ETH Price: $1,977.45 (+0.84%)
Gas: 0.03 Gwei
 

Overview

Max Total Supply

112,904,640.117448371691543796 siUSD

Holders

1,059 ( -0.094%)

Market

Price

$0.36 @ 0.000183 ETH

Onchain Market Cap

$40,835,237.33

Circulating Supply Market Cap

$0.00

Other Info

Token Contract (WITH 18 Decimals)

Filtered by Token Holder
trtthesalad.eth
Balance
953.913760029085357915 siUSD

Value
$345.01 ( ~0.174472522878996 Eth) [0.0008%]
0xe6db30da89e8c6492da3677fa9b5a7d59124995e
Loading...
Loading
Loading...
Loading
Loading...
Loading

OVERVIEW

infiniFi is a decentralized fractional-reserve stablecoin protocol that automates modern banking mechanisms to deliver higher returns—without added risk.

# Exchange Pair Price  24H Volume % Volume
This contract may be a proxy contract. Click on More Options and select Is this a proxy? to confirm and enable the "Read as Proxy" & "Write as Proxy" tabs.

Contract Source Code Verified (Exact Match)

Contract Name:
StakedToken

Compiler Version
v0.8.28+commit.7893614a

Optimization Enabled:
Yes with 1000 runs

Other Settings:
cancun EvmVersion
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import {EpochLib} from "@libraries/EpochLib.sol";
import {CoreRoles} from "@libraries/CoreRoles.sol";
import {ReceiptToken} from "@tokens/ReceiptToken.sol";
import {YieldSharing} from "@finance/YieldSharing.sol";
import {CoreControlled} from "@core/CoreControlled.sol";
import {ERC20, IERC20, ERC4626} from "@openzeppelin/contracts/token/ERC20/extensions/ERC4626.sol";

/// @notice InfiniFi Staked Token.
/// @dev be carefull, as this contract is an ERC4626, the "assets" keyword is used to refer to the underlying token
/// in this case, it's the ReceiptToken. It's a bit confusing because "asset" is the word we use to refer to the backing token (USDC)
/// everywhere else in the code
contract StakedToken is ERC4626, CoreControlled {
    using EpochLib for uint256;

    /// @notice error thrown when there are pending losses unapplied
    /// if you observe this error as a user, call YieldSharing.accrue() before
    /// attempting a withdrawal from the vault.
    error PendingLossesUnapplied();

    /// @notice emitted when a loss is applied to the vault
    /// @dev epoch could be 0 if the principal of the vault has to be slashed
    event VaultLoss(uint256 indexed timestamp, uint256 epoch, uint256 assets);
    /// @notice emitted when a profit is applied to the vault
    event VaultProfit(uint256 indexed timestamp, uint256 epoch, uint256 assets);

    /// @notice reference to the YieldSharing contract
    address public yieldSharing;

    /// @notice rewards to distribute per epoch
    /// @dev epochRewards can only contain future rewards in the next epoch,
    /// and not further in the future - see `depositRewards()`.
    mapping(uint256 epoch => uint256 rewards) public epochRewards;

    constructor(address _core, address _receiptToken)
        CoreControlled(_core)
        ERC20(string.concat("Staked ", ERC20(_receiptToken).name()), string.concat("s", ERC20(_receiptToken).symbol()))
        ERC4626(IERC20(_receiptToken))
    {}

    /// @notice allows governor to update the yieldSharing reference
    function setYieldSharing(address _yieldSharing) external onlyCoreRole(CoreRoles.GOVERNOR) {
        yieldSharing = _yieldSharing;
    }

    /// ---------------------------------------------------------------------------
    /// Overrides
    /// ---------------------------------------------------------------------------

    function maxMint(address _receiver) public view override returns (uint256) {
        if (paused()) {
            return 0;
        }
        return super.maxMint(_receiver);
    }

    function maxDeposit(address _receiver) public view override returns (uint256) {
        if (paused()) {
            return 0;
        }
        return super.maxDeposit(_receiver);
    }

    function maxRedeem(address _receiver) public view override returns (uint256) {
        if (paused() || YieldSharing(yieldSharing).unaccruedYield() < 0) {
            return 0;
        }
        return super.maxRedeem(_receiver);
    }

    function maxWithdraw(address _receiver) public view override returns (uint256) {
        if (paused() || YieldSharing(yieldSharing).unaccruedYield() < 0) {
            return 0;
        }
        return super.maxWithdraw(_receiver);
    }

    // override vault deposits & withdrawals to hook into yieldSharing, so
    // that yieldSharing can cache the number of receiptTokens staked in StakedToken
    // and avoid intra-block manipulations during yield distribution.
    function _deposit(address caller, address receiver, uint256 assets, uint256 shares) internal override {
        YieldSharing(yieldSharing).getCachedStakedReceiptTokens();
        super._deposit(caller, receiver, assets, shares);
    }

    function _withdraw(address caller, address receiver, address owner, uint256 assets, uint256 shares)
        internal
        override
    {
        YieldSharing(yieldSharing).getCachedStakedReceiptTokens();
        super._withdraw(caller, receiver, owner, assets, shares);
    }

    /// ---------------------------------------------------------------------------
    /// Loss Management
    /// ---------------------------------------------------------------------------

    /// @notice Slash losses in future epoch rewards, current epoch rewards, and principal.
    /// @dev note that this function might behave slightly differently than expected, for the sake
    /// of simplicity in the slashing logic.
    /// Take the following example:
    /// - 1500 assets in "vault principal"
    /// - 300 in current epoch rewards (150 already available, 150 still vesting)
    /// - 50 in next epoch rewards
    /// -> totalAssets() = 1650.
    /// If a loss of 250 occurs, you might expect the slashing to remove :
    /// - 50 tokens in next epoch rewards (200 loss still remaining)
    /// - 150 tokens in current epoch vesting rewards (50 loss still remaining)
    /// - 50 tokens in principal (0 loss remaining)
    /// -> resulting in a totalAssets() of 1500 - 50 (principal slash)
    ///    + 150 (vested current epoch rewards) = 1600.
    ///    and no remaining rewards towards the end of the epoch.
    /// However, the actual behavior will be:
    /// - 50 tokens in next epoch rewards (200 loss still remaining)
    /// - 200 tokens in current epoch vesting rewards (0 loss remaining)
    ///   current epoch rewards updated to 300 - 200 = 100
    /// -> resulting in a totalAssets() of 1500 + 50 (vested current epoch rewards) = 1550.
    ///    and a remaining rewards interpolation of 50 until the end of the epoch, resulting
    ///    in a totalAssets() at the end of the epoch of 1600.
    /// This is a slight inconsistency between how losses are applied and how rewards are
    /// interpolated/reported in totalAssets(). Operationally, the interpolating rewards should be
    /// small compared to the vault's TVL, and slashing events should be rare, so this simplified
    /// logic is acceptable.
    function applyLosses(uint256 _amount) external onlyCoreRole(CoreRoles.FINANCE_MANAGER) {
        // any future rewards are slashed first
        // first, slash next epoch rewards
        _amount = _slashEpochRewards(block.timestamp.nextEpoch(), _amount);
        if (_amount == 0) return;
        // second, slash current epoch rewards
        _amount = _slashEpochRewards(block.timestamp.epoch(), _amount);
        if (_amount == 0) return;
        // lastly, slash the principal of the vault
        ReceiptToken(asset()).burn(_amount);
        emit VaultLoss(block.timestamp, 0, _amount);
    }

    /// @notice Slash rewards for a given epoch
    function _slashEpochRewards(uint256 _epoch, uint256 _amount) internal returns (uint256) {
        uint256 _epochRewards = epochRewards[_epoch];
        if (_epochRewards >= _amount) {
            epochRewards[_epoch] = _epochRewards - _amount;
            ReceiptToken(asset()).burn(_amount);
            emit VaultLoss(block.timestamp, _epoch, _amount);
            _amount = 0;
        } else {
            epochRewards[_epoch] = 0;
            ReceiptToken(asset()).burn(_epochRewards);
            emit VaultLoss(block.timestamp, _epoch, _epochRewards);
            _amount -= _epochRewards;
        }
        return _amount;
    }

    /// ---------------------------------------------------------------------------
    /// Profit Smoothing
    /// ---------------------------------------------------------------------------

    function depositRewards(uint256 _amount) external onlyCoreRole(CoreRoles.FINANCE_MANAGER) {
        ERC20(asset()).transferFrom(msg.sender, address(this), _amount);
        uint256 epoch = block.timestamp.nextEpoch();
        epochRewards[epoch] += _amount;
        emit VaultProfit(block.timestamp, epoch, _amount);
    }

    /// @notice returns the amount of rewards for the current epoch minus the rewards that are already available
    function _unavailableCurrentEpochRewards() internal view returns (uint256) {
        uint256 currentEpoch = block.timestamp.epoch();
        uint256 currentEpochRewards = epochRewards[currentEpoch]; // safe upcast
        uint256 elapsed = block.timestamp - currentEpoch.epochToTimestamp();
        uint256 availableEpochRewards = (currentEpochRewards * elapsed) / EpochLib.EPOCH;
        return currentEpochRewards - availableEpochRewards;
    }

    /// @notice returns the total assets, excluding the rewards that are not available yet
    function totalAssets() public view override returns (uint256) {
        return super.totalAssets() - epochRewards[block.timestamp.nextEpoch()] - _unavailableCurrentEpochRewards();
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

library EpochLib {
    uint256 internal constant EPOCH = 1 weeks;
    uint256 internal constant EPOCH_OFFSET = 3 days;

    /// @notice epoch start (start of the epoch) for a given timestamp
    function epoch(uint256 _timestamp) public pure returns (uint256) {
        return (_timestamp - EPOCH_OFFSET) / EPOCH;
    }

    /// @notice epoch end (end of the epoch) for a given timestamp
    function nextEpoch(uint256 _timestamp) public pure returns (uint256) {
        return epoch(_timestamp) + 1;
    }

    /// @notice Convert epoch to timestamp taking into account the epoch offset
    function epochToTimestamp(uint256 _epoch) public pure returns (uint256) {
        return _epoch * EPOCH + EPOCH_OFFSET;
    }
}

File 3 of 53 : CoreRoles.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

/// @notice Holds a complete list of all roles which can be held by contracts inside the InfiniFi protocol.
library CoreRoles {
    /// ----------- Core roles for access control --------------

    /// @notice the all-powerful role. Controls all other roles and protocol functionality.
    bytes32 internal constant GOVERNOR = keccak256("GOVERNOR");

    /// @notice Can pause contracts in an emergency.
    bytes32 internal constant PAUSE = keccak256("PAUSE");

    /// @notice Can unpause contracts after an emergency.
    bytes32 internal constant UNPAUSE = keccak256("UNPAUSE");

    /// @notice can tweak protocol parameters
    bytes32 internal constant PROTOCOL_PARAMETERS = keccak256("PROTOCOL_PARAMETERS");

    /// @notice can manage minor roles
    bytes32 internal constant MINOR_ROLES_MANAGER = keccak256("MINOR_ROLES_MANAGER");

    /// ----------- User Flow Management -----------------------

    /// @notice Granted to the user entry point of the system
    bytes32 internal constant ENTRY_POINT = keccak256("ENTRY_POINT");

    /// ----------- Token Management ---------------------------

    /// @notice can mint DebtToken arbitrarily
    bytes32 internal constant RECEIPT_TOKEN_MINTER = keccak256("RECEIPT_TOKEN_MINTER");

    /// @notice can burn DebtToken tokens
    bytes32 internal constant RECEIPT_TOKEN_BURNER = keccak256("RECEIPT_TOKEN_BURNER");

    /// @notice can mint arbitrarily & burn held LockedPositionToken
    bytes32 internal constant LOCKED_TOKEN_MANAGER = keccak256("LOCKED_TOKEN_MANAGER");

    /// @notice can prevent transfers of LockedPositionToken
    bytes32 internal constant TRANSFER_RESTRICTOR = keccak256("TRANSFER_RESTRICTOR");

    /// ----------- Funds Management & Accounting --------------

    /// @notice contract that can allocate funds between farms
    bytes32 internal constant FARM_MANAGER = keccak256("FARM_MANAGER");

    /// @notice addresses who can use the manual rebalancer
    bytes32 internal constant MANUAL_REBALANCER = keccak256("MANUAL_REBALANCER");

    /// @notice addresses who can use the periodic rebalancer
    bytes32 internal constant PERIODIC_REBALANCER = keccak256("PERIODIC_REBALANCER");

    /// @notice addresses who can move funds from farms to a safe address
    bytes32 internal constant EMERGENCY_WITHDRAWAL = keccak256("EMERGENCY_WITHDRAWAL");

    /// @notice addresses who can trigger swaps in Farms
    bytes32 internal constant FARM_SWAP_CALLER = keccak256("FARM_SWAP_CALLER");

    /// @notice can set oracles references within the system
    bytes32 internal constant ORACLE_MANAGER = keccak256("ORACLE_MANAGER");

    /// @notice trusted to report profit and losses in the system.
    /// This role can be used to slash depositors in case of losses, and
    /// can also deposit profits for distribution to end users.
    bytes32 internal constant FINANCE_MANAGER = keccak256("FINANCE_MANAGER");

    /// ----------- Timelock management ------------------------
    /// The hashes are the same as OpenZeppelins's roles in TimelockController

    /// @notice can propose new actions in timelocks
    bytes32 internal constant PROPOSER_ROLE = keccak256("PROPOSER_ROLE");

    /// @notice can execute actions in timelocks after their delay
    bytes32 internal constant EXECUTOR_ROLE = keccak256("EXECUTOR_ROLE");

    /// @notice can cancel actions in timelocks
    bytes32 internal constant CANCELLER_ROLE = keccak256("CANCELLER_ROLE");
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {CoreRoles} from "@libraries/CoreRoles.sol";
import {ERC20Permit} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol";
import {ERC20Burnable} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";
import {CoreControlled} from "@core/CoreControlled.sol";

/// @notice InfiniFi Receipt Token.
contract ReceiptToken is CoreControlled, ERC20Permit, ERC20Burnable {
    constructor(address _core, string memory _name, string memory _symbol)
        CoreControlled(_core)
        ERC20(_name, _symbol)
        ERC20Permit(_name)
    {}

    /// ---------------------------------------------------------------------------
    /// Supply management
    /// ---------------------------------------------------------------------------

    function mint(address _to, uint256 _amount) external onlyCoreRole(CoreRoles.RECEIPT_TOKEN_MINTER) {
        _mint(_to, _amount);
    }

    function burn(uint256 _value) public override onlyCoreRole(CoreRoles.RECEIPT_TOKEN_BURNER) {
        _burn(_msgSender(), _value);
    }

    function burnFrom(address _account, uint256 _value) public override onlyCoreRole(CoreRoles.RECEIPT_TOKEN_BURNER) {
        _spendAllowance(_account, _msgSender(), _value);
        _burn(_account, _value);
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import {FixedPointMathLib} from "@solmate/src/utils/FixedPointMathLib.sol";

import {CoreRoles} from "@libraries/CoreRoles.sol";
import {Accounting} from "@finance/Accounting.sol";
import {StakedToken} from "@tokens/StakedToken.sol";
import {ReceiptToken} from "@tokens/ReceiptToken.sol";
import {CoreControlled} from "@core/CoreControlled.sol";
import {LockingController} from "@locking/LockingController.sol";
import {FixedPriceOracle} from "@finance/oracles/FixedPriceOracle.sol";

/// @notice InfiniFi YieldSharing contract
/// @dev This contract is used to distribute yield between iUSD locking users and siUSD holders.
/// @dev It also holds idle iUSD that can be used to slash losses or distribute profits.
contract YieldSharing is CoreControlled {
    using FixedPointMathLib for uint256;

    error PerformanceFeeTooHigh(uint256 _percent);
    error PerformanceFeeRecipientIsZeroAddress(address _recipient);
    error TargetIlliquidRatioTooHigh(uint256 _ratio);

    /// @notice Fired when yield is accrued from frarms
    /// @param timestamp block timestamp of the accrual
    /// @param yield profit or loss in farms since last accrual
    event YieldAccrued(uint256 indexed timestamp, int256 yield);
    event TargetIlliquidRatioUpdated(uint256 indexed timestamp, uint256 multiplier);
    event SafetyBufferSizeUpdated(uint256 indexed timestamp, uint256 value);
    event LiquidMultiplierUpdated(uint256 indexed timestamp, uint256 multiplier);
    event PerformanceFeeSettingsUpdated(uint256 indexed timestamp, uint256 percentage, address recipient);

    uint256 public constant MAX_PERFORMANCE_FEE = 0.2e18; // 20%

    /// @notice reference to farm accounting contract
    address public immutable accounting;

    /// @notice reference to receipt token
    address public immutable receiptToken;

    /// @notice reference to staked token
    address public immutable stakedToken;

    /// @notice reference to locking module
    address public immutable lockingModule;

    /// @notice safety buffer amount.
    /// This amount of iUSD is held on the contract and consumed first in case of losses smaller
    /// than the safety buffer. It is also replenished first in case of profit, up to the buffer size.
    /// The buffer held could exceed safetyBufferSize if there are donations to this contract, or if
    /// the buffer size has been reduced since last profit distribution, or if there are no other
    /// users to distribute to.
    /// The safety buffer is meant to absorb small losses such as slippage or fees when
    /// deploying capital to productive farms.
    /// safety buffer can be emptied by governance through the use of emergencyAction().
    uint256 public safetyBufferSize;

    /// @notice optional performance fee, expressed as a percentage with 18 decimals.
    uint256 public performanceFee; // default to 0%

    /// @notice optional performance fee recipient
    address public performanceFeeRecipient;

    /// @notice multiplier for the liquid return, expressed as a percentage with 18 decimals.
    uint256 public liquidReturnMultiplier = FixedPointMathLib.WAD; // default to 1.0

    /// @notice target illiquid ratio, expressed as a percentage with 18 decimals.
    /// This ratio is the minimum percent of illiquid holdings the protocol is targetting, and
    /// if there is a percentage of illiquid users lower than the targetIlliquidRatio, the protocol
    /// wil distribute additional rewards to the illiquid users until targetIlliquidRatio is reached.
    uint256 public targetIlliquidRatio; // default to 0

    struct StakedReceiptTokenCache {
        uint48 blockTimestamp;
        uint208 amount;
    }

    StakedReceiptTokenCache public stakedReceiptTokenCache;

    constructor(address _core, address _accounting, address _receiptToken, address _stakedToken, address _lockingModule)
        CoreControlled(_core)
    {
        accounting = _accounting;
        receiptToken = _receiptToken;
        stakedToken = _stakedToken;
        lockingModule = _lockingModule;

        ReceiptToken(receiptToken).approve(_stakedToken, type(uint256).max);
        ReceiptToken(receiptToken).approve(_lockingModule, type(uint256).max);
    }

    /// @notice set the safety buffer size
    /// @param _safetyBufferSize the new safety buffer size
    function setSafetyBufferSize(uint256 _safetyBufferSize) external onlyCoreRole(CoreRoles.PROTOCOL_PARAMETERS) {
        safetyBufferSize = _safetyBufferSize;
        emit SafetyBufferSizeUpdated(block.timestamp, _safetyBufferSize);
    }

    /// @notice set the performance fee and recipient
    function setPerformanceFeeAndRecipient(uint256 _percent, address _recipient)
        external
        onlyCoreRole(CoreRoles.PROTOCOL_PARAMETERS)
    {
        require(_percent <= MAX_PERFORMANCE_FEE, PerformanceFeeTooHigh(_percent));
        if (_percent > 0) {
            require(_recipient != address(0), PerformanceFeeRecipientIsZeroAddress(_recipient));
        }

        performanceFee = _percent;
        performanceFeeRecipient = _recipient;
        emit PerformanceFeeSettingsUpdated(block.timestamp, _percent, _recipient);
    }

    /// @notice set the liquid return multiplier
    function setLiquidReturnMultiplier(uint256 _multiplier) external onlyCoreRole(CoreRoles.PROTOCOL_PARAMETERS) {
        liquidReturnMultiplier = _multiplier;
        emit LiquidMultiplierUpdated(block.timestamp, _multiplier);
    }

    /// @notice set the target illiquid ratio
    function setTargetIlliquidRatio(uint256 _ratio) external onlyCoreRole(CoreRoles.PROTOCOL_PARAMETERS) {
        require(_ratio <= FixedPointMathLib.WAD, TargetIlliquidRatioTooHigh(_ratio));
        targetIlliquidRatio = _ratio;
        emit TargetIlliquidRatioUpdated(block.timestamp, _ratio);
    }

    /// @notice returns the yield earned by the protocol since the last accrue() call.
    /// @return yield as an amount of receiptTokens.
    /// @dev Note that yield can be negative if the protocol farms have lost value, or if the
    /// oracle price of assets held in the protocol has decreased since last accrue() call,
    /// or if more ReceiptTokens entered circulation than assets entered the protocol.
    function unaccruedYield() public view returns (int256) {
        uint256 receiptTokenPrice = Accounting(accounting).price(receiptToken);
        uint256 assets = Accounting(accounting).totalAssetsValue(); // returns assets in USD

        uint256 assetsInReceiptTokens = assets.divWadDown(receiptTokenPrice);

        return int256(assetsInReceiptTokens) - int256(ReceiptToken(receiptToken).totalSupply());
    }

    /// @notice accrue yield and handle profits & losses
    /// This function should bring back unaccruedYield() to 0 by minting receiptTokens into circulation (profit distribution)
    /// or burning receipt tokens (slashing) or updating the oracle price of the receiptToken if there
    /// are not enough first-loss capital stakers to slash.
    function accrue() external whenNotPaused {
        int256 yield = unaccruedYield();
        if (yield > 0) _handlePositiveYield(uint256(yield));
        else if (yield < 0) _handleNegativeYield(uint256(-yield));

        emit YieldAccrued(block.timestamp, yield);
    }

    function getCachedStakedReceiptTokens() public returns (uint256) {
        StakedReceiptTokenCache memory data = stakedReceiptTokenCache;
        if (uint256(data.blockTimestamp) == block.timestamp) {
            return uint256(data.amount);
        }
        uint256 amount = ReceiptToken(receiptToken).balanceOf(stakedToken);
        assert(amount <= type(uint208).max);

        stakedReceiptTokenCache.blockTimestamp = uint48(block.timestamp);
        stakedReceiptTokenCache.amount = uint208(amount);

        return amount;
    }

    /// @notice Yield sharing: split between iUSD lockin users & siUSD holders.
    /// If no users are locking or saving, the profit is minted on this contract and
    /// held idle so that the accrue() expected behavior of restoring protocol equity to 0
    /// is maintained. Funds minted on this contract in such a way can be unstuck by governance
    /// through the use of emergencyAction().
    function _handlePositiveYield(uint256 _positiveYield) internal {
        uint256 stakedReceiptTokens = getCachedStakedReceiptTokens().mulWadDown(liquidReturnMultiplier);
        uint256 receiptTokenTotalSupply = ReceiptToken(receiptToken).totalSupply();
        uint256 targetIlliquidMinimum = receiptTokenTotalSupply.mulWadDown(targetIlliquidRatio);
        uint256 lockingReceiptTokens = LockingController(lockingModule).totalBalance();
        if (lockingReceiptTokens < targetIlliquidMinimum) {
            lockingReceiptTokens = targetIlliquidMinimum;
        }
        uint256 bondingMultiplier = LockingController(lockingModule).rewardMultiplier();
        lockingReceiptTokens = lockingReceiptTokens.mulWadDown(bondingMultiplier);
        uint256 totalReceiptTokens = stakedReceiptTokens + lockingReceiptTokens;

        // mint yield
        ReceiptToken(receiptToken).mint(address(this), _positiveYield);

        // fill safety buffer first
        uint256 _safetyBufferSize = safetyBufferSize;
        if (_safetyBufferSize > 0) {
            uint256 safetyBuffer = ReceiptToken(receiptToken).balanceOf(address(this)) - _positiveYield;
            if (safetyBuffer < _safetyBufferSize) {
                if (safetyBuffer + _positiveYield > _safetyBufferSize) {
                    // there will be a leftover profit after filling the safety buffer, so we
                    // deduct the safety buffer contribution from the profits and continue
                    _positiveYield -= _safetyBufferSize - safetyBuffer;
                } else {
                    // do not do any further distribution and only replenish the safety buffer
                    return;
                }
            }
        }

        // performance fee
        uint256 _performanceFee = performanceFee;
        if (_performanceFee > 0) {
            uint256 fee = _positiveYield.mulWadDown(_performanceFee);
            if (fee > 0) {
                ReceiptToken(receiptToken).transfer(performanceFeeRecipient, fee);
                _positiveYield -= fee;
            }
        }

        // compute splits
        if (totalReceiptTokens == 0) {
            // nobody to distribute to, do nothing and hold the tokens
            return;
        }

        // yield split to staked users
        uint256 stakingProfit = _positiveYield.mulDivDown(stakedReceiptTokens, totalReceiptTokens);
        if (stakingProfit > 0) {
            StakedToken(stakedToken).depositRewards(stakingProfit);
        }

        // yield split to locking users
        uint256 lockingProfit = _positiveYield - stakingProfit;
        if (lockingProfit > 0) {
            LockingController(lockingModule).depositRewards(lockingProfit);
        }
    }

    /// @notice Loss propagation: iUSD locking users -> siUSD holders -> iUSD holders
    function _handleNegativeYield(uint256 _negativeYield) internal {
        // if there is a safety buffer, and the loss is smaller than the safety buffer,
        // consume it and do not apply any losses to users.
        uint256 safetyBuffer = ReceiptToken(receiptToken).balanceOf(address(this));
        if (safetyBuffer >= _negativeYield) {
            ReceiptToken(receiptToken).burn(_negativeYield);
            return;
        }

        // first, apply losses to locking users
        uint256 lockingReceiptTokens = LockingController(lockingModule).totalBalance();
        if (_negativeYield <= lockingReceiptTokens) {
            LockingController(lockingModule).applyLosses(_negativeYield);
            return;
        }
        LockingController(lockingModule).applyLosses(lockingReceiptTokens);
        _negativeYield -= lockingReceiptTokens;

        // second, apply negativeYield to siUSD holders
        uint256 stakedReceiptTokens = ReceiptToken(receiptToken).balanceOf(stakedToken);
        if (_negativeYield <= stakedReceiptTokens) {
            StakedToken(stakedToken).applyLosses(_negativeYield);
            return;
        }
        StakedToken(stakedToken).applyLosses(stakedReceiptTokens);
        _negativeYield -= stakedReceiptTokens;

        // lastly, apply losses to all iUSD in circulation
        uint256 totalSupply = ReceiptToken(receiptToken).totalSupply();
        address oracle = Accounting(accounting).oracle(receiptToken);
        uint256 price = FixedPriceOracle(oracle).price();
        uint256 newPrice = price.mulDivDown(totalSupply - _negativeYield, totalSupply);
        FixedPriceOracle(oracle).setPrice(newPrice);
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import {Pausable} from "@openzeppelin/contracts/utils/Pausable.sol";
import {CoreRoles} from "@libraries/CoreRoles.sol";
import {InfiniFiCore} from "@core/InfiniFiCore.sol";

/// @notice Defines some modifiers and utilities around interacting with Core
abstract contract CoreControlled is Pausable {
    error UnderlyingCallReverted(bytes returnData);

    /// @notice emitted when the reference to core is updated
    event CoreUpdate(address indexed oldCore, address indexed newCore);

    /// @notice reference to Core
    InfiniFiCore private _core;

    constructor(address coreAddress) {
        _core = InfiniFiCore(coreAddress);
    }

    /// @notice named onlyCoreRole to prevent collision with OZ onlyRole modifier
    modifier onlyCoreRole(bytes32 role) {
        require(_core.hasRole(role, msg.sender), "UNAUTHORIZED");
        _;
    }

    /// @notice address of the Core contract referenced
    function core() public view returns (InfiniFiCore) {
        return _core;
    }

    /// @notice WARNING CALLING THIS FUNCTION CAN POTENTIALLY
    /// BRICK A CONTRACT IF CORE IS SET INCORRECTLY
    /// @notice set new reference to core
    /// only callable by governor
    /// @param newCore to reference
    function setCore(address newCore) external onlyCoreRole(CoreRoles.GOVERNOR) {
        _setCore(newCore);
    }

    /// @notice WARNING CALLING THIS FUNCTION CAN POTENTIALLY
    /// BRICK A CONTRACT IF CORE IS SET INCORRECTLY
    /// @notice set new reference to core
    /// @param newCore to reference
    function _setCore(address newCore) internal {
        address oldCore = address(_core);
        _core = InfiniFiCore(newCore);

        emit CoreUpdate(oldCore, newCore);
    }

    /// @notice set pausable methods to paused
    function pause() public onlyCoreRole(CoreRoles.PAUSE) {
        _pause();
    }

    /// @notice set pausable methods to unpaused
    function unpause() public onlyCoreRole(CoreRoles.UNPAUSE) {
        _unpause();
    }

    /// ------------------------------------------
    /// ------------ Emergency Action ------------
    /// ------------------------------------------

    /// inspired by MakerDAO Multicall:
    /// https://github.com/makerdao/multicall/blob/master/src/Multicall.sol

    /// @notice struct to pack calldata and targets for an emergency action
    struct Call {
        /// @notice target address to call
        address target;
        /// @notice amount of eth to send with the call
        uint256 value;
        /// @notice payload to send to target
        bytes callData;
    }

    /// @notice due to inflexibility of current smart contracts,
    /// add this ability to be able to execute arbitrary calldata
    /// against arbitrary addresses.
    /// callable only by governor
    function emergencyAction(Call[] calldata calls)
        external
        payable
        virtual
        onlyCoreRole(CoreRoles.GOVERNOR)
        returns (bytes[] memory returnData)
    {
        returnData = new bytes[](calls.length);
        for (uint256 i = 0; i < calls.length; i++) {
            address payable target = payable(calls[i].target);
            uint256 value = calls[i].value;
            bytes calldata callData = calls[i].callData;

            (bool success, bytes memory returned) = target.call{value: value}(callData);
            require(success, UnderlyingCallReverted(returned));
            returnData[i] = returned;
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/ERC4626.sol)

pragma solidity ^0.8.20;

import {IERC20, IERC20Metadata, ERC20} from "../ERC20.sol";
import {SafeERC20} from "../utils/SafeERC20.sol";
import {IERC4626} from "../../../interfaces/IERC4626.sol";
import {Math} from "../../../utils/math/Math.sol";

/**
 * @dev Implementation of the ERC-4626 "Tokenized Vault Standard" as defined in
 * https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
 *
 * This extension allows the minting and burning of "shares" (represented using the ERC-20 inheritance) in exchange for
 * underlying "assets" through standardized {deposit}, {mint}, {redeem} and {burn} workflows. This contract extends
 * the ERC-20 standard. Any additional extensions included along it would affect the "shares" token represented by this
 * contract and not the "assets" token which is an independent contract.
 *
 * [CAUTION]
 * ====
 * In empty (or nearly empty) ERC-4626 vaults, deposits are at high risk of being stolen through frontrunning
 * with a "donation" to the vault that inflates the price of a share. This is variously known as a donation or inflation
 * attack and is essentially a problem of slippage. Vault deployers can protect against this attack by making an initial
 * deposit of a non-trivial amount of the asset, such that price manipulation becomes infeasible. Withdrawals may
 * similarly be affected by slippage. Users can protect against this attack as well as unexpected slippage in general by
 * verifying the amount received is as expected, using a wrapper that performs these checks such as
 * https://github.com/fei-protocol/ERC4626#erc4626router-and-base[ERC4626Router].
 *
 * Since v4.9, this implementation introduces configurable virtual assets and shares to help developers mitigate that risk.
 * The `_decimalsOffset()` corresponds to an offset in the decimal representation between the underlying asset's decimals
 * and the vault decimals. This offset also determines the rate of virtual shares to virtual assets in the vault, which
 * itself determines the initial exchange rate. While not fully preventing the attack, analysis shows that the default
 * offset (0) makes it non-profitable even if an attacker is able to capture value from multiple user deposits, as a result
 * of the value being captured by the virtual shares (out of the attacker's donation) matching the attacker's expected gains.
 * With a larger offset, the attack becomes orders of magnitude more expensive than it is profitable. More details about the
 * underlying math can be found xref:ROOT:erc4626.adoc#inflation-attack[here].
 *
 * The drawback of this approach is that the virtual shares do capture (a very small) part of the value being accrued
 * to the vault. Also, if the vault experiences losses, the users try to exit the vault, the virtual shares and assets
 * will cause the first user to exit to experience reduced losses in detriment to the last users that will experience
 * bigger losses. Developers willing to revert back to the pre-v4.9 behavior just need to override the
 * `_convertToShares` and `_convertToAssets` functions.
 *
 * To learn more, check out our xref:ROOT:erc4626.adoc[ERC-4626 guide].
 * ====
 */
abstract contract ERC4626 is ERC20, IERC4626 {
    using Math for uint256;

    IERC20 private immutable _asset;
    uint8 private immutable _underlyingDecimals;

    /**
     * @dev Attempted to deposit more assets than the max amount for `receiver`.
     */
    error ERC4626ExceededMaxDeposit(address receiver, uint256 assets, uint256 max);

    /**
     * @dev Attempted to mint more shares than the max amount for `receiver`.
     */
    error ERC4626ExceededMaxMint(address receiver, uint256 shares, uint256 max);

    /**
     * @dev Attempted to withdraw more assets than the max amount for `receiver`.
     */
    error ERC4626ExceededMaxWithdraw(address owner, uint256 assets, uint256 max);

    /**
     * @dev Attempted to redeem more shares than the max amount for `receiver`.
     */
    error ERC4626ExceededMaxRedeem(address owner, uint256 shares, uint256 max);

    /**
     * @dev Set the underlying asset contract. This must be an ERC20-compatible contract (ERC-20 or ERC-777).
     */
    constructor(IERC20 asset_) {
        (bool success, uint8 assetDecimals) = _tryGetAssetDecimals(asset_);
        _underlyingDecimals = success ? assetDecimals : 18;
        _asset = asset_;
    }

    /**
     * @dev Attempts to fetch the asset decimals. A return value of false indicates that the attempt failed in some way.
     */
    function _tryGetAssetDecimals(IERC20 asset_) private view returns (bool ok, uint8 assetDecimals) {
        (bool success, bytes memory encodedDecimals) = address(asset_).staticcall(
            abi.encodeCall(IERC20Metadata.decimals, ())
        );
        if (success && encodedDecimals.length >= 32) {
            uint256 returnedDecimals = abi.decode(encodedDecimals, (uint256));
            if (returnedDecimals <= type(uint8).max) {
                return (true, uint8(returnedDecimals));
            }
        }
        return (false, 0);
    }

    /**
     * @dev Decimals are computed by adding the decimal offset on top of the underlying asset's decimals. This
     * "original" value is cached during construction of the vault contract. If this read operation fails (e.g., the
     * asset has not been created yet), a default of 18 is used to represent the underlying asset's decimals.
     *
     * See {IERC20Metadata-decimals}.
     */
    function decimals() public view virtual override(IERC20Metadata, ERC20) returns (uint8) {
        return _underlyingDecimals + _decimalsOffset();
    }

    /** @dev See {IERC4626-asset}. */
    function asset() public view virtual returns (address) {
        return address(_asset);
    }

    /** @dev See {IERC4626-totalAssets}. */
    function totalAssets() public view virtual returns (uint256) {
        return IERC20(asset()).balanceOf(address(this));
    }

    /** @dev See {IERC4626-convertToShares}. */
    function convertToShares(uint256 assets) public view virtual returns (uint256) {
        return _convertToShares(assets, Math.Rounding.Floor);
    }

    /** @dev See {IERC4626-convertToAssets}. */
    function convertToAssets(uint256 shares) public view virtual returns (uint256) {
        return _convertToAssets(shares, Math.Rounding.Floor);
    }

    /** @dev See {IERC4626-maxDeposit}. */
    function maxDeposit(address) public view virtual returns (uint256) {
        return type(uint256).max;
    }

    /** @dev See {IERC4626-maxMint}. */
    function maxMint(address) public view virtual returns (uint256) {
        return type(uint256).max;
    }

    /** @dev See {IERC4626-maxWithdraw}. */
    function maxWithdraw(address owner) public view virtual returns (uint256) {
        return _convertToAssets(balanceOf(owner), Math.Rounding.Floor);
    }

    /** @dev See {IERC4626-maxRedeem}. */
    function maxRedeem(address owner) public view virtual returns (uint256) {
        return balanceOf(owner);
    }

    /** @dev See {IERC4626-previewDeposit}. */
    function previewDeposit(uint256 assets) public view virtual returns (uint256) {
        return _convertToShares(assets, Math.Rounding.Floor);
    }

    /** @dev See {IERC4626-previewMint}. */
    function previewMint(uint256 shares) public view virtual returns (uint256) {
        return _convertToAssets(shares, Math.Rounding.Ceil);
    }

    /** @dev See {IERC4626-previewWithdraw}. */
    function previewWithdraw(uint256 assets) public view virtual returns (uint256) {
        return _convertToShares(assets, Math.Rounding.Ceil);
    }

    /** @dev See {IERC4626-previewRedeem}. */
    function previewRedeem(uint256 shares) public view virtual returns (uint256) {
        return _convertToAssets(shares, Math.Rounding.Floor);
    }

    /** @dev See {IERC4626-deposit}. */
    function deposit(uint256 assets, address receiver) public virtual returns (uint256) {
        uint256 maxAssets = maxDeposit(receiver);
        if (assets > maxAssets) {
            revert ERC4626ExceededMaxDeposit(receiver, assets, maxAssets);
        }

        uint256 shares = previewDeposit(assets);
        _deposit(_msgSender(), receiver, assets, shares);

        return shares;
    }

    /** @dev See {IERC4626-mint}. */
    function mint(uint256 shares, address receiver) public virtual returns (uint256) {
        uint256 maxShares = maxMint(receiver);
        if (shares > maxShares) {
            revert ERC4626ExceededMaxMint(receiver, shares, maxShares);
        }

        uint256 assets = previewMint(shares);
        _deposit(_msgSender(), receiver, assets, shares);

        return assets;
    }

    /** @dev See {IERC4626-withdraw}. */
    function withdraw(uint256 assets, address receiver, address owner) public virtual returns (uint256) {
        uint256 maxAssets = maxWithdraw(owner);
        if (assets > maxAssets) {
            revert ERC4626ExceededMaxWithdraw(owner, assets, maxAssets);
        }

        uint256 shares = previewWithdraw(assets);
        _withdraw(_msgSender(), receiver, owner, assets, shares);

        return shares;
    }

    /** @dev See {IERC4626-redeem}. */
    function redeem(uint256 shares, address receiver, address owner) public virtual returns (uint256) {
        uint256 maxShares = maxRedeem(owner);
        if (shares > maxShares) {
            revert ERC4626ExceededMaxRedeem(owner, shares, maxShares);
        }

        uint256 assets = previewRedeem(shares);
        _withdraw(_msgSender(), receiver, owner, assets, shares);

        return assets;
    }

    /**
     * @dev Internal conversion function (from assets to shares) with support for rounding direction.
     */
    function _convertToShares(uint256 assets, Math.Rounding rounding) internal view virtual returns (uint256) {
        return assets.mulDiv(totalSupply() + 10 ** _decimalsOffset(), totalAssets() + 1, rounding);
    }

    /**
     * @dev Internal conversion function (from shares to assets) with support for rounding direction.
     */
    function _convertToAssets(uint256 shares, Math.Rounding rounding) internal view virtual returns (uint256) {
        return shares.mulDiv(totalAssets() + 1, totalSupply() + 10 ** _decimalsOffset(), rounding);
    }

    /**
     * @dev Deposit/mint common workflow.
     */
    function _deposit(address caller, address receiver, uint256 assets, uint256 shares) internal virtual {
        // If asset() is ERC-777, `transferFrom` can trigger a reentrancy BEFORE the transfer happens through the
        // `tokensToSend` hook. On the other hand, the `tokenReceived` hook, that is triggered after the transfer,
        // calls the vault, which is assumed not malicious.
        //
        // Conclusion: we need to do the transfer before we mint so that any reentrancy would happen before the
        // assets are transferred and before the shares are minted, which is a valid state.
        // slither-disable-next-line reentrancy-no-eth
        SafeERC20.safeTransferFrom(IERC20(asset()), caller, address(this), assets);
        _mint(receiver, shares);

        emit Deposit(caller, receiver, assets, shares);
    }

    /**
     * @dev Withdraw/redeem common workflow.
     */
    function _withdraw(
        address caller,
        address receiver,
        address owner,
        uint256 assets,
        uint256 shares
    ) internal virtual {
        if (caller != owner) {
            _spendAllowance(owner, caller, shares);
        }

        // If asset() is ERC-777, `transfer` can trigger a reentrancy AFTER the transfer happens through the
        // `tokensReceived` hook. On the other hand, the `tokensToSend` hook, that is triggered before the transfer,
        // calls the vault, which is assumed not malicious.
        //
        // Conclusion: we need to do the transfer after the burn so that any reentrancy would happen after the
        // shares are burned and after the assets are transferred, which is a valid state.
        _burn(owner, shares);
        SafeERC20.safeTransfer(IERC20(asset()), receiver, assets);

        emit Withdraw(caller, receiver, owner, assets, shares);
    }

    function _decimalsOffset() internal view virtual returns (uint8) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC-20
 * applications.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * Both values are immutable: they can only be set once during construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Skips emitting an {Approval} event indicating an allowance update. This is not
     * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner`'s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     *
     * ```solidity
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner`'s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance < type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/ERC20Permit.sol)

pragma solidity ^0.8.20;

import {IERC20Permit} from "./IERC20Permit.sol";
import {ERC20} from "../ERC20.sol";
import {ECDSA} from "../../../utils/cryptography/ECDSA.sol";
import {EIP712} from "../../../utils/cryptography/EIP712.sol";
import {Nonces} from "../../../utils/Nonces.sol";

/**
 * @dev Implementation of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712, Nonces {
    bytes32 private constant PERMIT_TYPEHASH =
        keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");

    /**
     * @dev Permit deadline has expired.
     */
    error ERC2612ExpiredSignature(uint256 deadline);

    /**
     * @dev Mismatched signature.
     */
    error ERC2612InvalidSigner(address signer, address owner);

    /**
     * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
     *
     * It's a good idea to use the same `name` that is defined as the ERC-20 token name.
     */
    constructor(string memory name) EIP712(name, "1") {}

    /**
     * @inheritdoc IERC20Permit
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        if (block.timestamp > deadline) {
            revert ERC2612ExpiredSignature(deadline);
        }

        bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));

        bytes32 hash = _hashTypedDataV4(structHash);

        address signer = ECDSA.recover(hash, v, r, s);
        if (signer != owner) {
            revert ERC2612InvalidSigner(signer, owner);
        }

        _approve(owner, spender, value);
    }

    /**
     * @inheritdoc IERC20Permit
     */
    function nonces(address owner) public view virtual override(IERC20Permit, Nonces) returns (uint256) {
        return super.nonces(owner);
    }

    /**
     * @inheritdoc IERC20Permit
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view virtual returns (bytes32) {
        return _domainSeparatorV4();
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Burnable.sol)

pragma solidity ^0.8.20;

import {ERC20} from "../ERC20.sol";
import {Context} from "../../../utils/Context.sol";

/**
 * @dev Extension of {ERC20} that allows token holders to destroy both their own
 * tokens and those that they have an allowance for, in a way that can be
 * recognized off-chain (via event analysis).
 */
abstract contract ERC20Burnable is Context, ERC20 {
    /**
     * @dev Destroys a `value` amount of tokens from the caller.
     *
     * See {ERC20-_burn}.
     */
    function burn(uint256 value) public virtual {
        _burn(_msgSender(), value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, deducting from
     * the caller's allowance.
     *
     * See {ERC20-_burn} and {ERC20-allowance}.
     *
     * Requirements:
     *
     * - the caller must have allowance for ``accounts``'s tokens of at least
     * `value`.
     */
    function burnFrom(address account, uint256 value) public virtual {
        _spendAllowance(account, _msgSender(), value);
        _burn(account, value);
    }
}

// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Inspired by USM (https://github.com/usmfum/USM/blob/master/contracts/WadMath.sol)
library FixedPointMathLib {
    /*//////////////////////////////////////////////////////////////
                    SIMPLIFIED FIXED POINT OPERATIONS
    //////////////////////////////////////////////////////////////*/

    uint256 internal constant MAX_UINT256 = 2**256 - 1;

    uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.

    function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
    }

    function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
    }

    function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
    }

    function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
    }

    /*//////////////////////////////////////////////////////////////
                    LOW LEVEL FIXED POINT OPERATIONS
    //////////////////////////////////////////////////////////////*/

    function mulDivDown(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y))
            if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) {
                revert(0, 0)
            }

            // Divide x * y by the denominator.
            z := div(mul(x, y), denominator)
        }
    }

    function mulDivUp(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y))
            if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) {
                revert(0, 0)
            }

            // If x * y modulo the denominator is strictly greater than 0,
            // 1 is added to round up the division of x * y by the denominator.
            z := add(gt(mod(mul(x, y), denominator), 0), div(mul(x, y), denominator))
        }
    }

    function rpow(
        uint256 x,
        uint256 n,
        uint256 scalar
    ) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            switch x
            case 0 {
                switch n
                case 0 {
                    // 0 ** 0 = 1
                    z := scalar
                }
                default {
                    // 0 ** n = 0
                    z := 0
                }
            }
            default {
                switch mod(n, 2)
                case 0 {
                    // If n is even, store scalar in z for now.
                    z := scalar
                }
                default {
                    // If n is odd, store x in z for now.
                    z := x
                }

                // Shifting right by 1 is like dividing by 2.
                let half := shr(1, scalar)

                for {
                    // Shift n right by 1 before looping to halve it.
                    n := shr(1, n)
                } n {
                    // Shift n right by 1 each iteration to halve it.
                    n := shr(1, n)
                } {
                    // Revert immediately if x ** 2 would overflow.
                    // Equivalent to iszero(eq(div(xx, x), x)) here.
                    if shr(128, x) {
                        revert(0, 0)
                    }

                    // Store x squared.
                    let xx := mul(x, x)

                    // Round to the nearest number.
                    let xxRound := add(xx, half)

                    // Revert if xx + half overflowed.
                    if lt(xxRound, xx) {
                        revert(0, 0)
                    }

                    // Set x to scaled xxRound.
                    x := div(xxRound, scalar)

                    // If n is even:
                    if mod(n, 2) {
                        // Compute z * x.
                        let zx := mul(z, x)

                        // If z * x overflowed:
                        if iszero(eq(div(zx, x), z)) {
                            // Revert if x is non-zero.
                            if iszero(iszero(x)) {
                                revert(0, 0)
                            }
                        }

                        // Round to the nearest number.
                        let zxRound := add(zx, half)

                        // Revert if zx + half overflowed.
                        if lt(zxRound, zx) {
                            revert(0, 0)
                        }

                        // Return properly scaled zxRound.
                        z := div(zxRound, scalar)
                    }
                }
            }
        }
    }

    /*//////////////////////////////////////////////////////////////
                        GENERAL NUMBER UTILITIES
    //////////////////////////////////////////////////////////////*/

    function sqrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            let y := x // We start y at x, which will help us make our initial estimate.

            z := 181 // The "correct" value is 1, but this saves a multiplication later.

            // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
            // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.

            // We check y >= 2^(k + 8) but shift right by k bits
            // each branch to ensure that if x >= 256, then y >= 256.
            if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                y := shr(128, y)
                z := shl(64, z)
            }
            if iszero(lt(y, 0x1000000000000000000)) {
                y := shr(64, y)
                z := shl(32, z)
            }
            if iszero(lt(y, 0x10000000000)) {
                y := shr(32, y)
                z := shl(16, z)
            }
            if iszero(lt(y, 0x1000000)) {
                y := shr(16, y)
                z := shl(8, z)
            }

            // Goal was to get z*z*y within a small factor of x. More iterations could
            // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
            // We ensured y >= 256 so that the relative difference between y and y+1 is small.
            // That's not possible if x < 256 but we can just verify those cases exhaustively.

            // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
            // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
            // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.

            // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
            // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.

            // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
            // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.

            // There is no overflow risk here since y < 2^136 after the first branch above.
            z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.

            // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))

            // If x+1 is a perfect square, the Babylonian method cycles between
            // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
            // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
            // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
            // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
            z := sub(z, lt(div(x, z), z))
        }
    }

    function unsafeMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Mod x by y. Note this will return
            // 0 instead of reverting if y is zero.
            z := mod(x, y)
        }
    }

    function unsafeDiv(uint256 x, uint256 y) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            // Divide x by y. Note this will return
            // 0 instead of reverting if y is zero.
            r := div(x, y)
        }
    }

    function unsafeDivUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Add 1 to x * y if x % y > 0. Note this will
            // return 0 instead of reverting if y is zero.
            z := add(gt(mod(x, y), 0), div(x, y))
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import {FixedPointMathLib} from "@solmate/src/utils/FixedPointMathLib.sol";

import {IFarm} from "@interfaces/IFarm.sol";
import {IOracle} from "@interfaces/IOracle.sol";
import {CoreRoles} from "@libraries/CoreRoles.sol";
import {FarmRegistry} from "@integrations/FarmRegistry.sol";
import {CoreControlled} from "@core/CoreControlled.sol";
import {FixedPriceOracle} from "@finance/oracles/FixedPriceOracle.sol";

/// @notice InfiniFi Accounting contract
contract Accounting is CoreControlled {
    using FixedPointMathLib for uint256;

    event PriceSet(uint256 indexed timestamp, address indexed asset, uint256 price);
    event OracleSet(uint256 indexed timestamp, address indexed asset, address oracle);

    /// @notice reference to the farm registry
    address public immutable farmRegistry;

    constructor(address _core, address _farmRegistry) CoreControlled(_core) {
        farmRegistry = _farmRegistry;
    }

    /// @notice mapping from asset to oracle
    mapping(address => address) public oracle;

    /// @notice returns the price of an asset
    function price(address _asset) external view returns (uint256) {
        return IOracle(oracle[_asset]).price();
    }

    /// @notice set the oracle for an asset
    function setOracle(address _asset, address _oracle) external onlyCoreRole(CoreRoles.ORACLE_MANAGER) {
        oracle[_asset] = _oracle;
        emit OracleSet(block.timestamp, _asset, _oracle);
    }

    /// -------------------------------------------------------------------------------------------
    /// Reference token getters (e.g. USD for iUSD, ETH for iETH, ...)
    /// @dev note that the "USD" token does not exist, it is just an abstract unit of account
    /// used in the protocol to represent stablecoins pegged to USD, that allows to uniformly
    /// account for a diverse reserve composed of USDC, DAI, FRAX, etc.
    /// -------------------------------------------------------------------------------------------

    /// @notice returns the sum of the value of all assets held on protocol contracts listed in the farm registry.
    function totalAssetsValue() external view returns (uint256 _totalValue) {
        address[] memory assets = FarmRegistry(farmRegistry).getEnabledAssets();
        for (uint256 i = 0; i < assets.length; i++) {
            uint256 assetPrice = IOracle(oracle[assets[i]]).price();
            uint256 _assets = _calculateTotalAssets(FarmRegistry(farmRegistry).getAssetFarms(assets[i]));
            _totalValue += _assets.mulWadDown(assetPrice);
        }
    }

    /// @notice returns the sum of the value of all liquid assets held on protocol contracts listed in the farm registry.
    /// @dev see totalAssetsValue()
    function totalAssetsValueOf(uint256 _type) external view returns (uint256 _totalValue) {
        address[] memory assets = FarmRegistry(farmRegistry).getEnabledAssets();
        for (uint256 i = 0; i < assets.length; i++) {
            uint256 assetPrice = IOracle(oracle[assets[i]]).price();
            address[] memory assetFarms = FarmRegistry(farmRegistry).getAssetTypeFarms(assets[i], uint256(_type));
            uint256 _assets = _calculateTotalAssets(assetFarms);
            _totalValue += _assets.mulWadDown(assetPrice);
        }
    }

    /// -------------------------------------------------------------------------------------------
    /// Specific asset getters (e.g. USDC, DAI, ...)
    /// -------------------------------------------------------------------------------------------

    /// @notice returns the sum of the balance of all farms of a given asset.
    function totalAssets(address _asset) external view returns (uint256) {
        return _calculateTotalAssets(FarmRegistry(farmRegistry).getAssetFarms(_asset));
    }

    function totalAssetsOf(address _asset, uint256 _type) external view returns (uint256) {
        return _calculateTotalAssets(FarmRegistry(farmRegistry).getAssetTypeFarms(_asset, uint256(_type)));
    }

    /// -------------------------------------------------------------------------------------------
    /// Internal helpers
    /// -------------------------------------------------------------------------------------------

    function _calculateTotalAssets(address[] memory _farms) internal view returns (uint256 _totalAssets) {
        uint256 length = _farms.length;
        for (uint256 index = 0; index < length; index++) {
            _totalAssets += IFarm(_farms[index]).assets();
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {ERC20Burnable} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";
import {FixedPointMathLib} from "@solmate/src/utils/FixedPointMathLib.sol";

import {CoreRoles} from "@libraries/CoreRoles.sol";
import {CoreControlled} from "@core/CoreControlled.sol";
import {UnwindingModule} from "@locking/UnwindingModule.sol";
import {LockedPositionToken} from "@tokens/LockedPositionToken.sol";

contract LockingController is CoreControlled {
    using FixedPointMathLib for uint256;

    /// @notice address of the locked token
    address public immutable receiptToken;

    /// @notice address of the unwinding module
    address public immutable unwindingModule;

    /// ----------------------------------------------------------------------------
    /// STRUCTS, ERRORS, AND EVENTS
    /// ----------------------------------------------------------------------------

    struct BucketData {
        address shareToken;
        uint256 totalReceiptTokens;
        uint256 multiplier;
    }

    error TransferFailed();
    error InvalidBucket(uint32 unwindingEpochs);
    error InvalidUnwindingEpochs(uint32 unwindingEpochs);
    error BucketMustBeLongerDuration(uint32 oldValue, uint32 newValue);
    error UnwindingInProgress();
    error InvalidMaxLossPercentage(uint256 maxLossPercentage);

    event PositionCreated(
        uint256 indexed timestamp, address indexed user, uint256 amount, uint32 indexed unwindingEpochs
    );
    event PositionRemoved(
        uint256 indexed timestamp, address indexed user, uint256 amount, uint32 indexed unwindingEpochs
    );
    event RewardsDeposited(uint256 indexed timestamp, uint256 amount);
    event LossesApplied(uint256 indexed timestamp, uint256 amount);
    event BucketEnabled(uint256 indexed timestamp, uint256 bucket, address shareToken, uint256 multiplier);
    event BucketMultiplierUpdated(uint256 indexed timestamp, uint256 bucket, uint256 multiplier);
    event MaxLossPercentageUpdated(uint256 indexed timestamp, uint256 maxLossPercentage);
    /// ----------------------------------------------------------------------------
    /// STATE
    /// ----------------------------------------------------------------------------

    /// @notice array of all enabled unwinding epochs
    /// @dev example, this array will contain [2, 4, 6] if users are allowed to
    /// lock for 2, 4 and 6 weeks respectively
    uint32[] public enabledBuckets;

    /// @notice mapping of unwinding epochs data
    mapping(uint32 _unwindingEpochs => BucketData data) public buckets;

    uint256 public globalReceiptToken;
    uint256 public globalRewardWeight;

    /// @notice maximum loss percentage for the locking module in WAD (18 decimals)
    uint256 public maxLossPercentage = 0.999999e18;

    /// ----------------------------------------------------------------------------
    /// CONSTRUCTOR
    /// ----------------------------------------------------------------------------

    constructor(address _core, address _receiptToken, address _unwindingModule) CoreControlled(_core) {
        receiptToken = _receiptToken;
        unwindingModule = _unwindingModule;
    }

    /// ----------------------------------------------------------------------------
    /// ADMINISTRATION METHODS
    /// ----------------------------------------------------------------------------

    /// @notice enable a new unwinding epochs duration
    function enableBucket(uint32 _unwindingEpochs, address _shareToken, uint256 _multiplier)
        external
        onlyCoreRole(CoreRoles.GOVERNOR)
    {
        require(buckets[_unwindingEpochs].shareToken == address(0), InvalidBucket(_unwindingEpochs));
        require(_unwindingEpochs > 0, InvalidUnwindingEpochs(_unwindingEpochs));
        require(_unwindingEpochs <= 100, InvalidUnwindingEpochs(_unwindingEpochs));

        buckets[_unwindingEpochs].shareToken = _shareToken;
        buckets[_unwindingEpochs].multiplier = _multiplier;
        enabledBuckets.push(_unwindingEpochs);
        emit BucketEnabled(block.timestamp, _unwindingEpochs, _shareToken, _multiplier);
    }

    /// @notice update the multiplier of a given bucket
    /// @dev note that this won't affect the unwinding users, unless they cancel their unwinding
    function setBucketMultiplier(uint32 _unwindingEpochs, uint256 _multiplier)
        external
        onlyCoreRole(CoreRoles.PROTOCOL_PARAMETERS)
    {
        BucketData memory data = buckets[_unwindingEpochs];
        require(data.shareToken != address(0), InvalidBucket(_unwindingEpochs));

        uint256 oldRewardWeight = data.totalReceiptTokens.mulWadDown(data.multiplier);
        uint256 newRewardWeight = data.totalReceiptTokens.mulWadDown(_multiplier);
        globalRewardWeight = globalRewardWeight + newRewardWeight - oldRewardWeight;
        buckets[_unwindingEpochs].multiplier = _multiplier;
        emit BucketMultiplierUpdated(block.timestamp, _unwindingEpochs, _multiplier);
    }

    function setMaxLossPercentage(uint256 _maxLossPercentage) external onlyCoreRole(CoreRoles.GOVERNOR) {
        require(_maxLossPercentage <= FixedPointMathLib.WAD, InvalidMaxLossPercentage(_maxLossPercentage));
        maxLossPercentage = _maxLossPercentage;
        emit MaxLossPercentageUpdated(block.timestamp, _maxLossPercentage);
    }

    /// ----------------------------------------------------------------------------
    /// READ METHODS
    /// ----------------------------------------------------------------------------

    /// @notice get the enabled unwinding epochs
    function getEnabledBuckets() external view returns (uint32[] memory) {
        return enabledBuckets;
    }

    /// @notice get the balance of a user by looping through all the enabled unwinding epochs
    /// and looking at how many share tokens the user has, then multiplying for each of them
    /// by the current share price.
    /// @dev Balance is expressed in receipt tokens.
    function balanceOf(address _user) external view returns (uint256) {
        return _userSumAcrossUnwindingEpochs(_user, _totalReceiptTokensGetter);
    }

    /// @notice get the reward weight of a user by looping through all the enabled unwinding epochs
    /// and looking at how many share tokens the user has, then multiplying for each of them
    /// by the current reward weight of these shares.
    /// @dev Reward weight is expressed in "virtual receipt tokens" and is used to compute the
    /// rewards earned during yield distribution.
    function rewardWeight(address _user) external view returns (uint256) {
        return _userSumAcrossUnwindingEpochs(_user, _bucketRewardWeightGetter);
    }

    /// @notice get the reward weight of a user
    function rewardWeightForUnwindingEpochs(address _user, uint32 _unwindingEpochs) external view returns (uint256) {
        BucketData memory data = buckets[_unwindingEpochs];

        uint256 userShares = IERC20(data.shareToken).balanceOf(_user);
        uint256 totalShares = IERC20(data.shareToken).totalSupply();
        if (totalShares == 0) return 0;
        uint256 bucketRewardWeight = data.totalReceiptTokens.mulWadDown(data.multiplier);
        return userShares.mulDivDown(bucketRewardWeight, totalShares);
    }

    /// @notice get the shares of a user for a given unwindingEpochs
    function shares(address _user, uint32 _unwindingEpochs) external view returns (uint256) {
        BucketData memory data = buckets[_unwindingEpochs];
        if (data.shareToken == address(0)) return 0;
        return IERC20(data.shareToken).balanceOf(_user);
    }

    /// @notice get the shares token of a given unwindingEpochs, 0 if not enabled
    function shareToken(uint32 _unwindingEpochs) external view returns (address) {
        return buckets[_unwindingEpochs].shareToken;
    }

    /// @notice get the current exchange rate between the receiptToken and a given shareToken.
    /// This function is here for convenience, to help share token holders estimate the value of their tokens.
    /// @dev returns 0 if the _unwindingEpochs is not valid or if there are no locks for this duration
    function exchangeRate(uint32 _unwindingEpochs) external view returns (uint256) {
        BucketData memory data = buckets[_unwindingEpochs];
        if (data.shareToken == address(0)) return 0;
        uint256 totalShares = IERC20(data.shareToken).totalSupply();
        if (totalShares == 0) return 0;
        return data.totalReceiptTokens.divWadDown(totalShares);
    }

    /// @notice returns true if the given unwinding epochs is enabled for locking
    function unwindingEpochsEnabled(uint32 _unwindingEpochs) external view returns (bool) {
        return buckets[_unwindingEpochs].shareToken != address(0);
    }

    /// @notice total balance of receipt tokens in the module
    /// @dev note that due to rounding down in the protocol's favor, this might be slightly
    /// above the sum of the balanceOf() of all users.
    function totalBalance() public view returns (uint256) {
        return globalReceiptToken + UnwindingModule(unwindingModule).totalReceiptTokens();
    }

    /// @notice multiplier to apply to totalBalance() for computing rewards in profit distribution,
    /// Expressed as a WAD (18 decimals). Should be between [1.0e18, 2.0e18] realistically.
    function rewardMultiplier() external view returns (uint256) {
        uint256 totalWeight = globalRewardWeight + UnwindingModule(unwindingModule).totalRewardWeight();
        if (totalWeight == 0) return FixedPointMathLib.WAD; // defaults to 1.0
        return totalWeight.divWadDown(totalBalance());
    }

    /// ----------------------------------------------------------------------------
    /// POSITION MANAGEMENT WRITE METHODS
    /// ----------------------------------------------------------------------------

    /// @notice Enter a locked position
    function createPosition(uint256 _amount, uint32 _unwindingEpochs, address _recipient) external whenNotPaused {
        if (msg.sender != unwindingModule) {
            // special case for access control here, the unwindingModule can reenter createPosition()
            // after being called by this contract's cancelUnwinding() function.
            // this exception is preferable to granting ENTRY_POINT role to the unwindingModule.
            require(core().hasRole(CoreRoles.ENTRY_POINT, msg.sender), "UNAUTHORIZED");
        }

        BucketData memory data = buckets[_unwindingEpochs];
        require(data.shareToken != address(0), InvalidBucket(_unwindingEpochs));
        require(IERC20(receiptToken).transferFrom(msg.sender, address(this), _amount), TransferFailed());

        uint256 totalShares = IERC20(data.shareToken).totalSupply();
        uint256 newShares = totalShares == 0 ? _amount : _amount.mulDivDown(totalShares, data.totalReceiptTokens);
        uint256 bucketRewardWeightBefore = data.totalReceiptTokens.mulWadDown(data.multiplier);
        data.totalReceiptTokens += _amount;
        globalReceiptToken += _amount;
        buckets[_unwindingEpochs] = data;
        uint256 bucketRewardWeightAfter = data.totalReceiptTokens.mulWadDown(data.multiplier);
        globalRewardWeight += bucketRewardWeightAfter - bucketRewardWeightBefore;

        LockedPositionToken(data.shareToken).mint(_recipient, newShares);
        emit PositionCreated(block.timestamp, _recipient, _amount, _unwindingEpochs);
    }

    /// @notice Start unwinding a locked position
    function startUnwinding(uint256 _shares, uint32 _unwindingEpochs, address _recipient)
        external
        whenNotPaused
        onlyCoreRole(CoreRoles.ENTRY_POINT)
    {
        BucketData memory data = buckets[_unwindingEpochs];
        require(data.shareToken != address(0), InvalidBucket(_unwindingEpochs));

        uint256 totalShares = IERC20(data.shareToken).totalSupply();
        uint256 userReceiptToken = _shares.mulDivDown(data.totalReceiptTokens, totalShares);

        require(IERC20(data.shareToken).transferFrom(msg.sender, address(this), _shares), TransferFailed());
        LockedPositionToken(data.shareToken).burn(_shares);

        UnwindingModule(unwindingModule).startUnwinding(
            _recipient, userReceiptToken, _unwindingEpochs, userReceiptToken.mulWadDown(data.multiplier)
        );
        IERC20(receiptToken).transfer(unwindingModule, userReceiptToken);

        buckets[_unwindingEpochs].totalReceiptTokens = data.totalReceiptTokens - userReceiptToken;
        uint256 bucketRewardWeightBefore = data.totalReceiptTokens.mulWadDown(data.multiplier);
        uint256 bucketRewardWeightAfter = (data.totalReceiptTokens - userReceiptToken).mulWadDown(data.multiplier);
        uint256 rewardWeightDecrease = bucketRewardWeightBefore - bucketRewardWeightAfter;
        globalRewardWeight -= rewardWeightDecrease;
        globalReceiptToken -= userReceiptToken;

        emit PositionRemoved(block.timestamp, _recipient, userReceiptToken, _unwindingEpochs);
    }

    /// @notice Increase the unwinding period of a position
    function increaseUnwindingEpochs(
        uint256 _shares,
        uint32 _oldUnwindingEpochs,
        uint32 _newUnwindingEpochs,
        address _recipient
    ) external whenNotPaused onlyCoreRole(CoreRoles.ENTRY_POINT) {
        require(
            _newUnwindingEpochs > _oldUnwindingEpochs,
            BucketMustBeLongerDuration(_oldUnwindingEpochs, _newUnwindingEpochs)
        );

        BucketData memory oldData = buckets[_oldUnwindingEpochs];
        BucketData memory newData = buckets[_newUnwindingEpochs];

        require(newData.shareToken != address(0), InvalidBucket(_newUnwindingEpochs));

        // burn position in old share tokens
        if (_shares == 0) return;
        uint256 oldTotalSupply = IERC20(oldData.shareToken).totalSupply();
        uint256 receiptTokens = _shares.mulDivDown(oldData.totalReceiptTokens, oldTotalSupply);
        if (receiptTokens == 0) return;

        // compute global reward weight change
        {
            uint256 oldBucketRewardWeightBefore = oldData.totalReceiptTokens.mulWadDown(oldData.multiplier);
            uint256 oldBucketRewardWeightAfter =
                (oldData.totalReceiptTokens - receiptTokens).mulWadDown(oldData.multiplier);
            uint256 newBucketRewardWeightBefore = newData.totalReceiptTokens.mulWadDown(newData.multiplier);
            uint256 newBucketRewardWeightAfter =
                (newData.totalReceiptTokens + receiptTokens).mulWadDown(newData.multiplier);

            uint256 _globalRewardWeight = globalRewardWeight;
            _globalRewardWeight = _globalRewardWeight - oldBucketRewardWeightBefore + oldBucketRewardWeightAfter;
            _globalRewardWeight = _globalRewardWeight - newBucketRewardWeightBefore + newBucketRewardWeightAfter;
            globalRewardWeight = _globalRewardWeight;
        }

        ERC20Burnable(oldData.shareToken).burnFrom(msg.sender, _shares);
        oldData.totalReceiptTokens -= receiptTokens;
        buckets[_oldUnwindingEpochs] = oldData;

        // mint position in new share tokens
        uint256 newTotalSupply = IERC20(newData.shareToken).totalSupply();
        uint256 newShares =
            newTotalSupply == 0 ? receiptTokens : receiptTokens.mulDivDown(newTotalSupply, newData.totalReceiptTokens);
        LockedPositionToken(newData.shareToken).mint(_recipient, newShares);
        newData.totalReceiptTokens += receiptTokens;
        buckets[_newUnwindingEpochs] = newData;

        emit PositionRemoved(block.timestamp, _recipient, receiptTokens, _oldUnwindingEpochs);
        emit PositionCreated(block.timestamp, _recipient, receiptTokens, _newUnwindingEpochs);
    }

    /// @notice Cancel an ongoing unwinding. All checks are performed by the Unwinding module.
    function cancelUnwinding(address _user, uint256 _unwindingTimestamp, uint32 _newUnwindingEpochs)
        external
        whenNotPaused
        onlyCoreRole(CoreRoles.ENTRY_POINT)
    {
        UnwindingModule(unwindingModule).cancelUnwinding(_user, _unwindingTimestamp, _newUnwindingEpochs);
    }

    /// @notice Withdraw after an unwinding period has completed
    function withdraw(address _user, uint256 _unwindingTimestamp)
        external
        whenNotPaused
        onlyCoreRole(CoreRoles.ENTRY_POINT)
    {
        UnwindingModule(unwindingModule).withdraw(_unwindingTimestamp, _user);
    }

    /// ----------------------------------------------------------------------------
    /// INTERNAL UTILS
    /// ----------------------------------------------------------------------------

    function _userSumAcrossUnwindingEpochs(address _user, function(BucketData memory) view returns (uint256) _getter)
        internal
        view
        returns (uint256)
    {
        uint256 weight;
        uint256 nBuckets = enabledBuckets.length;
        for (uint256 i = 0; i < nBuckets; i++) {
            uint32 unwindingEpochs = enabledBuckets[i];
            BucketData memory data = buckets[unwindingEpochs];

            uint256 userShares = IERC20(data.shareToken).balanceOf(_user);
            if (userShares == 0) continue;
            uint256 totalShares = IERC20(data.shareToken).totalSupply();
            if (totalShares == 0) continue;
            weight += userShares.mulDivDown(_getter(data), totalShares);
        }
        return weight;
    }

    function _bucketRewardWeightGetter(BucketData memory data) internal pure returns (uint256) {
        return data.totalReceiptTokens.mulWadDown(data.multiplier);
    }

    function _totalReceiptTokensGetter(BucketData memory data) internal pure returns (uint256) {
        return data.totalReceiptTokens;
    }

    function _min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /// ----------------------------------------------------------------------------
    /// REWARDS MANAGEMENT WRITE METHODS
    /// ----------------------------------------------------------------------------

    /// @notice Deposit rewards into the locking module
    function depositRewards(uint256 _amount) external onlyCoreRole(CoreRoles.FINANCE_MANAGER) {
        if (_amount == 0) return;

        emit RewardsDeposited(block.timestamp, _amount);

        require(IERC20(receiptToken).transferFrom(msg.sender, address(this), _amount), TransferFailed());

        // compute split between locking users & unwinding users
        uint256 _globalRewardWeight = globalRewardWeight;
        uint256 unwindingRewardWeight = UnwindingModule(unwindingModule).totalRewardWeight();
        uint256 unwindingRewards =
            _amount.mulDivDown(unwindingRewardWeight, _globalRewardWeight + unwindingRewardWeight);
        if (unwindingRewards > 0) {
            UnwindingModule(unwindingModule).depositRewards(unwindingRewards);
            require(IERC20(receiptToken).transfer(unwindingModule, unwindingRewards), TransferFailed());
            _amount -= unwindingRewards;

            // if there are no rewards to distribute, do nothing
            if (_amount == 0) return;
        }

        // if there are no recipients, receiptTokens are pulled to this contract
        // but won't be claimable by anyone
        // this happens only if the ProfitManager sends rewards to the locking module
        // even though no one is locked, which should never happen.
        if (_globalRewardWeight == 0) return;

        uint256 _newGlobalRewardWeight = 0;
        uint256 _receiptTokensIncrement = 0;
        uint256 nBuckets = enabledBuckets.length;
        for (uint256 i = 0; i < nBuckets; i++) {
            BucketData storage data = buckets[enabledBuckets[i]];

            // increase total locked tokens
            uint256 epochTotalReceiptToken = data.totalReceiptTokens;
            uint256 bucketRewardWeight = epochTotalReceiptToken.mulWadDown(data.multiplier);
            uint256 allocation = _amount.mulDivDown(bucketRewardWeight, _globalRewardWeight);

            data.totalReceiptTokens = epochTotalReceiptToken + allocation;
            _receiptTokensIncrement += allocation;

            _newGlobalRewardWeight += (epochTotalReceiptToken + allocation).mulWadDown(data.multiplier);
        }

        globalReceiptToken += _receiptTokensIncrement;
        globalRewardWeight = _newGlobalRewardWeight;
    }

    /// @notice Apply losses to the locking module
    function applyLosses(uint256 _amount) external onlyCoreRole(CoreRoles.FINANCE_MANAGER) {
        if (_amount == 0) return;

        emit LossesApplied(block.timestamp, _amount);

        // compute split between locking users & unwinding users
        uint256 unwindingBalance = UnwindingModule(unwindingModule).totalReceiptTokens();
        uint256 _globalReceiptToken = globalReceiptToken;
        uint256 _totalBalance = _globalReceiptToken + unwindingBalance;

        // if the amount to apply is greater than the maximum allowed loss,
        // we need to apply all the losses and pause the contract
        {
            uint256 maximumAllowedLoss = _totalBalance.mulDivDown(maxLossPercentage, 1e18);
            if (_amount > maximumAllowedLoss) {
                UnwindingModule(unwindingModule).applyLosses(unwindingBalance);
                ERC20Burnable(receiptToken).burn(_globalReceiptToken);
                globalReceiptToken = 0;
                globalRewardWeight = 0;
                for (uint256 i = 0; i < enabledBuckets.length; i++) {
                    buckets[enabledBuckets[i]].totalReceiptTokens = 0;
                }
                _pause();
                return;
            }
        }

        // apply losses to the unwinding module
        uint256 amountToUnwinding = _amount.mulDivUp(unwindingBalance, _totalBalance);
        amountToUnwinding = _min(amountToUnwinding, unwindingBalance);
        UnwindingModule(unwindingModule).applyLosses(amountToUnwinding);
        _amount -= amountToUnwinding;

        // No more losses to apply, and the UnwindingModule is not slashed
        // So we can safely exit the function
        if (_amount == 0) return;

        _amount = _min(_amount, _globalReceiptToken);

        ERC20Burnable(receiptToken).burn(_amount);

        uint256 nBuckets = enabledBuckets.length;
        uint256 newGlobalRewardWeight = 0;
        uint256 globalReceiptTokenDecrement = 0;
        for (uint256 i = 0; i < nBuckets; i++) {
            BucketData storage data = buckets[enabledBuckets[i]];

            // slash principal
            uint256 epochTotalReceiptToken = data.totalReceiptTokens;
            if (epochTotalReceiptToken == 0) continue;
            uint256 allocation = epochTotalReceiptToken.mulDivUp(_amount, _globalReceiptToken);
            allocation = _min(allocation, epochTotalReceiptToken); // up rounding could cause underflows
            data.totalReceiptTokens = epochTotalReceiptToken - allocation;
            globalReceiptTokenDecrement += allocation;

            newGlobalRewardWeight += (epochTotalReceiptToken - allocation).mulWadDown(data.multiplier);
        }

        globalReceiptToken = _globalReceiptToken - globalReceiptTokenDecrement;
        globalRewardWeight = newGlobalRewardWeight;

        {
            // if a full slashing occurred either in UnwindingModule due to rounding errors,
            // pause the contract to prevent any further operations.
            // Resolving the situation will require a protocol upgrade,
            // as the slashIndex in the UnwindingModule is now 0.
            uint256 slashIndex = UnwindingModule(unwindingModule).slashIndex();
            bool unwindingWipedOut = amountToUnwinding > 0 && slashIndex == 0;
            if (unwindingWipedOut) _pause();
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import {IOracle} from "@interfaces/IOracle.sol";
import {CoreControlled, CoreRoles} from "@core/CoreControlled.sol";

contract FixedPriceOracle is IOracle, CoreControlled {
    uint256 public price;

    event PriceSet(uint256 indexed timestamp, uint256 price);

    constructor(address _core, uint256 _price) CoreControlled(_core) {
        price = _price;
    }

    function setPrice(uint256 _price) external onlyCoreRole(CoreRoles.ORACLE_MANAGER) {
        price = _price;
        emit PriceSet(block.timestamp, _price);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract Pausable is Context {
    bool private _paused;

    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);

    /**
     * @dev The operation failed because the contract is paused.
     */
    error EnforcedPause();

    /**
     * @dev The operation failed because the contract is not paused.
     */
    error ExpectedPause();

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        _requireNotPaused();
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        _requirePaused();
        _;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        return _paused;
    }

    /**
     * @dev Throws if the contract is paused.
     */
    function _requireNotPaused() internal view virtual {
        if (paused()) {
            revert EnforcedPause();
        }
    }

    /**
     * @dev Throws if the contract is not paused.
     */
    function _requirePaused() internal view virtual {
        if (!paused()) {
            revert ExpectedPause();
        }
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        _paused = true;
        emit Paused(_msgSender());
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        _paused = false;
        emit Unpaused(_msgSender());
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import {CoreRoles} from "@libraries/CoreRoles.sol";
import {AccessControlEnumerable} from "@openzeppelin/contracts/access/extensions/AccessControlEnumerable.sol";

/// @notice Maintains roles and access control
contract InfiniFiCore is AccessControlEnumerable {
    error RoleAlreadyExists(bytes32 role);
    error RoleDoesNotExist(bytes32 role);
    error LengthMismatch(uint256 expected, uint256 actual);

    /// @notice construct Core
    constructor() {
        // For initial setup before going live, deployer can then call
        // renounceRole(bytes32 role, address account)
        _grantRole(CoreRoles.GOVERNOR, msg.sender);

        // Initial roles setup: direct hierarchy, everything under governor
        _setRoleAdmin(CoreRoles.GOVERNOR, CoreRoles.GOVERNOR);
        _setRoleAdmin(CoreRoles.PAUSE, CoreRoles.GOVERNOR);
        _setRoleAdmin(CoreRoles.UNPAUSE, CoreRoles.GOVERNOR);
        _setRoleAdmin(CoreRoles.PROTOCOL_PARAMETERS, CoreRoles.GOVERNOR);
        _setRoleAdmin(CoreRoles.MINOR_ROLES_MANAGER, CoreRoles.GOVERNOR);
        _setRoleAdmin(CoreRoles.ENTRY_POINT, CoreRoles.GOVERNOR);
        _setRoleAdmin(CoreRoles.RECEIPT_TOKEN_MINTER, CoreRoles.GOVERNOR);
        _setRoleAdmin(CoreRoles.RECEIPT_TOKEN_BURNER, CoreRoles.GOVERNOR);
        _setRoleAdmin(CoreRoles.LOCKED_TOKEN_MANAGER, CoreRoles.GOVERNOR);
        _setRoleAdmin(CoreRoles.TRANSFER_RESTRICTOR, CoreRoles.GOVERNOR);
        _setRoleAdmin(CoreRoles.FARM_MANAGER, CoreRoles.GOVERNOR);
        _setRoleAdmin(CoreRoles.MANUAL_REBALANCER, CoreRoles.GOVERNOR);
        _setRoleAdmin(CoreRoles.PERIODIC_REBALANCER, CoreRoles.GOVERNOR);
        _setRoleAdmin(CoreRoles.EMERGENCY_WITHDRAWAL, CoreRoles.GOVERNOR);
        _setRoleAdmin(CoreRoles.FARM_SWAP_CALLER, CoreRoles.GOVERNOR);
        _setRoleAdmin(CoreRoles.ORACLE_MANAGER, CoreRoles.GOVERNOR);
        _setRoleAdmin(CoreRoles.FINANCE_MANAGER, CoreRoles.GOVERNOR);
        _setRoleAdmin(CoreRoles.PROPOSER_ROLE, CoreRoles.GOVERNOR);
        _setRoleAdmin(CoreRoles.EXECUTOR_ROLE, CoreRoles.GOVERNOR);
        _setRoleAdmin(CoreRoles.CANCELLER_ROLE, CoreRoles.GOVERNOR);
    }

    /// @notice creates a new role to be maintained
    /// @param role the new role id
    /// @param adminRole the admin role id for `role`
    function createRole(bytes32 role, bytes32 adminRole) external onlyRole(CoreRoles.GOVERNOR) {
        require(getRoleAdmin(role) == bytes32(0), RoleAlreadyExists(role));
        _setRoleAdmin(role, adminRole);
    }

    /// @notice override admin role of an existing role
    /// @param role the role id
    /// @param adminRole the admin role id
    function setRoleAdmin(bytes32 role, bytes32 adminRole) external onlyRole(CoreRoles.GOVERNOR) {
        require(getRoleAdmin(role) != bytes32(0), RoleDoesNotExist(role));
        _setRoleAdmin(role, adminRole);
    }

    /// @notice batch granting of roles to various addresses
    /// @dev if msg.sender does not have admin role needed to grant any of the
    /// granted roles, the whole transaction reverts.
    function grantRoles(bytes32[] calldata roles, address[] calldata accounts) external {
        require(roles.length == accounts.length, LengthMismatch(roles.length, accounts.length));
        for (uint256 i = 0; i < roles.length; i++) {
            _checkRole(getRoleAdmin(roles[i]));
            _grantRole(roles[i], accounts[i]);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Variant of {safeTransfer} that returns a bool instead of reverting if the operation is not successful.
     */
    function trySafeTransfer(IERC20 token, address to, uint256 value) internal returns (bool) {
        return _callOptionalReturnBool(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Variant of {safeTransferFrom} that returns a bool instead of reverting if the operation is not successful.
     */
    function trySafeTransferFrom(IERC20 token, address from, address to, uint256 value) internal returns (bool) {
        return _callOptionalReturnBool(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     *
     * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
     * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
     * set here.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(
        IERC1363 token,
        address from,
        address to,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            // bubble errors
            if iszero(success) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }
        return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC4626.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";
import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol";

/**
 * @dev Interface of the ERC-4626 "Tokenized Vault Standard", as defined in
 * https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
 */
interface IERC4626 is IERC20, IERC20Metadata {
    event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);

    event Withdraw(
        address indexed sender,
        address indexed receiver,
        address indexed owner,
        uint256 assets,
        uint256 shares
    );

    /**
     * @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
     *
     * - MUST be an ERC-20 token contract.
     * - MUST NOT revert.
     */
    function asset() external view returns (address assetTokenAddress);

    /**
     * @dev Returns the total amount of the underlying asset that is “managed” by Vault.
     *
     * - SHOULD include any compounding that occurs from yield.
     * - MUST be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT revert.
     */
    function totalAssets() external view returns (uint256 totalManagedAssets);

    /**
     * @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
     * scenario where all the conditions are met.
     *
     * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
     * - MUST NOT revert.
     *
     * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
     * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
     * from.
     */
    function convertToShares(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
     * scenario where all the conditions are met.
     *
     * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
     * - MUST NOT revert.
     *
     * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
     * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
     * from.
     */
    function convertToAssets(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
     * through a deposit call.
     *
     * - MUST return a limited value if receiver is subject to some deposit limit.
     * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.
     * - MUST NOT revert.
     */
    function maxDeposit(address receiver) external view returns (uint256 maxAssets);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given
     * current on-chain conditions.
     *
     * - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit
     *   call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called
     *   in the same transaction.
     * - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the
     *   deposit would be accepted, regardless if the user has enough tokens approved, etc.
     * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by depositing.
     */
    function previewDeposit(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
     *
     * - MUST emit the Deposit event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   deposit execution, and are accounted for during deposit.
     * - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
     *   approving enough underlying tokens to the Vault contract, etc).
     *
     * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
     */
    function deposit(uint256 assets, address receiver) external returns (uint256 shares);

    /**
     * @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.
     * - MUST return a limited value if receiver is subject to some mint limit.
     * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.
     * - MUST NOT revert.
     */
    function maxMint(address receiver) external view returns (uint256 maxShares);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given
     * current on-chain conditions.
     *
     * - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call
     *   in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the
     *   same transaction.
     * - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint
     *   would be accepted, regardless if the user has enough tokens approved, etc.
     * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by minting.
     */
    function previewMint(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.
     *
     * - MUST emit the Deposit event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint
     *   execution, and are accounted for during mint.
     * - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not
     *   approving enough underlying tokens to the Vault contract, etc).
     *
     * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
     */
    function mint(uint256 shares, address receiver) external returns (uint256 assets);

    /**
     * @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
     * Vault, through a withdraw call.
     *
     * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
     * - MUST NOT revert.
     */
    function maxWithdraw(address owner) external view returns (uint256 maxAssets);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,
     * given current on-chain conditions.
     *
     * - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw
     *   call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if
     *   called
     *   in the same transaction.
     * - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though
     *   the withdrawal would be accepted, regardless if the user has enough shares, etc.
     * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by depositing.
     */
    function previewWithdraw(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.
     *
     * - MUST emit the Withdraw event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   withdraw execution, and are accounted for during withdraw.
     * - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner
     *   not having enough shares, etc).
     *
     * Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
     * Those methods should be performed separately.
     */
    function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares);

    /**
     * @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,
     * through a redeem call.
     *
     * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
     * - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.
     * - MUST NOT revert.
     */
    function maxRedeem(address owner) external view returns (uint256 maxShares);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their redemption at the current block,
     * given current on-chain conditions.
     *
     * - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call
     *   in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the
     *   same transaction.
     * - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the
     *   redemption would be accepted, regardless if the user has enough shares, etc.
     * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by redeeming.
     */
    function previewRedeem(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.
     *
     * - MUST emit the Withdraw event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   redeem execution, and are accounted for during redeem.
     * - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
     *   not having enough shares, etc).
     *
     * NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
     * Those methods should be performed separately.
     */
    function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
}

File 19 of 53 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Return the 512-bit addition of two uint256.
     *
     * The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
     */
    function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        assembly ("memory-safe") {
            low := add(a, b)
            high := lt(low, a)
        }
    }

    /**
     * @dev Return the 512-bit multiplication of two uint256.
     *
     * The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
     */
    function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        // 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
        // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = high * 2²⁵⁶ + low.
        assembly ("memory-safe") {
            let mm := mulmod(a, b, not(0))
            low := mul(a, b)
            high := sub(sub(mm, low), lt(mm, low))
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            success = c >= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a - b;
            success = c <= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a * b;
            assembly ("memory-safe") {
                // Only true when the multiplication doesn't overflow
                // (c / a == b) || (a == 0)
                success := or(eq(div(c, a), b), iszero(a))
            }
            // equivalent to: success ? c : 0
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `DIV` opcode returns zero when the denominator is 0.
                result := div(a, b)
            }
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `MOD` opcode returns zero when the denominator is 0.
                result := mod(a, b)
            }
        }
    }

    /**
     * @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryAdd(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
     */
    function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
        (, uint256 result) = trySub(a, b);
        return result;
    }

    /**
     * @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryMul(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);

            // Handle non-overflow cases, 256 by 256 division.
            if (high == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return low / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= high) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [high low].
            uint256 remainder;
            assembly ("memory-safe") {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                high := sub(high, gt(remainder, low))
                low := sub(low, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly ("memory-safe") {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [high low] by twos.
                low := div(low, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from high into low.
            low |= high * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
            // is no longer required.
            result = low * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
     */
    function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);
            if (high >= 1 << n) {
                Panic.panic(Panic.UNDER_OVERFLOW);
            }
            return (high << (256 - n)) | (low >> n);
        }
    }

    /**
     * @dev Calculates x * y >> n with full precision, following the selected rounding direction.
     */
    function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
        return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // If upper 8 bits of 16-bit half set, add 8 to result
        r |= SafeCast.toUint((x >> r) > 0xff) << 3;
        // If upper 4 bits of 8-bit half set, add 4 to result
        r |= SafeCast.toUint((x >> r) > 0xf) << 2;

        // Shifts value right by the current result and use it as an index into this lookup table:
        //
        // | x (4 bits) |  index  | table[index] = MSB position |
        // |------------|---------|-----------------------------|
        // |    0000    |    0    |        table[0] = 0         |
        // |    0001    |    1    |        table[1] = 0         |
        // |    0010    |    2    |        table[2] = 1         |
        // |    0011    |    3    |        table[3] = 1         |
        // |    0100    |    4    |        table[4] = 2         |
        // |    0101    |    5    |        table[5] = 2         |
        // |    0110    |    6    |        table[6] = 2         |
        // |    0111    |    7    |        table[7] = 2         |
        // |    1000    |    8    |        table[8] = 3         |
        // |    1001    |    9    |        table[9] = 3         |
        // |    1010    |   10    |        table[10] = 3        |
        // |    1011    |   11    |        table[11] = 3        |
        // |    1100    |   12    |        table[12] = 3        |
        // |    1101    |   13    |        table[13] = 3        |
        // |    1110    |   14    |        table[14] = 3        |
        // |    1111    |   15    |        table[15] = 3        |
        //
        // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
        assembly ("memory-safe") {
            r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
        }
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
        return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(
        bytes32 hash,
        bytes memory signature
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            assembly ("memory-safe") {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.20;

import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
 * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
 * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
 * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable
 */
abstract contract EIP712 is IERC5267 {
    using ShortStrings for *;

    bytes32 private constant TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;
    // slither-disable-next-line constable-states
    string private _nameFallback;
    // slither-disable-next-line constable-states
    string private _versionFallback;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _name = name.toShortStringWithFallback(_nameFallback);
        _version = version.toShortStringWithFallback(_versionFallback);
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedThis = address(this);
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @inheritdoc IERC5267
     */
    function eip712Domain()
        public
        view
        virtual
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        return (
            hex"0f", // 01111
            _EIP712Name(),
            _EIP712Version(),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }

    /**
     * @dev The name parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _name which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Name() internal view returns (string memory) {
        return _name.toStringWithFallback(_nameFallback);
    }

    /**
     * @dev The version parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _version which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Version() internal view returns (string memory) {
        return _version.toStringWithFallback(_versionFallback);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
pragma solidity ^0.8.20;

/**
 * @dev Provides tracking nonces for addresses. Nonces will only increment.
 */
abstract contract Nonces {
    /**
     * @dev The nonce used for an `account` is not the expected current nonce.
     */
    error InvalidAccountNonce(address account, uint256 currentNonce);

    mapping(address account => uint256) private _nonces;

    /**
     * @dev Returns the next unused nonce for an address.
     */
    function nonces(address owner) public view virtual returns (uint256) {
        return _nonces[owner];
    }

    /**
     * @dev Consumes a nonce.
     *
     * Returns the current value and increments nonce.
     */
    function _useNonce(address owner) internal virtual returns (uint256) {
        // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
        // decremented or reset. This guarantees that the nonce never overflows.
        unchecked {
            // It is important to do x++ and not ++x here.
            return _nonces[owner]++;
        }
    }

    /**
     * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
     */
    function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
        uint256 current = _useNonce(owner);
        if (nonce != current) {
            revert InvalidAccountNonce(owner, current);
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

/// @notice Interface for an InfiniFi Farm contract
interface IFarm {
    /// @notice emitted when there is a deposit of withdrawal from the farm
    event AssetsUpdated(uint256 timestamp, uint256 assetsBefore, uint256 assetsAfter);

    // --------------------------------------------------------------------
    // Accounting
    // --------------------------------------------------------------------

    /// @notice the cap of the farm
    function cap() external view returns (uint256);

    /// @notice the asset used by deposits and withdrawals in the farm
    function assetToken() external view returns (address);

    /// @notice the total assets in the farm, reported as a balance of asset()
    function assets() external view returns (uint256);

    // --------------------------------------------------------------------
    // Adapter logic
    // --------------------------------------------------------------------
    /// @notice deposit all asset() held by the contract into the farm
    function deposit() external;

    /// @notice Returns the max deposit amount for the underlying protocol
    function maxDeposit() external view returns (uint256);

    /// @notice withdraw an amount of the asset() from the farm
    /// @param amount Amount of assets to withdraw
    /// @param to Address to receive the withdrawn assets
    function withdraw(uint256 amount, address to) external;

    /// @notice available number of assetToken() withdrawable instantly from the farm
    function liquidity() external view returns (uint256);
}

File 29 of 53 : IOracle.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

interface IOracle {
    /// @notice price of a token expressed in a reference token.
    /// @dev be mindful of the decimals here, because if quote token
    /// doesn't have 18 decimals, value is used to scale the decimals.
    /// For example, for USDC quote (6 decimals) expressed in
    /// DAI reference (18 decimals), value should be around ~1e30,
    /// so that price is:
    /// 1e6 * 1e30 / WAD (1e18)
    /// ~= WAD (1e18)
    /// ~= 1:1
    function price() external view returns (uint256);
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import {IFarm} from "@interfaces/IFarm.sol";
import {CoreRoles} from "@libraries/CoreRoles.sol";
import {EnumerableSet} from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
import {CoreControlled} from "@core/CoreControlled.sol";

/// @notice InfiniFi Farm registry
contract FarmRegistry is CoreControlled {
    error FarmAlreadyAdded(address farm);
    error FarmNotFound(address farm);
    error AssetNotEnabled(address farm, address asset);
    error AssetAlreadyEnabled(address asset);
    error AssetNotFound(address asset);

    event AssetEnabled(uint256 indexed timestamp, address asset);
    event AssetDisabled(uint256 indexed timestamp, address asset);
    event FarmsAdded(uint256 indexed timestamp, uint256 farmType, address[] indexed farms);
    event FarmsRemoved(uint256 indexed timestamp, uint256 farmType, address[] indexed farms);

    using EnumerableSet for EnumerableSet.AddressSet;

    EnumerableSet.AddressSet private assets;
    EnumerableSet.AddressSet private farms;
    mapping(uint256 _type => EnumerableSet.AddressSet _farms) private typeFarms;
    mapping(address _asset => EnumerableSet.AddressSet _farms) private assetFarms;
    mapping(address _asset => mapping(uint256 _type => EnumerableSet.AddressSet _farms)) private assetTypeFarms;

    constructor(address _core) CoreControlled(_core) {}

    /// ----------------------------------------------------------------------------
    /// READ METHODS
    /// ----------------------------------------------------------------------------

    function getEnabledAssets() external view returns (address[] memory) {
        return assets.values();
    }

    function isAssetEnabled(address _asset) external view returns (bool) {
        return assets.contains(_asset);
    }

    function getFarms() external view returns (address[] memory) {
        return farms.values();
    }

    function getTypeFarms(uint256 _type) external view returns (address[] memory) {
        return typeFarms[_type].values();
    }

    function getAssetFarms(address _asset) external view returns (address[] memory) {
        return assetFarms[_asset].values();
    }

    function getAssetTypeFarms(address _asset, uint256 _type) external view returns (address[] memory) {
        return assetTypeFarms[_asset][_type].values();
    }

    function isFarm(address _farm) external view returns (bool) {
        return farms.contains(_farm);
    }

    function isFarmOfAsset(address _farm, address _asset) external view returns (bool) {
        return assetFarms[_asset].contains(_farm);
    }

    function isFarmOfType(address _farm, uint256 _type) external view returns (bool) {
        return typeFarms[_type].contains(_farm);
    }

    /// ----------------------------------------------------------------------------
    /// WRITE METHODS
    /// ----------------------------------------------------------------------------

    function enableAsset(address _asset) external onlyCoreRole(CoreRoles.GOVERNOR) {
        require(assets.add(_asset), AssetAlreadyEnabled(_asset));
        emit AssetEnabled(block.timestamp, _asset);
    }

    function disableAsset(address _asset) external onlyCoreRole(CoreRoles.GOVERNOR) {
        require(assets.remove(_asset), AssetNotFound(_asset));
        emit AssetDisabled(block.timestamp, _asset);
    }

    function addFarms(uint256 _type, address[] calldata _list) external onlyCoreRole(CoreRoles.PROTOCOL_PARAMETERS) {
        _addFarms(_type, _list);
        emit FarmsAdded(block.timestamp, _type, _list);
    }

    function removeFarms(uint256 _type, address[] calldata _list)
        external
        onlyCoreRole(CoreRoles.PROTOCOL_PARAMETERS)
    {
        _removeFarms(_type, _list);
        emit FarmsRemoved(block.timestamp, _type, _list);
    }

    /// ----------------------------------------------------------------------------
    /// INTERNAL METHODS
    /// ----------------------------------------------------------------------------

    function _addFarms(uint256 _type, address[] calldata _list) internal {
        for (uint256 i = 0; i < _list.length; i++) {
            address farmAsset = IFarm(_list[i]).assetToken();
            require(assets.contains(farmAsset), AssetNotEnabled(_list[i], farmAsset));
            require(farms.add(_list[i]), FarmAlreadyAdded(_list[i]));
            require(typeFarms[_type].add(_list[i]), FarmAlreadyAdded(_list[i]));
            require(assetFarms[farmAsset].add(_list[i]), FarmAlreadyAdded(_list[i]));
            require(assetTypeFarms[farmAsset][_type].add(_list[i]), FarmAlreadyAdded(_list[i]));
        }
    }

    function _removeFarms(uint256 _type, address[] calldata _list) internal {
        for (uint256 i = 0; i < _list.length; i++) {
            address farmAsset = IFarm(_list[i]).assetToken();
            require(farms.remove(_list[i]), FarmNotFound(_list[i]));
            require(typeFarms[_type].remove(_list[i]), FarmNotFound(_list[i]));
            require(assetFarms[farmAsset].remove(_list[i]), FarmNotFound(_list[i]));
            require(assetTypeFarms[farmAsset][_type].remove(_list[i]), FarmNotFound(_list[i]));
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {Strings} from "@openzeppelin/contracts/utils/Strings.sol";
import {ERC20Burnable} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";
import {FixedPointMathLib} from "@solmate/src/utils/FixedPointMathLib.sol";

import {EpochLib} from "@libraries/EpochLib.sol";
import {CoreRoles} from "@libraries/CoreRoles.sol";
import {CoreControlled} from "@core/CoreControlled.sol";
import {LockingController} from "@locking/LockingController.sol";

struct UnwindingPosition {
    uint256 shares; // shares of receiptTokens of the position
    uint32 fromEpoch; // epoch when the position started unwinding
    uint32 toEpoch; // epoch when the position will end unwinding
    uint256 fromRewardWeight; // reward weight at the start of the unwinding
    uint256 rewardWeightDecrease; // reward weight decrease per epoch between fromEpoch and toEpoch
}

struct GlobalPoint {
    uint32 epoch; // epoch of the global point
    uint256 totalRewardWeight; // total reward weight in the contract
    uint256 totalRewardWeightDecrease; // total reward weight decrease per epoch
    uint256 rewardShares; // number of receiptTokens rewards distributed on the epoch (stored as shares)
}

contract UnwindingModule is CoreControlled {
    using EpochLib for uint256;
    using FixedPointMathLib for uint256;

    error TransferFailed();
    error UserNotUnwinding();
    error UserUnwindingNotStarted();
    error UserUnwindingInprogress();
    error InvalidUnwindingEpochs(uint32 value);

    event UnwindingStarted(
        uint256 indexed timestamp, address user, uint256 receiptTokens, uint32 unwindingEpochs, uint256 rewardWeight
    );
    event UnwindingCanceled(
        uint256 indexed timestamp, address user, uint256 startUnwindingTimestamp, uint32 newUnwindingEpochs
    );
    event Withdrawal(uint256 indexed timestamp, uint256 startUnwindingTimestamp, address user);
    event GlobalPointUpdated(uint256 indexed timestamp, GlobalPoint);
    event CriticalLoss(uint256 indexed timestamp, uint256 amount);

    /// @notice address of the receipt token
    address public immutable receiptToken;

    /// ----------------------------------------------------------------------------
    /// STATE
    /// ----------------------------------------------------------------------------

    /// @notice total shares of locked tokens in the contract
    uint256 public totalShares;

    /// @notice total amount of receipt tokens in the contract, excluding donations
    uint256 public totalReceiptTokens;

    /// @notice slashing index, starts at 1e18 and decreases every time there is a slash
    uint256 public slashIndex = FixedPointMathLib.WAD;

    /// @notice mapping of unwinding positions
    mapping(bytes32 id => UnwindingPosition position) public positions;

    /// @notice last global point's epoch for direct access
    uint32 public lastGlobalPointEpoch;

    /// @notice mapping of epoch to global point
    mapping(uint32 epoch => GlobalPoint point) public globalPoints;

    /// @notice mapping of epoch to positive bias changes
    mapping(uint32 epoch => uint256 increase) public rewardWeightBiasIncreases;

    /// @notice mapping of epoch to positive slope changes
    mapping(uint32 epoch => uint256 increase) public rewardWeightIncreases;

    /// @notice mapping of epoch to negative slope changes
    mapping(uint32 epoch => uint256 decrease) public rewardWeightDecreases;

    /// ----------------------------------------------------------------------------
    /// CONSTRUCTOR
    /// ----------------------------------------------------------------------------

    constructor(address _core, address _receiptToken) CoreControlled(_core) {
        receiptToken = _receiptToken;

        uint32 currentEpoch = uint32(block.timestamp.epoch());
        lastGlobalPointEpoch = currentEpoch;
        globalPoints[currentEpoch] =
            GlobalPoint({epoch: currentEpoch, totalRewardWeight: 0, totalRewardWeightDecrease: 0, rewardShares: 0});
    }

    /// ----------------------------------------------------------------------------
    /// READ METHODS
    /// ----------------------------------------------------------------------------

    /// @notice returns the current reward weight
    function totalRewardWeight() external view returns (uint256) {
        GlobalPoint memory point = _getLastGlobalPoint();
        return point.totalRewardWeight.mulWadUp(slashIndex);
    }

    /// @notice returns the balance of a user
    function balanceOf(address _user, uint256 _startUnwindingTimestamp) external view returns (uint256) {
        return _sharesToAmount(_userShares(_user, _startUnwindingTimestamp));
    }

    /// @notice returns number of share of a user
    function _userShares(address _user, uint256 _startUnwindingTimestamp) internal view returns (uint256) {
        UnwindingPosition memory position = positions[_unwindingId(_user, _startUnwindingTimestamp)];
        if (position.fromEpoch == 0) return 0;

        // apply rewards
        GlobalPoint memory globalPoint;
        uint256 userRewardWeight = position.fromRewardWeight;
        uint256 userShares = position.shares;
        uint256 currentEpoch = block.timestamp.epoch();
        for (uint32 epoch = position.fromEpoch - 1; epoch <= currentEpoch; epoch++) {
            // if a real global point exists, use it
            // there is always a real global point for the position.fromEpoch,
            // because a global point is saved to storage when a position starts unwinding.
            GlobalPoint memory epochGlobalPoint = globalPoints[epoch];
            if (epochGlobalPoint.epoch != 0) globalPoint = epochGlobalPoint;

            // add shares to the user for their earned rewards
            // note that the userRewardWeight is not increased proportionally to the rewards
            // received, which means that rewards are not compounding during unwinding.
            if (epoch >= position.fromEpoch) {
                // do not distribute rewards at the epoch where the user started unwinding,
                // because the global reward weight is not updated yet and the user should not
                // earn rewards before the start of their unwinding period (and the start of their
                // unwinding is the next epoch after they called startUnwinding).
                userShares += globalPoint.rewardShares.mulDivDown(userRewardWeight, globalPoint.totalRewardWeight);
            }

            // prepare a virtual global point for the next iteration
            // slope changes
            globalPoint.totalRewardWeightDecrease -= rewardWeightIncreases[epoch];
            globalPoint.totalRewardWeightDecrease += rewardWeightDecreases[epoch];
            // bias changes
            globalPoint.totalRewardWeight += rewardWeightBiasIncreases[epoch];
            // apply slope changes
            globalPoint.totalRewardWeight -= globalPoint.totalRewardWeightDecrease;
            // update epoch
            globalPoint.epoch = epoch + 1;
            // reset rewards
            globalPoint.rewardShares = 0;

            // if during the position's unwinding period, the reward weight should decrease
            if (epoch >= position.fromEpoch && epoch < position.toEpoch) {
                userRewardWeight -= position.rewardWeightDecrease;
            }
        }

        return userShares;
    }

    /// @notice returns the reward weight of a user
    function rewardWeight(address _user, uint256 _startUnwindingTimestamp) public view returns (uint256) {
        UnwindingPosition memory position = positions[_unwindingId(_user, _startUnwindingTimestamp)];
        if (position.fromEpoch == 0) return 0;

        uint256 userRewardWeight = position.fromRewardWeight;
        uint256 currentEpoch = block.timestamp.epoch();
        if (currentEpoch < position.fromEpoch) return 0;
        for (uint32 epoch = position.fromEpoch + 1; epoch <= currentEpoch && epoch <= position.toEpoch; epoch++) {
            userRewardWeight -= position.rewardWeightDecrease;
        }

        return userRewardWeight.mulWadDown(slashIndex);
    }

    /// ----------------------------------------------------------------------------
    /// WRITE METHODS
    /// ----------------------------------------------------------------------------

    /// @notice Start unwinding a locked position
    function startUnwinding(address _user, uint256 _receiptTokens, uint32 _unwindingEpochs, uint256 _rewardWeight)
        external
        onlyCoreRole(CoreRoles.LOCKED_TOKEN_MANAGER)
    {
        bytes32 id = _unwindingId(_user, block.timestamp);
        require(positions[id].fromEpoch == 0, UserUnwindingInprogress());

        uint256 userRewardWeight = _rewardWeight.divWadDown(slashIndex);
        uint256 targetRewardWeight = _receiptTokens.divWadDown(slashIndex);
        uint256 totalDecrease = userRewardWeight - targetRewardWeight;
        uint256 rewardWeightDecrease = totalDecrease / uint256(_unwindingEpochs);
        uint256 roundingLoss = totalDecrease - (rewardWeightDecrease * uint256(_unwindingEpochs));
        userRewardWeight -= roundingLoss;

        uint32 nextEpoch = uint32(block.timestamp.nextEpoch());
        uint32 endEpoch = nextEpoch + _unwindingEpochs;
        {
            uint256 newShares = _amountToShares(_receiptTokens);
            positions[id] = UnwindingPosition({
                shares: newShares,
                fromEpoch: nextEpoch,
                toEpoch: endEpoch,
                fromRewardWeight: userRewardWeight,
                rewardWeightDecrease: rewardWeightDecrease
            });
            totalShares += newShares;
        }
        totalReceiptTokens += _receiptTokens;

        GlobalPoint memory point = _getLastGlobalPoint();
        _updateGlobalPoint(point);
        rewardWeightBiasIncreases[uint32(block.timestamp.epoch())] += userRewardWeight;
        rewardWeightDecreases[nextEpoch] += rewardWeightDecrease;
        rewardWeightIncreases[endEpoch] += rewardWeightDecrease;
        emit UnwindingStarted(block.timestamp, _user, _receiptTokens, _unwindingEpochs, userRewardWeight);
    }

    /// @notice Cancel an ongoing unwinding
    function cancelUnwinding(address _user, uint256 _startUnwindingTimestamp, uint32 _newUnwindingEpochs)
        external
        onlyCoreRole(CoreRoles.LOCKED_TOKEN_MANAGER)
    {
        uint32 currentEpoch = uint32(block.timestamp.epoch());
        bytes32 id = _unwindingId(_user, _startUnwindingTimestamp);
        UnwindingPosition memory position = positions[id];
        require(position.toEpoch > 0 && currentEpoch < position.toEpoch, UserNotUnwinding());
        require(currentEpoch >= position.fromEpoch, UserUnwindingNotStarted());

        uint256 userShares = _userShares(_user, _startUnwindingTimestamp);
        uint256 userBalance = _sharesToAmount(userShares);
        uint256 elapsedEpochs = currentEpoch - position.fromEpoch;
        uint256 userRewardWeight = position.fromRewardWeight - elapsedEpochs * position.rewardWeightDecrease;

        {
            // scope some state writing to avoid stack too deep
            GlobalPoint memory point = _getLastGlobalPoint();
            if (currentEpoch == position.fromEpoch) {
                // if cancelling unwinding on the first epoch, the reward weight has not started
                // decreasing yet, so we do not need to update the global point's slope
                // instead, we cancel the slope change that will happen in the next epoch
                rewardWeightDecreases[currentEpoch] -= position.rewardWeightDecrease;
            } else {
                // if cancelling unwinding after the first epoch, we correct the global point's slope
                point.totalRewardWeightDecrease -= position.rewardWeightDecrease;
            }
            uint256 rewardSharesToDecrement = point.rewardShares.mulDivDown(userRewardWeight, point.totalRewardWeight);
            point.rewardShares -= rewardSharesToDecrement;
            point.totalRewardWeight -= userRewardWeight;
            _updateGlobalPoint(point);
            // cancel slope change that would have happened at the end of unwinding
            rewardWeightIncreases[position.toEpoch] -= position.rewardWeightDecrease;

            delete positions[id];

            totalShares -= userShares;
            totalReceiptTokens -= userBalance;
        }

        uint32 remainingEpochs = position.toEpoch - currentEpoch;
        require(_newUnwindingEpochs >= remainingEpochs, InvalidUnwindingEpochs(_newUnwindingEpochs));
        IERC20(receiptToken).approve(msg.sender, userBalance);
        LockingController(msg.sender).createPosition(userBalance, _newUnwindingEpochs, _user);
        emit UnwindingCanceled(block.timestamp, _user, _startUnwindingTimestamp, _newUnwindingEpochs);
    }

    /// @notice Withdraw after an unwinding period has completed
    function withdraw(uint256 _startUnwindingTimestamp, address _owner)
        external
        onlyCoreRole(CoreRoles.LOCKED_TOKEN_MANAGER)
    {
        uint32 currentEpoch = uint32(block.timestamp.epoch());
        bytes32 id = _unwindingId(_owner, _startUnwindingTimestamp);
        UnwindingPosition memory position = positions[id];
        require(position.toEpoch > 0, UserNotUnwinding());
        require(currentEpoch >= position.toEpoch, UserUnwindingInprogress());

        uint256 userShares = _userShares(_owner, _startUnwindingTimestamp);
        uint256 userBalance = _sharesToAmount(userShares);
        uint256 userRewardWeight =
            position.fromRewardWeight - (position.toEpoch - position.fromEpoch) * position.rewardWeightDecrease;
        delete positions[id];

        GlobalPoint memory point = _getLastGlobalPoint();
        uint256 rewardSharesToDecrement = point.rewardShares.mulDivDown(userRewardWeight, point.totalRewardWeight);
        point.rewardShares -= rewardSharesToDecrement;
        point.totalRewardWeight -= userRewardWeight;
        _updateGlobalPoint(point);

        totalShares -= userShares;
        totalReceiptTokens -= userBalance;

        require(IERC20(receiptToken).transfer(_owner, userBalance), TransferFailed());
        emit Withdrawal(block.timestamp, _startUnwindingTimestamp, _owner);
    }

    /// ----------------------------------------------------------------------------
    /// INTERNAL UTILS
    /// ----------------------------------------------------------------------------

    function _unwindingId(address _user, uint256 _blockTimestamp) internal pure returns (bytes32) {
        return keccak256(abi.encode(_user, _blockTimestamp));
    }

    function _amountToShares(uint256 _amount) internal view returns (uint256) {
        uint256 _totalReceiptTokens = totalReceiptTokens;
        return _totalReceiptTokens == 0 ? _amount : _amount.mulDivDown(totalShares, _totalReceiptTokens);
    }

    function _sharesToAmount(uint256 _shares) internal view returns (uint256) {
        if (_shares == 0) return 0;
        return _shares.mulDivDown(totalReceiptTokens, totalShares);
    }

    function _getLastGlobalPoint() internal view returns (GlobalPoint memory) {
        GlobalPoint memory point = globalPoints[lastGlobalPointEpoch];
        uint32 currentEpoch = uint32(block.timestamp.epoch());

        // apply slope & bias changes if the current point
        // must be extrapolated from a past global point
        for (uint32 epoch = point.epoch; epoch < currentEpoch; epoch++) {
            point.totalRewardWeightDecrease -= rewardWeightIncreases[epoch];
            point.totalRewardWeightDecrease += rewardWeightDecreases[epoch];
            point.totalRewardWeight += rewardWeightBiasIncreases[epoch];
            point.totalRewardWeight -= point.totalRewardWeightDecrease;
            point.epoch = epoch + 1;
            point.rewardShares = 0;
        }
        return point;
    }

    function _updateGlobalPoint(GlobalPoint memory point) internal {
        globalPoints[point.epoch] = point;
        lastGlobalPointEpoch = point.epoch;
        emit GlobalPointUpdated(block.timestamp, point);
    }

    /// ----------------------------------------------------------------------------
    /// REWARDS MANAGEMENT WRITE METHODS
    /// ----------------------------------------------------------------------------

    function depositRewards(uint256 _amount) external onlyCoreRole(CoreRoles.LOCKED_TOKEN_MANAGER) {
        if (_amount == 0) return;

        GlobalPoint memory point = _getLastGlobalPoint();
        uint256 rewardShares = _amountToShares(_amount);
        point.rewardShares += rewardShares;
        _updateGlobalPoint(point);

        totalShares += rewardShares;
        totalReceiptTokens += _amount;
    }

    function applyLosses(uint256 _amount) external onlyCoreRole(CoreRoles.LOCKED_TOKEN_MANAGER) {
        if (_amount == 0) return;

        // protect against underflow
        if (_amount > totalReceiptTokens) {
            _amount = totalReceiptTokens;
            emit CriticalLoss(block.timestamp, _amount);
        }

        uint256 _totalReceiptTokens = totalReceiptTokens;

        ERC20Burnable(receiptToken).burn(_amount);

        slashIndex = slashIndex.mulDivDown(_totalReceiptTokens - _amount, _totalReceiptTokens);

        totalReceiptTokens = _totalReceiptTokens - _amount;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {ERC20Permit} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol";
import {ERC20Burnable} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";

import {EpochLib} from "@libraries/EpochLib.sol";
import {CoreRoles} from "@libraries/CoreRoles.sol";
import {CoreControlled} from "@core/CoreControlled.sol";

/// @notice InfiniFi Locked Position Token.
contract LockedPositionToken is CoreControlled, ERC20Permit, ERC20Burnable {
    /// @notice thrown when a user with transfer restrictions tries to transfer
    error TransferRestrictedUntil(address user, uint256 timestamp);

    /// @notice mapping of transfer restrictions: from address to timestamp after which transfers/redemptions are allowed
    mapping(address => uint256) public transferRestrictions;

    constructor(address _core, string memory _name, string memory _symbol)
        CoreControlled(_core)
        ERC20(_name, _symbol)
        ERC20Permit(_name)
    {}

    function mint(address _to, uint256 _amount) external onlyCoreRole(CoreRoles.LOCKED_TOKEN_MANAGER) {
        _mint(_to, _amount);
    }

    function burn(uint256 _value) public override onlyCoreRole(CoreRoles.LOCKED_TOKEN_MANAGER) {
        _burn(_msgSender(), _value);
    }

    function burnFrom(address _account, uint256 _value) public override onlyCoreRole(CoreRoles.LOCKED_TOKEN_MANAGER) {
        _spendAllowance(_account, _msgSender(), _value);
        _burn(_account, _value);
    }

    /// @notice restricts transfers until the next epoch
    function restrictTransferUntilNextEpoch(address _user) external onlyCoreRole(CoreRoles.TRANSFER_RESTRICTOR) {
        transferRestrictions[_user] = EpochLib.epochToTimestamp(EpochLib.nextEpoch(block.timestamp));
    }

    /// ---------------------------------------------------------------------------
    /// Transfer restrictions
    /// ---------------------------------------------------------------------------

    function _update(address _from, address _to, uint256 _value) internal override {
        uint256 restriction = transferRestrictions[_from];
        // if it's 0, storage is unset so user has no transfer restriction
        if (restriction > 0) {
            require(block.timestamp >= restriction, TransferRestrictedUntil(_from, restriction));
        }

        return ERC20._update(_from, _to, _value);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (access/extensions/AccessControlEnumerable.sol)

pragma solidity ^0.8.20;

import {IAccessControlEnumerable} from "./IAccessControlEnumerable.sol";
import {AccessControl} from "../AccessControl.sol";
import {EnumerableSet} from "../../utils/structs/EnumerableSet.sol";

/**
 * @dev Extension of {AccessControl} that allows enumerating the members of each role.
 */
abstract contract AccessControlEnumerable is IAccessControlEnumerable, AccessControl {
    using EnumerableSet for EnumerableSet.AddressSet;

    mapping(bytes32 role => EnumerableSet.AddressSet) private _roleMembers;

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControlEnumerable).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns one of the accounts that have `role`. `index` must be a
     * value between 0 and {getRoleMemberCount}, non-inclusive.
     *
     * Role bearers are not sorted in any particular way, and their ordering may
     * change at any point.
     *
     * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
     * you perform all queries on the same block. See the following
     * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
     * for more information.
     */
    function getRoleMember(bytes32 role, uint256 index) public view virtual returns (address) {
        return _roleMembers[role].at(index);
    }

    /**
     * @dev Returns the number of accounts that have `role`. Can be used
     * together with {getRoleMember} to enumerate all bearers of a role.
     */
    function getRoleMemberCount(bytes32 role) public view virtual returns (uint256) {
        return _roleMembers[role].length();
    }

    /**
     * @dev Return all accounts that have `role`
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function getRoleMembers(bytes32 role) public view virtual returns (address[] memory) {
        return _roleMembers[role].values();
    }

    /**
     * @dev Overload {AccessControl-_grantRole} to track enumerable memberships
     */
    function _grantRole(bytes32 role, address account) internal virtual override returns (bool) {
        bool granted = super._grantRole(role, account);
        if (granted) {
            _roleMembers[role].add(account);
        }
        return granted;
    }

    /**
     * @dev Overload {AccessControl-_revokeRole} to track enumerable memberships
     */
    function _revokeRole(bytes32 role, address account) internal virtual override returns (bool) {
        bool revoked = super._revokeRole(role, account);
        if (revoked) {
            _roleMembers[role].remove(account);
        }
        return revoked;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";

/**
 * @title IERC1363
 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
 *
 * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
 * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
 */
interface IERC1363 is IERC20, IERC165 {
    /*
     * Note: the ERC-165 identifier for this interface is 0xb0202a11.
     * 0xb0202a11 ===
     *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
     *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
     */

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @param data Additional data with no specified format, sent in call to `spender`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

File 36 of 53 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Variant of {toDataWithIntendedValidatorHash-address-bytes} optimized for cases where `data` is a bytes32.
     */
    function toDataWithIntendedValidatorHash(
        address validator,
        bytes32 messageHash
    ) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, hex"19_00")
            mstore(0x02, shl(96, validator))
            mstore(0x16, messageHash)
            digest := keccak256(0x00, 0x36)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ShortStrings.sol)

pragma solidity ^0.8.20;

import {StorageSlot} from "./StorageSlot.sol";

// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
    // Used as an identifier for strings longer than 31 bytes.
    bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;

    error StringTooLong(string str);
    error InvalidShortString();

    /**
     * @dev Encode a string of at most 31 chars into a `ShortString`.
     *
     * This will trigger a `StringTooLong` error is the input string is too long.
     */
    function toShortString(string memory str) internal pure returns (ShortString) {
        bytes memory bstr = bytes(str);
        if (bstr.length > 31) {
            revert StringTooLong(str);
        }
        return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
    }

    /**
     * @dev Decode a `ShortString` back to a "normal" string.
     */
    function toString(ShortString sstr) internal pure returns (string memory) {
        uint256 len = byteLength(sstr);
        // using `new string(len)` would work locally but is not memory safe.
        string memory str = new string(32);
        assembly ("memory-safe") {
            mstore(str, len)
            mstore(add(str, 0x20), sstr)
        }
        return str;
    }

    /**
     * @dev Return the length of a `ShortString`.
     */
    function byteLength(ShortString sstr) internal pure returns (uint256) {
        uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
        if (result > 31) {
            revert InvalidShortString();
        }
        return result;
    }

    /**
     * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
     */
    function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
        if (bytes(value).length < 32) {
            return toShortString(value);
        } else {
            StorageSlot.getStringSlot(store).value = value;
            return ShortString.wrap(FALLBACK_SENTINEL);
        }
    }

    /**
     * @dev Decode a string that was encoded to `ShortString` or written to storage using {toShortStringWithFallback}.
     */
    function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return toString(value);
        } else {
            return store;
        }
    }

    /**
     * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
     * {toShortStringWithFallback}.
     *
     * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
     * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
     */
    function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return byteLength(value);
        } else {
            return bytes(store).length;
        }
    }
}

File 39 of 53 : IERC5267.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.20;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.

pragma solidity ^0.8.20;

import {Arrays} from "../Arrays.sol";

/**
 * @dev Library for managing
 * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
 * types.
 *
 * Sets have the following properties:
 *
 * - Elements are added, removed, and checked for existence in constant time
 * (O(1)).
 * - Elements are enumerated in O(n). No guarantees are made on the ordering.
 * - Set can be cleared (all elements removed) in O(n).
 *
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using EnumerableSet for EnumerableSet.AddressSet;
 *
 *     // Declare a set state variable
 *     EnumerableSet.AddressSet private mySet;
 * }
 * ```
 *
 * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
 * and `uint256` (`UintSet`) are supported.
 *
 * [WARNING]
 * ====
 * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
 * unusable.
 * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
 *
 * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
 * array of EnumerableSet.
 * ====
 */
library EnumerableSet {
    // To implement this library for multiple types with as little code
    // repetition as possible, we write it in terms of a generic Set type with
    // bytes32 values.
    // The Set implementation uses private functions, and user-facing
    // implementations (such as AddressSet) are just wrappers around the
    // underlying Set.
    // This means that we can only create new EnumerableSets for types that fit
    // in bytes32.

    struct Set {
        // Storage of set values
        bytes32[] _values;
        // Position is the index of the value in the `values` array plus 1.
        // Position 0 is used to mean a value is not in the set.
        mapping(bytes32 value => uint256) _positions;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function _add(Set storage set, bytes32 value) private returns (bool) {
        if (!_contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._positions[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function _remove(Set storage set, bytes32 value) private returns (bool) {
        // We cache the value's position to prevent multiple reads from the same storage slot
        uint256 position = set._positions[value];

        if (position != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 valueIndex = position - 1;
            uint256 lastIndex = set._values.length - 1;

            if (valueIndex != lastIndex) {
                bytes32 lastValue = set._values[lastIndex];

                // Move the lastValue to the index where the value to delete is
                set._values[valueIndex] = lastValue;
                // Update the tracked position of the lastValue (that was just moved)
                set._positions[lastValue] = position;
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the tracked position for the deleted slot
            delete set._positions[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes all the values from a set. O(n).
     *
     * WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
     * function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
     */
    function _clear(Set storage set) private {
        uint256 len = _length(set);
        for (uint256 i = 0; i < len; ++i) {
            delete set._positions[set._values[i]];
        }
        Arrays.unsafeSetLength(set._values, 0);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function _contains(Set storage set, bytes32 value) private view returns (bool) {
        return set._positions[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function _length(Set storage set) private view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function _at(Set storage set, uint256 index) private view returns (bytes32) {
        return set._values[index];
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function _values(Set storage set) private view returns (bytes32[] memory) {
        return set._values;
    }

    // Bytes32Set

    struct Bytes32Set {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _add(set._inner, value);
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _remove(set._inner, value);
    }

    /**
     * @dev Removes all the values from a set. O(n).
     *
     * WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
     * function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
     */
    function clear(Bytes32Set storage set) internal {
        _clear(set._inner);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
        return _contains(set._inner, value);
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(Bytes32Set storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
        return _at(set._inner, index);
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
        bytes32[] memory store = _values(set._inner);
        bytes32[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    // AddressSet

    struct AddressSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(AddressSet storage set, address value) internal returns (bool) {
        return _add(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(AddressSet storage set, address value) internal returns (bool) {
        return _remove(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Removes all the values from a set. O(n).
     *
     * WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
     * function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
     */
    function clear(AddressSet storage set) internal {
        _clear(set._inner);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(AddressSet storage set, address value) internal view returns (bool) {
        return _contains(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(AddressSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(AddressSet storage set, uint256 index) internal view returns (address) {
        return address(uint160(uint256(_at(set._inner, index))));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(AddressSet storage set) internal view returns (address[] memory) {
        bytes32[] memory store = _values(set._inner);
        address[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    // UintSet

    struct UintSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(UintSet storage set, uint256 value) internal returns (bool) {
        return _add(set._inner, bytes32(value));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(UintSet storage set, uint256 value) internal returns (bool) {
        return _remove(set._inner, bytes32(value));
    }

    /**
     * @dev Removes all the values from a set. O(n).
     *
     * WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
     * function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
     */
    function clear(UintSet storage set) internal {
        _clear(set._inner);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(UintSet storage set, uint256 value) internal view returns (bool) {
        return _contains(set._inner, bytes32(value));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(UintSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(UintSet storage set, uint256 index) internal view returns (uint256) {
        return uint256(_at(set._inner, index));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(UintSet storage set) internal view returns (uint256[] memory) {
        bytes32[] memory store = _values(set._inner);
        uint256[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    using SafeCast for *;

    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;
    uint256 private constant SPECIAL_CHARS_LOOKUP =
        (1 << 0x08) | // backspace
            (1 << 0x09) | // tab
            (1 << 0x0a) | // newline
            (1 << 0x0c) | // form feed
            (1 << 0x0d) | // carriage return
            (1 << 0x22) | // double quote
            (1 << 0x5c); // backslash

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev The string being parsed contains characters that are not in scope of the given base.
     */
    error StringsInvalidChar();

    /**
     * @dev The string being parsed is not a properly formatted address.
     */
    error StringsInvalidAddressFormat();

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            assembly ("memory-safe") {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                assembly ("memory-safe") {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
     * representation, according to EIP-55.
     */
    function toChecksumHexString(address addr) internal pure returns (string memory) {
        bytes memory buffer = bytes(toHexString(addr));

        // hash the hex part of buffer (skip length + 2 bytes, length 40)
        uint256 hashValue;
        assembly ("memory-safe") {
            hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
        }

        for (uint256 i = 41; i > 1; --i) {
            // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
            if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                // case shift by xoring with 0x20
                buffer[i] ^= 0x20;
            }
            hashValue >>= 4;
        }
        return string(buffer);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }

    /**
     * @dev Parse a decimal string and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input) internal pure returns (uint256) {
        return parseUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        uint256 result = 0;
        for (uint256 i = begin; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 9) return (false, 0);
            result *= 10;
            result += chr;
        }
        return (true, result);
    }

    /**
     * @dev Parse a decimal string and returns the value as a `int256`.
     *
     * Requirements:
     * - The string must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input) internal pure returns (int256) {
        return parseInt(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
        (bool success, int256 value) = tryParseInt(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
     * the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
        return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
    }

    uint256 private constant ABS_MIN_INT256 = 2 ** 255;

    /**
     * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character or if the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, int256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseIntUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseIntUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, int256 value) {
        bytes memory buffer = bytes(input);

        // Check presence of a negative sign.
        bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        bool positiveSign = sign == bytes1("+");
        bool negativeSign = sign == bytes1("-");
        uint256 offset = (positiveSign || negativeSign).toUint();

        (bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);

        if (absSuccess && absValue < ABS_MIN_INT256) {
            return (true, negativeSign ? -int256(absValue) : int256(absValue));
        } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
            return (true, type(int256).min);
        } else return (false, 0);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input) internal pure returns (uint256) {
        return parseHexUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseHexUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
     * invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseHexUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseHexUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        // skip 0x prefix if present
        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 offset = hasPrefix.toUint() * 2;

        uint256 result = 0;
        for (uint256 i = begin + offset; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 15) return (false, 0);
            result *= 16;
            unchecked {
                // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
                // This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked.
                result += chr;
            }
        }
        return (true, result);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input) internal pure returns (address) {
        return parseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
        (bool success, address value) = tryParseAddress(input, begin, end);
        if (!success) revert StringsInvalidAddressFormat();
        return value;
    }

    /**
     * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
     * formatted address. See {parseAddress-string} requirements.
     */
    function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
        return tryParseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
     * formatted address. See {parseAddress-string-uint256-uint256} requirements.
     */
    function tryParseAddress(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, address value) {
        if (end > bytes(input).length || begin > end) return (false, address(0));

        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 expectedLength = 40 + hasPrefix.toUint() * 2;

        // check that input is the correct length
        if (end - begin == expectedLength) {
            // length guarantees that this does not overflow, and value is at most type(uint160).max
            (bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
            return (s, address(uint160(v)));
        } else {
            return (false, address(0));
        }
    }

    function _tryParseChr(bytes1 chr) private pure returns (uint8) {
        uint8 value = uint8(chr);

        // Try to parse `chr`:
        // - Case 1: [0-9]
        // - Case 2: [a-f]
        // - Case 3: [A-F]
        // - otherwise not supported
        unchecked {
            if (value > 47 && value < 58) value -= 48;
            else if (value > 96 && value < 103) value -= 87;
            else if (value > 64 && value < 71) value -= 55;
            else return type(uint8).max;
        }

        return value;
    }

    /**
     * @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata.
     *
     * WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped.
     */
    function escapeJSON(string memory input) internal pure returns (string memory) {
        bytes memory buffer = bytes(input);
        bytes memory output = new bytes(2 * buffer.length); // worst case scenario
        uint256 outputLength = 0;

        for (uint256 i; i < buffer.length; ++i) {
            bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i));
            if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) {
                output[outputLength++] = "\\";
                if (char == 0x08) output[outputLength++] = "b";
                else if (char == 0x09) output[outputLength++] = "t";
                else if (char == 0x0a) output[outputLength++] = "n";
                else if (char == 0x0c) output[outputLength++] = "f";
                else if (char == 0x0d) output[outputLength++] = "r";
                else if (char == 0x5c) output[outputLength++] = "\\";
                else if (char == 0x22) {
                    // solhint-disable-next-line quotes
                    output[outputLength++] = '"';
                }
            } else {
                output[outputLength++] = char;
            }
        }
        // write the actual length and deallocate unused memory
        assembly ("memory-safe") {
            mstore(output, outputLength)
            mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63)))))
        }

        return string(output);
    }

    /**
     * @dev Reads a bytes32 from a bytes array without bounds checking.
     *
     * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
     * assembly block as such would prevent some optimizations.
     */
    function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
        // This is not memory safe in the general case, but all calls to this private function are within bounds.
        assembly ("memory-safe") {
            value := mload(add(buffer, add(0x20, offset)))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (access/extensions/IAccessControlEnumerable.sol)

pragma solidity ^0.8.20;

import {IAccessControl} from "../IAccessControl.sol";

/**
 * @dev External interface of AccessControlEnumerable declared to support ERC-165 detection.
 */
interface IAccessControlEnumerable is IAccessControl {
    /**
     * @dev Returns one of the accounts that have `role`. `index` must be a
     * value between 0 and {getRoleMemberCount}, non-inclusive.
     *
     * Role bearers are not sorted in any particular way, and their ordering may
     * change at any point.
     *
     * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
     * you perform all queries on the same block. See the following
     * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
     * for more information.
     */
    function getRoleMember(bytes32 role, uint256 index) external view returns (address);

    /**
     * @dev Returns the number of accounts that have `role`. Can be used
     * together with {getRoleMember} to enumerate all bearers of a role.
     */
    function getRoleMemberCount(bytes32 role) external view returns (uint256);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/AccessControl.sol)

pragma solidity ^0.8.20;

import {IAccessControl} from "./IAccessControl.sol";
import {Context} from "../utils/Context.sol";
import {ERC165} from "../utils/introspection/ERC165.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```solidity
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```solidity
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
 * to enforce additional security measures for this role.
 */
abstract contract AccessControl is Context, IAccessControl, ERC165 {
    struct RoleData {
        mapping(address account => bool) hasRole;
        bytes32 adminRole;
    }

    mapping(bytes32 role => RoleData) private _roles;

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;

    /**
     * @dev Modifier that checks that an account has a specific role. Reverts
     * with an {AccessControlUnauthorizedAccount} error including the required role.
     */
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view virtual returns (bool) {
        return _roles[role].hasRole[account];
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
     * is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
     */
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, _msgSender());
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
     * is missing `role`.
     */
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert AccessControlUnauthorizedAccount(account, role);
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
        return _roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleGranted} event.
     */
    function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleRevoked} event.
     */
    function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     *
     * May emit a {RoleRevoked} event.
     */
    function renounceRole(bytes32 role, address callerConfirmation) public virtual {
        if (callerConfirmation != _msgSender()) {
            revert AccessControlBadConfirmation();
        }

        _revokeRole(role, callerConfirmation);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        bytes32 previousAdminRole = getRoleAdmin(role);
        _roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    /**
     * @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
        if (!hasRole(role, account)) {
            _roles[role].hasRole[account] = true;
            emit RoleGranted(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Attempts to revoke `role` from `account` and returns a boolean indicating if `role` was revoked.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
        if (hasRole(role, account)) {
            _roles[role].hasRole[account] = false;
            emit RoleRevoked(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }
}

File 44 of 53 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";

File 45 of 53 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../utils/introspection/IERC165.sol";

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct Int256Slot {
        int256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Int256Slot` with member `value` located at `slot`.
     */
    function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns a `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }
}

File 47 of 53 : Arrays.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Arrays.sol)
// This file was procedurally generated from scripts/generate/templates/Arrays.js.

pragma solidity ^0.8.20;

import {Comparators} from "./Comparators.sol";
import {SlotDerivation} from "./SlotDerivation.sol";
import {StorageSlot} from "./StorageSlot.sol";
import {Math} from "./math/Math.sol";

/**
 * @dev Collection of functions related to array types.
 */
library Arrays {
    using SlotDerivation for bytes32;
    using StorageSlot for bytes32;

    /**
     * @dev Sort an array of uint256 (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        uint256[] memory array,
        function(uint256, uint256) pure returns (bool) comp
    ) internal pure returns (uint256[] memory) {
        _quickSort(_begin(array), _end(array), comp);
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of uint256 in increasing order.
     */
    function sort(uint256[] memory array) internal pure returns (uint256[] memory) {
        sort(array, Comparators.lt);
        return array;
    }

    /**
     * @dev Sort an array of address (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        address[] memory array,
        function(address, address) pure returns (bool) comp
    ) internal pure returns (address[] memory) {
        sort(_castToUint256Array(array), _castToUint256Comp(comp));
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of address in increasing order.
     */
    function sort(address[] memory array) internal pure returns (address[] memory) {
        sort(_castToUint256Array(array), Comparators.lt);
        return array;
    }

    /**
     * @dev Sort an array of bytes32 (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        bytes32[] memory array,
        function(bytes32, bytes32) pure returns (bool) comp
    ) internal pure returns (bytes32[] memory) {
        sort(_castToUint256Array(array), _castToUint256Comp(comp));
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of bytes32 in increasing order.
     */
    function sort(bytes32[] memory array) internal pure returns (bytes32[] memory) {
        sort(_castToUint256Array(array), Comparators.lt);
        return array;
    }

    /**
     * @dev Performs a quick sort of a segment of memory. The segment sorted starts at `begin` (inclusive), and stops
     * at end (exclusive). Sorting follows the `comp` comparator.
     *
     * Invariant: `begin <= end`. This is the case when initially called by {sort} and is preserved in subcalls.
     *
     * IMPORTANT: Memory locations between `begin` and `end` are not validated/zeroed. This function should
     * be used only if the limits are within a memory array.
     */
    function _quickSort(uint256 begin, uint256 end, function(uint256, uint256) pure returns (bool) comp) private pure {
        unchecked {
            if (end - begin < 0x40) return;

            // Use first element as pivot
            uint256 pivot = _mload(begin);
            // Position where the pivot should be at the end of the loop
            uint256 pos = begin;

            for (uint256 it = begin + 0x20; it < end; it += 0x20) {
                if (comp(_mload(it), pivot)) {
                    // If the value stored at the iterator's position comes before the pivot, we increment the
                    // position of the pivot and move the value there.
                    pos += 0x20;
                    _swap(pos, it);
                }
            }

            _swap(begin, pos); // Swap pivot into place
            _quickSort(begin, pos, comp); // Sort the left side of the pivot
            _quickSort(pos + 0x20, end, comp); // Sort the right side of the pivot
        }
    }

    /**
     * @dev Pointer to the memory location of the first element of `array`.
     */
    function _begin(uint256[] memory array) private pure returns (uint256 ptr) {
        assembly ("memory-safe") {
            ptr := add(array, 0x20)
        }
    }

    /**
     * @dev Pointer to the memory location of the first memory word (32bytes) after `array`. This is the memory word
     * that comes just after the last element of the array.
     */
    function _end(uint256[] memory array) private pure returns (uint256 ptr) {
        unchecked {
            return _begin(array) + array.length * 0x20;
        }
    }

    /**
     * @dev Load memory word (as a uint256) at location `ptr`.
     */
    function _mload(uint256 ptr) private pure returns (uint256 value) {
        assembly {
            value := mload(ptr)
        }
    }

    /**
     * @dev Swaps the elements memory location `ptr1` and `ptr2`.
     */
    function _swap(uint256 ptr1, uint256 ptr2) private pure {
        assembly {
            let value1 := mload(ptr1)
            let value2 := mload(ptr2)
            mstore(ptr1, value2)
            mstore(ptr2, value1)
        }
    }

    /// @dev Helper: low level cast address memory array to uint256 memory array
    function _castToUint256Array(address[] memory input) private pure returns (uint256[] memory output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast bytes32 memory array to uint256 memory array
    function _castToUint256Array(bytes32[] memory input) private pure returns (uint256[] memory output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast address comp function to uint256 comp function
    function _castToUint256Comp(
        function(address, address) pure returns (bool) input
    ) private pure returns (function(uint256, uint256) pure returns (bool) output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast bytes32 comp function to uint256 comp function
    function _castToUint256Comp(
        function(bytes32, bytes32) pure returns (bool) input
    ) private pure returns (function(uint256, uint256) pure returns (bool) output) {
        assembly {
            output := input
        }
    }

    /**
     * @dev Searches a sorted `array` and returns the first index that contains
     * a value greater or equal to `element`. If no such index exists (i.e. all
     * values in the array are strictly less than `element`), the array length is
     * returned. Time complexity O(log n).
     *
     * NOTE: The `array` is expected to be sorted in ascending order, and to
     * contain no repeated elements.
     *
     * IMPORTANT: Deprecated. This implementation behaves as {lowerBound} but lacks
     * support for repeated elements in the array. The {lowerBound} function should
     * be used instead.
     */
    function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value > element) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        // At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
        if (low > 0 && unsafeAccess(array, low - 1).value == element) {
            return low - 1;
        } else {
            return low;
        }
    }

    /**
     * @dev Searches an `array` sorted in ascending order and returns the first
     * index that contains a value greater or equal than `element`. If no such index
     * exists (i.e. all values in the array are strictly less than `element`), the array
     * length is returned. Time complexity O(log n).
     *
     * See C++'s https://en.cppreference.com/w/cpp/algorithm/lower_bound[lower_bound].
     */
    function lowerBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value < element) {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            } else {
                high = mid;
            }
        }

        return low;
    }

    /**
     * @dev Searches an `array` sorted in ascending order and returns the first
     * index that contains a value strictly greater than `element`. If no such index
     * exists (i.e. all values in the array are strictly less than `element`), the array
     * length is returned. Time complexity O(log n).
     *
     * See C++'s https://en.cppreference.com/w/cpp/algorithm/upper_bound[upper_bound].
     */
    function upperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value > element) {
                high = mid;
            } else {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            }
        }

        return low;
    }

    /**
     * @dev Same as {lowerBound}, but with an array in memory.
     */
    function lowerBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeMemoryAccess(array, mid) < element) {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            } else {
                high = mid;
            }
        }

        return low;
    }

    /**
     * @dev Same as {upperBound}, but with an array in memory.
     */
    function upperBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeMemoryAccess(array, mid) > element) {
                high = mid;
            } else {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            }
        }

        return low;
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(address[] storage arr, uint256 pos) internal pure returns (StorageSlot.AddressSlot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getAddressSlot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(bytes32[] storage arr, uint256 pos) internal pure returns (StorageSlot.Bytes32Slot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getBytes32Slot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(uint256[] storage arr, uint256 pos) internal pure returns (StorageSlot.Uint256Slot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getUint256Slot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(bytes[] storage arr, uint256 pos) internal pure returns (StorageSlot.BytesSlot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getBytesSlot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(string[] storage arr, uint256 pos) internal pure returns (StorageSlot.StringSlot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getStringSlot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(address[] memory arr, uint256 pos) internal pure returns (address res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(bytes32[] memory arr, uint256 pos) internal pure returns (bytes32 res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(uint256[] memory arr, uint256 pos) internal pure returns (uint256 res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(bytes[] memory arr, uint256 pos) internal pure returns (bytes memory res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(string[] memory arr, uint256 pos) internal pure returns (string memory res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(address[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }

    /**
     * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(bytes32[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }

    /**
     * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(uint256[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }

    /**
     * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(bytes[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }

    /**
     * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(string[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
        }
    }

    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
            // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
            // taking advantage of the most significant (or "sign" bit) in two's complement representation.
            // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
            // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
            int256 mask = n >> 255;

            // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
            return uint256((n + mask) ^ mask);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (access/IAccessControl.sol)

pragma solidity ^0.8.20;

/**
 * @dev External interface of AccessControl declared to support ERC-165 detection.
 */
interface IAccessControl {
    /**
     * @dev The `account` is missing a role.
     */
    error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);

    /**
     * @dev The caller of a function is not the expected one.
     *
     * NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
     */
    error AccessControlBadConfirmation();

    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted to signal this.
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call. This account bears the admin role (for the granted role).
     * Expected in cases where the role was granted using the internal {AccessControl-_grantRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     */
    function renounceRole(bytes32 role, address callerConfirmation) external;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/ERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Comparators.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides a set of functions to compare values.
 *
 * _Available since v5.1._
 */
library Comparators {
    function lt(uint256 a, uint256 b) internal pure returns (bool) {
        return a < b;
    }

    function gt(uint256 a, uint256 b) internal pure returns (bool) {
        return a > b;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/SlotDerivation.sol)
// This file was procedurally generated from scripts/generate/templates/SlotDerivation.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for computing storage (and transient storage) locations from namespaces and deriving slots
 * corresponding to standard patterns. The derivation method for array and mapping matches the storage layout used by
 * the solidity language / compiler.
 *
 * See https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays[Solidity docs for mappings and dynamic arrays.].
 *
 * Example usage:
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using StorageSlot for bytes32;
 *     using SlotDerivation for bytes32;
 *
 *     // Declare a namespace
 *     string private constant _NAMESPACE = "<namespace>"; // eg. OpenZeppelin.Slot
 *
 *     function setValueInNamespace(uint256 key, address newValue) internal {
 *         _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value = newValue;
 *     }
 *
 *     function getValueInNamespace(uint256 key) internal view returns (address) {
 *         return _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {StorageSlot}.
 *
 * NOTE: This library provides a way to manipulate storage locations in a non-standard way. Tooling for checking
 * upgrade safety will ignore the slots accessed through this library.
 *
 * _Available since v5.1._
 */
library SlotDerivation {
    /**
     * @dev Derive an ERC-7201 slot from a string (namespace).
     */
    function erc7201Slot(string memory namespace) internal pure returns (bytes32 slot) {
        assembly ("memory-safe") {
            mstore(0x00, sub(keccak256(add(namespace, 0x20), mload(namespace)), 1))
            slot := and(keccak256(0x00, 0x20), not(0xff))
        }
    }

    /**
     * @dev Add an offset to a slot to get the n-th element of a structure or an array.
     */
    function offset(bytes32 slot, uint256 pos) internal pure returns (bytes32 result) {
        unchecked {
            return bytes32(uint256(slot) + pos);
        }
    }

    /**
     * @dev Derive the location of the first element in an array from the slot where the length is stored.
     */
    function deriveArray(bytes32 slot) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, slot)
            result := keccak256(0x00, 0x20)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, address key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, and(key, shr(96, not(0))))
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bool key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, iszero(iszero(key)))
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bytes32 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, uint256 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, int256 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, string memory key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            let length := mload(key)
            let begin := add(key, 0x20)
            let end := add(begin, length)
            let cache := mload(end)
            mstore(end, slot)
            result := keccak256(begin, add(length, 0x20))
            mstore(end, cache)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bytes memory key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            let length := mload(key)
            let begin := add(key, 0x20)
            let end := add(begin, length)
            let cache := mload(end)
            mstore(end, slot)
            result := keccak256(begin, add(length, 0x20))
            mstore(end, cache)
        }
    }
}

Settings
{
  "remappings": [
    "@openzeppelin/=lib/openzeppelin-contracts/",
    "@forge-std/=lib/forge-std/src/",
    "@solmate/=lib/solmate/",
    "@cowprotocol/=lib/cowprotocol/src/",
    "@core/=src/core/",
    "@tokens/=src/tokens/",
    "@locking/=src/locking/",
    "@funding/=src/funding/",
    "@gateway/=src/gateway/",
    "@finance/=src/finance/",
    "@libraries/=src/libraries/",
    "@interfaces/=src/interfaces/",
    "@governance/=src/governance/",
    "@integrations/=src/integrations/",
    "@test/=test/",
    "@deployment/=deployment/",
    "cowprotocol/=lib/cowprotocol/src/",
    "ds-test/=lib/solmate/lib/ds-test/src/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "forge-std/=lib/forge-std/src/",
    "halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/",
    "solmate/=lib/solmate/src/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 1000
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "cancun",
  "viaIR": false,
  "libraries": {
    "src/libraries/EpochLib.sol": {
      "EpochLib": "0x4e7b4a37cB9d88e555DaEa7503dC942954FF742E"
    }
  }
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"address","name":"_core","type":"address"},{"internalType":"address","name":"_receiptToken","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"},{"internalType":"uint256","name":"assets","type":"uint256"},{"internalType":"uint256","name":"max","type":"uint256"}],"name":"ERC4626ExceededMaxDeposit","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"},{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"uint256","name":"max","type":"uint256"}],"name":"ERC4626ExceededMaxMint","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"uint256","name":"max","type":"uint256"}],"name":"ERC4626ExceededMaxRedeem","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"assets","type":"uint256"},{"internalType":"uint256","name":"max","type":"uint256"}],"name":"ERC4626ExceededMaxWithdraw","type":"error"},{"inputs":[],"name":"EnforcedPause","type":"error"},{"inputs":[],"name":"ExpectedPause","type":"error"},{"inputs":[],"name":"PendingLossesUnapplied","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[{"internalType":"bytes","name":"returnData","type":"bytes"}],"name":"UnderlyingCallReverted","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldCore","type":"address"},{"indexed":true,"internalType":"address","name":"newCore","type":"address"}],"name":"CoreUpdate","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"timestamp","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"epoch","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"}],"name":"VaultLoss","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"timestamp","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"epoch","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"}],"name":"VaultProfit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"receiver","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"applyLosses","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"asset","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"name":"convertToAssets","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"name":"convertToShares","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"core","outputs":[{"internalType":"contract InfiniFiCore","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"}],"name":"deposit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"depositRewards","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"target","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bytes","name":"callData","type":"bytes"}],"internalType":"struct CoreControlled.Call[]","name":"calls","type":"tuple[]"}],"name":"emergencyAction","outputs":[{"internalType":"bytes[]","name":"returnData","type":"bytes[]"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"epoch","type":"uint256"}],"name":"epochRewards","outputs":[{"internalType":"uint256","name":"rewards","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_receiver","type":"address"}],"name":"maxDeposit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_receiver","type":"address"}],"name":"maxMint","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_receiver","type":"address"}],"name":"maxRedeem","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_receiver","type":"address"}],"name":"maxWithdraw","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"}],"name":"mint","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"name":"previewDeposit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"name":"previewMint","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"name":"previewRedeem","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"name":"previewWithdraw","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"redeem","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newCore","type":"address"}],"name":"setCore","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_yieldSharing","type":"address"}],"name":"setYieldSharing","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalAssets","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"withdraw","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"yieldSharing","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}]

60c060405234801561000f575f5ffd5b50604051612ffe380380612ffe83398101604081905261002e9161029e565b8181826001600160a01b03166306fdde036040518163ffffffff1660e01b81526004015f60405180830381865afa15801561006b573d5f5f3e3d5ffd5b505050506040513d5f823e601f3d908101601f1916820160405261009291908101906102e3565b6040516020016100a291906103aa565b604051602081830303815290604052836001600160a01b03166395d89b416040518163ffffffff1660e01b81526004015f60405180830381865afa1580156100ec573d5f5f3e3d5ffd5b505050506040513d5f823e601f3d908101601f1916820160405261011391908101906102e3565b60405160200161012391906103cc565b60408051601f19818403018152919052600361013f8382610465565b50600461014c8282610465565b5050505f5f610160836101ad60201b60201c565b9150915081610170576012610172565b805b60ff1660a05250506001600160a01b0390811660805260058054610100600160a81b0319166101009390921692909202179055506105419050565b60408051600481526024810182526020810180516001600160e01b031663313ce56760e01b17905290515f918291829182916001600160a01b038716916101f39161051f565b5f60405180830381855afa9150503d805f811461022b576040519150601f19603f3d011682016040523d82523d5f602084013e610230565b606091505b509150915081801561024457506020815110155b15610277575f8180602001905181019061025e919061052a565b905060ff8111610275576001969095509350505050565b505b505f9485945092505050565b80516001600160a01b0381168114610299575f5ffd5b919050565b5f5f604083850312156102af575f5ffd5b6102b883610283565b91506102c660208401610283565b90509250929050565b634e487b7160e01b5f52604160045260245ffd5b5f602082840312156102f3575f5ffd5b81516001600160401b03811115610308575f5ffd5b8201601f81018413610318575f5ffd5b80516001600160401b03811115610331576103316102cf565b604051601f8201601f19908116603f011681016001600160401b038111828210171561035f5761035f6102cf565b604052818152828201602001861015610376575f5ffd5b8160208401602083015e5f91810160200191909152949350505050565b5f81518060208401855e5f93019283525090919050565b66029ba30b5b2b2160cd1b81525f6103c56007830184610393565b9392505050565b607360f81b81525f6103c56001830184610393565b600181811c908216806103f557607f821691505b60208210810361041357634e487b7160e01b5f52602260045260245ffd5b50919050565b601f82111561046057805f5260205f20601f840160051c8101602085101561043e5750805b601f840160051c820191505b8181101561045d575f815560010161044a565b50505b505050565b81516001600160401b0381111561047e5761047e6102cf565b6104928161048c84546103e1565b84610419565b6020601f8211600181146104c4575f83156104ad5750848201515b5f19600385901b1c1916600184901b17845561045d565b5f84815260208120601f198516915b828110156104f357878501518255602094850194600190920191016104d3565b508482101561051057868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b5f6103c58284610393565b5f6020828403121561053a575f5ffd5b5051919050565b60805160a051612a6b6105935f395f610aaf01525f818161038401528181610a110152818161127d0152818161182501528181611a5f01528181611b2b0152818161210601526121f50152612a6b5ff3fe608060405260043610610243575f3560e01c80638000963011610131578063b460af94116100ac578063ce96cb771161007c578063dd62ed3e11610062578063dd62ed3e14610640578063ef8b30f7146105e3578063f2f4eb2614610684575f5ffd5b8063ce96cb7714610602578063d905777e14610621575f5ffd5b8063b460af94146105a5578063ba087652146105c4578063c63d75b6146103d0578063c6e6f592146105e3575f5ffd5b806394bf804d11610101578063a9059cbb116100e7578063a9059cbb14610548578063ad0b93bd14610567578063b3d7f6b914610586575f5ffd5b806394bf804d1461051557806395d89b4114610534575f5ffd5b806380009630146104a457806381d53faa146104c35780638456cb59146104e25780638bdf67f2146104f6575f5ffd5b806338d52e0f116101c15780634dc47d34116101915780636e553f65116101775780636e553f651461043157806370a08231146104505780637df3927e14610484575f5ffd5b80634dc47d34146103ef5780635c975abb1461041a575f5ffd5b806338d52e0f146103765780633f4ba83a146103bc578063402d267d146103d05780634cdad5061461028f575f5ffd5b80630a28a4771161021657806323b872dd116101fc57806323b872dd14610310578063265227771461032f578063313ce56714610350575f5ffd5b80630a28a477146102dd57806318160ddd146102fc575f5ffd5b806301e1d1141461024757806306fdde031461026e57806307a2d13a1461028f578063095ea7b3146102ae575b5f5ffd5b348015610252575f5ffd5b5061025b6106a6565b6040519081526020015b60405180910390f35b348015610279575f5ffd5b50610282610754565b6040516102659190612553565b34801561029a575f5ffd5b5061025b6102a9366004612565565b6107e4565b3480156102b9575f5ffd5b506102cd6102c8366004612597565b6107f5565b6040519015158152602001610265565b3480156102e8575f5ffd5b5061025b6102f7366004612565565b61080c565b348015610307575f5ffd5b5060025461025b565b34801561031b575f5ffd5b506102cd61032a3660046125bf565b610818565b34801561033a575f5ffd5b5061034e610349366004612565565b61083d565b005b34801561035b575f5ffd5b50610364610aa8565b60405160ff9091168152602001610265565b348015610381575f5ffd5b507f00000000000000000000000000000000000000000000000000000000000000005b6040516001600160a01b039091168152602001610265565b3480156103c7575f5ffd5b5061034e610ad3565b3480156103db575f5ffd5b5061025b6103ea3660046125f9565b610baf565b3480156103fa575f5ffd5b5061025b610409366004612565565b60076020525f908152604090205481565b348015610425575f5ffd5b5060055460ff166102cd565b34801561043c575f5ffd5b5061025b61044b366004612612565b610bcf565b34801561045b575f5ffd5b5061025b61046a3660046125f9565b6001600160a01b03165f9081526020819052604090205490565b61049761049236600461263c565b610c4f565b60405161026591906126ad565b3480156104af575f5ffd5b5061034e6104be3660046125f9565b610eeb565b3480156104ce575f5ffd5b5061034e6104dd3660046125f9565b610fc5565b3480156104ed575f5ffd5b5061034e6110d1565b348015610501575f5ffd5b5061034e610510366004612565565b6111aa565b348015610520575f5ffd5b5061025b61052f366004612612565b611406565b34801561053f575f5ffd5b5061028261147e565b348015610553575f5ffd5b506102cd610562366004612597565b61148d565b348015610572575f5ffd5b506006546103a4906001600160a01b031681565b348015610591575f5ffd5b5061025b6105a0366004612565565b61149a565b3480156105b0575f5ffd5b5061025b6105bf366004612710565b6114a6565b3480156105cf575f5ffd5b5061025b6105de366004612710565b611528565b3480156105ee575f5ffd5b5061025b6105fd366004612565565b6115a1565b34801561060d575f5ffd5b5061025b61061c3660046125f9565b6115ac565b34801561062c575f5ffd5b5061025b61063b3660046125f9565b611641565b34801561064b575f5ffd5b5061025b61065a366004612749565b6001600160a01b039182165f90815260016020908152604080832093909416825291909152205490565b34801561068f575f5ffd5b5060055461010090046001600160a01b03166103a4565b5f6106af6116d6565b60405163342a7b0160e01b81524260048201526007905f90734e7b4a37cb9d88e555daea7503dc942954ff742e9063342a7b0190602401602060405180830381865af4158015610701573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107259190612771565b81526020019081526020015f205461073b611822565b610745919061279c565b61074f919061279c565b905090565b606060038054610763906127af565b80601f016020809104026020016040519081016040528092919081815260200182805461078f906127af565b80156107da5780601f106107b1576101008083540402835291602001916107da565b820191905f5260205f20905b8154815290600101906020018083116107bd57829003601f168201915b5050505050905090565b5f6107ef825f6118c5565b92915050565b5f336108028185856118fd565b5060019392505050565b5f6107ef82600161190f565b5f3361082585828561193e565b6108308585856119d3565b60019150505b9392505050565b600554604051632474521560e21b81527f31e44e7763cc54215b453a052743c504bdb2e0f29f465a4651620cb67f255478600482018190523360248301529161010090046001600160a01b0316906391d1485490604401602060405180830381865afa1580156108af573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906108d391906127e7565b6109135760405162461bcd60e51b815260206004820152600c60248201526b15539055551213d49256915160a21b60448201526064015b60405180910390fd5b60405163342a7b0160e01b815242600482015261098f90734e7b4a37cb9d88e555daea7503dc942954ff742e9063342a7b01906024015b602060405180830381865af4158015610965573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109899190612771565b83611a30565b91508115610aa457604051635487c57760e01b81524260048201526109d290734e7b4a37cb9d88e555daea7503dc942954ff742e90635487c5779060240161094a565b91508115610aa4576040517f42966c68000000000000000000000000000000000000000000000000000000008152600481018390526001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016906342966c68906024015f604051808303815f87803b158015610a52575f5ffd5b505af1158015610a64573d5f5f3e3d5ffd5b5050604080515f8152602081018690524293507f820476251d95b78d63480a8dbee716eb1c30b70352aa822aede4aa6a6d91357792500160405180910390a25b5050565b5f61074f817f0000000000000000000000000000000000000000000000000000000000000000612806565b600554604051632474521560e21b81527fe7276a2a84d8de556657ec9cf93a55a7d66f096e529d0582ed08e9e2208b92b5600482018190523360248301529161010090046001600160a01b0316906391d1485490604401602060405180830381865afa158015610b45573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610b6991906127e7565b610ba45760405162461bcd60e51b815260206004820152600c60248201526b15539055551213d49256915160a21b604482015260640161090a565b610bac611bf4565b50565b5f610bbc60055460ff1690565b15610bc857505f919050565b5f196107ef565b5f5f610bda83610baf565b905080841115610c2f576040517f79012fb20000000000000000000000000000000000000000000000000000000081526001600160a01b0384166004820152602481018590526044810182905260640161090a565b5f610c39856115a1565b9050610c4733858784611c46565b949350505050565b600554604051632474521560e21b81527f1a6838efa4183e08fe3607359d1259272af9d4716f65e1a7b5921f78fd5a3c6a6004820181905233602483015260609290916101009091046001600160a01b0316906391d1485490604401602060405180830381865afa158015610cc6573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610cea91906127e7565b610d255760405162461bcd60e51b815260206004820152600c60248201526b15539055551213d49256915160a21b604482015260640161090a565b8267ffffffffffffffff811115610d3e57610d3e61281f565b604051908082528060200260200182016040528015610d7157816020015b6060815260200190600190039081610d5c5790505b5091505f5b83811015610ee3575f858583818110610d9157610d91612833565b9050602002810190610da39190612847565b610db19060208101906125f9565b90505f868684818110610dc657610dc6612833565b9050602002810190610dd89190612847565b602001359050365f888886818110610df257610df2612833565b9050602002810190610e049190612847565b610e12906040810190612865565b915091505f5f856001600160a01b0316858585604051610e339291906128af565b5f6040518083038185875af1925050503d805f8114610e6d576040519150601f19603f3d011682016040523d82523d5f602084013e610e72565b606091505b5091509150818190610eb1576040517f4ad176bb00000000000000000000000000000000000000000000000000000000815260040161090a9190612553565b5080898881518110610ec557610ec5612833565b60200260200101819052505050505050508080600101915050610d76565b505092915050565b600554604051632474521560e21b81527f1a6838efa4183e08fe3607359d1259272af9d4716f65e1a7b5921f78fd5a3c6a600482018190523360248301529161010090046001600160a01b0316906391d1485490604401602060405180830381865afa158015610f5d573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610f8191906127e7565b610fbc5760405162461bcd60e51b815260206004820152600c60248201526b15539055551213d49256915160a21b604482015260640161090a565b610aa482611cc8565b600554604051632474521560e21b81527f1a6838efa4183e08fe3607359d1259272af9d4716f65e1a7b5921f78fd5a3c6a600482018190523360248301529161010090046001600160a01b0316906391d1485490604401602060405180830381865afa158015611037573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061105b91906127e7565b6110965760405162461bcd60e51b815260206004820152600c60248201526b15539055551213d49256915160a21b604482015260640161090a565b50600680547fffffffffffffffffffffffff0000000000000000000000000000000000000000166001600160a01b0392909216919091179055565b600554604051632474521560e21b81527ffcb9fcbfa83b897fb2d5cf4b58962164105c1e71489a37ef3ae0db3fdce576f6600482018190523360248301529161010090046001600160a01b0316906391d1485490604401602060405180830381865afa158015611143573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061116791906127e7565b6111a25760405162461bcd60e51b815260206004820152600c60248201526b15539055551213d49256915160a21b604482015260640161090a565b610bac611d38565b600554604051632474521560e21b81527f31e44e7763cc54215b453a052743c504bdb2e0f29f465a4651620cb67f255478600482018190523360248301529161010090046001600160a01b0316906391d1485490604401602060405180830381865afa15801561121c573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061124091906127e7565b61127b5760405162461bcd60e51b815260206004820152600c60248201526b15539055551213d49256915160a21b604482015260640161090a565b7f00000000000000000000000000000000000000000000000000000000000000006040517f23b872dd000000000000000000000000000000000000000000000000000000008152336004820152306024820152604481018490526001600160a01b0391909116906323b872dd906064016020604051808303815f875af1158015611307573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061132b91906127e7565b5060405163342a7b0160e01b81524260048201525f90734e7b4a37cb9d88e555daea7503dc942954ff742e9063342a7b0190602401602060405180830381865af415801561137b573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061139f9190612771565b90508260075f8381526020019081526020015f205f8282546113c191906128be565b9091555050604080518281526020810185905242917f67d8e41dbea80661bb961d417970372decefc80a99de38a8ea4706efe68ffc2b910160405180910390a2505050565b5f5f61141183610baf565b905080841115611466576040517f284ff6670000000000000000000000000000000000000000000000000000000081526001600160a01b0384166004820152602481018590526044810182905260640161090a565b5f6114708561149a565b9050610c4733858388611c46565b606060048054610763906127af565b5f336108028185856119d3565b5f6107ef8260016118c5565b5f5f6114b1836115ac565b905080851115611506576040517ffe9cceec0000000000000000000000000000000000000000000000000000000081526001600160a01b0384166004820152602481018690526044810182905260640161090a565b5f6115108661080c565b905061151f3386868985611d75565b95945050505050565b5f5f61153383611641565b905080851115611588576040517fb94abeec0000000000000000000000000000000000000000000000000000000081526001600160a01b0384166004820152602481018690526044810182905260640161090a565b5f611592866107e4565b905061151f338686848a611d75565b5f6107ef825f61190f565b5f6115b960055460ff1690565b8061162c575060065460408051633e10ccdb60e21b815290515f926001600160a01b03169163f843336c9160048083019260209291908290030181865afa158015611606573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061162a9190612771565b125b1561163857505f919050565b6107ef82611dff565b5f61164e60055460ff1690565b806116c1575060065460408051633e10ccdb60e21b815290515f926001600160a01b03169163f843336c9160048083019260209291908290030181865afa15801561169b573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906116bf9190612771565b125b156116cd57505f919050565b6107ef82611e21565b604051635487c57760e01b81524260048201525f908190734e7b4a37cb9d88e555daea7503dc942954ff742e90635487c57790602401602060405180830381865af4158015611727573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061174b9190612771565b5f818152600760205260408082205490517f72b864890000000000000000000000000000000000000000000000000000000081526004810184905292935091734e7b4a37cb9d88e555daea7503dc942954ff742e906372b8648990602401602060405180830381865af41580156117c4573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906117e89190612771565b6117f2904261279c565b90505f62093a8061180383856128d1565b61180d91906128fc565b9050611819818461279c565b94505050505090565b5f7f00000000000000000000000000000000000000000000000000000000000000006040517f70a082310000000000000000000000000000000000000000000000000000000081523060048201526001600160a01b0391909116906370a0823190602401602060405180830381865afa1580156118a1573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061074f9190612771565b5f6108366118d16106a6565b6118dc9060016128be565b6118e75f600a6129f2565b6002546118f491906128be565b85919085611e3e565b61190a8383836001611e80565b505050565b5f61083661191e82600a6129f2565b60025461192b91906128be565b6119336106a6565b6118f49060016128be565b6001600160a01b038381165f908152600160209081526040808320938616835292905220545f198110156119cd57818110156119bf576040517ffb8f41b20000000000000000000000000000000000000000000000000000000081526001600160a01b0384166004820152602481018290526044810183905260640161090a565b6119cd84848484035f611e80565b50505050565b6001600160a01b0383166119fc57604051634b637e8f60e11b81525f600482015260240161090a565b6001600160a01b038216611a255760405163ec442f0560e01b81525f600482015260240161090a565b61190a838383611f84565b5f82815260076020526040812054828110611b1b57611a4f838261279c565b5f858152600760205260409020557f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03166342966c68846040518263ffffffff1660e01b8152600401611aab91815260200190565b5f604051808303815f87803b158015611ac2575f5ffd5b505af1158015611ad4573d5f5f3e3d5ffd5b505060408051878152602081018790524293507f820476251d95b78d63480a8dbee716eb1c30b70352aa822aede4aa6a6d91357792500160405180910390a25f9250611bec565b5f848152600760205260408120557f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03166342966c68826040518263ffffffff1660e01b8152600401611b7791815260200190565b5f604051808303815f87803b158015611b8e575f5ffd5b505af1158015611ba0573d5f5f3e3d5ffd5b505060408051878152602081018590524293507f820476251d95b78d63480a8dbee716eb1c30b70352aa822aede4aa6a6d91357792500160405180910390a2611be9818461279c565b92505b509092915050565b611bfc6120c3565b6005805460ff191690557f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa335b6040516001600160a01b03909116815260200160405180910390a1565b60065f9054906101000a90046001600160a01b03166001600160a01b031663047050e86040518163ffffffff1660e01b81526004016020604051808303815f875af1158015611c97573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611cbb9190612771565b506119cd84848484612101565b600580546001600160a01b038381166101008181027fffffffffffffffffffffff0000000000000000000000000000000000000000ff85161790945560405193909204169182907f9209b7c8c06dcfd261686a663e7c55989337b18d59da5433c6f2835fb6970920905f90a35050565b611d40612185565b6005805460ff191660011790557f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a258611c293390565b60065f9054906101000a90046001600160a01b03166001600160a01b031663047050e86040518163ffffffff1660e01b81526004016020604051808303815f875af1158015611dc6573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611dea9190612771565b50611df885858585856121c2565b5050505050565b6001600160a01b0381165f908152602081905260408120546107ef905f6118c5565b6001600160a01b0381165f908152602081905260408120546107ef565b5f611e6b611e4b83612282565b8015611e6657505f8480611e6157611e616128e8565b868809115b151590565b611e768686866122ae565b61151f91906128be565b6001600160a01b038416611ec2576040517fe602df050000000000000000000000000000000000000000000000000000000081525f600482015260240161090a565b6001600160a01b038316611f04576040517f94280d620000000000000000000000000000000000000000000000000000000081525f600482015260240161090a565b6001600160a01b038085165f90815260016020908152604080832093871683529290522082905580156119cd57826001600160a01b0316846001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92584604051611f7691815260200190565b60405180910390a350505050565b6001600160a01b038316611fae578060025f828254611fa391906128be565b909155506120379050565b6001600160a01b0383165f9081526020819052604090205481811015612019576040517fe450d38c0000000000000000000000000000000000000000000000000000000081526001600160a01b0385166004820152602481018290526044810183905260640161090a565b6001600160a01b0384165f9081526020819052604090209082900390555b6001600160a01b03821661205357600280548290039055612071565b6001600160a01b0382165f9081526020819052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef836040516120b691815260200190565b60405180910390a3505050565b60055460ff166120ff576040517f8dfc202b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b61212d7f000000000000000000000000000000000000000000000000000000000000000085308561235e565b61213783826123da565b826001600160a01b0316846001600160a01b03167fdcbc1c05240f31ff3ad067ef1ee35ce4997762752e3a095284754544f4c709d78484604051611f76929190918252602082015260400190565b60055460ff16156120ff576040517fd93c066500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b826001600160a01b0316856001600160a01b0316146121e6576121e683868361193e565b6121f0838261240e565b61221b7f00000000000000000000000000000000000000000000000000000000000000008584612442565b826001600160a01b0316846001600160a01b0316866001600160a01b03167ffbde797d201c681b91056529119e0b02407c7bb96a4a2c75c01fc9667232c8db8585604051612273929190918252602082015260400190565b60405180910390a45050505050565b5f600282600381111561229757612297612a00565b6122a19190612a14565b60ff166001149050919050565b5f5f5f6122bb8686612473565b91509150815f036122df578381816122d5576122d56128e8565b0492505050610836565b8184116122f6576122f6600385150260111861248f565b5f848688095f868103871696879004966002600389028118808a02820302808a02820302808a02820302808a02820302808a02820302808a02909103029181900381900460010185841190960395909502919093039390930492909217029150509392505050565b6040516001600160a01b0384811660248301528381166044830152606482018390526119cd9186918216906323b872dd906084015b604051602081830303815290604052915060e01b6020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff83818316178352505050506124a0565b6001600160a01b0382166124035760405163ec442f0560e01b81525f600482015260240161090a565b610aa45f8383611f84565b6001600160a01b03821661243757604051634b637e8f60e11b81525f600482015260240161090a565b610aa4825f83611f84565b6040516001600160a01b0383811660248301526044820183905261190a91859182169063a9059cbb90606401612393565b5f805f1983850993909202808410938190039390930393915050565b634e487b715f52806020526024601cfd5b5f5f60205f8451602086015f885af1806124bf576040513d5f823e3d81fd5b50505f513d915081156124d65780600114156124e3565b6001600160a01b0384163b155b156119cd576040517f5274afe70000000000000000000000000000000000000000000000000000000081526001600160a01b038516600482015260240161090a565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b602081525f6108366020830184612525565b5f60208284031215612575575f5ffd5b5035919050565b80356001600160a01b0381168114612592575f5ffd5b919050565b5f5f604083850312156125a8575f5ffd5b6125b18361257c565b946020939093013593505050565b5f5f5f606084860312156125d1575f5ffd5b6125da8461257c565b92506125e86020850161257c565b929592945050506040919091013590565b5f60208284031215612609575f5ffd5b6108368261257c565b5f5f60408385031215612623575f5ffd5b823591506126336020840161257c565b90509250929050565b5f5f6020838503121561264d575f5ffd5b823567ffffffffffffffff811115612663575f5ffd5b8301601f81018513612673575f5ffd5b803567ffffffffffffffff811115612689575f5ffd5b8560208260051b840101111561269d575f5ffd5b6020919091019590945092505050565b5f602082016020835280845180835260408501915060408160051b8601019250602086015f5b8281101561270457603f198786030184526126ef858351612525565b945060209384019391909101906001016126d3565b50929695505050505050565b5f5f5f60608486031215612722575f5ffd5b833592506127326020850161257c565b91506127406040850161257c565b90509250925092565b5f5f6040838503121561275a575f5ffd5b6127638361257c565b91506126336020840161257c565b5f60208284031215612781575f5ffd5b5051919050565b634e487b7160e01b5f52601160045260245ffd5b818103818111156107ef576107ef612788565b600181811c908216806127c357607f821691505b6020821081036127e157634e487b7160e01b5f52602260045260245ffd5b50919050565b5f602082840312156127f7575f5ffd5b81518015158114610836575f5ffd5b60ff81811683821601908111156107ef576107ef612788565b634e487b7160e01b5f52604160045260245ffd5b634e487b7160e01b5f52603260045260245ffd5b5f8235605e1983360301811261285b575f5ffd5b9190910192915050565b5f5f8335601e1984360301811261287a575f5ffd5b83018035915067ffffffffffffffff821115612894575f5ffd5b6020019150368190038213156128a8575f5ffd5b9250929050565b818382375f9101908152919050565b808201808211156107ef576107ef612788565b80820281158282048414176107ef576107ef612788565b634e487b7160e01b5f52601260045260245ffd5b5f8261290a5761290a6128e8565b500490565b6001815b600184111561294a5780850481111561292e5761292e612788565b600184161561293c57908102905b60019390931c928002612913565b935093915050565b5f82612960575060016107ef565b8161296c57505f6107ef565b8160018114612982576002811461298c576129a8565b60019150506107ef565b60ff84111561299d5761299d612788565b50506001821b6107ef565b5060208310610133831016604e8410600b84101617156129cb575081810a6107ef565b6129d75f19848461290f565b805f19048211156129ea576129ea612788565b029392505050565b5f61083660ff841683612952565b634e487b7160e01b5f52602160045260245ffd5b5f60ff831680612a2657612a266128e8565b8060ff8416069150509291505056fea2646970667358221220c4f491cbba9af0de83944e451c18e22fbba37015ab8895e196eecdfc767ff0f164736f6c634300081c0033000000000000000000000000f6d48735eccf12bdc1df2674b1ce3fcb3bd2549000000000000000000000000048f9e38f3070ad8945dfeae3fa70987722e3d89c

Deployed Bytecode

0x608060405260043610610243575f3560e01c80638000963011610131578063b460af94116100ac578063ce96cb771161007c578063dd62ed3e11610062578063dd62ed3e14610640578063ef8b30f7146105e3578063f2f4eb2614610684575f5ffd5b8063ce96cb7714610602578063d905777e14610621575f5ffd5b8063b460af94146105a5578063ba087652146105c4578063c63d75b6146103d0578063c6e6f592146105e3575f5ffd5b806394bf804d11610101578063a9059cbb116100e7578063a9059cbb14610548578063ad0b93bd14610567578063b3d7f6b914610586575f5ffd5b806394bf804d1461051557806395d89b4114610534575f5ffd5b806380009630146104a457806381d53faa146104c35780638456cb59146104e25780638bdf67f2146104f6575f5ffd5b806338d52e0f116101c15780634dc47d34116101915780636e553f65116101775780636e553f651461043157806370a08231146104505780637df3927e14610484575f5ffd5b80634dc47d34146103ef5780635c975abb1461041a575f5ffd5b806338d52e0f146103765780633f4ba83a146103bc578063402d267d146103d05780634cdad5061461028f575f5ffd5b80630a28a4771161021657806323b872dd116101fc57806323b872dd14610310578063265227771461032f578063313ce56714610350575f5ffd5b80630a28a477146102dd57806318160ddd146102fc575f5ffd5b806301e1d1141461024757806306fdde031461026e57806307a2d13a1461028f578063095ea7b3146102ae575b5f5ffd5b348015610252575f5ffd5b5061025b6106a6565b6040519081526020015b60405180910390f35b348015610279575f5ffd5b50610282610754565b6040516102659190612553565b34801561029a575f5ffd5b5061025b6102a9366004612565565b6107e4565b3480156102b9575f5ffd5b506102cd6102c8366004612597565b6107f5565b6040519015158152602001610265565b3480156102e8575f5ffd5b5061025b6102f7366004612565565b61080c565b348015610307575f5ffd5b5060025461025b565b34801561031b575f5ffd5b506102cd61032a3660046125bf565b610818565b34801561033a575f5ffd5b5061034e610349366004612565565b61083d565b005b34801561035b575f5ffd5b50610364610aa8565b60405160ff9091168152602001610265565b348015610381575f5ffd5b507f00000000000000000000000048f9e38f3070ad8945dfeae3fa70987722e3d89c5b6040516001600160a01b039091168152602001610265565b3480156103c7575f5ffd5b5061034e610ad3565b3480156103db575f5ffd5b5061025b6103ea3660046125f9565b610baf565b3480156103fa575f5ffd5b5061025b610409366004612565565b60076020525f908152604090205481565b348015610425575f5ffd5b5060055460ff166102cd565b34801561043c575f5ffd5b5061025b61044b366004612612565b610bcf565b34801561045b575f5ffd5b5061025b61046a3660046125f9565b6001600160a01b03165f9081526020819052604090205490565b61049761049236600461263c565b610c4f565b60405161026591906126ad565b3480156104af575f5ffd5b5061034e6104be3660046125f9565b610eeb565b3480156104ce575f5ffd5b5061034e6104dd3660046125f9565b610fc5565b3480156104ed575f5ffd5b5061034e6110d1565b348015610501575f5ffd5b5061034e610510366004612565565b6111aa565b348015610520575f5ffd5b5061025b61052f366004612612565b611406565b34801561053f575f5ffd5b5061028261147e565b348015610553575f5ffd5b506102cd610562366004612597565b61148d565b348015610572575f5ffd5b506006546103a4906001600160a01b031681565b348015610591575f5ffd5b5061025b6105a0366004612565565b61149a565b3480156105b0575f5ffd5b5061025b6105bf366004612710565b6114a6565b3480156105cf575f5ffd5b5061025b6105de366004612710565b611528565b3480156105ee575f5ffd5b5061025b6105fd366004612565565b6115a1565b34801561060d575f5ffd5b5061025b61061c3660046125f9565b6115ac565b34801561062c575f5ffd5b5061025b61063b3660046125f9565b611641565b34801561064b575f5ffd5b5061025b61065a366004612749565b6001600160a01b039182165f90815260016020908152604080832093909416825291909152205490565b34801561068f575f5ffd5b5060055461010090046001600160a01b03166103a4565b5f6106af6116d6565b60405163342a7b0160e01b81524260048201526007905f90734e7b4a37cb9d88e555daea7503dc942954ff742e9063342a7b0190602401602060405180830381865af4158015610701573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107259190612771565b81526020019081526020015f205461073b611822565b610745919061279c565b61074f919061279c565b905090565b606060038054610763906127af565b80601f016020809104026020016040519081016040528092919081815260200182805461078f906127af565b80156107da5780601f106107b1576101008083540402835291602001916107da565b820191905f5260205f20905b8154815290600101906020018083116107bd57829003601f168201915b5050505050905090565b5f6107ef825f6118c5565b92915050565b5f336108028185856118fd565b5060019392505050565b5f6107ef82600161190f565b5f3361082585828561193e565b6108308585856119d3565b60019150505b9392505050565b600554604051632474521560e21b81527f31e44e7763cc54215b453a052743c504bdb2e0f29f465a4651620cb67f255478600482018190523360248301529161010090046001600160a01b0316906391d1485490604401602060405180830381865afa1580156108af573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906108d391906127e7565b6109135760405162461bcd60e51b815260206004820152600c60248201526b15539055551213d49256915160a21b60448201526064015b60405180910390fd5b60405163342a7b0160e01b815242600482015261098f90734e7b4a37cb9d88e555daea7503dc942954ff742e9063342a7b01906024015b602060405180830381865af4158015610965573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109899190612771565b83611a30565b91508115610aa457604051635487c57760e01b81524260048201526109d290734e7b4a37cb9d88e555daea7503dc942954ff742e90635487c5779060240161094a565b91508115610aa4576040517f42966c68000000000000000000000000000000000000000000000000000000008152600481018390526001600160a01b037f00000000000000000000000048f9e38f3070ad8945dfeae3fa70987722e3d89c16906342966c68906024015f604051808303815f87803b158015610a52575f5ffd5b505af1158015610a64573d5f5f3e3d5ffd5b5050604080515f8152602081018690524293507f820476251d95b78d63480a8dbee716eb1c30b70352aa822aede4aa6a6d91357792500160405180910390a25b5050565b5f61074f817f0000000000000000000000000000000000000000000000000000000000000012612806565b600554604051632474521560e21b81527fe7276a2a84d8de556657ec9cf93a55a7d66f096e529d0582ed08e9e2208b92b5600482018190523360248301529161010090046001600160a01b0316906391d1485490604401602060405180830381865afa158015610b45573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610b6991906127e7565b610ba45760405162461bcd60e51b815260206004820152600c60248201526b15539055551213d49256915160a21b604482015260640161090a565b610bac611bf4565b50565b5f610bbc60055460ff1690565b15610bc857505f919050565b5f196107ef565b5f5f610bda83610baf565b905080841115610c2f576040517f79012fb20000000000000000000000000000000000000000000000000000000081526001600160a01b0384166004820152602481018590526044810182905260640161090a565b5f610c39856115a1565b9050610c4733858784611c46565b949350505050565b600554604051632474521560e21b81527f1a6838efa4183e08fe3607359d1259272af9d4716f65e1a7b5921f78fd5a3c6a6004820181905233602483015260609290916101009091046001600160a01b0316906391d1485490604401602060405180830381865afa158015610cc6573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610cea91906127e7565b610d255760405162461bcd60e51b815260206004820152600c60248201526b15539055551213d49256915160a21b604482015260640161090a565b8267ffffffffffffffff811115610d3e57610d3e61281f565b604051908082528060200260200182016040528015610d7157816020015b6060815260200190600190039081610d5c5790505b5091505f5b83811015610ee3575f858583818110610d9157610d91612833565b9050602002810190610da39190612847565b610db19060208101906125f9565b90505f868684818110610dc657610dc6612833565b9050602002810190610dd89190612847565b602001359050365f888886818110610df257610df2612833565b9050602002810190610e049190612847565b610e12906040810190612865565b915091505f5f856001600160a01b0316858585604051610e339291906128af565b5f6040518083038185875af1925050503d805f8114610e6d576040519150601f19603f3d011682016040523d82523d5f602084013e610e72565b606091505b5091509150818190610eb1576040517f4ad176bb00000000000000000000000000000000000000000000000000000000815260040161090a9190612553565b5080898881518110610ec557610ec5612833565b60200260200101819052505050505050508080600101915050610d76565b505092915050565b600554604051632474521560e21b81527f1a6838efa4183e08fe3607359d1259272af9d4716f65e1a7b5921f78fd5a3c6a600482018190523360248301529161010090046001600160a01b0316906391d1485490604401602060405180830381865afa158015610f5d573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610f8191906127e7565b610fbc5760405162461bcd60e51b815260206004820152600c60248201526b15539055551213d49256915160a21b604482015260640161090a565b610aa482611cc8565b600554604051632474521560e21b81527f1a6838efa4183e08fe3607359d1259272af9d4716f65e1a7b5921f78fd5a3c6a600482018190523360248301529161010090046001600160a01b0316906391d1485490604401602060405180830381865afa158015611037573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061105b91906127e7565b6110965760405162461bcd60e51b815260206004820152600c60248201526b15539055551213d49256915160a21b604482015260640161090a565b50600680547fffffffffffffffffffffffff0000000000000000000000000000000000000000166001600160a01b0392909216919091179055565b600554604051632474521560e21b81527ffcb9fcbfa83b897fb2d5cf4b58962164105c1e71489a37ef3ae0db3fdce576f6600482018190523360248301529161010090046001600160a01b0316906391d1485490604401602060405180830381865afa158015611143573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061116791906127e7565b6111a25760405162461bcd60e51b815260206004820152600c60248201526b15539055551213d49256915160a21b604482015260640161090a565b610bac611d38565b600554604051632474521560e21b81527f31e44e7763cc54215b453a052743c504bdb2e0f29f465a4651620cb67f255478600482018190523360248301529161010090046001600160a01b0316906391d1485490604401602060405180830381865afa15801561121c573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061124091906127e7565b61127b5760405162461bcd60e51b815260206004820152600c60248201526b15539055551213d49256915160a21b604482015260640161090a565b7f00000000000000000000000048f9e38f3070ad8945dfeae3fa70987722e3d89c6040517f23b872dd000000000000000000000000000000000000000000000000000000008152336004820152306024820152604481018490526001600160a01b0391909116906323b872dd906064016020604051808303815f875af1158015611307573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061132b91906127e7565b5060405163342a7b0160e01b81524260048201525f90734e7b4a37cb9d88e555daea7503dc942954ff742e9063342a7b0190602401602060405180830381865af415801561137b573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061139f9190612771565b90508260075f8381526020019081526020015f205f8282546113c191906128be565b9091555050604080518281526020810185905242917f67d8e41dbea80661bb961d417970372decefc80a99de38a8ea4706efe68ffc2b910160405180910390a2505050565b5f5f61141183610baf565b905080841115611466576040517f284ff6670000000000000000000000000000000000000000000000000000000081526001600160a01b0384166004820152602481018590526044810182905260640161090a565b5f6114708561149a565b9050610c4733858388611c46565b606060048054610763906127af565b5f336108028185856119d3565b5f6107ef8260016118c5565b5f5f6114b1836115ac565b905080851115611506576040517ffe9cceec0000000000000000000000000000000000000000000000000000000081526001600160a01b0384166004820152602481018690526044810182905260640161090a565b5f6115108661080c565b905061151f3386868985611d75565b95945050505050565b5f5f61153383611641565b905080851115611588576040517fb94abeec0000000000000000000000000000000000000000000000000000000081526001600160a01b0384166004820152602481018690526044810182905260640161090a565b5f611592866107e4565b905061151f338686848a611d75565b5f6107ef825f61190f565b5f6115b960055460ff1690565b8061162c575060065460408051633e10ccdb60e21b815290515f926001600160a01b03169163f843336c9160048083019260209291908290030181865afa158015611606573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061162a9190612771565b125b1561163857505f919050565b6107ef82611dff565b5f61164e60055460ff1690565b806116c1575060065460408051633e10ccdb60e21b815290515f926001600160a01b03169163f843336c9160048083019260209291908290030181865afa15801561169b573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906116bf9190612771565b125b156116cd57505f919050565b6107ef82611e21565b604051635487c57760e01b81524260048201525f908190734e7b4a37cb9d88e555daea7503dc942954ff742e90635487c57790602401602060405180830381865af4158015611727573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061174b9190612771565b5f818152600760205260408082205490517f72b864890000000000000000000000000000000000000000000000000000000081526004810184905292935091734e7b4a37cb9d88e555daea7503dc942954ff742e906372b8648990602401602060405180830381865af41580156117c4573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906117e89190612771565b6117f2904261279c565b90505f62093a8061180383856128d1565b61180d91906128fc565b9050611819818461279c565b94505050505090565b5f7f00000000000000000000000048f9e38f3070ad8945dfeae3fa70987722e3d89c6040517f70a082310000000000000000000000000000000000000000000000000000000081523060048201526001600160a01b0391909116906370a0823190602401602060405180830381865afa1580156118a1573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061074f9190612771565b5f6108366118d16106a6565b6118dc9060016128be565b6118e75f600a6129f2565b6002546118f491906128be565b85919085611e3e565b61190a8383836001611e80565b505050565b5f61083661191e82600a6129f2565b60025461192b91906128be565b6119336106a6565b6118f49060016128be565b6001600160a01b038381165f908152600160209081526040808320938616835292905220545f198110156119cd57818110156119bf576040517ffb8f41b20000000000000000000000000000000000000000000000000000000081526001600160a01b0384166004820152602481018290526044810183905260640161090a565b6119cd84848484035f611e80565b50505050565b6001600160a01b0383166119fc57604051634b637e8f60e11b81525f600482015260240161090a565b6001600160a01b038216611a255760405163ec442f0560e01b81525f600482015260240161090a565b61190a838383611f84565b5f82815260076020526040812054828110611b1b57611a4f838261279c565b5f858152600760205260409020557f00000000000000000000000048f9e38f3070ad8945dfeae3fa70987722e3d89c6001600160a01b03166342966c68846040518263ffffffff1660e01b8152600401611aab91815260200190565b5f604051808303815f87803b158015611ac2575f5ffd5b505af1158015611ad4573d5f5f3e3d5ffd5b505060408051878152602081018790524293507f820476251d95b78d63480a8dbee716eb1c30b70352aa822aede4aa6a6d91357792500160405180910390a25f9250611bec565b5f848152600760205260408120557f00000000000000000000000048f9e38f3070ad8945dfeae3fa70987722e3d89c6001600160a01b03166342966c68826040518263ffffffff1660e01b8152600401611b7791815260200190565b5f604051808303815f87803b158015611b8e575f5ffd5b505af1158015611ba0573d5f5f3e3d5ffd5b505060408051878152602081018590524293507f820476251d95b78d63480a8dbee716eb1c30b70352aa822aede4aa6a6d91357792500160405180910390a2611be9818461279c565b92505b509092915050565b611bfc6120c3565b6005805460ff191690557f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa335b6040516001600160a01b03909116815260200160405180910390a1565b60065f9054906101000a90046001600160a01b03166001600160a01b031663047050e86040518163ffffffff1660e01b81526004016020604051808303815f875af1158015611c97573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611cbb9190612771565b506119cd84848484612101565b600580546001600160a01b038381166101008181027fffffffffffffffffffffff0000000000000000000000000000000000000000ff85161790945560405193909204169182907f9209b7c8c06dcfd261686a663e7c55989337b18d59da5433c6f2835fb6970920905f90a35050565b611d40612185565b6005805460ff191660011790557f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a258611c293390565b60065f9054906101000a90046001600160a01b03166001600160a01b031663047050e86040518163ffffffff1660e01b81526004016020604051808303815f875af1158015611dc6573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611dea9190612771565b50611df885858585856121c2565b5050505050565b6001600160a01b0381165f908152602081905260408120546107ef905f6118c5565b6001600160a01b0381165f908152602081905260408120546107ef565b5f611e6b611e4b83612282565b8015611e6657505f8480611e6157611e616128e8565b868809115b151590565b611e768686866122ae565b61151f91906128be565b6001600160a01b038416611ec2576040517fe602df050000000000000000000000000000000000000000000000000000000081525f600482015260240161090a565b6001600160a01b038316611f04576040517f94280d620000000000000000000000000000000000000000000000000000000081525f600482015260240161090a565b6001600160a01b038085165f90815260016020908152604080832093871683529290522082905580156119cd57826001600160a01b0316846001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92584604051611f7691815260200190565b60405180910390a350505050565b6001600160a01b038316611fae578060025f828254611fa391906128be565b909155506120379050565b6001600160a01b0383165f9081526020819052604090205481811015612019576040517fe450d38c0000000000000000000000000000000000000000000000000000000081526001600160a01b0385166004820152602481018290526044810183905260640161090a565b6001600160a01b0384165f9081526020819052604090209082900390555b6001600160a01b03821661205357600280548290039055612071565b6001600160a01b0382165f9081526020819052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef836040516120b691815260200190565b60405180910390a3505050565b60055460ff166120ff576040517f8dfc202b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b61212d7f00000000000000000000000048f9e38f3070ad8945dfeae3fa70987722e3d89c85308561235e565b61213783826123da565b826001600160a01b0316846001600160a01b03167fdcbc1c05240f31ff3ad067ef1ee35ce4997762752e3a095284754544f4c709d78484604051611f76929190918252602082015260400190565b60055460ff16156120ff576040517fd93c066500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b826001600160a01b0316856001600160a01b0316146121e6576121e683868361193e565b6121f0838261240e565b61221b7f00000000000000000000000048f9e38f3070ad8945dfeae3fa70987722e3d89c8584612442565b826001600160a01b0316846001600160a01b0316866001600160a01b03167ffbde797d201c681b91056529119e0b02407c7bb96a4a2c75c01fc9667232c8db8585604051612273929190918252602082015260400190565b60405180910390a45050505050565b5f600282600381111561229757612297612a00565b6122a19190612a14565b60ff166001149050919050565b5f5f5f6122bb8686612473565b91509150815f036122df578381816122d5576122d56128e8565b0492505050610836565b8184116122f6576122f6600385150260111861248f565b5f848688095f868103871696879004966002600389028118808a02820302808a02820302808a02820302808a02820302808a02820302808a02909103029181900381900460010185841190960395909502919093039390930492909217029150509392505050565b6040516001600160a01b0384811660248301528381166044830152606482018390526119cd9186918216906323b872dd906084015b604051602081830303815290604052915060e01b6020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff83818316178352505050506124a0565b6001600160a01b0382166124035760405163ec442f0560e01b81525f600482015260240161090a565b610aa45f8383611f84565b6001600160a01b03821661243757604051634b637e8f60e11b81525f600482015260240161090a565b610aa4825f83611f84565b6040516001600160a01b0383811660248301526044820183905261190a91859182169063a9059cbb90606401612393565b5f805f1983850993909202808410938190039390930393915050565b634e487b715f52806020526024601cfd5b5f5f60205f8451602086015f885af1806124bf576040513d5f823e3d81fd5b50505f513d915081156124d65780600114156124e3565b6001600160a01b0384163b155b156119cd576040517f5274afe70000000000000000000000000000000000000000000000000000000081526001600160a01b038516600482015260240161090a565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b602081525f6108366020830184612525565b5f60208284031215612575575f5ffd5b5035919050565b80356001600160a01b0381168114612592575f5ffd5b919050565b5f5f604083850312156125a8575f5ffd5b6125b18361257c565b946020939093013593505050565b5f5f5f606084860312156125d1575f5ffd5b6125da8461257c565b92506125e86020850161257c565b929592945050506040919091013590565b5f60208284031215612609575f5ffd5b6108368261257c565b5f5f60408385031215612623575f5ffd5b823591506126336020840161257c565b90509250929050565b5f5f6020838503121561264d575f5ffd5b823567ffffffffffffffff811115612663575f5ffd5b8301601f81018513612673575f5ffd5b803567ffffffffffffffff811115612689575f5ffd5b8560208260051b840101111561269d575f5ffd5b6020919091019590945092505050565b5f602082016020835280845180835260408501915060408160051b8601019250602086015f5b8281101561270457603f198786030184526126ef858351612525565b945060209384019391909101906001016126d3565b50929695505050505050565b5f5f5f60608486031215612722575f5ffd5b833592506127326020850161257c565b91506127406040850161257c565b90509250925092565b5f5f6040838503121561275a575f5ffd5b6127638361257c565b91506126336020840161257c565b5f60208284031215612781575f5ffd5b5051919050565b634e487b7160e01b5f52601160045260245ffd5b818103818111156107ef576107ef612788565b600181811c908216806127c357607f821691505b6020821081036127e157634e487b7160e01b5f52602260045260245ffd5b50919050565b5f602082840312156127f7575f5ffd5b81518015158114610836575f5ffd5b60ff81811683821601908111156107ef576107ef612788565b634e487b7160e01b5f52604160045260245ffd5b634e487b7160e01b5f52603260045260245ffd5b5f8235605e1983360301811261285b575f5ffd5b9190910192915050565b5f5f8335601e1984360301811261287a575f5ffd5b83018035915067ffffffffffffffff821115612894575f5ffd5b6020019150368190038213156128a8575f5ffd5b9250929050565b818382375f9101908152919050565b808201808211156107ef576107ef612788565b80820281158282048414176107ef576107ef612788565b634e487b7160e01b5f52601260045260245ffd5b5f8261290a5761290a6128e8565b500490565b6001815b600184111561294a5780850481111561292e5761292e612788565b600184161561293c57908102905b60019390931c928002612913565b935093915050565b5f82612960575060016107ef565b8161296c57505f6107ef565b8160018114612982576002811461298c576129a8565b60019150506107ef565b60ff84111561299d5761299d612788565b50506001821b6107ef565b5060208310610133831016604e8410600b84101617156129cb575081810a6107ef565b6129d75f19848461290f565b805f19048211156129ea576129ea612788565b029392505050565b5f61083660ff841683612952565b634e487b7160e01b5f52602160045260245ffd5b5f60ff831680612a2657612a266128e8565b8060ff8416069150509291505056fea2646970667358221220c4f491cbba9af0de83944e451c18e22fbba37015ab8895e196eecdfc767ff0f164736f6c634300081c0033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

000000000000000000000000f6d48735eccf12bdc1df2674b1ce3fcb3bd2549000000000000000000000000048f9e38f3070ad8945dfeae3fa70987722e3d89c

-----Decoded View---------------
Arg [0] : _core (address): 0xF6d48735EcCf12bDC1DF2674b1ce3fcb3bD25490
Arg [1] : _receiptToken (address): 0x48f9e38f3070AD8945DFEae3FA70987722E3D89c

-----Encoded View---------------
2 Constructor Arguments found :
Arg [0] : 000000000000000000000000f6d48735eccf12bdc1df2674b1ce3fcb3bd25490
Arg [1] : 00000000000000000000000048f9e38f3070ad8945dfeae3fa70987722e3d89c


Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.