                          calldatacopy(mem, data.offset, len)
                          ret := keccak256(mem, len)
                      }
                  }
              //********************************************************************************************/
              //  ___           _       ___               _         _    _ _
              // | __| _ ___ __| |_    / __|_ _ _  _ _ __| |_ ___  | |  (_) |__
              // | _| '_/ -_|_-< ' \\  | (__| '_| || | '_ \\  _/ _ \\ | |__| | '_ \\
              // |_||_| \\___/__/_||_|  \\___|_|  \\_, | .__/\\__\\___/ |____|_|_.__/
              //                                |__/|_|
              ///* Copyright (C) 2022 - Renaud Dubois - This file is part of FCL (Fresh CryptoLib) project
              ///* License: This software is licensed under MIT License
              ///* This Code may be reused including license and copyright notice.
              ///* See LICENSE file at the root folder of the project.
              ///* FILE: FCL_ecdsa.sol
              ///*
              ///*
              ///* DESCRIPTION: ecdsa verification implementation
              ///*
              //**************************************************************************************/
              //* WARNING: this code SHALL not be used for non prime order curves for security reasons.
              // Code is optimized for a=-3 only curves with prime order, constant like -1, -2 shall be replaced
              // if ever used for other curve than sec256R1
              // SPDX-License-Identifier: MIT
              pragma solidity >=0.8.19 <0.9.0;
              import {FCL_Elliptic_ZZ} from "./FCL_elliptic.sol";
              library FCL_ecdsa {
                  // Set parameters for curve sec256r1.public
                    //curve order (number of points)
                  uint256 constant n = FCL_Elliptic_ZZ.n;
                
                  /**
                   * @dev ECDSA verification, given , signature, and public key.
                   */
                  /**
                   * @dev ECDSA verification, given , signature, and public key, no calldata version
                   */
                  function ecdsa_verify(bytes32 message, uint256 r, uint256 s, uint256 Qx, uint256 Qy)  internal view returns (bool){
                      if (r == 0 || r >= FCL_Elliptic_ZZ.n || s == 0 || s >= FCL_Elliptic_ZZ.n) {
                          return false;
                      }
                      
                      if (!FCL_Elliptic_ZZ.ecAff_isOnCurve(Qx, Qy)) {
                          return false;
                      }
                      uint256 sInv = FCL_Elliptic_ZZ.FCL_nModInv(s);
                      uint256 scalar_u = mulmod(uint256(message), sInv, FCL_Elliptic_ZZ.n);
                      uint256 scalar_v = mulmod(r, sInv, FCL_Elliptic_ZZ.n);
                      uint256 x1;
                      x1 = FCL_Elliptic_ZZ.ecZZ_mulmuladd_S_asm(Qx, Qy, scalar_u, scalar_v);
                      x1= addmod(x1, n-r,n );
                  
                      return x1 == 0;
                  }
                  function ec_recover_r1(uint256 h, uint256 v, uint256 r, uint256 s) internal view returns (address)
                  {
                       if (r == 0 || r >= FCL_Elliptic_ZZ.n || s == 0 || s >= FCL_Elliptic_ZZ.n) {
                          return address(0);
                      }
                      uint256 y=FCL_Elliptic_ZZ.ec_Decompress(r, v-27);
                      uint256 rinv=FCL_Elliptic_ZZ.FCL_nModInv(r);
                      uint256 u1=mulmod(FCL_Elliptic_ZZ.n-addmod(0,h,FCL_Elliptic_ZZ.n), rinv,FCL_Elliptic_ZZ.n);//-hr^-1
                      uint256 u2=mulmod(s, rinv,FCL_Elliptic_ZZ.n);//sr^-1
                      uint256 Qx;
                      uint256 Qy;
                      (Qx,Qy)=FCL_Elliptic_ZZ.ecZZ_mulmuladd(r,y, u1, u2);
                      return address(uint160(uint256(keccak256(abi.encodePacked(Qx, Qy)))));
                  }
                  function ecdsa_precomputed_verify(bytes32 message, uint256 r, uint256 s, address Shamir8)
                      internal view
                      returns (bool)
                  {
                     
                      if (r == 0 || r >= n || s == 0 || s >= n) {
                          return false;
                      }
                      /* Q is pushed via the contract at address Shamir8 assumed to be correct
                      if (!isOnCurve(Q[0], Q[1])) {
                          return false;
                      }*/
                      uint256 sInv = FCL_Elliptic_ZZ.FCL_nModInv(s);
                      uint256 X;
                      //Shamir 8 dimensions
                      X = FCL_Elliptic_ZZ.ecZZ_mulmuladd_S8_extcode(mulmod(uint256(message), sInv, n), mulmod(r, sInv, n), Shamir8);
                      X= addmod(X, n-r,n );
                      return X == 0;
                  } //end  ecdsa_precomputed_verify()
                   function ecdsa_precomputed_verify(bytes32 message, uint256[2] calldata rs, address Shamir8)
                      internal view
                      returns (bool)
                  {
                      uint256 r = rs[0];
                      uint256 s = rs[1];
                      if (r == 0 || r >= n || s == 0 || s >= n) {
                          return false;
                      }
                      /* Q is pushed via the contract at address Shamir8 assumed to be correct
                      if (!isOnCurve(Q[0], Q[1])) {
                          return false;
                      }*/
                      uint256 sInv = FCL_Elliptic_ZZ.FCL_nModInv(s);
                      uint256 X;
                      //Shamir 8 dimensions
                      X = FCL_Elliptic_ZZ.ecZZ_mulmuladd_S8_extcode(mulmod(uint256(message), sInv, n), mulmod(r, sInv, n), Shamir8);
                      X= addmod(X, n-r,n );
                      return X == 0;
                  } //end  ecdsa_precomputed_verify()
              }
              //********************************************************************************************/
              //  ___           _       ___               _         _    _ _
              // | __| _ ___ __| |_    / __|_ _ _  _ _ __| |_ ___  | |  (_) |__
              // | _| '_/ -_|_-< ' \\  | (__| '_| || | '_ \\  _/ _ \\ | |__| | '_ \\
              // |_||_| \\___/__/_||_|  \\___|_|  \\_, | .__/\\__\\___/ |____|_|_.__/
              //                                |__/|_|
              ///* Copyright (C) 2022 - Renaud Dubois - This file is part of FCL (Fresh CryptoLib) project
              ///* License: This software is licensed under MIT License
              ///* This Code may be reused including license and copyright notice.
              ///* See LICENSE file at the root folder of the project.
              ///* FILE: FCL_elliptic.sol
              ///*
              ///*
              ///* DESCRIPTION: modified XYZZ system coordinates for EVM elliptic point multiplication
              ///*  optimization
              ///*
              //**************************************************************************************/
              //* WARNING: this code SHALL not be used for non prime order curves for security reasons.
              // Code is optimized for a=-3 only curves with prime order, constant like -1, -2 shall be replaced
              // if ever used for other curve than sec256R1
              // SPDX-License-Identifier: MIT
              pragma solidity >=0.8.19 <0.9.0;
              library FCL_Elliptic_ZZ {
                  // Set parameters for curve sec256r1.
                  // address of the ModExp precompiled contract (Arbitrary-precision exponentiation under modulo)
                  address constant MODEXP_PRECOMPILE = 0x0000000000000000000000000000000000000005;
                  //curve prime field modulus
                  uint256 constant p = 0xFFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF;
                  //short weierstrass first coefficient
                  uint256 constant a = 0xFFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFC;
                  //short weierstrass second coefficient
                  uint256 constant b = 0x5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B;
                  //generating point affine coordinates
                  uint256 constant gx = 0x6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296;
                  uint256 constant gy = 0x4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5;
                  //curve order (number of points)
                  uint256 constant n = 0xFFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551;
                  /* -2 mod p constant, used to speed up inversion and doubling (avoid negation)*/
                  uint256 constant minus_2 = 0xFFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFD;
                  /* -2 mod n constant, used to speed up inversion*/
                  uint256 constant minus_2modn = 0xFFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC63254F;
                  uint256 constant minus_1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                  //P+1 div 4
                  uint256 constant pp1div4=0x3fffffffc0000000400000000000000000000000400000000000000000000000;
                  //arbitrary constant to express no quadratic residuosity
                  uint256 constant _NOTSQUARE=0xFFFFFFFF00000002000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF;
                  uint256 constant _NOTONCURVE=0xFFFFFFFF00000003000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF;
                  /**
                   * /* inversion mod n via a^(n-2), use of precompiled using little Fermat theorem
                   */
                  function FCL_nModInv(uint256 u) internal view returns (uint256 result) {
                      assembly {
                          let pointer := mload(0x40)
                          // Define length of base, exponent and modulus. 0x20 == 32 bytes
                          mstore(pointer, 0x20)
                          mstore(add(pointer, 0x20), 0x20)
                          mstore(add(pointer, 0x40), 0x20)
                          // Define variables base, exponent and modulus
                          mstore(add(pointer, 0x60), u)
                          mstore(add(pointer, 0x80), minus_2modn)
                          mstore(add(pointer, 0xa0), n)
                          // Call the precompiled contract 0x05 = ModExp
                          if iszero(staticcall(not(0), 0x05, pointer, 0xc0, pointer, 0x20)) { revert(0, 0) }
                          result := mload(pointer)
                      }
                  }
                  /**
                   * /* @dev inversion mod nusing little Fermat theorem via a^(n-2), use of precompiled
                   */
                  function FCL_pModInv(uint256 u) internal view returns (uint256 result) {
                      assembly {
                          let pointer := mload(0x40)
                          // Define length of base, exponent and modulus. 0x20 == 32 bytes
                          mstore(pointer, 0x20)
                          mstore(add(pointer, 0x20), 0x20)
                          mstore(add(pointer, 0x40), 0x20)
                          // Define variables base, exponent and modulus
                          mstore(add(pointer, 0x60), u)
                          mstore(add(pointer, 0x80), minus_2)
                          mstore(add(pointer, 0xa0), p)
                          // Call the precompiled contract 0x05 = ModExp
                          if iszero(staticcall(not(0), 0x05, pointer, 0xc0, pointer, 0x20)) { revert(0, 0) }
                          result := mload(pointer)
                      }
                  }
                  //Coron projective shuffling, take as input alpha as blinding factor
                 function ecZZ_Coronize(uint256 alpha, uint256 x, uint256 y,  uint256 zz, uint256 zzz) internal pure  returns (uint256 x3, uint256 y3, uint256 zz3, uint256 zzz3)
                 {
                     
                      uint256 alpha2=mulmod(alpha,alpha,p);
                     
                      x3=mulmod(alpha2, x,p); //alpha^-2.x
                      y3=mulmod(mulmod(alpha, alpha2,p), y,p);
                      zz3=mulmod(zz,alpha2,p);//alpha^2 zz
                      zzz3=mulmod(zzz,mulmod(alpha, alpha2,p),p);//alpha^3 zzz
                      
                      return (x3, y3, zz3, zzz3);
                 }
               function ecZZ_Add(uint256 x1, uint256 y1, uint256 zz1, uint256 zzz1, uint256 x2, uint256 y2, uint256 zz2, uint256 zzz2) internal pure  returns (uint256 x3, uint256 y3, uint256 zz3, uint256 zzz3)
                {
                  uint256 u1=mulmod(x1,zz2,p); // U1 = X1*ZZ2
                  uint256 u2=mulmod(x2, zz1,p);               //  U2 = X2*ZZ1
                  u2=addmod(u2, p-u1, p);//  P = U2-U1
                  x1=mulmod(u2, u2, p);//PP
                  x2=mulmod(x1, u2, p);//PPP
                  
                  zz3=mulmod(x1, mulmod(zz1, zz2, p),p);//ZZ3 = ZZ1*ZZ2*PP  
                  zzz3=mulmod(zzz1, mulmod(zzz2, x2, p),p);//ZZZ3 = ZZZ1*ZZZ2*PPP
                  zz1=mulmod(y1, zzz2,p);  // S1 = Y1*ZZZ2
                  zz2=mulmod(y2, zzz1, p);    // S2 = Y2*ZZZ1 
                  zz2=addmod(zz2, p-zz1, p);//R = S2-S1
                  zzz1=mulmod(u1, x1,p); //Q = U1*PP
                  x3= addmod(addmod(mulmod(zz2, zz2, p), p-x2,p), mulmod(minus_2, zzz1,p),p); //X3 = R2-PPP-2*Q
                  y3=addmod( mulmod(zz2, addmod(zzz1, p-x3, p),p), p-mulmod(zz1, x2, p),p);//R*(Q-X3)-S1*PPP
                  return (x3, y3, zz3, zzz3);
                }
              /// @notice Calculate one modular square root of a given integer. Assume that p=3 mod 4.
              /// @dev Uses the ModExp precompiled contract at address 0x05 for fast computation using little Fermat theorem
              /// @param self The integer of which to find the modular inverse
              /// @return result The modular inverse of the input integer. If the modular inverse doesn't exist, it revert the tx
              function SqrtMod(uint256 self) internal view returns (uint256 result){
               assembly ("memory-safe") {
                      // load the free memory pointer value
                      let pointer := mload(0x40)
                      // Define length of base (Bsize)
                      mstore(pointer, 0x20)
                      // Define the exponent size (Esize)
                      mstore(add(pointer, 0x20), 0x20)
                      // Define the modulus size (Msize)
                      mstore(add(pointer, 0x40), 0x20)
                      // Define variables base (B)
                      mstore(add(pointer, 0x60), self)
                      // Define the exponent (E)
                      mstore(add(pointer, 0x80), pp1div4)
                      // We save the point of the last argument, it will be override by the result
                      // of the precompile call in order to avoid paying for the memory expansion properly
                      let _result := add(pointer, 0xa0)
                      // Define the modulus (M)
                      mstore(_result, p)
                      // Call the precompiled ModExp (0x05) https://www.evm.codes/precompiled#0x05
                      if iszero(
                          staticcall(
                              not(0), // amount of gas to send
                              MODEXP_PRECOMPILE, // target
                              pointer, // argsOffset
                              0xc0, // argsSize (6 * 32 bytes)
                              _result, // retOffset (we override M to avoid paying for the memory expansion)
                              0x20 // retSize (32 bytes)
                          )
                      ) { revert(0, 0) }
                result := mload(_result)
              //  result :=addmod(result,0,p)
               }
                 if(mulmod(result,result,p)!=self){
                   result=_NOTSQUARE;
                 }
                
                 return result;
              }
                  /**
                   * /* @dev Convert from affine rep to XYZZ rep
                   */
                  function ecAff_SetZZ(uint256 x0, uint256 y0) internal pure returns (uint256[4] memory P) {
                      unchecked {
                          P[2] = 1; //ZZ
                          P[3] = 1; //ZZZ
                          P[0] = x0;
                          P[1] = y0;
                      }
                  }
                  function ec_Decompress(uint256 x, uint256 parity) internal view returns(uint256 y){ 
                      uint256 y2=mulmod(x,mulmod(x,x,p),p);//x3
                      y2=addmod(b,addmod(y2,mulmod(x,a,p),p),p);//x3+ax+b
                      y=SqrtMod(y2);
                      if(y==_NOTSQUARE){
                         return _NOTONCURVE;
                      }
                      if((y&1)!=(parity&1)){
                          y=p-y;
                      }
                  }
                  /**
                   * /* @dev Convert from XYZZ rep to affine rep
                   */
                  /*    https://hyperelliptic.org/EFD/g1p/auto-shortw-xyzz-3.html#addition-add-2008-s*/
                  function ecZZ_SetAff(uint256 x, uint256 y, uint256 zz, uint256 zzz) internal view returns (uint256 x1, uint256 y1) {
                      uint256 zzzInv = FCL_pModInv(zzz); //1/zzz
                      y1 = mulmod(y, zzzInv, p); //Y/zzz
                      uint256 _b = mulmod(zz, zzzInv, p); //1/z
                      zzzInv = mulmod(_b, _b, p); //1/zz
                      x1 = mulmod(x, zzzInv, p); //X/zz
                  }
                  /**
                   * /* @dev Sutherland2008 doubling
                   */
                  /* The "dbl-2008-s-1" doubling formulas */
                  function ecZZ_Dbl(uint256 x, uint256 y, uint256 zz, uint256 zzz)
                      internal
                      pure
                      returns (uint256 P0, uint256 P1, uint256 P2, uint256 P3)
                  {
                      unchecked {
                          assembly {
                              P0 := mulmod(2, y, p) //U = 2*Y1
                              P2 := mulmod(P0, P0, p) // V=U^2
                              P3 := mulmod(x, P2, p) // S = X1*V
                              P1 := mulmod(P0, P2, p) // W=UV
                              P2 := mulmod(P2, zz, p) //zz3=V*ZZ1
                              zz := mulmod(3, mulmod(addmod(x, sub(p, zz), p), addmod(x, zz, p), p), p) //M=3*(X1-ZZ1)*(X1+ZZ1)
                              P0 := addmod(mulmod(zz, zz, p), mulmod(minus_2, P3, p), p) //X3=M^2-2S
                              x := mulmod(zz, addmod(P3, sub(p, P0), p), p) //M(S-X3)
                              P3 := mulmod(P1, zzz, p) //zzz3=W*zzz1
                              P1 := addmod(x, sub(p, mulmod(P1, y, p)), p) //Y3= M(S-X3)-W*Y1
                          }
                      }
                      return (P0, P1, P2, P3);
                  }
                  /**
                   * @dev Sutherland2008 add a ZZ point with a normalized point and greedy formulae
                   * warning: assume that P1(x1,y1)!=P2(x2,y2), true in multiplication loop with prime order (cofactor 1)
                   */
                  function ecZZ_AddN(uint256 x1, uint256 y1, uint256 zz1, uint256 zzz1, uint256 x2, uint256 y2)
                      internal
                      pure
                      returns (uint256 P0, uint256 P1, uint256 P2, uint256 P3)
                  {
                      unchecked {
                          if (y1 == 0) {
                              return (x2, y2, 1, 1);
                          }
                          assembly {
                              y1 := sub(p, y1)
                              y2 := addmod(mulmod(y2, zzz1, p), y1, p)
                              x2 := addmod(mulmod(x2, zz1, p), sub(p, x1), p)
                              P0 := mulmod(x2, x2, p) //PP = P^2
                              P1 := mulmod(P0, x2, p) //PPP = P*PP
                              P2 := mulmod(zz1, P0, p) ////ZZ3 = ZZ1*PP
                              P3 := mulmod(zzz1, P1, p) ////ZZZ3 = ZZZ1*PPP
                              zz1 := mulmod(x1, P0, p) //Q = X1*PP
                              P0 := addmod(addmod(mulmod(y2, y2, p), sub(p, P1), p), mulmod(minus_2, zz1, p), p) //R^2-PPP-2*Q
                              P1 := addmod(mulmod(addmod(zz1, sub(p, P0), p), y2, p), mulmod(y1, P1, p), p) //R*(Q-X3)
                          }
                          //end assembly
                      } //end unchecked
                      return (P0, P1, P2, P3);
                  }
                  /**
                   * @dev Return the zero curve in XYZZ coordinates.
                   */
                  function ecZZ_SetZero() internal pure returns (uint256 x, uint256 y, uint256 zz, uint256 zzz) {
                      return (0, 0, 0, 0);
                  }
                  /**
                   * @dev Check if point is the neutral of the curve
                   */
                  // uint256 x0, uint256 y0, uint256 zz0, uint256 zzz0
                  function ecZZ_IsZero(uint256, uint256 y0, uint256, uint256) internal pure returns (bool) {
                      return y0 == 0;
                  }
                  /**
                   * @dev Return the zero curve in affine coordinates. Compatible with the double formulae (no special case)
                   */
                  function ecAff_SetZero() internal pure returns (uint256 x, uint256 y) {
                      return (0, 0);
                  }
                  /**
                   * @dev Check if the curve is the zero curve in affine rep.
                   */
                  // uint256 x, uint256 y)
                  function ecAff_IsZero(uint256, uint256 y) internal pure returns (bool flag) {
                      return (y == 0);
                  }
                  /**
                   * @dev Check if a point in affine coordinates is on the curve (reject Neutral that is indeed on the curve).
                   */
                  function ecAff_isOnCurve(uint256 x, uint256 y) internal pure returns (bool) {
                      if (x >= p || y >= p || ((x == 0) && (y == 0))) {
                          return false;
                      }
                      unchecked {
                          uint256 LHS = mulmod(y, y, p); // y^2
                          uint256 RHS = addmod(mulmod(mulmod(x, x, p), x, p), mulmod(x, a, p), p); // x^3+ax
                          RHS = addmod(RHS, b, p); // x^3 + a*x + b
                          return LHS == RHS;
                      }
                  }
                  /**
                   * @dev Add two elliptic curve points in affine coordinates. Deal with P=Q
                   */
                  function ecAff_add(uint256 x0, uint256 y0, uint256 x1, uint256 y1) internal view returns (uint256, uint256) {
                      uint256 zz0;
                      uint256 zzz0;
                      if (ecAff_IsZero(x0, y0)) return (x1, y1);
                      if (ecAff_IsZero(x1, y1)) return (x0, y0);
                      if((x0==x1)&&(y0==y1)) {
                          (x0, y0, zz0, zzz0) = ecZZ_Dbl(x0, y0,1,1);
                      }
                      else{
                          (x0, y0, zz0, zzz0) = ecZZ_AddN(x0, y0, 1, 1, x1, y1);
                      }
                      return ecZZ_SetAff(x0, y0, zz0, zzz0);
                  }
                  /**
                   * @dev Computation of uG+vQ using Strauss-Shamir's trick, G basepoint, Q public key
                   *       Returns only x for ECDSA use            
                   *      */
                  function ecZZ_mulmuladd_S_asm(
                      uint256 Q0,
                      uint256 Q1, //affine rep for input point Q
                      uint256 scalar_u,
                      uint256 scalar_v
                  ) internal view returns (uint256 X) {
                      uint256 zz;
                      uint256 zzz;
                      uint256 Y;
                      uint256 index = 255;
                      uint256 H0;
                      uint256 H1;
                      unchecked {
                          if (scalar_u == 0 && scalar_v == 0) return 0;
                          (H0, H1) = ecAff_add(gx, gy, Q0, Q1); 
                          if((H0==0)&&(H1==0))//handling Q=-G
                          {
                              scalar_u=addmod(scalar_u, n-scalar_v, n);
                              scalar_v=0;
                              if (scalar_u == 0 && scalar_v == 0) return 0;
                          }
                          assembly {
                              for { let T4 := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1)) } eq(T4, 0) {
                                  index := sub(index, 1)
                                  T4 := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1))
                              } {}
                              zz := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1))
                              if eq(zz, 1) {
                                  X := gx
                                  Y := gy
                              }
                              if eq(zz, 2) {
                                  X := Q0
                                  Y := Q1
                              }
                              if eq(zz, 3) {
                                  X := H0
                                  Y := H1
                              }
                              index := sub(index, 1)
                              zz := 1
                              zzz := 1
                              for {} gt(minus_1, index) { index := sub(index, 1) } {
                                  // inlined EcZZ_Dbl
                                  let T1 := mulmod(2, Y, p) //U = 2*Y1, y free
                                  let T2 := mulmod(T1, T1, p) // V=U^2
                                  let T3 := mulmod(X, T2, p) // S = X1*V
                                  T1 := mulmod(T1, T2, p) // W=UV
                                  let T4 := mulmod(3, mulmod(addmod(X, sub(p, zz), p), addmod(X, zz, p), p), p) //M=3*(X1-ZZ1)*(X1+ZZ1)
                                  zzz := mulmod(T1, zzz, p) //zzz3=W*zzz1
                                  zz := mulmod(T2, zz, p) //zz3=V*ZZ1, V free
                                  X := addmod(mulmod(T4, T4, p), mulmod(minus_2, T3, p), p) //X3=M^2-2S
                                  T2 := mulmod(T4, addmod(X, sub(p, T3), p), p) //-M(S-X3)=M(X3-S)
                                  Y := addmod(mulmod(T1, Y, p), T2, p) //-Y3= W*Y1-M(S-X3), we replace Y by -Y to avoid a sub in ecAdd
                                  {
                                      //value of dibit
                                      T4 := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1))
                                      if iszero(T4) {
                                          Y := sub(p, Y) //restore the -Y inversion
                                          continue
                                      } // if T4!=0
                                      if eq(T4, 1) {
                                          T1 := gx
                                          T2 := gy
                                      }
                                      if eq(T4, 2) {
                                          T1 := Q0
                                          T2 := Q1
                                      }
                                      if eq(T4, 3) {
                                          T1 := H0
                                          T2 := H1
                                      }
                                      if iszero(zz) {
                                          X := T1
                                          Y := T2
                                          zz := 1
                                          zzz := 1
                                          continue
                                      }
                                      // inlined EcZZ_AddN
                                      //T3:=sub(p, Y)
                                      //T3:=Y
                                      let y2 := addmod(mulmod(T2, zzz, p), Y, p) //R
                                      T2 := addmod(mulmod(T1, zz, p), sub(p, X), p) //P
                                      //special extremely rare case accumulator where EcAdd is replaced by EcDbl, no need to optimize this
                                      //todo : construct edge vector case
                                      if iszero(y2) {
                                          if iszero(T2) {
                                              T1 := mulmod(minus_2, Y, p) //U = 2*Y1, y free
                                              T2 := mulmod(T1, T1, p) // V=U^2
                                              T3 := mulmod(X, T2, p) // S = X1*V
                                              T1 := mulmod(T1, T2, p) // W=UV
                                              y2 := mulmod(addmod(X, zz, p), addmod(X, sub(p, zz), p), p) //(X-ZZ)(X+ZZ)
                                              T4 := mulmod(3, y2, p) //M=3*(X-ZZ)(X+ZZ)
                                              zzz := mulmod(T1, zzz, p) //zzz3=W*zzz1
                                              zz := mulmod(T2, zz, p) //zz3=V*ZZ1, V free
                                              X := addmod(mulmod(T4, T4, p), mulmod(minus_2, T3, p), p) //X3=M^2-2S
                                              T2 := mulmod(T4, addmod(T3, sub(p, X), p), p) //M(S-X3)
                                              Y := addmod(T2, mulmod(T1, Y, p), p) //Y3= M(S-X3)-W*Y1
                                              continue
                                          }
                                      }
                                      T4 := mulmod(T2, T2, p) //PP
                                      let TT1 := mulmod(T4, T2, p) //PPP, this one could be spared, but adding this register spare gas
                                      zz := mulmod(zz, T4, p)
                                      zzz := mulmod(zzz, TT1, p) //zz3=V*ZZ1
                                      let TT2 := mulmod(X, T4, p)
                                      T4 := addmod(addmod(mulmod(y2, y2, p), sub(p, TT1), p), mulmod(minus_2, TT2, p), p)
                                      Y := addmod(mulmod(addmod(TT2, sub(p, T4), p), y2, p), mulmod(Y, TT1, p), p)
                                      X := T4
                                  }
                              } //end loop
                              let T := mload(0x40)
                              mstore(add(T, 0x60), zz)
                              //(X,Y)=ecZZ_SetAff(X,Y,zz, zzz);
                              //T[0] = inverseModp_Hard(T[0], p); //1/zzz, inline modular inversion using precompile:
                              // Define length of base, exponent and modulus. 0x20 == 32 bytes
                              mstore(T, 0x20)
                              mstore(add(T, 0x20), 0x20)
                              mstore(add(T, 0x40), 0x20)
                              // Define variables base, exponent and modulus
                              //mstore(add(pointer, 0x60), u)
                              mstore(add(T, 0x80), minus_2)
                              mstore(add(T, 0xa0), p)
                              // Call the precompiled contract 0x05 = ModExp
                              if iszero(staticcall(not(0), 0x05, T, 0xc0, T, 0x20)) { revert(0, 0) }
                              //Y:=mulmod(Y,zzz,p)//Y/zzz
                              //zz :=mulmod(zz, mload(T),p) //1/z
                              //zz:= mulmod(zz,zz,p) //1/zz
                              X := mulmod(X, mload(T), p) //X/zz
                          } //end assembly
                      } //end unchecked
                      return X;
                  }
                  /**
                   * @dev Computation of uG+vQ using Strauss-Shamir's trick, G basepoint, Q public key
                   *       Returns affine representation of point (normalized)       
                   *      */
                  function ecZZ_mulmuladd(
                      uint256 Q0,
                      uint256 Q1, //affine rep for input point Q
                      uint256 scalar_u,
                      uint256 scalar_v
                  ) internal view returns (uint256 X, uint256 Y) {
                      uint256 zz;
                      uint256 zzz;
                      uint256 index = 255;
                      uint256[6] memory T;
                      uint256[2] memory H;
               
                      unchecked {
                          if (scalar_u == 0 && scalar_v == 0) return (0,0);
                          (H[0], H[1]) = ecAff_add(gx, gy, Q0, Q1); //will not work if Q=P, obvious forbidden private key
                          assembly {
                              for { let T4 := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1)) } eq(T4, 0) {
                                  index := sub(index, 1)
                                  T4 := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1))
                              } {}
                              zz := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1))
                              if eq(zz, 1) {
                                  X := gx
                                  Y := gy
                              }
                              if eq(zz, 2) {
                                  X := Q0
                                  Y := Q1
                              }
                              if eq(zz, 3) {
                                  Y := mload(add(H,32))
                                  X := mload(H)
                              }
                              index := sub(index, 1)
                              zz := 1
                              zzz := 1
                              for {} gt(minus_1, index) { index := sub(index, 1) } {
                                  // inlined EcZZ_Dbl
                                  let T1 := mulmod(2, Y, p) //U = 2*Y1, y free
                                  let T2 := mulmod(T1, T1, p) // V=U^2
                                  let T3 := mulmod(X, T2, p) // S = X1*V
                                  T1 := mulmod(T1, T2, p) // W=UV
                                  let T4 := mulmod(3, mulmod(addmod(X, sub(p, zz), p), addmod(X, zz, p), p), p) //M=3*(X1-ZZ1)*(X1+ZZ1)
                                  zzz := mulmod(T1, zzz, p) //zzz3=W*zzz1
                                  zz := mulmod(T2, zz, p) //zz3=V*ZZ1, V free
                                  X := addmod(mulmod(T4, T4, p), mulmod(minus_2, T3, p), p) //X3=M^2-2S
                                  T2 := mulmod(T4, addmod(X, sub(p, T3), p), p) //-M(S-X3)=M(X3-S)
                                  Y := addmod(mulmod(T1, Y, p), T2, p) //-Y3= W*Y1-M(S-X3), we replace Y by -Y to avoid a sub in ecAdd
                                  {
                                      //value of dibit
                                      T4 := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1))
                                      if iszero(T4) {
                                          Y := sub(p, Y) //restore the -Y inversion
                                          continue
                                      } // if T4!=0
                                      if eq(T4, 1) {
                                          T1 := gx
                                          T2 := gy
                                      }
                                      if eq(T4, 2) {
                                          T1 := Q0
                                          T2 := Q1
                                      }
                                      if eq(T4, 3) {
                                          T1 := mload(H)
                                          T2 := mload(add(H,32))
                                      }
                                      if iszero(zz) {
                                          X := T1
                                          Y := T2
                                          zz := 1
                                          zzz := 1
                                          continue
                                      }
                                      // inlined EcZZ_AddN
                                      //T3:=sub(p, Y)
                                      //T3:=Y
                                      let y2 := addmod(mulmod(T2, zzz, p), Y, p) //R
                                      T2 := addmod(mulmod(T1, zz, p), sub(p, X), p) //P
                                      //special extremely rare case accumulator where EcAdd is replaced by EcDbl, no need to optimize this
                                      //todo : construct edge vector case
                                      if iszero(y2) {
                                          if iszero(T2) {
                                              T1 := mulmod(minus_2, Y, p) //U = 2*Y1, y free
                                              T2 := mulmod(T1, T1, p) // V=U^2
                                              T3 := mulmod(X, T2, p) // S = X1*V
                                              T1 := mulmod(T1, T2, p) // W=UV
                                              y2 := mulmod(addmod(X, zz, p), addmod(X, sub(p, zz), p), p) //(X-ZZ)(X+ZZ)
                                              T4 := mulmod(3, y2, p) //M=3*(X-ZZ)(X+ZZ)
                                              zzz := mulmod(T1, zzz, p) //zzz3=W*zzz1
                                              zz := mulmod(T2, zz, p) //zz3=V*ZZ1, V free
                                              X := addmod(mulmod(T4, T4, p), mulmod(minus_2, T3, p), p) //X3=M^2-2S
                                              T2 := mulmod(T4, addmod(T3, sub(p, X), p), p) //M(S-X3)
                                              Y := addmod(T2, mulmod(T1, Y, p), p) //Y3= M(S-X3)-W*Y1
                                              continue
                                          }
                                      }
                                      T4 := mulmod(T2, T2, p) //PP
                                      let TT1 := mulmod(T4, T2, p) //PPP, this one could be spared, but adding this register spare gas
                                      zz := mulmod(zz, T4, p)
                                      zzz := mulmod(zzz, TT1, p) //zz3=V*ZZ1
                                      let TT2 := mulmod(X, T4, p)
                                      T4 := addmod(addmod(mulmod(y2, y2, p), sub(p, TT1), p), mulmod(minus_2, TT2, p), p)
                                      Y := addmod(mulmod(addmod(TT2, sub(p, T4), p), y2, p), mulmod(Y, TT1, p), p)
                                      X := T4
                                  }
                              } //end loop
                              mstore(add(T, 0x60), zzz)
                              //(X,Y)=ecZZ_SetAff(X,Y,zz, zzz);
                              //T[0] = inverseModp_Hard(T[0], p); //1/zzz, inline modular inversion using precompile:
                              // Define length of base, exponent and modulus. 0x20 == 32 bytes
                              mstore(T, 0x20)
                              mstore(add(T, 0x20), 0x20)
                              mstore(add(T, 0x40), 0x20)
                              // Define variables base, exponent and modulus
                              //mstore(add(pointer, 0x60), u)
                              mstore(add(T, 0x80), minus_2)
                              mstore(add(T, 0xa0), p)
                              // Call the precompiled contract 0x05 = ModExp
                              if iszero(staticcall(not(0), 0x05, T, 0xc0, T, 0x20)) { revert(0, 0) }
                              Y:=mulmod(Y,mload(T),p)//Y/zzz
                              zz :=mulmod(zz, mload(T),p) //1/z
                              zz:= mulmod(zz,zz,p) //1/zz
                              X := mulmod(X, zz, p) //X/zz
                          } //end assembly
                      } //end unchecked
                      return (X,Y);
                  }
                  //8 dimensions Shamir's trick, using precomputations stored in Shamir8,  stored as Bytecode of an external
                  //contract at given address dataPointer
                  //(thx to Lakhdar https://github.com/Kelvyne for EVM storage explanations and tricks)
                  // the external tool to generate tables from public key is in the /sage directory
                  function ecZZ_mulmuladd_S8_extcode(uint256 scalar_u, uint256 scalar_v, address dataPointer)
                      internal view
                      returns (uint256 X /*, uint Y*/ )
                  {
                      unchecked {
                          uint256 zz; // third and  coordinates of the point
                          uint256[6] memory T;
                          zz = 256; //start index
                          while (T[0] == 0) {
                              zz = zz - 1;
                              //tbd case of msb octobit is null
                              T[0] = 64
                                  * (
                                      128 * ((scalar_v >> zz) & 1) + 64 * ((scalar_v >> (zz - 64)) & 1)
                                          + 32 * ((scalar_v >> (zz - 128)) & 1) + 16 * ((scalar_v >> (zz - 192)) & 1)
                                          + 8 * ((scalar_u >> zz) & 1) + 4 * ((scalar_u >> (zz - 64)) & 1)
                                          + 2 * ((scalar_u >> (zz - 128)) & 1) + ((scalar_u >> (zz - 192)) & 1)
                                  );
                          }
                          assembly {
                              extcodecopy(dataPointer, T, mload(T), 64)
                              let index := sub(zz, 1)
                              X := mload(T)
                              let Y := mload(add(T, 32))
                              let zzz := 1
                              zz := 1
                              //loop over 1/4 of scalars thx to Shamir's trick over 8 points
                              for {} gt(index, 191) { index := add(index, 191) } {
                                  //inline Double
                                  {
                                      let TT1 := mulmod(2, Y, p) //U = 2*Y1, y free
                                      let T2 := mulmod(TT1, TT1, p) // V=U^2
                                      let T3 := mulmod(X, T2, p) // S = X1*V
                                      let T1 := mulmod(TT1, T2, p) // W=UV
                                      let T4 := mulmod(3, mulmod(addmod(X, sub(p, zz), p), addmod(X, zz, p), p), p) //M=3*(X1-ZZ1)*(X1+ZZ1)
                                      zzz := mulmod(T1, zzz, p) //zzz3=W*zzz1
                                      zz := mulmod(T2, zz, p) //zz3=V*ZZ1, V free
                                      X := addmod(mulmod(T4, T4, p), mulmod(minus_2, T3, p), p) //X3=M^2-2S
                                      //T2:=mulmod(T4,addmod(T3, sub(p, X),p),p)//M(S-X3)
                                      let T5 := mulmod(T4, addmod(X, sub(p, T3), p), p) //-M(S-X3)=M(X3-S)
                                      //Y:= addmod(T2, sub(p, mulmod(T1, Y ,p)),p  )//Y3= M(S-X3)-W*Y1
                                      Y := addmod(mulmod(T1, Y, p), T5, p) //-Y3= W*Y1-M(S-X3), we replace Y by -Y to avoid a sub in ecAdd
                                      /* compute element to access in precomputed table */
                                  }
                                  {
                                      let T4 := add(shl(13, and(shr(index, scalar_v), 1)), shl(9, and(shr(index, scalar_u), 1)))
                                      let index2 := sub(index, 64)
                                      let T3 :=
                                          add(T4, add(shl(12, and(shr(index2, scalar_v), 1)), shl(8, and(shr(index2, scalar_u), 1))))
                                      let index3 := sub(index2, 64)
                                      let T2 :=
                                          add(T3, add(shl(11, and(shr(index3, scalar_v), 1)), shl(7, and(shr(index3, scalar_u), 1))))
                                      index := sub(index3, 64)
                                      let T1 :=
                                          add(T2, add(shl(10, and(shr(index, scalar_v), 1)), shl(6, and(shr(index, scalar_u), 1))))
                                      //tbd: check validity of formulae with (0,1) to remove conditional jump
                                      if iszero(T1) {
                                          Y := sub(p, Y)
                                          continue
                                      }
                                      extcodecopy(dataPointer, T, T1, 64)
                                  }
                                  {
                                      /* Access to precomputed table using extcodecopy hack */
                                      // inlined EcZZ_AddN
                                      if iszero(zz) {
                                          X := mload(T)
                                          Y := mload(add(T, 32))
                                          zz := 1
                                          zzz := 1
                                          continue
                                      }
                                      let y2 := addmod(mulmod(mload(add(T, 32)), zzz, p), Y, p)
                                      let T2 := addmod(mulmod(mload(T), zz, p), sub(p, X), p)
                                      //special case ecAdd(P,P)=EcDbl
                                      if iszero(y2) {
                                          if iszero(T2) {
                                              let T1 := mulmod(minus_2, Y, p) //U = 2*Y1, y free
                                              T2 := mulmod(T1, T1, p) // V=U^2
                                              let T3 := mulmod(X, T2, p) // S = X1*V
                                              T1 := mulmod(T1, T2, p) // W=UV
                                              y2 := mulmod(addmod(X, zz, p), addmod(X, sub(p, zz), p), p) //(X-ZZ)(X+ZZ)
                                              let T4 := mulmod(3, y2, p) //M=3*(X-ZZ)(X+ZZ)
                                              zzz := mulmod(T1, zzz, p) //zzz3=W*zzz1
                                              zz := mulmod(T2, zz, p) //zz3=V*ZZ1, V free
                                              X := addmod(mulmod(T4, T4, p), mulmod(minus_2, T3, p), p) //X3=M^2-2S
                                              T2 := mulmod(T4, addmod(T3, sub(p, X), p), p) //M(S-X3)
                                              Y := addmod(T2, mulmod(T1, Y, p), p) //Y3= M(S-X3)-W*Y1
                                              continue
                                          }
                                      }
                                      let T4 := mulmod(T2, T2, p)
                                      let T1 := mulmod(T4, T2, p) //
                                      zz := mulmod(zz, T4, p)
                                      //zzz3=V*ZZ1
                                      zzz := mulmod(zzz, T1, p) // W=UV/
                                      let zz1 := mulmod(X, T4, p)
                                      X := addmod(addmod(mulmod(y2, y2, p), sub(p, T1), p), mulmod(minus_2, zz1, p), p)
                                      Y := addmod(mulmod(addmod(zz1, sub(p, X), p), y2, p), mulmod(Y, T1, p), p)
                                  }
                              } //end loop
                              mstore(add(T, 0x60), zz)
                              //(X,Y)=ecZZ_SetAff(X,Y,zz, zzz);
                              //T[0] = inverseModp_Hard(T[0], p); //1/zzz, inline modular inversion using precompile:
                              // Define length of base, exponent and modulus. 0x20 == 32 bytes
                              mstore(T, 0x20)
                              mstore(add(T, 0x20), 0x20)
                              mstore(add(T, 0x40), 0x20)
                              // Define variables base, exponent and modulus
                              //mstore(add(pointer, 0x60), u)
                              mstore(add(T, 0x80), minus_2)
                              mstore(add(T, 0xa0), p)
                              // Call the precompiled contract 0x05 = ModExp
                              if iszero(staticcall(not(0), 0x05, T, 0xc0, T, 0x20)) { revert(0, 0) }
                              zz := mload(T)
                              X := mulmod(X, zz, p) //X/zz
                          }
                      } //end unchecked
                  }
                 
                  // improving the extcodecopy trick : append array at end of contract
                  function ecZZ_mulmuladd_S8_hackmem(uint256 scalar_u, uint256 scalar_v, uint256 dataPointer)
                      internal view
                      returns (uint256 X /*, uint Y*/ )
                  {
                      uint256 zz; // third and  coordinates of the point
                      uint256[6] memory T;
                      zz = 256; //start index
                      unchecked {
                          while (T[0] == 0) {
                              zz = zz - 1;
                              //tbd case of msb octobit is null
                              T[0] = 64
                                  * (
                                      128 * ((scalar_v >> zz) & 1) + 64 * ((scalar_v >> (zz - 64)) & 1)
                                          + 32 * ((scalar_v >> (zz - 128)) & 1) + 16 * ((scalar_v >> (zz - 192)) & 1)
                                          + 8 * ((scalar_u >> zz) & 1) + 4 * ((scalar_u >> (zz - 64)) & 1)
                                          + 2 * ((scalar_u >> (zz - 128)) & 1) + ((scalar_u >> (zz - 192)) & 1)
                                  );
                          }
                          assembly {
                              codecopy(T, add(mload(T), dataPointer), 64)
                              X := mload(T)
                              let Y := mload(add(T, 32))
                              let zzz := 1
                              zz := 1
                              //loop over 1/4 of scalars thx to Shamir's trick over 8 points
                              for { let index := 254 } gt(index, 191) { index := add(index, 191) } {
                                  let T1 := mulmod(2, Y, p) //U = 2*Y1, y free
                                  let T2 := mulmod(T1, T1, p) // V=U^2
                                  let T3 := mulmod(X, T2, p) // S = X1*V
                                  T1 := mulmod(T1, T2, p) // W=UV
                                  let T4 := mulmod(3, mulmod(addmod(X, sub(p, zz), p), addmod(X, zz, p), p), p) //M=3*(X1-ZZ1)*(X1+ZZ1)
                                  zzz := mulmod(T1, zzz, p) //zzz3=W*zzz1
                                  zz := mulmod(T2, zz, p) //zz3=V*ZZ1, V free
                                  X := addmod(mulmod(T4, T4, p), mulmod(minus_2, T3, p), p) //X3=M^2-2S
                                  //T2:=mulmod(T4,addmod(T3, sub(p, X),p),p)//M(S-X3)
                                  T2 := mulmod(T4, addmod(X, sub(p, T3), p), p) //-M(S-X3)=M(X3-S)
                                  //Y:= addmod(T2, sub(p, mulmod(T1, Y ,p)),p  )//Y3= M(S-X3)-W*Y1
                                  Y := addmod(mulmod(T1, Y, p), T2, p) //-Y3= W*Y1-M(S-X3), we replace Y by -Y to avoid a sub in ecAdd
                                  /* compute element to access in precomputed table */
                                  T4 := add(shl(13, and(shr(index, scalar_v), 1)), shl(9, and(shr(index, scalar_u), 1)))
                                  index := sub(index, 64)
                                  T4 := add(T4, add(shl(12, and(shr(index, scalar_v), 1)), shl(8, and(shr(index, scalar_u), 1))))
                                  index := sub(index, 64)
                                  T4 := add(T4, add(shl(11, and(shr(index, scalar_v), 1)), shl(7, and(shr(index, scalar_u), 1))))
                                  index := sub(index, 64)
                                  T4 := add(T4, add(shl(10, and(shr(index, scalar_v), 1)), shl(6, and(shr(index, scalar_u), 1))))
                                  //index:=add(index,192), restore index, interleaved with loop
                                  //tbd: check validity of formulae with (0,1) to remove conditional jump
                                  if iszero(T4) {
                                      Y := sub(p, Y)
                                      continue
                                  }
                                  {
                                      /* Access to precomputed table using extcodecopy hack */
                                      codecopy(T, add(T4, dataPointer), 64)
                                      // inlined EcZZ_AddN
                                      let y2 := addmod(mulmod(mload(add(T, 32)), zzz, p), Y, p)
                                      T2 := addmod(mulmod(mload(T), zz, p), sub(p, X), p)
                                      T4 := mulmod(T2, T2, p)
                                      T1 := mulmod(T4, T2, p)
                                      T2 := mulmod(zz, T4, p) // W=UV
                                      zzz := mulmod(zzz, T1, p) //zz3=V*ZZ1
                                      let zz1 := mulmod(X, T4, p)
                                      T4 := addmod(addmod(mulmod(y2, y2, p), sub(p, T1), p), mulmod(minus_2, zz1, p), p)
                                      Y := addmod(mulmod(addmod(zz1, sub(p, T4), p), y2, p), mulmod(Y, T1, p), p)
                                      zz := T2
                                      X := T4
                                  }
                              } //end loop
                              mstore(add(T, 0x60), zz)
                              //(X,Y)=ecZZ_SetAff(X,Y,zz, zzz);
                              //T[0] = inverseModp_Hard(T[0], p); //1/zzz, inline modular inversion using precompile:
                              // Define length of base, exponent and modulus. 0x20 == 32 bytes
                              mstore(T, 0x20)
                              mstore(add(T, 0x20), 0x20)
                              mstore(add(T, 0x40), 0x20)
                              // Define variables base, exponent and modulus
                              //mstore(add(pointer, 0x60), u)
                              mstore(add(T, 0x80), minus_2)
                              mstore(add(T, 0xa0), p)
                              // Call the precompiled contract 0x05 = ModExp
                              if iszero(staticcall(not(0), 0x05, T, 0xc0, T, 0x20)) { revert(0, 0) }
                              zz := mload(T)
                              X := mulmod(X, zz, p) //X/zz
                          }
                      } //end unchecked
                  }
                  /**
                   * @dev ECDSA verification using a precomputed table of multiples of P and Q stored in contract at address Shamir8
                   *     generation of contract bytecode for precomputations is done using sagemath code
                   *     (see sage directory, WebAuthn_precompute.sage)
                   */
                  /**
                   * @dev ECDSA verification using a precomputed table of multiples of P and Q appended at end of contract at address endcontract
                   *     generation of contract bytecode for precomputations is done using sagemath code
                   *     (see sage directory, WebAuthn_precompute.sage)
                   */
                  function ecdsa_precomputed_hackmem(bytes32 message, uint256[2] calldata rs, uint256 endcontract)
                      internal view
                      returns (bool)
                  {
                      uint256 r = rs[0];
                      uint256 s = rs[1];
                      if (r == 0 || r >= n || s == 0 || s >= n) {
                          return false;
                      }
                      /* Q is pushed via bytecode assumed to be correct
                      if (!isOnCurve(Q[0], Q[1])) {
                          return false;
                      }*/
                      uint256 sInv = FCL_nModInv(s);
                      uint256 X;
                      //Shamir 8 dimensions
                      X = ecZZ_mulmuladd_S8_hackmem(mulmod(uint256(message), sInv, n), mulmod(r, sInv, n), endcontract);
                      assembly {
                          X := addmod(X, sub(n, r), n)
                      }
                      return X == 0;
                  } //end  ecdsa_precomputed_verify()
              } //EOF
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v5.0.2) (utils/Base64.sol)
              pragma solidity ^0.8.20;
              /**
               * @dev Provides a set of functions to operate with Base64 strings.
               */
              library Base64 {
                  /**
                   * @dev Base64 Encoding/Decoding Table
                   * See sections 4 and 5 of https://datatracker.ietf.org/doc/html/rfc4648
                   */
                  string internal constant _TABLE = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
                  string internal constant _TABLE_URL = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_";
                  /**
                   * @dev Converts a `bytes` to its Bytes64 `string` representation.
                   */
                  function encode(bytes memory data) internal pure returns (string memory) {
                      return _encode(data, _TABLE, true);
                  }
                  /**
                   * @dev Converts a `bytes` to its Bytes64Url `string` representation.
                   */
                  function encodeURL(bytes memory data) internal pure returns (string memory) {
                      return _encode(data, _TABLE_URL, false);
                  }
                  /**
                   * @dev Internal table-agnostic conversion
                   */
                  function _encode(bytes memory data, string memory table, bool withPadding) private pure returns (string memory) {
                      /**
                       * Inspired by Brecht Devos (Brechtpd) implementation - MIT licence
                       * https://github.com/Brechtpd/base64/blob/e78d9fd951e7b0977ddca77d92dc85183770daf4/base64.sol
                       */
                      if (data.length == 0) return "";
                      // If padding is enabled, the final length should be `bytes` data length divided by 3 rounded up and then
                      // multiplied by 4 so that it leaves room for padding the last chunk
                      // - `data.length + 2`  -> Round up
                      // - `/ 3`              -> Number of 3-bytes chunks
                      // - `4 *`              -> 4 characters for each chunk
                      // If padding is disabled, the final length should be `bytes` data length multiplied by 4/3 rounded up as
                      // opposed to when padding is required to fill the last chunk.
                      // - `4 *`              -> 4 characters for each chunk
                      // - `data.length + 2`  -> Round up
                      // - `/ 3`              -> Number of 3-bytes chunks
                      uint256 resultLength = withPadding ? 4 * ((data.length + 2) / 3) : (4 * data.length + 2) / 3;
                      string memory result = new string(resultLength);
                      /// @solidity memory-safe-assembly
                      assembly {
                          // Prepare the lookup table (skip the first "length" byte)
                          let tablePtr := add(table, 1)
                          // Prepare result pointer, jump over length
                          let resultPtr := add(result, 0x20)
                          let dataPtr := data
                          let endPtr := add(data, mload(data))
                          // In some cases, the last iteration will read bytes after the end of the data. We cache the value, and
                          // set it to zero to make sure no dirty bytes are read in that section.
                          let afterPtr := add(endPtr, 0x20)
                          let afterCache := mload(afterPtr)
                          mstore(afterPtr, 0x00)
                          // Run over the input, 3 bytes at a time
                          for {
                          } lt(dataPtr, endPtr) {
                          } {
                              // Advance 3 bytes
                              dataPtr := add(dataPtr, 3)
                              let input := mload(dataPtr)
                              // To write each character, shift the 3 byte (24 bits) chunk
                              // 4 times in blocks of 6 bits for each character (18, 12, 6, 0)
                              // and apply logical AND with 0x3F to bitmask the least significant 6 bits.
                              // Use this as an index into the lookup table, mload an entire word
                              // so the desired character is in the least significant byte, and
                              // mstore8 this least significant byte into the result and continue.
                              mstore8(resultPtr, mload(add(tablePtr, and(shr(18, input), 0x3F))))
                              resultPtr := add(resultPtr, 1) // Advance
                              mstore8(resultPtr, mload(add(tablePtr, and(shr(12, input), 0x3F))))
                              resultPtr := add(resultPtr, 1) // Advance
                              mstore8(resultPtr, mload(add(tablePtr, and(shr(6, input), 0x3F))))
                              resultPtr := add(resultPtr, 1) // Advance
                              mstore8(resultPtr, mload(add(tablePtr, and(input, 0x3F))))
                              resultPtr := add(resultPtr, 1) // Advance
                          }
                          // Reset the value that was cached
                          mstore(afterPtr, afterCache)
                          if withPadding {
                              // When data `bytes` is not exactly 3 bytes long
                              // it is padded with `=` characters at the end
                              switch mod(mload(data), 3)
                              case 1 {
                                  mstore8(sub(resultPtr, 1), 0x3d)
                                  mstore8(sub(resultPtr, 2), 0x3d)
                              }
                              case 2 {
                                  mstore8(sub(resultPtr, 1), 0x3d)
                              }
                          }
                      }
                      return result;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.4;
              /// @notice Library for converting numbers into strings and other string operations.
              /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibString.sol)
              /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibString.sol)
              ///
              /// @dev Note:
              /// For performance and bytecode compactness, most of the string operations are restricted to
              /// byte strings (7-bit ASCII), except where otherwise specified.
              /// Usage of byte string operations on charsets with runes spanning two or more bytes
              /// can lead to undefined behavior.
              library LibString {
                  /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                  /*                        CUSTOM ERRORS                       */
                  /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                  /// @dev The length of the output is too small to contain all the hex digits.
                  error HexLengthInsufficient();
                  /// @dev The length of the string is more than 32 bytes.
                  error TooBigForSmallString();
                  /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                  /*                         CONSTANTS                          */
                  /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                  /// @dev The constant returned when the `search` is not found in the string.
                  uint256 internal constant NOT_FOUND = type(uint256).max;
                  /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                  /*                     DECIMAL OPERATIONS                     */
                  /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                  /// @dev Returns the base 10 decimal representation of `value`.
                  function toString(uint256 value) internal pure returns (string memory str) {
                      /// @solidity memory-safe-assembly
                      assembly {
                          // The maximum value of a uint256 contains 78 digits (1 byte per digit), but
                          // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
                          // We will need 1 word for the trailing zeros padding, 1 word for the length,
                          // and 3 words for a maximum of 78 digits.
                          str := add(mload(0x40), 0x80)
                          // Update the free memory pointer to allocate.
                          mstore(0x40, add(str, 0x20))
                          // Zeroize the slot after the string.
                          mstore(str, 0)
                          // Cache the end of the memory to calculate the length later.
                          let end := str
                          let w := not(0) // Tsk.
                          // We write the string from rightmost digit to leftmost digit.
                          // The following is essentially a do-while loop that also handles the zero case.
                          for { let temp := value } 1 {} {
                              str := add(str, w) // `sub(str, 1)`.
                              // Write the character to the pointer.
                              // The ASCII index of the '0' character is 48.
                              mstore8(str, add(48, mod(temp, 10)))
                              // Keep dividing `temp` until zero.
                              temp := div(temp, 10)
                              if iszero(temp) { break }
                          }
                          let length := sub(end, str)
                          // Move the pointer 32 bytes leftwards to make room for the length.
                          str := sub(str, 0x20)
                          // Store the length.
                          mstore(str, length)
                      }
                  }
                  /// @dev Returns the base 10 decimal representation of `value`.
                  function toString(int256 value) internal pure returns (string memory str) {
                      if (value >= 0) {
                          return toString(uint256(value));
                      }
                      unchecked {
                          str = toString(~uint256(value) + 1);
                      }
                      /// @solidity memory-safe-assembly
                      assembly {
                          // We still have some spare memory space on the left,
                          // as we have allocated 3 words (96 bytes) for up to 78 digits.
                          let length := mload(str) // Load the string length.
                          mstore(str, 0x2d) // Store the '-' character.
                          str := sub(str, 1) // Move back the string pointer by a byte.
                          mstore(str, add(length, 1)) // Update the string length.
                      }
                  }
                  /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                  /*                   HEXADECIMAL OPERATIONS                   */
                  /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                  /// @dev Returns the hexadecimal representation of `value`,
                  /// left-padded to an input length of `length` bytes.
                  /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte,
                  /// giving a total length of `length * 2 + 2` bytes.
                  /// Reverts if `length` is too small for the output to contain all the digits.
                  function toHexString(uint256 value, uint256 length) internal pure returns (string memory str) {
                      str = toHexStringNoPrefix(value, length);
                      /// @solidity memory-safe-assembly
                      assembly {
                          let strLength := add(mload(str), 2) // Compute the length.
                          mstore(str, 0x3078) // Write the "0x" prefix.
                          str := sub(str, 2) // Move the pointer.
                          mstore(str, strLength) // Write the length.
                      }
                  }
                  /// @dev Returns the hexadecimal representation of `value`,
                  /// left-padded to an input length of `length` bytes.
                  /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte,
                  /// giving a total length of `length * 2` bytes.
                  /// Reverts if `length` is too small for the output to contain all the digits.
                  function toHexStringNoPrefix(uint256 value, uint256 length)
                      internal
                      pure
                      returns (string memory str)
                  {
                      /// @solidity memory-safe-assembly
                      assembly {
                          // We need 0x20 bytes for the trailing zeros padding, `length * 2` bytes
                          // for the digits, 0x02 bytes for the prefix, and 0x20 bytes for the length.
                          // We add 0x20 to the total and round down to a multiple of 0x20.
                          // (0x20 + 0x20 + 0x02 + 0x20) = 0x62.
                          str := add(mload(0x40), and(add(shl(1, length), 0x42), not(0x1f)))
                          // Allocate the memory.
                          mstore(0x40, add(str, 0x20))
                          // Zeroize the slot after the string.
                          mstore(str, 0)
                          // Cache the end to calculate the length later.
                          let end := str
                          // Store "0123456789abcdef" in scratch space.
                          mstore(0x0f, 0x30313233343536373839616263646566)
                          let start := sub(str, add(length, length))
                          let w := not(1) // Tsk.
                          let temp := value
                          // We write the string from rightmost digit to leftmost digit.
                          // The following is essentially a do-while loop that also handles the zero case.
                          for {} 1 {} {
                              str := add(str, w) // `sub(str, 2)`.
                              mstore8(add(str, 1), mload(and(temp, 15)))
                              mstore8(str, mload(and(shr(4, temp), 15)))
                              temp := shr(8, temp)
                              if iszero(xor(str, start)) { break }
                          }
                          if temp {
                              mstore(0x00, 0x2194895a) // `HexLengthInsufficient()`.
                              revert(0x1c, 0x04)
                          }
                          // Compute the string's length.
                          let strLength := sub(end, str)
                          // Move the pointer and write the length.
                          str := sub(str, 0x20)
                          mstore(str, strLength)
                      }
                  }
                  /// @dev Returns the hexadecimal representation of `value`.
                  /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
                  /// As address are 20 bytes long, the output will left-padded to have
                  /// a length of `20 * 2 + 2` bytes.
                  function toHexString(uint256 value) internal pure returns (string memory str) {
                      str = toHexStringNoPrefix(value);
                      /// @solidity memory-safe-assembly
                      assembly {
                          let strLength := add(mload(str), 2) // Compute the length.
                          mstore(str, 0x3078) // Write the "0x" prefix.
                          str := sub(str, 2) // Move the pointer.
                          mstore(str, strLength) // Write the length.
                      }
                  }
                  /// @dev Returns the hexadecimal representation of `value`.
                  /// The output is prefixed with "0x".
                  /// The output excludes leading "0" from the `toHexString` output.
                  /// `0x00: "0x0", 0x01: "0x1", 0x12: "0x12", 0x123: "0x123"`.
                  function toMinimalHexString(uint256 value) internal pure returns (string memory str) {
                      str = toHexStringNoPrefix(value);
                      /// @solidity memory-safe-assembly
                      assembly {
                          let o := eq(byte(0, mload(add(str, 0x20))), 0x30) // Whether leading zero is present.
                          let strLength := add(mload(str), 2) // Compute the length.
                          mstore(add(str, o), 0x3078) // Write the "0x" prefix, accounting for leading zero.
                          str := sub(add(str, o), 2) // Move the pointer, accounting for leading zero.
                          mstore(str, sub(strLength, o)) // Write the length, accounting for leading zero.
                      }
                  }
                  /// @dev Returns the hexadecimal representation of `value`.
                  /// The output excludes leading "0" from the `toHexStringNoPrefix` output.
                  /// `0x00: "0", 0x01: "1", 0x12: "12", 0x123: "123"`.
                  function toMinimalHexStringNoPrefix(uint256 value) internal pure returns (string memory str) {
                      str = toHexStringNoPrefix(value);
                      /// @solidity memory-safe-assembly
                      assembly {
                          let o := eq(byte(0, mload(add(str, 0x20))), 0x30) // Whether leading zero is present.
                          let strLength := mload(str) // Get the length.
                          str := add(str, o) // Move the pointer, accounting for leading zero.
                          mstore(str, sub(strLength, o)) // Write the length, accounting for leading zero.
                      }
                  }
                  /// @dev Returns the hexadecimal representation of `value`.
                  /// The output is encoded using 2 hexadecimal digits per byte.
                  /// As address are 20 bytes long, the output will left-padded to have
                  /// a length of `20 * 2` bytes.
                  function toHexStringNoPrefix(uint256 value) internal pure returns (string memory str) {
                      /// @solidity memory-safe-assembly
                      assembly {
                          // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
                          // 0x02 bytes for the prefix, and 0x40 bytes for the digits.
                          // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x40) is 0xa0.
                          str := add(mload(0x40), 0x80)
                          // Allocate the memory.
                          mstore(0x40, add(str, 0x20))
                          // Zeroize the slot after the string.
                          mstore(str, 0)
                          // Cache the end to calculate the length later.
                          let end := str
                          // Store "0123456789abcdef" in scratch space.
                          mstore(0x0f, 0x30313233343536373839616263646566)
                          let w := not(1) // Tsk.
                          // We write the string from rightmost digit to leftmost digit.
                          // The following is essentially a do-while loop that also handles the zero case.
                          for { let temp := value } 1 {} {
                              str := add(str, w) // `sub(str, 2)`.
                              mstore8(add(str, 1), mload(and(temp, 15)))
                              mstore8(str, mload(and(shr(4, temp), 15)))
                              temp := shr(8, temp)
                              if iszero(temp) { break }
                          }
                          // Compute the string's length.
                          let strLength := sub(end, str)
                          // Move the pointer and write the length.
                          str := sub(str, 0x20)
                          mstore(str, strLength)
                      }
                  }
                  /// @dev Returns the hexadecimal representation of `value`.
                  /// The output is prefixed with "0x", encoded using 2 hexadecimal digits per byte,
                  /// and the alphabets are capitalized conditionally according to
                  /// https://eips.ethereum.org/EIPS/eip-55
                  function toHexStringChecksummed(address value) internal pure returns (string memory str) {
                      str = toHexString(value);
                      /// @solidity memory-safe-assembly
                      assembly {
                          let mask := shl(6, div(not(0), 255)) // `0b010000000100000000 ...`
                          let o := add(str, 0x22)
                          let hashed := and(keccak256(o, 40), mul(34, mask)) // `0b10001000 ... `
                          let t := shl(240, 136) // `0b10001000 << 240`
                          for { let i := 0 } 1 {} {
                              mstore(add(i, i), mul(t, byte(i, hashed)))
                              i := add(i, 1)
                              if eq(i, 20) { break }
                          }
                          mstore(o, xor(mload(o), shr(1, and(mload(0x00), and(mload(o), mask)))))
                          o := add(o, 0x20)
                          mstore(o, xor(mload(o), shr(1, and(mload(0x20), and(mload(o), mask)))))
                      }
                  }
                  /// @dev Returns the hexadecimal representation of `value`.
                  /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
                  function toHexString(address value) internal pure returns (string memory str) {
                      str = toHexStringNoPrefix(value);
                      /// @solidity memory-safe-assembly
                      assembly {
                          let strLength := add(mload(str), 2) // Compute the length.
                          mstore(str, 0x3078) // Write the "0x" prefix.
                          str := sub(str, 2) // Move the pointer.
                          mstore(str, strLength) // Write the length.
                      }
                  }
                  /// @dev Returns the hexadecimal representation of `value`.
                  /// The output is encoded using 2 hexadecimal digits per byte.
                  function toHexStringNoPrefix(address value) internal pure returns (string memory str) {
                      /// @solidity memory-safe-assembly
                      assembly {
                          str := mload(0x40)
                          // Allocate the memory.
                          // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
                          // 0x02 bytes for the prefix, and 0x28 bytes for the digits.
                          // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x28) is 0x80.
                          mstore(0x40, add(str, 0x80))
                          // Store "0123456789abcdef" in scratch space.
                          mstore(0x0f, 0x30313233343536373839616263646566)
                          str := add(str, 2)
                          mstore(str, 40)
                          let o := add(str, 0x20)
                          mstore(add(o, 40), 0)
                          value := shl(96, value)
                          // We write the string from rightmost digit to leftmost digit.
                          // The following is essentially a do-while loop that also handles the zero case.
                          for { let i := 0 } 1 {} {
                              let p := add(o, add(i, i))
                              let temp := byte(i, value)
                              mstore8(add(p, 1), mload(and(temp, 15)))
                              mstore8(p, mload(shr(4, temp)))
                              i := add(i, 1)
                              if eq(i, 20) { break }
                          }
                      }
                  }
                  /// @dev Returns the hex encoded string from the raw bytes.
                  /// The output is encoded using 2 hexadecimal digits per byte.
                  function toHexString(bytes memory raw) internal pure returns (string memory str) {
                      str = toHexStringNoPrefix(raw);
                      /// @solidity memory-safe-assembly
                      assembly {
                          let strLength := add(mload(str), 2) // Compute the length.
                          mstore(str, 0x3078) // Write the "0x" prefix.
                          str := sub(str, 2) // Move the pointer.
                          mstore(str, strLength) // Write the length.
                      }
                  }
                  /// @dev Returns the hex encoded string from the raw bytes.
                  /// The output is encoded using 2 hexadecimal digits per byte.
                  function toHexStringNoPrefix(bytes memory raw) internal pure returns (string memory str) {
                      /// @solidity memory-safe-assembly
                      assembly {
                          let length := mload(raw)
                          str := add(mload(0x40), 2) // Skip 2 bytes for the optional prefix.
                          mstore(str, add(length, length)) // Store the length of the output.
                          // Store "0123456789abcdef" in scratch space.
                          mstore(0x0f, 0x30313233343536373839616263646566)
                          let o := add(str, 0x20)
                          let end := add(raw, length)
                          for {} iszero(eq(raw, end)) {} {
                              raw := add(raw, 1)
                              mstore8(add(o, 1), mload(and(mload(raw), 15)))
                              mstore8(o, mload(and(shr(4, mload(raw)), 15)))
                              o := add(o, 2)
                          }
                          mstore(o, 0) // Zeroize the slot after the string.
                          mstore(0x40, add(o, 0x20)) // Allocate the memory.
                      }
                  }
                  /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                  /*                   RUNE STRING OPERATIONS                   */
                  /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                  /// @dev Returns the number of UTF characters in the string.
                  function runeCount(string memory s) internal pure returns (uint256 result) {
                      /// @solidity memory-safe-assembly
                      assembly {
                          if mload(s) {
                              mstore(0x00, div(not(0), 255))
                              mstore(0x20, 0x0202020202020202020202020202020202020202020202020303030304040506)
                              let o := add(s, 0x20)
                              let end := add(o, mload(s))
                              for { result := 1 } 1 { result := add(result, 1) } {
                                  o := add(o, byte(0, mload(shr(250, mload(o)))))
                                  if iszero(lt(o, end)) { break }
                              }
                          }
                      }
                  }
                  /// @dev Returns if this string is a 7-bit ASCII string.
                  /// (i.e. all characters codes are in [0..127])
                  function is7BitASCII(string memory s) internal pure returns (bool result) {
                      /// @solidity memory-safe-assembly
                      assembly {
                          let mask := shl(7, div(not(0), 255))
                          result := 1
                          let n := mload(s)
                          if n {
                              let o := add(s, 0x20)
                              let end := add(o, n)
                              let last := mload(end)
                              mstore(end, 0)
                              for {} 1 {} {
                                  if and(mask, mload(o)) {
                                      result := 0
                                      break
                                  }
                                  o := add(o, 0x20)
                                  if iszero(lt(o, end)) { break }
                              }
                              mstore(end, last)
                          }
                      }
                  }
                  /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                  /*                   BYTE STRING OPERATIONS                   */
                  /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                  // For performance and bytecode compactness, byte string operations are restricted
                  // to 7-bit ASCII strings. All offsets are byte offsets, not UTF character offsets.
                  // Usage of byte string operations on charsets with runes spanning two or more bytes
                  // can lead to undefined behavior.
                  /// @dev Returns `subject` all occurrences of `search` replaced with `replacement`.
                  function replace(string memory subject, string memory search, string memory replacement)
                      internal
                      pure
                      returns (string memory result)
                  {
                      /// @solidity memory-safe-assembly
                      assembly {
                          let subjectLength := mload(subject)
                          let searchLength := mload(search)
                          let replacementLength := mload(replacement)
                          subject := add(subject, 0x20)
                          search := add(search, 0x20)
                          replacement := add(replacement, 0x20)
                          result := add(mload(0x40), 0x20)
                          let subjectEnd := add(subject, subjectLength)
                          if iszero(gt(searchLength, subjectLength)) {
                              let subjectSearchEnd := add(sub(subjectEnd, searchLength), 1)
                              let h := 0
                              if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) }
                              let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
                              let s := mload(search)
                              for {} 1 {} {
                                  let t := mload(subject)
                                  // Whether the first `searchLength % 32` bytes of
                                  // `subject` and `search` matches.
                                  if iszero(shr(m, xor(t, s))) {
                                      if h {
                                          if iszero(eq(keccak256(subject, searchLength), h)) {
                                              mstore(result, t)
                                              result := add(result, 1)
                                              subject := add(subject, 1)
                                              if iszero(lt(subject, subjectSearchEnd)) { break }
                                              continue
                                          }
                                      }
                                      // Copy the `replacement` one word at a time.
                                      for { let o := 0 } 1 {} {
                                          mstore(add(result, o), mload(add(replacement, o)))
                                          o := add(o, 0x20)
                                          if iszero(lt(o, replacementLength)) { break }
                                      }
                                      result := add(result, replacementLength)
                                      subject := add(subject, searchLength)
                                      if searchLength {
                                          if iszero(lt(subject, subjectSearchEnd)) { break }
                                          continue
                                      }
                                  }
                                  mstore(result, t)
                                  result := add(result, 1)
                                  subject := add(subject, 1)
                                  if iszero(lt(subject, subjectSearchEnd)) { break }
                              }
                          }
                          let resultRemainder := result
                          result := add(mload(0x40), 0x20)
                          let k := add(sub(resultRemainder, result), sub(subjectEnd, subject))
                          // Copy the rest of the string one word at a time.
                          for {} lt(subject, subjectEnd) {} {
                              mstore(resultRemainder, mload(subject))
                              resultRemainder := add(resultRemainder, 0x20)
                              subject := add(subject, 0x20)
                          }
                          result := sub(result, 0x20)
                          let last := add(add(result, 0x20), k) // Zeroize the slot after the string.
                          mstore(last, 0)
                          mstore(0x40, add(last, 0x20)) // Allocate the memory.
                          mstore(result, k) // Store the length.
                      }
                  }
                  /// @dev Returns the byte index of the first location of `search` in `subject`,
                  /// searching from left to right, starting from `from`.
                  /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
                  function indexOf(string memory subject, string memory search, uint256 from)
                      internal
                      pure
                      returns (uint256 result)
                  {
                      /// @solidity memory-safe-assembly
                      assembly {
                          for { let subjectLength := mload(subject) } 1 {} {
                              if iszero(mload(search)) {
                                  if iszero(gt(from, subjectLength)) {
                                      result := from
                                      break
                                  }
                                  result := subjectLength
                                  break
                              }
                              let searchLength := mload(search)
                              let subjectStart := add(subject, 0x20)
                              result := not(0) // Initialize to `NOT_FOUND`.
                              subject := add(subjectStart, from)
                              let end := add(sub(add(subjectStart, subjectLength), searchLength), 1)
                              let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
                              let s := mload(add(search, 0x20))
                              if iszero(and(lt(subject, end), lt(from, subjectLength))) { break }
                              if iszero(lt(searchLength, 0x20)) {
                                  for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} {
                                      if iszero(shr(m, xor(mload(subject), s))) {
                                          if eq(keccak256(subject, searchLength), h) {
                                              result := sub(subject, subjectStart)
                                              break
                                          }
                                      }
                                      subject := add(subject, 1)
                                      if iszero(lt(subject, end)) { break }
                                  }
                                  break
                              }
                              for {} 1 {} {
                                  if iszero(shr(m, xor(mload(subject), s))) {
                                      result := sub(subject, subjectStart)
                                      break
                                  }
                                  subject := add(subject, 1)
                                  if iszero(lt(subject, end)) { break }
                              }
                              break
                          }
                      }
                  }
                  /// @dev Returns the byte index of the first location of `search` in `subject`,
                  /// searching from left to right.
                  /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
                  function indexOf(string memory subject, string memory search)
                      internal
                      pure
                      returns (uint256 result)
                  {
                      result = indexOf(subject, search, 0);
                  }
                  /// @dev Returns the byte index of the first location of `search` in `subject`,
                  /// searching from right to left, starting from `from`.
                  /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
                  function lastIndexOf(string memory subject, string memory search, uint256 from)
                      internal
                      pure
                      returns (uint256 result)
                  {
                      /// @solidity memory-safe-assembly
                      assembly {
                          for {} 1 {} {
                              result := not(0) // Initialize to `NOT_FOUND`.
                              let searchLength := mload(search)
                              if gt(searchLength, mload(subject)) { break }
                              let w := result
                              let fromMax := sub(mload(subject), searchLength)
                              if iszero(gt(fromMax, from)) { from := fromMax }
                              let end := add(add(subject, 0x20), w)
                              subject := add(add(subject, 0x20), from)
                              if iszero(gt(subject, end)) { break }
                              // As this function is not too often used,
                              // we shall simply use keccak256 for smaller bytecode size.
                              for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} {
                                  if eq(keccak256(subject, searchLength), h) {
                                      result := sub(subject, add(end, 1))
                                      break
                                  }
                                  subject := add(subject, w) // `sub(subject, 1)`.
                                  if iszero(gt(subject, end)) { break }
                              }
                              break
                          }
                      }
                  }
                  /// @dev Returns the byte index of the first location of `search` in `subject`,
                  /// searching from right to left.
                  /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
                  function lastIndexOf(string memory subject, string memory search)
                      internal
                      pure
                      returns (uint256 result)
                  {
                      result = lastIndexOf(subject, search, uint256(int256(-1)));
                  }
                  /// @dev Returns true if `search` is found in `subject`, false otherwise.
                  function contains(string memory subject, string memory search) internal pure returns (bool) {
                      return indexOf(subject, search) != NOT_FOUND;
                  }
                  /// @dev Returns whether `subject` starts with `search`.
                  function startsWith(string memory subject, string memory search)
                      internal
                      pure
                      returns (bool result)
                  {
                      /// @solidity memory-safe-assembly
                      assembly {
                          let searchLength := mload(search)
                          // Just using keccak256 directly is actually cheaper.
                          // forgefmt: disable-next-item
                          result := and(
                              iszero(gt(searchLength, mload(subject))),
                              eq(
                                  keccak256(add(subject, 0x20), searchLength),
                                  keccak256(add(search, 0x20), searchLength)
                              )
                          )
                      }
                  }
                  /// @dev Returns whether `subject` ends with `search`.
                  function endsWith(string memory subject, string memory search)
                      internal
                      pure
                      returns (bool result)
                  {
                      /// @solidity memory-safe-assembly
                      assembly {
                          let searchLength := mload(search)
                          let subjectLength := mload(subject)
                          // Whether `search` is not longer than `subject`.
                          let withinRange := iszero(gt(searchLength, subjectLength))
                          // Just using keccak256 directly is actually cheaper.
                          // forgefmt: disable-next-item
                          result := and(
                              withinRange,
                              eq(
                                  keccak256(
                                      // `subject + 0x20 + max(subjectLength - searchLength, 0)`.
                                      add(add(subject, 0x20), mul(withinRange, sub(subjectLength, searchLength))),
                                      searchLength
                                  ),
                                  keccak256(add(search, 0x20), searchLength)
                              )
                          )
                      }
                  }
                  /// @dev Returns `subject` repeated `times`.
                  function repeat(string memory subject, uint256 times)
                      internal
                      pure
                      returns (string memory result)
                  {
                      /// @solidity memory-safe-assembly
                      assembly {
                          let subjectLength := mload(subject)
                          if iszero(or(iszero(times), iszero(subjectLength))) {
                              subject := add(subject, 0x20)
                              result := mload(0x40)
                              let output := add(result, 0x20)
                              for {} 1 {} {
                                  // Copy the `subject` one word at a time.
                                  for { let o := 0 } 1 {} {
                                      mstore(add(output, o), mload(add(subject, o)))
                                      o := add(o, 0x20)
                                      if iszero(lt(o, subjectLength)) { break }
                                  }
                                  output := add(output, subjectLength)
                                  times := sub(times, 1)
                                  if iszero(times) { break }
                              }
                              mstore(output, 0) // Zeroize the slot after the string.
                              let resultLength := sub(output, add(result, 0x20))
                              mstore(result, resultLength) // Store the length.
                              // Allocate the memory.
                              mstore(0x40, add(result, add(resultLength, 0x20)))
                          }
                      }
                  }
                  /// @dev Returns a copy of `subject` sliced from `start` to `end` (exclusive).
                  /// `start` and `end` are byte offsets.
                  function slice(string memory subject, uint256 start, uint256 end)
                      internal
                      pure
                      returns (string memory result)
                  {
                      /// @solidity memory-safe-assembly
                      assembly {
                          let subjectLength := mload(subject)
                          if iszero(gt(subjectLength, end)) { end := subjectLength }
                          if iszero(gt(subjectLength, start)) { start := subjectLength }
                          if lt(start, end) {
                              result := mload(0x40)
                              let resultLength := sub(end, start)
                              mstore(result, resultLength)
                              subject := add(subject, start)
                              let w := not(0x1f)
                              // Copy the `subject` one word at a time, backwards.
                              for { let o := and(add(resultLength, 0x1f), w) } 1 {} {
                                  mstore(add(result, o), mload(add(subject, o)))
                                  o := add(o, w) // `sub(o, 0x20)`.
                                  if iszero(o) { break }
                              }
                              // Zeroize the slot after the string.
                              mstore(add(add(result, 0x20), resultLength), 0)
                              // Allocate memory for the length and the bytes,
                              // rounded up to a multiple of 32.
                              mstore(0x40, add(result, and(add(resultLength, 0x3f), w)))
                          }
                      }
                  }
                  /// @dev Returns a copy of `subject` sliced from `start` to the end of the string.
                  /// `start` is a byte offset.
                  function slice(string memory subject, uint256 start)
                      internal
                      pure
                      returns (string memory result)
                  {
                      result = slice(subject, start, uint256(int256(-1)));
                  }
                  /// @dev Returns all the indices of `search` in `subject`.
                  /// The indices are byte offsets.
                  function indicesOf(string memory subject, string memory search)
                      internal
                      pure
                      returns (uint256[] memory result)
                  {
                      /// @solidity memory-safe-assembly
                      assembly {
                          let subjectLength := mload(subject)
                          let searchLength := mload(search)
                          if iszero(gt(searchLength, subjectLength)) {
                              subject := add(subject, 0x20)
                              search := add(search, 0x20)
                              result := add(mload(0x40), 0x20)
                              let subjectStart := subject
                              let subjectSearchEnd := add(sub(add(subject, subjectLength), searchLength), 1)
                              let h := 0
                              if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) }
                              let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
                              let s := mload(search)
                              for {} 1 {} {
                                  let t := mload(subject)
                                  // Whether the first `searchLength % 32` bytes of
                                  // `subject` and `search` matches.
                                  if iszero(shr(m, xor(t, s))) {
                                      if h {
                                          if iszero(eq(keccak256(subject, searchLength), h)) {
                                              subject := add(subject, 1)
                                              if iszero(lt(subject, subjectSearchEnd)) { break }
                                              continue
                                          }
                                      }
                                      // Append to `result`.
                                      mstore(result, sub(subject, subjectStart))
                                      result := add(result, 0x20)
                                      // Advance `subject` by `searchLength`.
                                      subject := add(subject, searchLength)
                                      if searchLength {
                                          if iszero(lt(subject, subjectSearchEnd)) { break }
                                          continue
                                      }
                                  }
                                  subject := add(subject, 1)
                                  if iszero(lt(subject, subjectSearchEnd)) { break }
                              }
                              let resultEnd := result
                              // Assign `result` to the free memory pointer.
                              result := mload(0x40)
                              // Store the length of `result`.
                              mstore(result, shr(5, sub(resultEnd, add(result, 0x20))))
                              // Allocate memory for result.
                              // We allocate one more word, so this array can be recycled for {split}.
                              mstore(0x40, add(resultEnd, 0x20))
                          }
                      }
                  }
                  /// @dev Returns a arrays of strings based on the `delimiter` inside of the `subject` string.
                  function split(string memory subject, string memory delimiter)
                      internal
                      pure
                      returns (string[] memory result)
                  {
                      uint256[] memory indices = indicesOf(subject, delimiter);
                      /// @solidity memory-safe-assembly
                      assembly {
                          let w := not(0x1f)
                          let indexPtr := add(indices, 0x20)
                          let indicesEnd := add(indexPtr, shl(5, add(mload(indices), 1)))
                          mstore(add(indicesEnd, w), mload(subject))
                          mstore(indices, add(mload(indices), 1))
                          let prevIndex := 0
                          for {} 1 {} {
                              let index := mload(indexPtr)
                              mstore(indexPtr, 0x60)
                              if iszero(eq(index, prevIndex)) {
                                  let element := mload(0x40)
                                  let elementLength := sub(index, prevIndex)
                                  mstore(element, elementLength)
                                  // Copy the `subject` one word at a time, backwards.
                                  for { let o := and(add(elementLength, 0x1f), w) } 1 {} {
                                      mstore(add(element, o), mload(add(add(subject, prevIndex), o)))
                                      o := add(o, w) // `sub(o, 0x20)`.
                                      if iszero(o) { break }
                                  }
                                  // Zeroize the slot after the string.
                                  mstore(add(add(element, 0x20), elementLength), 0)
                                  // Allocate memory for the length and the bytes,
                                  // rounded up to a multiple of 32.
                                  mstore(0x40, add(element, and(add(elementLength, 0x3f), w)))
                                  // Store the `element` into the array.
                                  mstore(indexPtr, element)
                              }
                              prevIndex := add(index, mload(delimiter))
                              indexPtr := add(indexPtr, 0x20)
                              if iszero(lt(indexPtr, indicesEnd)) { break }
                          }
                          result := indices
                          if iszero(mload(delimiter)) {
                              result := add(indices, 0x20)
                              mstore(result, sub(mload(indices), 2))
                          }
                      }
                  }
                  /// @dev Returns a concatenated string of `a` and `b`.
                  /// Cheaper than `string.concat()` and does not de-align the free memory pointer.
                  function concat(string memory a, string memory b)
                      internal
                      pure
                      returns (string memory result)
                  {
                      /// @solidity memory-safe-assembly
                      assembly {
                          let w := not(0x1f)
                          result := mload(0x40)
                          let aLength := mload(a)
                          // Copy `a` one word at a time, backwards.
                          for { let o := and(add(aLength, 0x20), w) } 1 {} {
                              mstore(add(result, o), mload(add(a, o)))
                              o := add(o, w) // `sub(o, 0x20)`.
                              if iszero(o) { break }
                          }
                          let bLength := mload(b)
                          let output := add(result, aLength)
                          // Copy `b` one word at a time, backwards.
                          for { let o := and(add(bLength, 0x20), w) } 1 {} {
                              mstore(add(output, o), mload(add(b, o)))
                              o := add(o, w) // `sub(o, 0x20)`.
                              if iszero(o) { break }
                          }
                          let totalLength := add(aLength, bLength)
                          let last := add(add(result, 0x20), totalLength)
                          // Zeroize the slot after the string.
                          mstore(last, 0)
                          // Stores the length.
                          mstore(result, totalLength)
                          // Allocate memory for the length and the bytes,
                          // rounded up to a multiple of 32.
                          mstore(0x40, and(add(last, 0x1f), w))
                      }
                  }
                  /// @dev Returns a copy of the string in either lowercase or UPPERCASE.
                  /// WARNING! This function is only compatible with 7-bit ASCII strings.
                  function toCase(string memory subject, bool toUpper)
                      internal
                      pure
                      returns (string memory result)
                  {
                      /// @solidity memory-safe-assembly
                      assembly {
                          let length := mload(subject)
                          if length {
                              result := add(mload(0x40), 0x20)
                              subject := add(subject, 1)
                              let flags := shl(add(70, shl(5, toUpper)), 0x3ffffff)
                              let w := not(0)
                              for { let o := length } 1 {} {
                                  o := add(o, w)
                                  let b := and(0xff, mload(add(subject, o)))
                                  mstore8(add(result, o), xor(b, and(shr(b, flags), 0x20)))
                                  if iszero(o) { break }
                              }
                              result := mload(0x40)
                              mstore(result, length) // Store the length.
                              let last := add(add(result, 0x20), length)
                              mstore(last, 0) // Zeroize the slot after the string.
                              mstore(0x40, add(last, 0x20)) // Allocate the memory.
                          }
                      }
                  }
                  /// @dev Returns a string from a small bytes32 string.
                  /// `s` must be null-terminated, or behavior will be undefined.
                  function fromSmallString(bytes32 s) internal pure returns (string memory result) {
                      /// @solidity memory-safe-assembly
                      assembly {
                          result := mload(0x40)
                          let n := 0
                          for {} byte(n, s) { n := add(n, 1) } {} // Scan for '\\0'.
                          mstore(result, n)
                          let o := add(result, 0x20)
                          mstore(o, s)
                          mstore(add(o, n), 0)
                          mstore(0x40, add(result, 0x40))
                      }
                  }
                  /// @dev Returns the small string, with all bytes after the first null byte zeroized.
                  function normalizeSmallString(bytes32 s) internal pure returns (bytes32 result) {
                      /// @solidity memory-safe-assembly
                      assembly {
                          for {} byte(result, s) { result := add(result, 1) } {} // Scan for '\\0'.
                          mstore(0x00, s)
                          mstore(result, 0x00)
                          result := mload(0x00)
                      }
                  }
                  /// @dev Returns the string as a normalized null-terminated small string.
                  function toSmallString(string memory s) internal pure returns (bytes32 result) {
                      /// @solidity memory-safe-assembly
                      assembly {
                          result := mload(s)
                          if iszero(lt(result, 33)) {
                              mstore(0x00, 0xec92f9a3) // `TooBigForSmallString()`.
                              revert(0x1c, 0x04)
                          }
                          result := shl(shl(3, sub(32, result)), mload(add(s, result)))
                      }
                  }
                  /// @dev Returns a lowercased copy of the string.
                  /// WARNING! This function is only compatible with 7-bit ASCII strings.
                  function lower(string memory subject) internal pure returns (string memory result) {
                      result = toCase(subject, false);
                  }
                  /// @dev Returns an UPPERCASED copy of the string.
                  /// WARNING! This function is only compatible with 7-bit ASCII strings.
                  function upper(string memory subject) internal pure returns (string memory result) {
                      result = toCase(subject, true);
                  }
                  /// @dev Escapes the string to be used within HTML tags.
                  function escapeHTML(string memory s) internal pure returns (string memory result) {
                      /// @solidity memory-safe-assembly
                      assembly {
                          let end := add(s, mload(s))
                          result := add(mload(0x40), 0x20)
                          // Store the bytes of the packed offsets and strides into the scratch space.
                          // `packed = (stride << 5) | offset`. Max offset is 20. Max stride is 6.
                          mstore(0x1f, 0x900094)
                          mstore(0x08, 0xc0000000a6ab)
                          // Store "&quot;&amp;&#39;&lt;&gt;" into the scratch space.
                          mstore(0x00, shl(64, 0x2671756f743b26616d703b262333393b266c743b2667743b))
                          for {} iszero(eq(s, end)) {} {
                              s := add(s, 1)
                              let c := and(mload(s), 0xff)
                              // Not in `["\\"","'","&","<",">"]`.
                              if iszero(and(shl(c, 1), 0x500000c400000000)) {
                                  mstore8(result, c)
                                  result := add(result, 1)
                                  continue
                              }
                              let t := shr(248, mload(c))
                              mstore(result, mload(and(t, 0x1f)))
                              result := add(result, shr(5, t))
                          }
                          let last := result
                          mstore(last, 0) // Zeroize the slot after the string.
                          result := mload(0x40)
                          mstore(result, sub(last, add(result, 0x20))) // Store the length.
                          mstore(0x40, add(last, 0x20)) // Allocate the memory.
                      }
                  }
                  /// @dev Escapes the string to be used within double-quotes in a JSON.
                  /// If `addDoubleQuotes` is true, the result will be enclosed in double-quotes.
                  function escapeJSON(string memory s, bool addDoubleQuotes)
                      internal
                      pure
                      returns (string memory result)
                  {
                      /// @solidity memory-safe-assembly
                      assembly {
                          let end := add(s, mload(s))
                          result := add(mload(0x40), 0x20)
                          if addDoubleQuotes {
                              mstore8(result, 34)
                              result := add(1, result)
                          }
                          // Store "\\\\u0000" in scratch space.
                          // Store "0123456789abcdef" in scratch space.
                          // Also, store `{0x08:"b", 0x09:"t", 0x0a:"n", 0x0c:"f", 0x0d:"r"}`.
                          // into the scratch space.
                          mstore(0x15, 0x5c75303030303031323334353637383961626364656662746e006672)
                          // Bitmask for detecting `["\\"","\\\\"]`.
                          let e := or(shl(0x22, 1), shl(0x5c, 1))
                          for {} iszero(eq(s, end)) {} {
                              s := add(s, 1)
                              let c := and(mload(s), 0xff)
                              if iszero(lt(c, 0x20)) {
                                  if iszero(and(shl(c, 1), e)) {
                                      // Not in `["\\"","\\\\"]`.
                                      mstore8(result, c)
                                      result := add(result, 1)
                                      continue
                                  }
                                  mstore8(result, 0x5c) // "\\\\".
                                  mstore8(add(result, 1), c)
                                  result := add(result, 2)
                                  continue
                              }
                              if iszero(and(shl(c, 1), 0x3700)) {
                                  // Not in `["\\b","\\t","\
              ","\\f","\\d"]`.
                                  mstore8(0x1d, mload(shr(4, c))) // Hex value.
                                  mstore8(0x1e, mload(and(c, 15))) // Hex value.
                                  mstore(result, mload(0x19)) // "\\\\u00XX".
                                  result := add(result, 6)
                                  continue
                              }
                              mstore8(result, 0x5c) // "\\\\".
                              mstore8(add(result, 1), mload(add(c, 8)))
                              result := add(result, 2)
                          }
                          if addDoubleQuotes {
                              mstore8(result, 34)
                              result := add(1, result)
                          }
                          let last := result
                          mstore(last, 0) // Zeroize the slot after the string.
                          result := mload(0x40)
                          mstore(result, sub(last, add(result, 0x20))) // Store the length.
                          mstore(0x40, add(last, 0x20)) // Allocate the memory.
                      }
                  }
                  /// @dev Escapes the string to be used within double-quotes in a JSON.
                  function escapeJSON(string memory s) internal pure returns (string memory result) {
                      result = escapeJSON(s, false);
                  }
                  /// @dev Returns whether `a` equals `b`.
                  function eq(string memory a, string memory b) internal pure returns (bool result) {
                      /// @solidity memory-safe-assembly
                      assembly {
                          result := eq(keccak256(add(a, 0x20), mload(a)), keccak256(add(b, 0x20), mload(b)))
                      }
                  }
                  /// @dev Returns whether `a` equals `b`, where `b` is a null-terminated small string.
                  function eqs(string memory a, bytes32 b) internal pure returns (bool result) {
                      /// @solidity memory-safe-assembly
                      assembly {
                          // These should be evaluated on compile time, as far as possible.
                          let m := not(shl(7, div(not(iszero(b)), 255))) // `0x7f7f ...`.
                          let x := not(or(m, or(b, add(m, and(b, m)))))
                          let r := shl(7, iszero(iszero(shr(128, x))))
                          r := or(r, shl(6, iszero(iszero(shr(64, shr(r, x))))))
                          r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                          r := or(r, shl(4, lt(0xffff, shr(r, x))))
                          r := or(r, shl(3, lt(0xff, shr(r, x))))
                          // forgefmt: disable-next-item
                          result := gt(eq(mload(a), add(iszero(x), xor(31, shr(3, r)))),
                              xor(shr(add(8, r), b), shr(add(8, r), mload(add(a, 0x20)))))
                      }
                  }
                  /// @dev Packs a single string with its length into a single word.
                  /// Returns `bytes32(0)` if the length is zero or greater than 31.
                  function packOne(string memory a) internal pure returns (bytes32 result) {
                      /// @solidity memory-safe-assembly
                      assembly {
                          // We don't need to zero right pad the string,
                          // since this is our own custom non-standard packing scheme.
                          result :=
                              mul(
                                  // Load the length and the bytes.
                                  mload(add(a, 0x1f)),
                                  // `length != 0 && length < 32`. Abuses underflow.
                                  // Assumes that the length is valid and within the block gas limit.
                                  lt(sub(mload(a), 1), 0x1f)
                              )
                      }
                  }
                  /// @dev Unpacks a string packed using {packOne}.
                  /// Returns the empty string if `packed` is `bytes32(0)`.
                  /// If `packed` is not an output of {packOne}, the output behavior is undefined.
                  function unpackOne(bytes32 packed) internal pure returns (string memory result) {
                      /// @solidity memory-safe-assembly
                      assembly {
                          // Grab the free memory pointer.
                          result := mload(0x40)
                          // Allocate 2 words (1 for the length, 1 for the bytes).
                          mstore(0x40, add(result, 0x40))
                          // Zeroize the length slot.
                          mstore(result, 0)
                          // Store the length and bytes.
                          mstore(add(result, 0x1f), packed)
                          // Right pad with zeroes.
                          mstore(add(add(result, 0x20), mload(result)), 0)
                      }
                  }
                  /// @dev Packs two strings with their lengths into a single word.
                  /// Returns `bytes32(0)` if combined length is zero or greater than 30.
                  function packTwo(string memory a, string memory b) internal pure returns (bytes32 result) {
                      /// @solidity memory-safe-assembly
                      assembly {
                          let aLength := mload(a)
                          // We don't need to zero right pad the strings,
                          // since this is our own custom non-standard packing scheme.
                          result :=
                              mul(
                                  // Load the length and the bytes of `a` and `b`.
                                  or(
                                      shl(shl(3, sub(0x1f, aLength)), mload(add(a, aLength))),
                                      mload(sub(add(b, 0x1e), aLength))
                                  ),
                                  // `totalLength != 0 && totalLength < 31`. Abuses underflow.
                                  // Assumes that the lengths are valid and within the block gas limit.
                                  lt(sub(add(aLength, mload(b)), 1), 0x1e)
                              )
                      }
                  }
                  /// @dev Unpacks strings packed using {packTwo}.
                  /// Returns the empty strings if `packed` is `bytes32(0)`.
                  /// If `packed` is not an output of {packTwo}, the output behavior is undefined.
                  function unpackTwo(bytes32 packed)
                      internal
                      pure
                      returns (string memory resultA, string memory resultB)
                  {
                      /// @solidity memory-safe-assembly
                      assembly {
                          // Grab the free memory pointer.
                          resultA := mload(0x40)
                          resultB := add(resultA, 0x40)
                          // Allocate 2 words for each string (1 for the length, 1 for the byte). Total 4 words.
                          mstore(0x40, add(resultB, 0x40))
                          // Zeroize the length slots.
                          mstore(resultA, 0)
                          mstore(resultB, 0)
                          // Store the lengths and bytes.
                          mstore(add(resultA, 0x1f), packed)
                          mstore(add(resultB, 0x1f), mload(add(add(resultA, 0x20), mload(resultA))))
                          // Right pad with zeroes.
                          mstore(add(add(resultA, 0x20), mload(resultA)), 0)
                          mstore(add(add(resultB, 0x20), mload(resultB)), 0)
                      }
                  }
                  /// @dev Directly returns `a` without copying.
                  function directReturn(string memory a) internal pure {
                      assembly {
                          // Assumes that the string does not start from the scratch space.
                          let retStart := sub(a, 0x20)
                          let retSize := add(mload(a), 0x40)
                          // Right pad with zeroes. Just in case the string is produced
                          // by a method that doesn't zero right pad.
                          mstore(add(retStart, retSize), 0)
                          // Store the return offset.
                          mstore(retStart, 0x20)
                          // End the transaction, returning the string.
                          return(retStart, retSize)
                      }
                  }
              }