ERC-20
Source Code
Overview
Max Total Supply
51,113,775.64453391621975328 VAZT
Holders
1
Transfers
-
32 ( -43.86%)
Market
Onchain Market Cap
-
Circulating Supply Market Cap
-
Other Info
Token Contract (WITH 18 Decimals)
Loading...
Loading
Loading...
Loading
Loading...
Loading
| # | Exchange | Pair | Price | 24H Volume | % Volume |
|---|
Contract Name:
VirtualAztecToken
Compiler Version
v0.8.30+commit.73712a01
Optimization Enabled:
Yes with 200 runs
Other Settings:
prague EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: Apache-2.0
pragma solidity ^0.8.27;
import {IATPFactoryNonces} from "@atp/ATPFactoryNonces.sol";
import {RevokableParams} from "@atp/atps/linear/ILATP.sol";
import {LockLib} from "@atp/libraries/LockLib.sol";
import {Ownable} from "@oz/access/Ownable.sol";
import {ERC20} from "@oz/token/ERC20/ERC20.sol";
import {IERC20} from "@oz/token/ERC20/IERC20.sol";
import {ECDSA} from "@oz/utils/cryptography/ECDSA.sol";
import {EIP712} from "@oz/utils/cryptography/EIP712.sol";
import {Nonces} from "@oz/utils/Nonces.sol";
import {IContinuousClearingAuction} from "@twap-auction/interfaces/IContinuousClearingAuction.sol";
import {IWhitelistProvider} from "../soulbound/providers/IWhitelistProvider.sol";
interface IVirtualToken is IERC20 {
function UNDERLYING_TOKEN_ADDRESS() external view returns (IERC20);
}
interface IVirtualAztecToken is IVirtualToken {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* Structs */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
struct Signature {
bytes32 r;
bytes32 s;
uint8 v;
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* Events */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
event AuctionAddressSet(IContinuousClearingAuction auctionAddress);
event StrategyAddressSet(address strategyAddress);
event UnderlyingTokensRecovered(address to, uint256 amount);
event AtpBeneficiarySet(address indexed _owner, address indexed _beneficiary);
event ScreeningProviderSet(address indexed _screeningProvider);
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* Errors */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
error VirtualAztecToken__ZeroAddress();
error VirtualAztecToken__Recover__InvalidAddress();
error VirtualAztecToken__UnderlyingTokensNotBacked();
error VirtualAztecToken__NotImplemented();
error VirtualAztecToken__AuctionNotSet();
error VirtualAztecToken__StrategyNotSet();
error VirtualAztecToken__InvalidEIP712SetBeneficiarySiganture();
error VirtualAztecToken__ScreeningFailed();
error VirtualAztecToken__SignatureDeadlineExpired();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* User Functions */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
function setAtpBeneficiary(address _beneficiary, bytes calldata _screeningData) external;
function setAtpBeneficiaryWithSignature(
address _owner,
address _beneficiary,
uint256 _deadline,
Signature memory _signature,
bytes calldata _screeningData
) external;
function sweepIntoAtp() external;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* Admin Functions */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
function mint(address _to, uint256 _amount) external;
function setAuctionAddress(IContinuousClearingAuction _auctionAddress) external;
function setStrategyAddress(address _strategyAddress) external;
function pendingAtpBalance(address _beneficiary) external view returns (uint256);
function setScreeningProvider(address _screeningProvider) external;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* View Functions */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
function auctionAddress() external view returns (IContinuousClearingAuction);
function strategyAddress() external view returns (address);
function ATP_FACTORY() external view returns (IATPFactoryNonces);
function atpBeneficiaries(address _owner) external view returns (address);
function getSetAtpBeneficiaryWithSignatureDigest(address _owner, address _beneficiary, uint256 _deadline, uint256 _nonce)
external
view
returns (bytes32);
}
/**
* @title Virtual Aztec Token
* @author Aztec-Labs
* @notice The virtual aztec token is a token used to represent the aztec token within the auction system.
* It is expected to hold its entire supply
*/
contract VirtualAztecToken is ERC20, EIP712, Ownable, Nonces, IVirtualAztecToken {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* Constants */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @notice If purchasing over the stake amount - they go into a must stake ATP
uint256 public constant MIN_STAKE_AMOUNT = 200_000 ether;
/// @notice EIP-712 typehash for set atp beneficiary with signature
bytes32 public constant SET_ATP_BENEFICIARY_WITH_SIGNATURE_TYPEHASH =
keccak256("setAtpBeneficiaryWithSignature(address _owner,address _beneficiary,uint256 _deadline,uint256 _nonce)");
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* Immutables */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @notice The address of the underlying token - the aztec token
IERC20 public immutable UNDERLYING_TOKEN_ADDRESS;
/// @notice The address of the ATP factory contract for when not purchasing over the stake amount
IATPFactoryNonces public immutable ATP_FACTORY;
/// @notice The address of the foundation
address public immutable FOUNDATION_ADDRESS;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* State */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @notice The address of the TWAP auction contract
IContinuousClearingAuction internal $auctionAddress;
/// @notice The address of the launcher strategy contract
address internal $strategyAddress;
/// @notice Screening Provider
address internal $screeningProvider;
///@notice Allow ATPs to be minted to different beneficiaries
mapping(address owner => address beneficiary) internal $atpBeneficiaries;
/// @notice The balances of the ATPs that have been created for each beneficiary
mapping(address atpBeneficiary => uint256 pendingAtpBalance) internal $pendingAtpBalances;
constructor(
string memory _name,
string memory _symbol,
IERC20 _underlyingTokenAddress,
IATPFactoryNonces _atpFactory,
address _foundationAddress
) ERC20(_name, _symbol) Ownable(msg.sender) EIP712("VirtualAztecToken", "1") {
require(address(_underlyingTokenAddress) != address(0), VirtualAztecToken__ZeroAddress());
require(address(_atpFactory) != address(0), VirtualAztecToken__ZeroAddress());
require(address(_foundationAddress) != address(0), VirtualAztecToken__ZeroAddress());
UNDERLYING_TOKEN_ADDRESS = _underlyingTokenAddress;
ATP_FACTORY = _atpFactory;
FOUNDATION_ADDRESS = _foundationAddress;
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* Admin Functions */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/**
* @notice Mint the tokens to the recipient
* @param _to The address of the recipient
* @param _amount The amount of tokens to mint
* @dev Only callable by the owner
* @dev the minter must have approved the virtual tokens contract to spend the underlying token
* @dev the minting must be backed 1 to 1 by the underlying tokens
*/
function mint(address _to, uint256 _amount) external override(IVirtualAztecToken) onlyOwner {
IERC20(UNDERLYING_TOKEN_ADDRESS).transferFrom(msg.sender, address(this), _amount);
// Check that the underlying tokens are backed 1 to 1 by the virtual tokens
// The total supply of this token + the amount to mint should be less than or equal to the balance of the underlying held
uint256 totalSupply = totalSupply();
uint256 underlyingBalance = IERC20(UNDERLYING_TOKEN_ADDRESS).balanceOf(address(this));
require(totalSupply + _amount <= underlyingBalance, VirtualAztecToken__UnderlyingTokensNotBacked());
// Mint the tokens
_mint(_to, _amount);
}
/**
* @notice Set the auction address
* @param _auctionAddress The address of the auction contract
* @dev Only callable by the owner
* @dev The auction contract is used to mint the tokens into the auction system
*/
function setAuctionAddress(IContinuousClearingAuction _auctionAddress) external override(IVirtualAztecToken) onlyOwner {
require(address(_auctionAddress) != address(0), VirtualAztecToken__ZeroAddress());
$auctionAddress = _auctionAddress;
emit AuctionAddressSet(_auctionAddress);
}
/**
* @notice Set the strategy address
* @param _strategyAddress The address of the strategy contract
* @dev Only callable by the owner
* @dev The strategy contract is used to migrate the tokens into the auction system
*/
function setStrategyAddress(address _strategyAddress) external override(IVirtualAztecToken) onlyOwner {
require(_strategyAddress != address(0), VirtualAztecToken__ZeroAddress());
$strategyAddress = _strategyAddress;
emit StrategyAddressSet(_strategyAddress);
}
/**
* @notice Set the screening provider
* @param _screeningProvider The address of the screening provider
* @dev Only callable by the owner
* @dev The screening provider is used to screen the beneficiary
*/
function setScreeningProvider(address _screeningProvider) external override(IVirtualAztecToken) onlyOwner {
require(_screeningProvider != address(0), VirtualAztecToken__ZeroAddress());
$screeningProvider = _screeningProvider;
emit ScreeningProviderSet(_screeningProvider);
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* User Functions */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/**
* @notice Sweep the tokens into an ATP
* @dev The tokens are swept into an ATP for the sender
* @dev The ATP is created for the sender's beneficiary
*/
function sweepIntoAtp() external override(IVirtualAztecToken) {
uint256 atpBalance = $pendingAtpBalances[msg.sender];
$pendingAtpBalances[msg.sender] = 0;
// Create the ATP for each beneficiary
_mintAtp(msg.sender, atpBalance);
}
/**
* @notice Set the atp beneficiary
* @param _beneficiary The address of the beneficiary
* @dev Only callable by the owner
* @dev The beneficiary is the address that will receive the ATPs
*/
function setAtpBeneficiary(address _beneficiary, bytes calldata _screeningData)
external
override(IVirtualAztecToken)
{
require(_beneficiary != address(0), VirtualAztecToken__ZeroAddress());
require(
IWhitelistProvider($screeningProvider).verify(_beneficiary, _screeningData),
VirtualAztecToken__ScreeningFailed()
);
$atpBeneficiaries[msg.sender] = _beneficiary;
emit AtpBeneficiarySet(msg.sender, _beneficiary);
}
///@notice Allow setting of the atp beneficiary via a signature in order to support multicall flows
function setAtpBeneficiaryWithSignature(
address _owner,
address _beneficiary,
uint256 _deadline,
IVirtualAztecToken.Signature memory _signature,
bytes calldata _screeningData
) external override(IVirtualAztecToken) {
require(block.timestamp <= _deadline, VirtualAztecToken__SignatureDeadlineExpired());
require(_owner != address(0), VirtualAztecToken__ZeroAddress());
require(_beneficiary != address(0), VirtualAztecToken__ZeroAddress());
uint256 nonce = _useNonce(_owner);
bytes32 digest = getSetAtpBeneficiaryWithSignatureDigest(_owner, _beneficiary, _deadline, nonce);
address recoveredOwner = ECDSA.recover(digest, _signature.v, _signature.r, _signature.s);
require(recoveredOwner == _owner, VirtualAztecToken__InvalidEIP712SetBeneficiarySiganture());
require(
IWhitelistProvider($screeningProvider).verify(_beneficiary, _screeningData),
VirtualAztecToken__ScreeningFailed()
);
$atpBeneficiaries[_owner] = _beneficiary;
emit AtpBeneficiarySet(_owner, _beneficiary);
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* View Functions */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
function auctionAddress() external view override(IVirtualAztecToken) returns (IContinuousClearingAuction) {
return $auctionAddress;
}
function strategyAddress() external view override(IVirtualAztecToken) returns (address) {
return $strategyAddress;
}
function pendingAtpBalance(address _beneficiary) external view override(IVirtualAztecToken) returns (uint256) {
return $pendingAtpBalances[_beneficiary];
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* ERC20 overrides */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/**
* @notice Transfer the token to the recipient
* @param _to The address of the recipient
* @param _amount The amount of tokens to transfer
* @return bool Whether the transfer was successful
*
* @dev Only implements token transfers if the sender is the auction contract or the pool migrator contract
*/
// NOTE: there must be no circumstances where this can burn more tokens than are expected
function transfer(address _to, uint256 _amount) public override(ERC20, IERC20) returns (bool) {
require(address($auctionAddress) != address(0), VirtualAztecToken__AuctionNotSet());
require(address($strategyAddress) != address(0), VirtualAztecToken__StrategyNotSet());
if (msg.sender == address($auctionAddress) && _to == FOUNDATION_ADDRESS) {
// Burn the virtual tokens
_burn(msg.sender, _amount);
// Transfer the underlying tokens back to the foundation
return IERC20(UNDERLYING_TOKEN_ADDRESS).transfer(_to, _amount);
}
// If the transfer is being made from the auction contract, it will mint an ATP for the recipient
else if (msg.sender == address($auctionAddress)) {
// Burn the virtual tokens
_burn(msg.sender, _amount);
// Account for a balance being added to the _to address for creating atp
$pendingAtpBalances[_to] += _amount;
return true;
}
// If the transfer is being made from the pool migrator contract, it will transfer the underlying tokens
// The migrator will move the virtual tokens into the auction system at the beginning of the auction
// So we need to check that the auction has ended in order to transfer the underlying tokens - for migration
// be done by asserting the address it is sending to is NOT the auction address
else if (msg.sender == $strategyAddress && _to != address($auctionAddress)) {
// Burn the virtual tokens
_burn(msg.sender, _amount);
// Transfer the underlying tokens to the pool migrator
return IERC20(UNDERLYING_TOKEN_ADDRESS).transfer(_to, _amount);
}
// Otherwise, transfer the tokens normally
return super.transfer(_to, _amount);
}
/**
* @notice Transfer the tokens from the sender to the recipient
* @param _from The address of the sender
* @param _to The address of the recipient
* @param _amount The amount of tokens to transfer
* @return bool Whether the transfer was successful
* @dev Reverts as transfer from is not implemented
*/
function transferFrom(address _from, address _to, uint256 _amount) public override(ERC20, IERC20) returns (bool) {
if (_to == $strategyAddress) {
return super.transferFrom(_from, _to, _amount);
}
revert VirtualAztecToken__NotImplemented();
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* View Functions */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
function getSetAtpBeneficiaryWithSignatureDigest(address _owner, address _beneficiary, uint256 _deadline, uint256 _nonce)
public
view
override(IVirtualAztecToken)
returns (bytes32)
{
return
_hashTypedDataV4(keccak256(abi.encode(SET_ATP_BENEFICIARY_WITH_SIGNATURE_TYPEHASH, _owner, _beneficiary, _deadline, _nonce)));
}
///@notice external view function for atp beneficiaries state mapping
function atpBeneficiaries(address _owner) external view override(IVirtualAztecToken) returns (address) {
return $atpBeneficiaries[_owner];
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* Internal Functions */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @notice Get the atp beneficiary for the given address
/// @dev if nothing is set, return _to, otherwise return the stored value
function getATPBeneficiary(address _to) internal view returns (address) {
address _storedBeneficiary = $atpBeneficiaries[_to];
if (_storedBeneficiary != address(0)) {
return _storedBeneficiary;
}
return _to;
}
/**
* @notice Mint the ATP
* @param _beneficiary The address of the beneficiary
* @param _amount The amount of tokens to mint into the ATP
* @dev Creates a NCATP if the amount is greater than or equal to the min stake amount, otherwise creates a LATP
*/
function _mintAtp(address _beneficiary, uint256 _amount) internal {
address atpBeneficiary = getATPBeneficiary(_beneficiary);
if (_amount >= MIN_STAKE_AMOUNT) {
// Transfer the underlying tokens to the ATP factory
IERC20(UNDERLYING_TOKEN_ADDRESS).transfer(address(ATP_FACTORY), _amount);
ATP_FACTORY.createNCATP(
atpBeneficiary, _amount, RevokableParams({revokeBeneficiary: address(0), lockParams: LockLib.empty()})
);
} else {
// Transfer the underlying tokens to the ATP factory
IERC20(UNDERLYING_TOKEN_ADDRESS).transfer(address(ATP_FACTORY), _amount);
ATP_FACTORY.createLATP(
atpBeneficiary, _amount, RevokableParams({revokeBeneficiary: address(0), lockParams: LockLib.empty()})
);
}
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;
import {Clones} from "@oz/proxy/Clones.sol";
import {IERC20} from "@oz/token/ERC20/IERC20.sol";
import {SafeERC20} from "@oz/token/ERC20/utils/SafeERC20.sol";
import {IATPFactory, ATPFactory} from "./ATPFactory.sol";
import {ILATP, RevokableParams} from "./atps/linear/ILATP.sol";
import {LATP} from "./atps/linear/LATP.sol";
import {IMATP, MilestoneId} from "./atps/milestone/IMATP.sol";
import {MATP} from "./atps/milestone/MATP.sol";
import {INCATP} from "./atps/noclaim/INCATP.sol";
import {NCATP} from "./atps/noclaim/NCATP.sol";
import {Nonces} from "./Nonces.sol";
interface IATPFactoryNonces is IATPFactory {
function predictLATPAddressWithNonce(
address _beneficiary,
uint256 _allocation,
RevokableParams memory _revokableParams,
uint256 _nonce
) external view returns (address);
function predictNCATPAddressWithNonce(
address _beneficiary,
uint256 _allocation,
RevokableParams memory _revokableParams,
uint256 _nonce
) external view returns (address);
function predictMATPAddressWithNonce(
address _beneficiary,
uint256 _allocation,
MilestoneId _milestoneId,
uint256 _nonce
) external view returns (address);
}
contract ATPFactoryNonces is IATPFactoryNonces, ATPFactory, Nonces {
using SafeERC20 for IERC20;
constructor(address __owner, IERC20 _token, uint256 _unlockCliffDuration, uint256 _unlockLockDuration)
ATPFactory(__owner, _token, _unlockCliffDuration, _unlockLockDuration)
{}
/**
* @notice Predict the address of an LATP
*
* @param _beneficiary The address of the beneficiary
* @param _allocation The amount of tokens to allocate to the LATP
* @param _revokableParams The parameters for the accumulation lock and revoke beneficiary, if the LATPs are revokable
*
* @return The address of the LATP
*/
function predictLATPAddress(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
external
view
override(IATPFactory, ATPFactory)
returns (address)
{
bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _revokableParams));
uint256 nonce = nonces(salt);
salt = keccak256(abi.encode(salt, nonce));
return Clones.predictDeterministicAddress(address(LATP_IMPLEMENTATION), salt, address(this));
}
/**
* @notice Predict the address of an LATP with a given nonce
*
* @param _beneficiary The address of the beneficiary
* @param _allocation The amount of tokens to allocate to the LATP
* @param _revokableParams The parameters for the accumulation lock and revoke beneficiary, if the LATPs are revokable
* @param _nonce The nonce to use for the prediction
*
* @return The address of the LATP
*/
function predictLATPAddressWithNonce(
address _beneficiary,
uint256 _allocation,
RevokableParams memory _revokableParams,
uint256 _nonce
) external view override(IATPFactoryNonces) returns (address) {
bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _revokableParams));
salt = keccak256(abi.encode(salt, _nonce));
return Clones.predictDeterministicAddress(address(LATP_IMPLEMENTATION), salt, address(this));
}
/// @inheritdoc IATPFactory
function predictNCATPAddress(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
external
view
override(IATPFactory, ATPFactory)
returns (address)
{
bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _revokableParams));
uint256 nonce = nonces(salt);
salt = keccak256(abi.encode(salt, nonce));
return Clones.predictDeterministicAddress(address(NCATP_IMPLEMENTATION), salt, address(this));
}
/**
* @notice Predict the address of an NCATP with a given nonce
*
* @param _beneficiary The address of the beneficiary
* @param _allocation The amount of tokens to allocate to the NCATP
* @param _revokableParams The parameters for the accumulation lock and revoke beneficiary, if the NCATP is revokable
* @param _nonce The nonce to use for the prediction
*
* @return The address of the NCATP
*/
function predictNCATPAddressWithNonce(
address _beneficiary,
uint256 _allocation,
RevokableParams memory _revokableParams,
uint256 _nonce
) external view override(IATPFactoryNonces) returns (address) {
bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _revokableParams));
salt = keccak256(abi.encode(salt, _nonce));
return Clones.predictDeterministicAddress(address(NCATP_IMPLEMENTATION), salt, address(this));
}
/// @inheritdoc IATPFactory
function predictMATPAddress(address _beneficiary, uint256 _allocation, MilestoneId _milestoneId)
external
view
virtual
override(IATPFactory, ATPFactory)
returns (address)
{
bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _milestoneId));
uint256 nonce = nonces(salt);
salt = keccak256(abi.encode(salt, nonce));
return Clones.predictDeterministicAddress(address(MATP_IMPLEMENTATION), salt, address(this));
}
function predictMATPAddressWithNonce(
address _beneficiary,
uint256 _allocation,
MilestoneId _milestoneId,
uint256 _nonce
) external view override(IATPFactoryNonces) returns (address) {
bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _milestoneId));
salt = keccak256(abi.encode(salt, _nonce));
return Clones.predictDeterministicAddress(address(MATP_IMPLEMENTATION), salt, address(this));
}
/**
* @notice Create and funds a new LATP
* The LATP is created using the `Clones` library and then initialized.
* We deploy deterministically using the initialization params as the salt.
* When created, the LATP is funded with the `_allocation` amount of tokens.
*
* This setup is done to keep gas costs low.
*
* @dev The caller must be a `minter`
*
* @param _beneficiary The address of the beneficiary
* @param _allocation The amount of tokens to allocate to the LATP
* @param _revokableParams The parameters for the accumulation lock, if the LATP is revokable
*
* @return The LATP
*/
function createLATP(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
public
override(IATPFactory, ATPFactory)
onlyMinter
returns (ILATP)
{
bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _revokableParams));
uint256 nonce = useNonce(salt);
salt = keccak256(abi.encode(salt, nonce));
LATP atp = LATP(Clones.cloneDeterministic(address(LATP_IMPLEMENTATION), salt));
atp.initialize(_beneficiary, _allocation, _revokableParams);
TOKEN.safeTransfer(address(atp), _allocation);
emit ATPCreated(_beneficiary, address(atp), _allocation);
return ILATP(address(atp));
}
/**
* @notice Create and funds a new NCATP (Non-Claimable ATP)
* The NCATP is created using the `Clones` library and then initialized.
* We deploy deterministically using the initialization params as the salt.
* When created, the NCATP is funded with the `_allocation` amount of tokens.
*
* This setup is done to keep gas costs low.
*
* @dev The caller must be a `minter`
*
* @param _beneficiary The address of the beneficiary
* @param _allocation The amount of tokens to allocate to the NCATP
* @param _revokableParams The parameters for the accumulation lock, if the NCATP is revokable
*
* @return The NCATP
*/
function createNCATP(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
public
override(IATPFactory, ATPFactory)
onlyMinter
returns (INCATP)
{
bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _revokableParams));
uint256 nonce = useNonce(salt);
salt = keccak256(abi.encode(salt, nonce));
NCATP atp = NCATP(Clones.cloneDeterministic(address(NCATP_IMPLEMENTATION), salt));
atp.initialize(_beneficiary, _allocation, _revokableParams);
TOKEN.safeTransfer(address(atp), _allocation);
emit ATPCreated(_beneficiary, address(atp), _allocation);
return INCATP(address(atp));
}
/**
* @notice Create and funds a new MATP
* The MATP is created using the `Clones` library and then initialized.
* We deploy deterministically using the initialization params as the salt.
* When created, the MATP is funded with the `_allocation` amount of tokens.
*
* This setup is done to keep gas costs low.
*
* @dev The caller must be a `minter`
*
* @param _beneficiary The address of the beneficiary
* @param _allocation The amount of tokens to allocate to the MATP
* @param _milestoneId The milestone ID for the MATP
*
* @return The MATP
*/
function createMATP(address _beneficiary, uint256 _allocation, MilestoneId _milestoneId)
public
override(IATPFactory, ATPFactory)
onlyMinter
returns (IMATP)
{
bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _milestoneId));
uint256 nonce = useNonce(salt);
salt = keccak256(abi.encode(salt, nonce));
MATP atp = MATP(Clones.cloneDeterministic(address(MATP_IMPLEMENTATION), salt));
atp.initialize(_beneficiary, _allocation, _milestoneId);
TOKEN.safeTransfer(address(atp), _allocation);
emit ATPCreated(_beneficiary, address(atp), _allocation);
return IMATP(address(atp));
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;
import {Lock, LockParams} from "./../../libraries/LockLib.sol";
import {IATPCore, IATPPeriphery} from "./../base/IATP.sol";
struct LATPStorage {
uint32 accumulationStartTime;
uint32 accumulationCliffDuration;
uint32 accumulationLockDuration;
bool isRevokable;
address revokeBeneficiary;
}
struct RevokableParams {
address revokeBeneficiary;
LockParams lockParams;
}
interface ILATPCore is IATPCore {
error InsufficientStakeable(uint256 stakeable, uint256 allowance);
error LockParamsMustBeEmpty();
function initialize(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams) external;
function getAccumulationLock() external view returns (Lock memory);
function getRevokableAmount() external view returns (uint256);
function getStakeableAmount() external view returns (uint256);
}
interface ILATPPeriphery is IATPPeriphery {
function getStore() external view returns (LATPStorage memory);
function getRevokeBeneficiary() external view returns (address);
}
interface ILATP is ILATPCore, ILATPPeriphery {}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;
/**
* @notice The parameters for a lock
* The parameters used to derive the actual lock.
*
* @param startTime The timestamp that the lock starts at (0 before this value)
* @param cliffDuration Time until the cliff is reached
* @param lockDuration Time until the lock is fully unlocked
*/
struct LockParams {
uint256 startTime;
uint256 cliffDuration;
uint256 lockDuration;
}
/**
* @notice The lock struct
* @param startTime The timestamp that the lock starts at (0 before this value)
* @param cliff The timestamp of the cliff of the lock (0 before this value, >= startTime)
* @param endTime The timestamp that the lock ends at, >= cliff
* @param allocation The amount of tokens that are locked
*/
struct Lock {
uint256 startTime;
uint256 cliff;
uint256 endTime;
uint256 allocation;
}
/**
* @title LockLib
* @notice Library for handling "locks" on assets
* A lock is in this case, a curve defining the amount available at any given timestamp.
* The particular lock is a linear curve with a cliff.
*/
library LockLib {
error LockDurationMustBeGTZero();
error LockDurationMustBeGECliffDuration(uint256 lockDuration, uint256 cliffDuration);
/**
* @notice Check if the lock has ended
*
* @param _lock The lock
* @param _timestamp The timestamp to check
*
* @return True if the lock has ended
*/
function hasEnded(Lock memory _lock, uint256 _timestamp) internal pure returns (bool) {
return _timestamp >= _lock.endTime;
}
/**
* @notice Get the unlocked value of the lock at a given timestamp
*
* @param _lock The lock
* @param _timestamp The timestamp to get the value at
*
* @return The unlocked value at the given timestamp
*/
function unlockedAt(Lock memory _lock, uint256 _timestamp) internal pure returns (uint256) {
if (_timestamp < _lock.cliff) {
return 0;
}
if (_timestamp >= _lock.endTime) {
return _lock.allocation;
}
return (_lock.allocation * (_timestamp - _lock.startTime)) / (_lock.endTime - _lock.startTime);
}
/**
* @notice Create a lock
*
* @dev The caller should make sure that `_allocation` is not zero
*
* @param _params The lock params
* @param _allocation The allocation of the lock
*
* @return The lock
*/
function createLock(LockParams memory _params, uint256 _allocation) internal pure returns (Lock memory) {
LockLib.assertValid(_params);
return Lock({
startTime: _params.startTime,
cliff: _params.startTime + _params.cliffDuration,
endTime: _params.startTime + _params.lockDuration,
allocation: _allocation
});
}
/**
* @notice Assert that the lock params are valid
*
* @param _params The lock params
*/
function assertValid(LockParams memory _params) internal pure {
require(_params.lockDuration > 0, LockDurationMustBeGTZero());
require(
_params.lockDuration >= _params.cliffDuration,
LockDurationMustBeGECliffDuration(_params.lockDuration, _params.cliffDuration)
);
}
/**
* @notice Check if the lock params are empty
*
* @param _params The lock params
*
* @return True if the lock params are empty
*/
function isEmpty(LockParams memory _params) internal pure returns (bool) {
return _params.startTime == 0 && _params.cliffDuration == 0 && _params.lockDuration == 0;
}
/**
* @notice Get an empty lock params
*
* @return An empty lock params
*/
function empty() internal pure returns (LockParams memory) {
return LockParams({startTime: 0, cliffDuration: 0, lockDuration: 0});
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC-20
* applications.
*/
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
mapping(address account => uint256) private _balances;
mapping(address account => mapping(address spender => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* Both values are immutable: they can only be set once during construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `value`.
*/
function transfer(address to, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_transfer(owner, to, value);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, value);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Skips emitting an {Approval} event indicating an allowance update. This is not
* required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `value`.
* - the caller must have allowance for ``from``'s tokens of at least
* `value`.
*/
function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, value);
_transfer(from, to, value);
return true;
}
/**
* @dev Moves a `value` amount of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _transfer(address from, address to, uint256 value) internal {
if (from == address(0)) {
revert ERC20InvalidSender(address(0));
}
if (to == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(from, to, value);
}
/**
* @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
* (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
* this function.
*
* Emits a {Transfer} event.
*/
function _update(address from, address to, uint256 value) internal virtual {
if (from == address(0)) {
// Overflow check required: The rest of the code assumes that totalSupply never overflows
_totalSupply += value;
} else {
uint256 fromBalance = _balances[from];
if (fromBalance < value) {
revert ERC20InsufficientBalance(from, fromBalance, value);
}
unchecked {
// Overflow not possible: value <= fromBalance <= totalSupply.
_balances[from] = fromBalance - value;
}
}
if (to == address(0)) {
unchecked {
// Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
_totalSupply -= value;
}
} else {
unchecked {
// Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
_balances[to] += value;
}
}
emit Transfer(from, to, value);
}
/**
* @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
* Relies on the `_update` mechanism
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _mint(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(address(0), account, value);
}
/**
* @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
* Relies on the `_update` mechanism.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead
*/
function _burn(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidSender(address(0));
}
_update(account, address(0), value);
}
/**
* @dev Sets `value` as the allowance of `spender` over the `owner`'s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*
* Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
*/
function _approve(address owner, address spender, uint256 value) internal {
_approve(owner, spender, value, true);
}
/**
* @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
*
* By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
* `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
* `Approval` event during `transferFrom` operations.
*
* Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
* true using the following override:
*
* ```solidity
* function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
* super._approve(owner, spender, value, true);
* }
* ```
*
* Requirements are the same as {_approve}.
*/
function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
if (owner == address(0)) {
revert ERC20InvalidApprover(address(0));
}
if (spender == address(0)) {
revert ERC20InvalidSpender(address(0));
}
_allowances[owner][spender] = value;
if (emitEvent) {
emit Approval(owner, spender, value);
}
}
/**
* @dev Updates `owner`'s allowance for `spender` based on spent `value`.
*
* Does not update the allowance value in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Does not emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance < type(uint256).max) {
if (currentAllowance < value) {
revert ERC20InsufficientAllowance(spender, currentAllowance, value);
}
unchecked {
_approve(owner, spender, currentAllowance - value, false);
}
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.20;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature derives the `address(0)`.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(
bytes32 hash,
bytes memory signature
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
assembly ("memory-safe") {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/cryptography/EIP712.sol)
pragma solidity ^0.8.20;
import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
*
* The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
* encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
* does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
* produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
* separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
* separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
*
* @custom:oz-upgrades-unsafe-allow state-variable-immutable
*/
abstract contract EIP712 is IERC5267 {
using ShortStrings for *;
bytes32 private constant TYPE_HASH =
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
// Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
// invalidate the cached domain separator if the chain id changes.
bytes32 private immutable _cachedDomainSeparator;
uint256 private immutable _cachedChainId;
address private immutable _cachedThis;
bytes32 private immutable _hashedName;
bytes32 private immutable _hashedVersion;
ShortString private immutable _name;
ShortString private immutable _version;
// slither-disable-next-line constable-states
string private _nameFallback;
// slither-disable-next-line constable-states
string private _versionFallback;
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
constructor(string memory name, string memory version) {
_name = name.toShortStringWithFallback(_nameFallback);
_version = version.toShortStringWithFallback(_versionFallback);
_hashedName = keccak256(bytes(name));
_hashedVersion = keccak256(bytes(version));
_cachedChainId = block.chainid;
_cachedDomainSeparator = _buildDomainSeparator();
_cachedThis = address(this);
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view returns (bytes32) {
if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
return _cachedDomainSeparator;
} else {
return _buildDomainSeparator();
}
}
function _buildDomainSeparator() private view returns (bytes32) {
return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
}
/**
* @inheritdoc IERC5267
*/
function eip712Domain()
public
view
virtual
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
)
{
return (
hex"0f", // 01111
_EIP712Name(),
_EIP712Version(),
block.chainid,
address(this),
bytes32(0),
new uint256[](0)
);
}
/**
* @dev The name parameter for the EIP712 domain.
*
* NOTE: By default this function reads _name which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Name() internal view returns (string memory) {
return _name.toStringWithFallback(_nameFallback);
}
/**
* @dev The version parameter for the EIP712 domain.
*
* NOTE: By default this function reads _version which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Version() internal view returns (string memory) {
return _version.toStringWithFallback(_versionFallback);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides tracking nonces for addresses. Nonces will only increment.
*/
abstract contract Nonces {
/**
* @dev The nonce used for an `account` is not the expected current nonce.
*/
error InvalidAccountNonce(address account, uint256 currentNonce);
mapping(address account => uint256) private _nonces;
/**
* @dev Returns the next unused nonce for an address.
*/
function nonces(address owner) public view virtual returns (uint256) {
return _nonces[owner];
}
/**
* @dev Consumes a nonce.
*
* Returns the current value and increments nonce.
*/
function _useNonce(address owner) internal virtual returns (uint256) {
// For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
// decremented or reset. This guarantees that the nonce never overflows.
unchecked {
// It is important to do x++ and not ++x here.
return _nonces[owner]++;
}
}
/**
* @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
*/
function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
uint256 current = _useNonce(owner);
if (nonce != current) {
revert InvalidAccountNonce(owner, current);
}
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {Checkpoint} from '../libraries/CheckpointLib.sol';
import {ValueX7} from '../libraries/ValueX7Lib.sol';
import {IBidStorage} from './IBidStorage.sol';
import {ICheckpointStorage} from './ICheckpointStorage.sol';
import {IStepStorage} from './IStepStorage.sol';
import {ITickStorage} from './ITickStorage.sol';
import {ITokenCurrencyStorage} from './ITokenCurrencyStorage.sol';
import {IValidationHook} from './IValidationHook.sol';
import {IDistributionContract} from './external/IDistributionContract.sol';
/// @notice Parameters for the auction
/// @dev token and totalSupply are passed as constructor arguments
struct AuctionParameters {
address currency; // token to raise funds in. Use address(0) for ETH
address tokensRecipient; // address to receive leftover tokens
address fundsRecipient; // address to receive all raised funds
uint64 startBlock; // Block which the first step starts
uint64 endBlock; // When the auction finishes
uint64 claimBlock; // Block when the auction can claimed
uint256 tickSpacing; // Fixed granularity for prices
address validationHook; // Optional hook called before a bid
uint256 floorPrice; // Starting floor price for the auction
uint128 requiredCurrencyRaised; // Amount of currency required to be raised for the auction to graduate
bytes auctionStepsData; // Packed bytes describing token issuance schedule
}
/// @notice Interface for the ContinuousClearingAuction contract
interface IContinuousClearingAuction is
IDistributionContract,
ICheckpointStorage,
ITickStorage,
IStepStorage,
ITokenCurrencyStorage,
IBidStorage
{
/// @notice Error thrown when the amount received is invalid
error InvalidTokenAmountReceived();
/// @notice Error thrown when an invalid value is deposited
error InvalidAmount();
/// @notice Error thrown when the bid owner is the zero address
error BidOwnerCannotBeZeroAddress();
/// @notice Error thrown when the bid price is below the clearing price
error BidMustBeAboveClearingPrice();
/// @notice Error thrown when the bid price is too high given the auction's total supply
/// @param maxPrice The price of the bid
/// @param maxBidPrice The max price allowed for a bid
error InvalidBidPriceTooHigh(uint256 maxPrice, uint256 maxBidPrice);
/// @notice Error thrown when the bid amount is too small
error BidAmountTooSmall();
/// @notice Error thrown when msg.value is non zero when currency is not ETH
error CurrencyIsNotNative();
/// @notice Error thrown when the auction is not started
error AuctionNotStarted();
/// @notice Error thrown when the tokens required for the auction have not been received
error TokensNotReceived();
/// @notice Error thrown when the claim block is before the end block
error ClaimBlockIsBeforeEndBlock();
/// @notice Error thrown when the floor price plus tick spacing is greater than the maximum bid price
error FloorPriceAndTickSpacingGreaterThanMaxBidPrice(uint256 nextTick, uint256 maxBidPrice);
/// @notice Error thrown when the floor price plus tick spacing would overflow a uint256
error FloorPriceAndTickSpacingTooLarge();
/// @notice Error thrown when the bid has already been exited
error BidAlreadyExited();
/// @notice Error thrown when the bid is higher than the clearing price
error CannotExitBid();
/// @notice Error thrown when the bid cannot be partially exited before the end block
error CannotPartiallyExitBidBeforeEndBlock();
/// @notice Error thrown when the last fully filled checkpoint hint is invalid
error InvalidLastFullyFilledCheckpointHint();
/// @notice Error thrown when the outbid block checkpoint hint is invalid
error InvalidOutbidBlockCheckpointHint();
/// @notice Error thrown when the bid is not claimable
error NotClaimable();
/// @notice Error thrown when the bids are not owned by the same owner
error BatchClaimDifferentOwner(address expectedOwner, address receivedOwner);
/// @notice Error thrown when the bid has not been exited
error BidNotExited();
/// @notice Error thrown when the bid cannot be partially exited before the auction has graduated
error CannotPartiallyExitBidBeforeGraduation();
/// @notice Error thrown when the token transfer fails
error TokenTransferFailed();
/// @notice Error thrown when the auction is not over
error AuctionIsNotOver();
/// @notice Error thrown when the bid is too large
error InvalidBidUnableToClear();
/// @notice Error thrown when the auction has sold the entire total supply of tokens
error AuctionSoldOut();
/// @notice Emitted when the tokens are received
/// @param totalSupply The total supply of tokens received
event TokensReceived(uint256 totalSupply);
/// @notice Emitted when a bid is submitted
/// @param id The id of the bid
/// @param owner The owner of the bid
/// @param price The price of the bid
/// @param amount The amount of the bid
event BidSubmitted(uint256 indexed id, address indexed owner, uint256 price, uint128 amount);
/// @notice Emitted when a new checkpoint is created
/// @param blockNumber The block number of the checkpoint
/// @param clearingPrice The clearing price of the checkpoint
/// @param cumulativeMps The cumulative percentage of total tokens allocated across all previous steps, represented in ten-millionths of the total supply (1e7 = 100%)
event CheckpointUpdated(uint256 blockNumber, uint256 clearingPrice, uint24 cumulativeMps);
/// @notice Emitted when the clearing price is updated
/// @param blockNumber The block number when the clearing price was updated
/// @param clearingPrice The new clearing price
event ClearingPriceUpdated(uint256 blockNumber, uint256 clearingPrice);
/// @notice Emitted when a bid is exited
/// @param bidId The id of the bid
/// @param owner The owner of the bid
/// @param tokensFilled The amount of tokens filled
/// @param currencyRefunded The amount of currency refunded
event BidExited(uint256 indexed bidId, address indexed owner, uint256 tokensFilled, uint256 currencyRefunded);
/// @notice Emitted when a bid is claimed
/// @param bidId The id of the bid
/// @param owner The owner of the bid
/// @param tokensFilled The amount of tokens claimed
event TokensClaimed(uint256 indexed bidId, address indexed owner, uint256 tokensFilled);
/// @notice Submit a new bid
/// @param maxPrice The maximum price the bidder is willing to pay
/// @param amount The amount of the bid
/// @param owner The owner of the bid
/// @param prevTickPrice The price of the previous tick
/// @param hookData Additional data to pass to the hook required for validation
/// @return bidId The id of the bid
function submitBid(uint256 maxPrice, uint128 amount, address owner, uint256 prevTickPrice, bytes calldata hookData)
external
payable
returns (uint256 bidId);
/// @notice Submit a new bid without specifying the previous tick price
/// @dev It is NOT recommended to use this function unless you are sure that `maxPrice` is already initialized
/// as this function will iterate through every tick starting from the floor price if it is not.
/// @param maxPrice The maximum price the bidder is willing to pay
/// @param amount The amount of the bid
/// @param owner The owner of the bid
/// @param hookData Additional data to pass to the hook required for validation
/// @return bidId The id of the bid
function submitBid(uint256 maxPrice, uint128 amount, address owner, bytes calldata hookData)
external
payable
returns (uint256 bidId);
/// @notice Register a new checkpoint
/// @dev This function is called every time a new bid is submitted above the current clearing price
/// @dev If the auction is over, it returns the final checkpoint
/// @return _checkpoint The checkpoint at the current block
function checkpoint() external returns (Checkpoint memory _checkpoint);
/// @notice Whether the auction has graduated as of the given checkpoint
/// @dev The auction is considered graduated if the currency raised is greater than or equal to the required currency raised
/// @dev Be aware that the latest checkpoint may be out of date
/// @return bool True if the auction has graduated, false otherwise
function isGraduated() external view returns (bool);
/// @notice Get the currency raised at the last checkpointed block
/// @dev This may be less than the balance of this contract if there are outstanding refunds for bidders
/// @dev Be aware that the latest checkpoint may be out of date
/// @return The currency raised
function currencyRaised() external view returns (uint256);
/// @notice Exit a bid
/// @dev This function can only be used for bids where the max price is above the final clearing price after the auction has ended
/// @param bidId The id of the bid
function exitBid(uint256 bidId) external;
/// @notice Exit a bid which has been partially filled
/// @dev This function can be used only for partially filled bids. For fully filled bids, `exitBid` must be used
/// @param bidId The id of the bid
/// @param lastFullyFilledCheckpointBlock The last checkpointed block where the clearing price is strictly < bid.maxPrice
/// @param outbidBlock The first checkpointed block where the clearing price is strictly > bid.maxPrice, or 0 if the bid is partially filled at the end of the auction
function exitPartiallyFilledBid(uint256 bidId, uint64 lastFullyFilledCheckpointBlock, uint64 outbidBlock) external;
/// @notice Claim tokens after the auction's claim block
/// @notice The bid must be exited before claiming tokens
/// @dev Anyone can claim tokens for any bid, the tokens are transferred to the bid owner
/// @param bidId The id of the bid
function claimTokens(uint256 bidId) external;
/// @notice Claim tokens for multiple bids
/// @dev Anyone can claim tokens for bids of the same owner, the tokens are transferred to the owner
/// @dev A TokensClaimed event is emitted for each bid but only one token transfer will be made
/// @param owner The owner of the bids
/// @param bidIds The ids of the bids
function claimTokensBatch(address owner, uint256[] calldata bidIds) external;
/// @notice Withdraw all of the currency raised
/// @dev Can be called by anyone after the auction has ended
function sweepCurrency() external;
/// @notice The block at which the auction can be claimed
function claimBlock() external view returns (uint64);
/// @notice The address of the validation hook for the auction
function validationHook() external view returns (IValidationHook);
/// @notice Sweep any leftover tokens to the tokens recipient
/// @dev This function can only be called after the auction has ended
function sweepUnsoldTokens() external;
/// @notice The currency raised as of the last checkpoint
function currencyRaisedQ96_X7() external view returns (ValueX7);
/// @notice The sum of demand in ticks above the clearing price
function sumCurrencyDemandAboveClearingQ96() external view returns (uint256);
/// @notice The total currency raised as of the last checkpoint
function totalClearedQ96_X7() external view returns (ValueX7);
/// @notice The total tokens cleared as of the last checkpoint in uint256 representation
function totalCleared() external view returns (uint256);
}// SPDX-License-Identifier: Apache-2.0
pragma solidity ^0.8.27;
interface IWhitelistProvider {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* Events */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
event ConsumerSet(address indexed consumer);
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* Errors */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
error WhitelistProvider__InvalidConsumer();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* Functions */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
function setConsumer(address _consumer) external;
/**
* @notice Verify the authentication data
* @param _user The address of the user to verify
* @param _auth The authentication data
* @return bool True if the authentication data is valid
*/
function verify(address _user, bytes memory _auth) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (proxy/Clones.sol)
pragma solidity ^0.8.20;
import {Create2} from "../utils/Create2.sol";
import {Errors} from "../utils/Errors.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-1167[ERC-1167] is a standard for
* deploying minimal proxy contracts, also known as "clones".
*
* > To simply and cheaply clone contract functionality in an immutable way, this standard specifies
* > a minimal bytecode implementation that delegates all calls to a known, fixed address.
*
* The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2`
* (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the
* deterministic method.
*/
library Clones {
error CloneArgumentsTooLong();
/**
* @dev Deploys and returns the address of a clone that mimics the behavior of `implementation`.
*
* This function uses the create opcode, which should never revert.
*/
function clone(address implementation) internal returns (address instance) {
return clone(implementation, 0);
}
/**
* @dev Same as {xref-Clones-clone-address-}[clone], but with a `value` parameter to send native currency
* to the new contract.
*
* NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
* to always have enough balance for new deployments. Consider exposing this function under a payable method.
*/
function clone(address implementation, uint256 value) internal returns (address instance) {
if (address(this).balance < value) {
revert Errors.InsufficientBalance(address(this).balance, value);
}
assembly ("memory-safe") {
// Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
// of the `implementation` address with the bytecode before the address.
mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
// Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
instance := create(value, 0x09, 0x37)
}
if (instance == address(0)) {
revert Errors.FailedDeployment();
}
}
/**
* @dev Deploys and returns the address of a clone that mimics the behavior of `implementation`.
*
* This function uses the create2 opcode and a `salt` to deterministically deploy
* the clone. Using the same `implementation` and `salt` multiple times will revert, since
* the clones cannot be deployed twice at the same address.
*/
function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) {
return cloneDeterministic(implementation, salt, 0);
}
/**
* @dev Same as {xref-Clones-cloneDeterministic-address-bytes32-}[cloneDeterministic], but with
* a `value` parameter to send native currency to the new contract.
*
* NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
* to always have enough balance for new deployments. Consider exposing this function under a payable method.
*/
function cloneDeterministic(
address implementation,
bytes32 salt,
uint256 value
) internal returns (address instance) {
if (address(this).balance < value) {
revert Errors.InsufficientBalance(address(this).balance, value);
}
assembly ("memory-safe") {
// Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
// of the `implementation` address with the bytecode before the address.
mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
// Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
instance := create2(value, 0x09, 0x37, salt)
}
if (instance == address(0)) {
revert Errors.FailedDeployment();
}
}
/**
* @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
*/
function predictDeterministicAddress(
address implementation,
bytes32 salt,
address deployer
) internal pure returns (address predicted) {
assembly ("memory-safe") {
let ptr := mload(0x40)
mstore(add(ptr, 0x38), deployer)
mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff)
mstore(add(ptr, 0x14), implementation)
mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73)
mstore(add(ptr, 0x58), salt)
mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37))
predicted := and(keccak256(add(ptr, 0x43), 0x55), 0xffffffffffffffffffffffffffffffffffffffff)
}
}
/**
* @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
*/
function predictDeterministicAddress(
address implementation,
bytes32 salt
) internal view returns (address predicted) {
return predictDeterministicAddress(implementation, salt, address(this));
}
/**
* @dev Deploys and returns the address of a clone that mimics the behavior of `implementation` with custom
* immutable arguments. These are provided through `args` and cannot be changed after deployment. To
* access the arguments within the implementation, use {fetchCloneArgs}.
*
* This function uses the create opcode, which should never revert.
*/
function cloneWithImmutableArgs(address implementation, bytes memory args) internal returns (address instance) {
return cloneWithImmutableArgs(implementation, args, 0);
}
/**
* @dev Same as {xref-Clones-cloneWithImmutableArgs-address-bytes-}[cloneWithImmutableArgs], but with a `value`
* parameter to send native currency to the new contract.
*
* NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
* to always have enough balance for new deployments. Consider exposing this function under a payable method.
*/
function cloneWithImmutableArgs(
address implementation,
bytes memory args,
uint256 value
) internal returns (address instance) {
if (address(this).balance < value) {
revert Errors.InsufficientBalance(address(this).balance, value);
}
bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args);
assembly ("memory-safe") {
instance := create(value, add(bytecode, 0x20), mload(bytecode))
}
if (instance == address(0)) {
revert Errors.FailedDeployment();
}
}
/**
* @dev Deploys and returns the address of a clone that mimics the behavior of `implementation` with custom
* immutable arguments. These are provided through `args` and cannot be changed after deployment. To
* access the arguments within the implementation, use {fetchCloneArgs}.
*
* This function uses the create2 opcode and a `salt` to deterministically deploy the clone. Using the same
* `implementation`, `args` and `salt` multiple times will revert, since the clones cannot be deployed twice
* at the same address.
*/
function cloneDeterministicWithImmutableArgs(
address implementation,
bytes memory args,
bytes32 salt
) internal returns (address instance) {
return cloneDeterministicWithImmutableArgs(implementation, args, salt, 0);
}
/**
* @dev Same as {xref-Clones-cloneDeterministicWithImmutableArgs-address-bytes-bytes32-}[cloneDeterministicWithImmutableArgs],
* but with a `value` parameter to send native currency to the new contract.
*
* NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
* to always have enough balance for new deployments. Consider exposing this function under a payable method.
*/
function cloneDeterministicWithImmutableArgs(
address implementation,
bytes memory args,
bytes32 salt,
uint256 value
) internal returns (address instance) {
bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args);
return Create2.deploy(value, salt, bytecode);
}
/**
* @dev Computes the address of a clone deployed using {Clones-cloneDeterministicWithImmutableArgs}.
*/
function predictDeterministicAddressWithImmutableArgs(
address implementation,
bytes memory args,
bytes32 salt,
address deployer
) internal pure returns (address predicted) {
bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args);
return Create2.computeAddress(salt, keccak256(bytecode), deployer);
}
/**
* @dev Computes the address of a clone deployed using {Clones-cloneDeterministicWithImmutableArgs}.
*/
function predictDeterministicAddressWithImmutableArgs(
address implementation,
bytes memory args,
bytes32 salt
) internal view returns (address predicted) {
return predictDeterministicAddressWithImmutableArgs(implementation, args, salt, address(this));
}
/**
* @dev Get the immutable args attached to a clone.
*
* - If `instance` is a clone that was deployed using `clone` or `cloneDeterministic`, this
* function will return an empty array.
* - If `instance` is a clone that was deployed using `cloneWithImmutableArgs` or
* `cloneDeterministicWithImmutableArgs`, this function will return the args array used at
* creation.
* - If `instance` is NOT a clone deployed using this library, the behavior is undefined. This
* function should only be used to check addresses that are known to be clones.
*/
function fetchCloneArgs(address instance) internal view returns (bytes memory) {
bytes memory result = new bytes(instance.code.length - 45); // revert if length is too short
assembly ("memory-safe") {
extcodecopy(instance, add(result, 32), 45, mload(result))
}
return result;
}
/**
* @dev Helper that prepares the initcode of the proxy with immutable args.
*
* An assembly variant of this function requires copying the `args` array, which can be efficiently done using
* `mcopy`. Unfortunately, that opcode is not available before cancun. A pure solidity implementation using
* abi.encodePacked is more expensive but also more portable and easier to review.
*
* NOTE: https://eips.ethereum.org/EIPS/eip-170[EIP-170] limits the length of the contract code to 24576 bytes.
* With the proxy code taking 45 bytes, that limits the length of the immutable args to 24531 bytes.
*/
function _cloneCodeWithImmutableArgs(
address implementation,
bytes memory args
) private pure returns (bytes memory) {
if (args.length > 24531) revert CloneArgumentsTooLong();
return
abi.encodePacked(
hex"61",
uint16(args.length + 45),
hex"3d81600a3d39f3363d3d373d3d3d363d73",
implementation,
hex"5af43d82803e903d91602b57fd5bf3",
args
);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC-20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
/**
* @dev An operation with an ERC-20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Variant of {safeTransfer} that returns a bool instead of reverting if the operation is not successful.
*/
function trySafeTransfer(IERC20 token, address to, uint256 value) internal returns (bool) {
return _callOptionalReturnBool(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Variant of {safeTransferFrom} that returns a bool instead of reverting if the operation is not successful.
*/
function trySafeTransferFrom(IERC20 token, address from, address to, uint256 value) internal returns (bool) {
return _callOptionalReturnBool(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*
* NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
* only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
* set here.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
safeTransfer(token, to, value);
} else if (!token.transferAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
* has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferFromAndCallRelaxed(
IERC1363 token,
address from,
address to,
uint256 value,
bytes memory data
) internal {
if (to.code.length == 0) {
safeTransferFrom(token, from, to, value);
} else if (!token.transferFromAndCall(from, to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
* Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
* once without retrying, and relies on the returned value to be true.
*
* Reverts if the returned value is other than `true`.
*/
function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
forceApprove(token, to, value);
} else if (!token.approveAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
// bubble errors
if iszero(success) {
let ptr := mload(0x40)
returndatacopy(ptr, 0, returndatasize())
revert(ptr, returndatasize())
}
returnSize := returndatasize()
returnValue := mload(0)
}
if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
bool success;
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
returnSize := returndatasize()
returnValue := mload(0)
}
return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;
import {Ownable2Step, Ownable} from "@oz/access/Ownable2Step.sol";
import {Clones} from "@oz/proxy/Clones.sol";
import {IERC20} from "@oz/token/ERC20/IERC20.sol";
import {SafeERC20} from "@oz/token/ERC20/utils/SafeERC20.sol";
import {ILATP, RevokableParams} from "./atps/linear/ILATP.sol";
import {IMATP, MilestoneId} from "./atps/milestone/IMATP.sol";
import {LATP} from "./atps/linear/LATP.sol";
import {MATP} from "./atps/milestone/MATP.sol";
import {INCATP} from "./atps/noclaim/INCATP.sol";
import {NCATP} from "./atps/noclaim/NCATP.sol";
import {Registry, IRegistry} from "./Registry.sol";
import {LATPFactory} from "./deployment-factories/LATPFactory.sol";
import {NCATPFactory} from "./deployment-factories/NCATPFactory.sol";
import {MATPFactory} from "./deployment-factories/MATPFactory.sol";
interface IATPFactory {
event ATPCreated(address indexed beneficiary, address indexed atp, uint256 allocation);
event MinterSet(address indexed minter, bool isMinter);
error InvalidInputLength();
error NotMinter();
function createLATP(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
external
returns (ILATP);
function createNCATP(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
external
returns (INCATP);
function createMATP(address _beneficiary, uint256 _allocation, MilestoneId _milestoneId) external returns (IMATP);
function createLATPs(
address[] memory _beneficiaries,
uint256[] memory _allocations,
RevokableParams[] memory _revokableParams
) external returns (ILATP[] memory);
function createNCATPs(
address[] memory _beneficiaries,
uint256[] memory _allocations,
RevokableParams[] memory _revokableParams
) external returns (INCATP[] memory);
function createMATPs(
address[] memory _beneficiaries,
uint256[] memory _allocations,
MilestoneId[] memory _milestoneIds
) external returns (IMATP[] memory);
function recoverTokens(address _token, address _to, uint256 _amount) external;
function setMinter(address _minter, bool _isMinter) external;
function getRegistry() external view returns (IRegistry);
function getToken() external view returns (IERC20);
function predictLATPAddress(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
external
view
returns (address);
function predictNCATPAddress(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
external
view
returns (address);
function predictMATPAddress(address _beneficiary, uint256 _allocation, MilestoneId _milestoneId)
external
view
returns (address);
}
contract ATPFactory is Ownable2Step, IATPFactory {
using SafeERC20 for IERC20;
Registry internal immutable REGISTRY;
IERC20 internal immutable TOKEN;
LATP internal immutable LATP_IMPLEMENTATION;
NCATP internal immutable NCATP_IMPLEMENTATION;
MATP internal immutable MATP_IMPLEMENTATION;
mapping(address => bool) public minter;
modifier onlyMinter() {
require(minter[msg.sender], NotMinter());
_;
}
constructor(address __owner, IERC20 _token, uint256 _unlockCliffDuration, uint256 _unlockLockDuration)
Ownable(__owner)
{
REGISTRY = new Registry(__owner, _unlockCliffDuration, _unlockLockDuration);
TOKEN = _token;
LATP_IMPLEMENTATION = LATPFactory.deployImplementation(IRegistry(address(REGISTRY)), TOKEN);
NCATP_IMPLEMENTATION = NCATPFactory.deployImplementation(IRegistry(address(REGISTRY)), TOKEN);
MATP_IMPLEMENTATION = MATPFactory.deployImplementation(IRegistry(address(REGISTRY)), TOKEN);
minter[__owner] = true;
emit MinterSet(__owner, true);
}
/**
* @notice Recover any token from the contract
*
* @dev The caller must be the `owner`
*
* @dev Does not support Ether as it is not an ERC20,
*
* @param _token The token to rescue
* @param _to The address to rescue the tokens to
* @param _amount The amount of tokens to rescue
*/
function recoverTokens(address _token, address _to, uint256 _amount) external override(IATPFactory) onlyOwner {
IERC20(_token).safeTransfer(_to, _amount);
}
/**
* @notice Set the minter status of an address
*
* @dev The caller must be the `owner`
*
* @param _minter The address to set the minter status of
* @param _isMinter The minter status to set
*/
function setMinter(address _minter, bool _isMinter) external override(IATPFactory) onlyOwner {
minter[_minter] = _isMinter;
emit MinterSet(_minter, _isMinter);
}
/**
* @notice Create and fund multiple LATPs
* Creates the LATPs using the `clones` library, initializes it and funds it.
*
* @dev The caller must be a minter
*
* @param _beneficiaries The addresses of the beneficiaries
* @param _allocations The amounts of tokens to allocate to the LATPs
* @param _revokableParams The parameters for the accumulation lock and revoke beneficiary,
* provide empty `LockParams` and `address(0)` as `revokeBeneficiary`
* if the LATP are not revokable
*
* @return The LATPs
*/
function createLATPs(
address[] memory _beneficiaries,
uint256[] memory _allocations,
RevokableParams[] memory _revokableParams
) external virtual override(IATPFactory) onlyMinter returns (ILATP[] memory) {
require(
_beneficiaries.length == _allocations.length && _beneficiaries.length == _revokableParams.length,
InvalidInputLength()
);
ILATP[] memory atps = new ILATP[](_beneficiaries.length);
for (uint256 i = 0; i < _beneficiaries.length; i++) {
atps[i] = createLATP(_beneficiaries[i], _allocations[i], _revokableParams[i]);
}
return atps;
}
/**
* @notice Create and fund multiple NCATPs
* Creates the NCATPs using the `clones` library, initializes it and funds it.
*
* @dev The caller must be a `minter`
*
* @param _beneficiaries The addresses of the beneficiaries
* @param _allocations The amounts of tokens to allocate to the NCATPs
* @param _revokableParams The parameters for the accumulation lock and revoke beneficiary,
* provide empty `LockParams` and `address(0)` as `revokeBeneficiary`
* if the NCATP are not revokable
*
* @return The NCATPs
*/
function createNCATPs(
address[] memory _beneficiaries,
uint256[] memory _allocations,
RevokableParams[] memory _revokableParams
) external virtual override(IATPFactory) onlyMinter returns (INCATP[] memory) {
require(
_beneficiaries.length == _allocations.length && _beneficiaries.length == _revokableParams.length,
InvalidInputLength()
);
INCATP[] memory atps = new INCATP[](_beneficiaries.length);
for (uint256 i = 0; i < _beneficiaries.length; i++) {
atps[i] = createNCATP(_beneficiaries[i], _allocations[i], _revokableParams[i]);
}
return atps;
}
/**
* @notice Create and fund multiple MATPs
* Creates the MATPs using the `clones` library, initializes it and funds it.
*
* @dev The caller must be a `minter`
*
* @param _beneficiaries The addresses of the beneficiaries
* @param _allocations The amounts of tokens to allocate to the MATPs
* @param _milestoneIds The milestone IDs for the MATPs
*
* @return The MATPs
*/
function createMATPs(
address[] memory _beneficiaries,
uint256[] memory _allocations,
MilestoneId[] memory _milestoneIds
) external virtual override(IATPFactory) onlyMinter returns (IMATP[] memory) {
require(
_beneficiaries.length == _allocations.length && _beneficiaries.length == _milestoneIds.length,
InvalidInputLength()
);
IMATP[] memory atps = new IMATP[](_beneficiaries.length);
for (uint256 i = 0; i < _beneficiaries.length; i++) {
atps[i] = createMATP(_beneficiaries[i], _allocations[i], _milestoneIds[i]);
}
return atps;
}
/**
* @notice Get the registry
*
* @return The registry
*/
function getRegistry() external view override(IATPFactory) returns (IRegistry) {
return IRegistry(address(REGISTRY));
}
/**
* @notice Get the token
*
* @return The token
*/
function getToken() external view override(IATPFactory) returns (IERC20) {
return TOKEN;
}
/**
* @notice Predict the address of an LATP
*
* @param _beneficiary The address of the beneficiary
* @param _allocation The amount of tokens to allocate to the LATP
* @param _revokableParams The parameters for the accumulation lock and revoke beneficiary, if the LATPs are revokable
*
* @return The address of the LATP
*/
function predictLATPAddress(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
external
view
virtual
override(IATPFactory)
returns (address)
{
bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _revokableParams));
return Clones.predictDeterministicAddress(address(LATP_IMPLEMENTATION), salt, address(this));
}
function predictNCATPAddress(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
external
view
virtual
override(IATPFactory)
returns (address)
{
bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _revokableParams));
return Clones.predictDeterministicAddress(address(NCATP_IMPLEMENTATION), salt, address(this));
}
function predictMATPAddress(address _beneficiary, uint256 _allocation, MilestoneId _milestoneId)
external
view
virtual
override(IATPFactory)
returns (address)
{
bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _milestoneId));
return Clones.predictDeterministicAddress(address(MATP_IMPLEMENTATION), salt, address(this));
}
/**
* @notice Create and funds a new LATP
* The LATP is created using the `Clones` library and then initialized.
* We deploy deterministically using the initialization params as the salt.
* When created, the LATP is funded with the `_allocation` amount of tokens.
*
* This setup is done to keep gas costs low.
*
* @dev The caller must be a `minter`
*
* @param _beneficiary The address of the beneficiary
* @param _allocation The amount of tokens to allocate to the LATP
* @param _revokableParams The parameters for the accumulation lock, if the LATP is revokable
*
* @return The LATP
*/
function createLATP(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
public
virtual
override(IATPFactory)
onlyMinter
returns (ILATP)
{
bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _revokableParams));
LATP atp = LATP(Clones.cloneDeterministic(address(LATP_IMPLEMENTATION), salt));
atp.initialize(_beneficiary, _allocation, _revokableParams);
TOKEN.safeTransfer(address(atp), _allocation);
emit ATPCreated(_beneficiary, address(atp), _allocation);
return ILATP(address(atp));
}
/**
* @notice Create and funds a new NCATP (Non-Claimable ATP)
* The NCATP is created using the `Clones` library and then initialized.
* We deploy deterministically using the initialization params as the salt.
* When created, the NCATP is funded with the `_allocation` amount of tokens.
*
* This setup is done to keep gas costs low.
*
* @dev The caller must be a `minter`
*
* @param _beneficiary The address of the beneficiary
* @param _allocation The amount of tokens to allocate to the NCATP
* @param _revokableParams The parameters for the accumulation lock, if the NCATP is revokable
*
* @return The NCATP
*/
function createNCATP(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
public
virtual
override(IATPFactory)
onlyMinter
returns (INCATP)
{
bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _revokableParams));
NCATP atp = NCATP(Clones.cloneDeterministic(address(NCATP_IMPLEMENTATION), salt));
atp.initialize(_beneficiary, _allocation, _revokableParams);
TOKEN.safeTransfer(address(atp), _allocation);
emit ATPCreated(_beneficiary, address(atp), _allocation);
return INCATP(address(atp));
}
/**
* @notice Create and funds a new MATP
* The MATP is created using the `Clones` library and then initialized.
* We deploy deterministically using the initialization params as the salt.
* When created, the MATP is funded with the `_allocation` amount of tokens.
*
* This setup is done to keep gas costs low.
*
* @dev The caller must be a `minter`
*
* @param _beneficiary The address of the beneficiary
* @param _allocation The amount of tokens to allocate to the MATP
* @param _milestoneId The milestone ID for the MATP
*
* @return The MATP
*/
function createMATP(address _beneficiary, uint256 _allocation, MilestoneId _milestoneId)
public
virtual
override(IATPFactory)
onlyMinter
returns (IMATP)
{
bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _milestoneId));
MATP atp = MATP(Clones.cloneDeterministic(address(MATP_IMPLEMENTATION), salt));
atp.initialize(_beneficiary, _allocation, _milestoneId);
TOKEN.safeTransfer(address(atp), _allocation);
emit ATPCreated(_beneficiary, address(atp), _allocation);
return IMATP(address(atp));
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;
import {ATPType} from "./../base/IATP.sol";
import {ILATP, ILATPPeriphery, IATPPeriphery, LATPStorage} from "./ILATP.sol";
import {LATPCore, IERC20, IRegistry, IBaseStaker} from "./LATPCore.sol";
/**
* @title Linear Aztec Token Position
* @notice Linear Aztec Token Position with additional helper view functions
* This is a helper contract to make it easier to use the LATP contract
* Will not include any state mutating extensions, just easier access to the data
* I might be kinda strange doing this, but I just find it simpler when looking at the state mutating
* functions, as I don't need to skip functions etc.
*
* It is also a neat way to make sure that all of the getters follow a similar pattern, as we like using
* different naming conventions for different types of data, e.g., constant vs mutable.
*/
contract LATP is ILATP, LATPCore {
constructor(IRegistry _registry, IERC20 _token) LATPCore(_registry, _token) {}
function getToken() external view override(IATPPeriphery) returns (IERC20) {
return TOKEN;
}
function getRegistry() external view override(IATPPeriphery) returns (IRegistry) {
return REGISTRY;
}
function getStaker() external view override(IATPPeriphery) returns (IBaseStaker) {
return staker;
}
function getExecuteAllowedAt() external view override(IATPPeriphery) returns (uint256) {
return REGISTRY.getExecuteAllowedAt();
}
function getClaimed() external view override(IATPPeriphery) returns (uint256) {
return claimed;
}
function getRevoker() external view override(IATPPeriphery) returns (address) {
return REGISTRY.getRevoker();
}
function getIsRevokable() external view override(IATPPeriphery) returns (bool) {
return store.isRevokable;
}
function getAllocation() external view override(IATPPeriphery) returns (uint256) {
return allocation;
}
function getStore() external view override(ILATPPeriphery) returns (LATPStorage memory) {
return store;
}
function getRevokeBeneficiary() external view override(ILATPPeriphery) returns (address) {
return store.revokeBeneficiary;
}
function getType() external pure virtual override(IATPPeriphery) returns (ATPType) {
return ATPType.Linear;
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;
import {MilestoneId} from "./../../Registry.sol";
import {IATPCore, IATPPeriphery} from "./../base/IATP.sol";
interface IMATPCore is IATPCore {
error RevokedOrFailed();
function initialize(address _beneficiary, uint256 _allocation, MilestoneId _milestoneId) external;
}
interface IMATPPeriphery is IATPPeriphery {
function getMilestoneId() external view returns (MilestoneId);
function getIsRevoked() external view returns (bool);
}
interface IMATP is IMATPCore, IMATPPeriphery {}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;
import {ATPType} from "./../base/IATP.sol";
import {IMATP, IMATPPeriphery, IATPPeriphery} from "./IMATP.sol";
import {MATPCore, MilestoneId, IRegistry, IERC20, IBaseStaker} from "./MATPCore.sol";
contract MATP is IMATP, MATPCore {
constructor(IRegistry _registry, IERC20 _token) MATPCore(_registry, _token) {}
function getToken() external view override(IATPPeriphery) returns (IERC20) {
return TOKEN;
}
function getRegistry() external view override(IATPPeriphery) returns (IRegistry) {
return REGISTRY;
}
function getStaker() external view override(IATPPeriphery) returns (IBaseStaker) {
return staker;
}
function getExecuteAllowedAt() external view override(IATPPeriphery) returns (uint256) {
return REGISTRY.getExecuteAllowedAt();
}
function getClaimed() external view override(IATPPeriphery) returns (uint256) {
return claimed;
}
function getRevoker() external view override(IATPPeriphery) returns (address) {
return REGISTRY.getRevoker();
}
function getIsRevokable() external view override(IATPPeriphery) returns (bool) {
return !isRevoked;
}
function getAllocation() external view override(IATPPeriphery) returns (uint256) {
return allocation;
}
function getMilestoneId() external view override(IMATPPeriphery) returns (MilestoneId) {
return milestoneId;
}
function getIsRevoked() external view override(IMATPPeriphery) returns (bool) {
return isRevoked;
}
function getType() external pure override(IATPPeriphery) returns (ATPType) {
return ATPType.Milestone;
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;
import {LockParams} from "./../../libraries/LockLib.sol";
import {IATPPeriphery} from "./../base/IATP.sol";
import {ILATPCore} from "./../linear/ILATP.sol";
struct NCATPStorage {
uint32 accumulationStartTime;
uint32 accumulationCliffDuration;
uint32 accumulationLockDuration;
bool isRevokable;
address revokeBeneficiary;
}
struct RevokableParams {
address revokeBeneficiary;
LockParams lockParams;
}
interface INCATPCore is ILATPCore {}
interface INCATPPeriphery is IATPPeriphery {
function getStore() external view returns (NCATPStorage memory);
function getRevokeBeneficiary() external view returns (address);
}
interface INCATP is INCATPCore, INCATPPeriphery {}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;
import {ATPType, IATPCore} from "./../base/IATP.sol";
import {LATP} from "./../linear/LATP.sol";
import {LATPCore, IERC20, IRegistry} from "./../linear/LATPCore.sol";
/**
* @title Non Claimable Linear Aztec Position
* @notice An override of the LATP contract to make it non-claimable.
*/
contract NCATP is LATP {
uint256 public immutable CREATED_AT_TIMESTAMP;
constructor(IRegistry _registry, IERC20 _token) LATP(_registry, _token) {
CREATED_AT_TIMESTAMP = block.timestamp;
}
function claim() external override(IATPCore, LATPCore) onlyBeneficiary returns (uint256) {
revert NoClaimable();
}
function getType() external pure override(LATP) returns (ATPType) {
return ATPType.NonClaim;
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;
/**
* @title Track hash Nonces
* @dev See OpenZeppelin's Nonces.sol
*/
abstract contract Nonces {
mapping(bytes32 hash => uint256) private _nonces;
/**
* @dev Returns the next unused nonce for a hash.
*/
function nonces(bytes32 _hash) public view virtual returns (uint256) {
return _nonces[_hash];
}
/**
* @dev Consumes a nonce.
*
* Returns the current value and increments nonce.
*/
function useNonce(bytes32 _hash) internal virtual returns (uint256) {
// For each hash, the nonce has an initial value of 0, can only be incremented by one, and cannot be
// decremented or reset. This guarantees that the nonce never overflows.
unchecked {
// It is important to do x++ and not ++x here.
return _nonces[_hash]++;
}
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;
import {IERC20} from "@oz/token/ERC20/IERC20.sol";
import {Lock} from "../../libraries/LockLib.sol";
import {IRegistry, StakerVersion} from "../../Registry.sol";
import {IBaseStaker} from "./../../staker/BaseStaker.sol";
enum ATPType {
Linear,
Milestone,
NonClaim
}
interface IATPCore {
event StakerInitialized(IBaseStaker staker);
event StakerUpgraded(StakerVersion version);
event StakerOperatorUpdated(address operator);
event Claimed(uint256 amount);
event ApprovedStaker(uint256 allowance);
event Rescued(address asset, address to, uint256 amount);
event Revoked(uint256 amount);
error AlreadyInitialized();
error InvalidBeneficiary(address beneficiary);
error NotBeneficiary(address caller, address beneficiary);
error LockHasEnded();
error InvalidTokenAddress(address token);
error InvalidRegistry(address registry);
error AllocationMustBeGreaterThanZero();
error InvalidAsset(address asset);
error ExecutionNotAllowedYet(uint256 timestamp, uint256 executeAllowedAt);
error NotRevokable();
error NotRevoker(address caller, address revoker);
error NoClaimable();
error LockDurationMustBeGTZero(string variant);
error InvalidUpgrade();
function upgradeStaker(StakerVersion _version) external;
function approveStaker(uint256 _allowance) external;
function updateStakerOperator(address _operator) external;
function claim() external returns (uint256);
function rescueFunds(address _asset, address _to) external;
function revoke() external returns (uint256);
function getClaimable() external view returns (uint256);
function getGlobalLock() external view returns (Lock memory);
function getBeneficiary() external view returns (address);
function getOperator() external view returns (address);
}
interface IATPPeriphery {
function getToken() external view returns (IERC20);
function getRegistry() external view returns (IRegistry);
function getExecuteAllowedAt() external view returns (uint256);
function getClaimed() external view returns (uint256);
function getRevoker() external view returns (address);
function getIsRevokable() external view returns (bool);
function getAllocation() external view returns (uint256);
function getType() external view returns (ATPType);
function getStaker() external view returns (IBaseStaker);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC-20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard ERC-20 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
*/
interface IERC20Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC20InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC20InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
* @param spender Address that may be allowed to operate on tokens without being their owner.
* @param allowance Amount of tokens a `spender` is allowed to operate with.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC20InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `spender` to be approved. Used in approvals.
* @param spender Address that may be allowed to operate on tokens without being their owner.
*/
error ERC20InvalidSpender(address spender);
}
/**
* @dev Standard ERC-721 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
*/
interface IERC721Errors {
/**
* @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
* Used in balance queries.
* @param owner Address of the current owner of a token.
*/
error ERC721InvalidOwner(address owner);
/**
* @dev Indicates a `tokenId` whose `owner` is the zero address.
* @param tokenId Identifier number of a token.
*/
error ERC721NonexistentToken(uint256 tokenId);
/**
* @dev Indicates an error related to the ownership over a particular token. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param tokenId Identifier number of a token.
* @param owner Address of the current owner of a token.
*/
error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC721InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC721InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param tokenId Identifier number of a token.
*/
error ERC721InsufficientApproval(address operator, uint256 tokenId);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC721InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC721InvalidOperator(address operator);
}
/**
* @dev Standard ERC-1155 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
*/
interface IERC1155Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
* @param tokenId Identifier number of a token.
*/
error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC1155InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC1155InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param owner Address of the current owner of a token.
*/
error ERC1155MissingApprovalForAll(address operator, address owner);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC1155InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC1155InvalidOperator(address operator);
/**
* @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
* Used in batch transfers.
* @param idsLength Length of the array of token identifiers
* @param valuesLength Length of the array of token amounts
*/
error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/cryptography/MessageHashUtils.sol)
pragma solidity ^0.8.20;
import {Strings} from "../Strings.sol";
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing a bytes32 `messageHash` with
* `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
* hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
*
* NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
* keccak256, although any bytes32 value can be safely used because the final digest will
* be re-hashed.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
}
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing an arbitrary `message` with
* `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
* hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
return
keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x00` (data with intended validator).
*
* The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
* `validator` address. Then hashing the result.
*
* See {ECDSA-recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(hex"19_00", validator, data));
}
/**
* @dev Variant of {toDataWithIntendedValidatorHash-address-bytes} optimized for cases where `data` is a bytes32.
*/
function toDataWithIntendedValidatorHash(
address validator,
bytes32 messageHash
) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, hex"19_00")
mstore(0x02, shl(96, validator))
mstore(0x16, messageHash)
digest := keccak256(0x00, 0x36)
}
}
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\x19\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* See {ECDSA-recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
let ptr := mload(0x40)
mstore(ptr, hex"19_01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/ShortStrings.sol)
pragma solidity ^0.8.20;
import {StorageSlot} from "./StorageSlot.sol";
// | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
// | length | 0x BB |
type ShortString is bytes32;
/**
* @dev This library provides functions to convert short memory strings
* into a `ShortString` type that can be used as an immutable variable.
*
* Strings of arbitrary length can be optimized using this library if
* they are short enough (up to 31 bytes) by packing them with their
* length (1 byte) in a single EVM word (32 bytes). Additionally, a
* fallback mechanism can be used for every other case.
*
* Usage example:
*
* ```solidity
* contract Named {
* using ShortStrings for *;
*
* ShortString private immutable _name;
* string private _nameFallback;
*
* constructor(string memory contractName) {
* _name = contractName.toShortStringWithFallback(_nameFallback);
* }
*
* function name() external view returns (string memory) {
* return _name.toStringWithFallback(_nameFallback);
* }
* }
* ```
*/
library ShortStrings {
// Used as an identifier for strings longer than 31 bytes.
bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
error StringTooLong(string str);
error InvalidShortString();
/**
* @dev Encode a string of at most 31 chars into a `ShortString`.
*
* This will trigger a `StringTooLong` error is the input string is too long.
*/
function toShortString(string memory str) internal pure returns (ShortString) {
bytes memory bstr = bytes(str);
if (bstr.length > 31) {
revert StringTooLong(str);
}
return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
}
/**
* @dev Decode a `ShortString` back to a "normal" string.
*/
function toString(ShortString sstr) internal pure returns (string memory) {
uint256 len = byteLength(sstr);
// using `new string(len)` would work locally but is not memory safe.
string memory str = new string(32);
assembly ("memory-safe") {
mstore(str, len)
mstore(add(str, 0x20), sstr)
}
return str;
}
/**
* @dev Return the length of a `ShortString`.
*/
function byteLength(ShortString sstr) internal pure returns (uint256) {
uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
if (result > 31) {
revert InvalidShortString();
}
return result;
}
/**
* @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
*/
function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
if (bytes(value).length < 32) {
return toShortString(value);
} else {
StorageSlot.getStringSlot(store).value = value;
return ShortString.wrap(FALLBACK_SENTINEL);
}
}
/**
* @dev Decode a string that was encoded to `ShortString` or written to storage using {toShortStringWithFallback}.
*/
function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return toString(value);
} else {
return store;
}
}
/**
* @dev Return the length of a string that was encoded to `ShortString` or written to storage using
* {toShortStringWithFallback}.
*
* WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
* actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
*/
function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return byteLength(value);
} else {
return bytes(store).length;
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)
pragma solidity ^0.8.20;
interface IERC5267 {
/**
* @dev MAY be emitted to signal that the domain could have changed.
*/
event EIP712DomainChanged();
/**
* @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
* signature.
*/
function eip712Domain()
external
view
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {ConstantsLib} from './ConstantsLib.sol';
import {ValueX7} from './ValueX7Lib.sol';
struct Checkpoint {
uint256 clearingPrice; // The X96 price which the auction is currently clearing at
ValueX7 currencyRaisedAtClearingPriceQ96_X7; // The currency raised so far to this clearing price
uint256 cumulativeMpsPerPrice; // A running sum of the ratio between mps and price
uint24 cumulativeMps; // The number of mps sold in the auction so far (via the original supply schedule)
uint64 prev; // Block number of the previous checkpoint
uint64 next; // Block number of the next checkpoint
}
/// @title CheckpointLib
library CheckpointLib {
/// @notice Get the remaining mps in the auction at the given checkpoint
/// @param _checkpoint The checkpoint with `cumulativeMps` so far
/// @return The remaining mps in the auction
function remainingMpsInAuction(Checkpoint memory _checkpoint) internal pure returns (uint24) {
return ConstantsLib.MPS - _checkpoint.cumulativeMps;
}
/// @notice Calculate the supply to price ratio. Will return zero if `price` is zero
/// @dev This function returns a value in Q96 form
/// @param mps The number of supply mps sold
/// @param price The price they were sold at
/// @return the ratio
function getMpsPerPrice(uint24 mps, uint256 price) internal pure returns (uint256) {
if (price == 0) return 0;
// The bitshift cannot overflow because a uint24 shifted left FixedPoint96.RESOLUTION * 2 (192) bits will always be less than 2^256
return (uint256(mps) << 192) / price;
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {ConstantsLib} from './ConstantsLib.sol';
import {FixedPointMathLib} from 'solady/utils/FixedPointMathLib.sol';
/// @notice A ValueX7 is a uint256 value that has been multiplied by MPS
/// @dev X7 values are used for demand values to avoid intermediate division by MPS
type ValueX7 is uint256;
using {sub, divUint256} for ValueX7 global;
/// @notice Subtract two ValueX7 values
function sub(ValueX7 a, ValueX7 b) pure returns (ValueX7) {
return ValueX7.wrap(ValueX7.unwrap(a) - ValueX7.unwrap(b));
}
/// @notice Divide a ValueX7 value by a uint256
function divUint256(ValueX7 a, uint256 b) pure returns (ValueX7) {
return ValueX7.wrap(ValueX7.unwrap(a) / b);
}
/// @title ValueX7Lib
library ValueX7Lib {
using ValueX7Lib for ValueX7;
/// @notice The scaling factor for ValueX7 values (ConstantsLib.MPS)
uint256 public constant X7 = ConstantsLib.MPS;
/// @notice Multiply a uint256 value by MPS
/// @dev This ensures that future operations will not lose precision
/// @return The result as a ValueX7
function scaleUpToX7(uint256 value) internal pure returns (ValueX7) {
return ValueX7.wrap(value * X7);
}
/// @notice Divide a ValueX7 value by MPS
/// @return The result as a uint256
function scaleDownToUint256(ValueX7 value) internal pure returns (uint256) {
return ValueX7.unwrap(value) / X7;
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {Bid} from '../libraries/BidLib.sol';
/// @notice Interface for bid storage operations
interface IBidStorage {
/// @notice Error thrown when doing an operation on a bid that does not exist
error BidIdDoesNotExist(uint256 bidId);
/// @notice Get the id of the next bid to be created
/// @return The id of the next bid to be created
function nextBidId() external view returns (uint256);
/// @notice Get a bid from storage
/// @dev Will revert if the bid does not exist
/// @param bidId The id of the bid to get
/// @return The bid
function bids(uint256 bidId) external view returns (Bid memory);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {Checkpoint} from '../libraries/CheckpointLib.sol';
/// @notice Interface for checkpoint storage operations
interface ICheckpointStorage {
/// @notice Revert when attempting to insert a checkpoint at a block number not strictly greater than the last one
error CheckpointBlockNotIncreasing();
/// @notice Get the latest checkpoint at the last checkpointed block
/// @dev Be aware that the latest checkpoint may not be up to date, it is recommended
/// to always call `checkpoint()` before using getter functions
/// @return The latest checkpoint
function latestCheckpoint() external view returns (Checkpoint memory);
/// @notice Get the clearing price at the last checkpointed block
/// @dev Be aware that the latest checkpoint may not be up to date, it is recommended
/// to always call `checkpoint()` before using getter functions
/// @return The current clearing price in Q96 form
function clearingPrice() external view returns (uint256);
/// @notice Get the number of the last checkpointed block
/// @dev Be aware that the last checkpointed block may not be up to date, it is recommended
/// to always call `checkpoint()` before using getter functions
/// @return The block number of the last checkpoint
function lastCheckpointedBlock() external view returns (uint64);
/// @notice Get a checkpoint at a block number
/// @param blockNumber The block number to get the checkpoint for
function checkpoints(uint64 blockNumber) external view returns (Checkpoint memory);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {AuctionStep} from '../libraries/StepLib.sol';
/// @notice Interface for managing auction step storage
interface IStepStorage {
/// @notice Error thrown when the end block is equal to or before the start block
error InvalidEndBlock();
/// @notice Error thrown when the auction is over
error AuctionIsOver();
/// @notice Error thrown when the auction data length is invalid
error InvalidAuctionDataLength();
/// @notice Error thrown when the block delta in a step is zero
error StepBlockDeltaCannotBeZero();
/// @notice Error thrown when the mps is invalid
/// @param actualMps The sum of the mps times the block delta
/// @param expectedMps The expected mps of the auction (ConstantsLib.MPS)
error InvalidStepDataMps(uint256 actualMps, uint256 expectedMps);
/// @notice Error thrown when the calculated end block is invalid
/// @param actualEndBlock The calculated end block from the step data
/// @param expectedEndBlock The expected end block from the constructor
error InvalidEndBlockGivenStepData(uint64 actualEndBlock, uint64 expectedEndBlock);
/// @notice The block at which the auction starts
/// @return The starting block number
function startBlock() external view returns (uint64);
/// @notice The block at which the auction ends
/// @return The ending block number
function endBlock() external view returns (uint64);
/// @notice The address pointer to the contract deployed by SSTORE2
/// @return The address pointer
function pointer() external view returns (address);
/// @notice Get the current active auction step
function step() external view returns (AuctionStep memory);
/// @notice Emitted when an auction step is recorded
/// @param startBlock The start block of the auction step
/// @param endBlock The end block of the auction step
/// @param mps The percentage of total tokens to sell per block during this auction step, represented in ten-millionths of the total supply (1e7 = 100%)
event AuctionStepRecorded(uint256 startBlock, uint256 endBlock, uint24 mps);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @notice Each tick contains a pointer to the next price in the linked list
/// and the cumulative currency demand at the tick's price level
struct Tick {
uint256 next;
uint256 currencyDemandQ96;
}
/// @title ITickStorage
/// @notice Interface for the TickStorage contract
interface ITickStorage {
/// @notice Error thrown when the tick spacing is too small
error TickSpacingTooSmall();
/// @notice Error thrown when the floor price is zero
error FloorPriceIsZero();
/// @notice Error thrown when the floor price is below the minimum floor price
error FloorPriceTooLow();
/// @notice Error thrown when the previous price hint is invalid (higher than the new price)
error TickPreviousPriceInvalid();
/// @notice Error thrown when the tick price is not increasing
error TickPriceNotIncreasing();
/// @notice Error thrown when the price is not at a boundary designated by the tick spacing
error TickPriceNotAtBoundary();
/// @notice Error thrown when the tick price is invalid
error InvalidTickPrice();
/// @notice Error thrown when trying to update the demand of an uninitialized tick
error CannotUpdateUninitializedTick();
/// @notice Emitted when a tick is initialized
/// @param price The price of the tick
event TickInitialized(uint256 price);
/// @notice Emitted when the nextActiveTick is updated
/// @param price The price of the tick
event NextActiveTickUpdated(uint256 price);
/// @notice The price of the next initialized tick above the clearing price
/// @dev This will be equal to the clearingPrice if no ticks have been initialized yet
/// @return The price of the next active tick
function nextActiveTickPrice() external view returns (uint256);
/// @notice Get the floor price of the auction
/// @return The minimum price for bids
function floorPrice() external view returns (uint256);
/// @notice Get the tick spacing enforced for bid prices
/// @return The tick spacing value
function tickSpacing() external view returns (uint256);
/// @notice Get a tick at a price
/// @dev The returned tick is not guaranteed to be initialized
/// @param price The price of the tick, which must be at a boundary designated by the tick spacing
/// @return The tick at the given price
function ticks(uint256 price) external view returns (Tick memory);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {Currency} from '../libraries/CurrencyLibrary.sol';
import {IERC20Minimal} from './external/IERC20Minimal.sol';
/// @notice Interface for token and currency storage operations
interface ITokenCurrencyStorage {
/// @notice Error thrown when the token is the native currency
error TokenIsAddressZero();
/// @notice Error thrown when the token and currency are the same
error TokenAndCurrencyCannotBeTheSame();
/// @notice Error thrown when the total supply is zero
error TotalSupplyIsZero();
/// @notice Error thrown when the total supply is too large
error TotalSupplyIsTooLarge();
/// @notice Error thrown when the funds recipient is the zero address
error FundsRecipientIsZero();
/// @notice Error thrown when the tokens recipient is the zero address
error TokensRecipientIsZero();
/// @notice Error thrown when the currency cannot be swept
error CannotSweepCurrency();
/// @notice Error thrown when the tokens cannot be swept
error CannotSweepTokens();
/// @notice Error thrown when the auction has not graduated
error NotGraduated();
/// @notice Emitted when the tokens are swept
/// @param tokensRecipient The address of the tokens recipient
/// @param tokensAmount The amount of tokens swept
event TokensSwept(address indexed tokensRecipient, uint256 tokensAmount);
/// @notice Emitted when the currency is swept
/// @param fundsRecipient The address of the funds recipient
/// @param currencyAmount The amount of currency swept
event CurrencySwept(address indexed fundsRecipient, uint256 currencyAmount);
/// @notice The currency being raised in the auction
function currency() external view returns (Currency);
/// @notice The token being sold in the auction
function token() external view returns (IERC20Minimal);
/// @notice The total supply of tokens to sell
function totalSupply() external view returns (uint128);
/// @notice The recipient of any unsold tokens at the end of the auction
function tokensRecipient() external view returns (address);
/// @notice The recipient of the raised Currency from the auction
function fundsRecipient() external view returns (address);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @notice Interface for custom bid validation logic
interface IValidationHook {
/// @notice Validate a bid
/// @dev MUST revert if the bid is invalid
/// @param maxPrice The maximum price the bidder is willing to pay
/// @param amount The amount of the bid
/// @param owner The owner of the bid
/// @param sender The sender of the bid
/// @param hookData Additional data to pass to the hook required for validation
function validate(uint256 maxPrice, uint128 amount, address owner, address sender, bytes calldata hookData) external;
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @title IDistributionContract
/// @notice Interface for token distribution contracts.
interface IDistributionContract {
/// @notice Notify a distribution contract that it has received the tokens to distribute
function onTokensReceived() external;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Create2.sol)
pragma solidity ^0.8.20;
import {Errors} from "./Errors.sol";
/**
* @dev Helper to make usage of the `CREATE2` EVM opcode easier and safer.
* `CREATE2` can be used to compute in advance the address where a smart
* contract will be deployed, which allows for interesting new mechanisms known
* as 'counterfactual interactions'.
*
* See the https://eips.ethereum.org/EIPS/eip-1014#motivation[EIP] for more
* information.
*/
library Create2 {
/**
* @dev There's no code to deploy.
*/
error Create2EmptyBytecode();
/**
* @dev Deploys a contract using `CREATE2`. The address where the contract
* will be deployed can be known in advance via {computeAddress}.
*
* The bytecode for a contract can be obtained from Solidity with
* `type(contractName).creationCode`.
*
* Requirements:
*
* - `bytecode` must not be empty.
* - `salt` must have not been used for `bytecode` already.
* - the factory must have a balance of at least `amount`.
* - if `amount` is non-zero, `bytecode` must have a `payable` constructor.
*/
function deploy(uint256 amount, bytes32 salt, bytes memory bytecode) internal returns (address addr) {
if (address(this).balance < amount) {
revert Errors.InsufficientBalance(address(this).balance, amount);
}
if (bytecode.length == 0) {
revert Create2EmptyBytecode();
}
assembly ("memory-safe") {
addr := create2(amount, add(bytecode, 0x20), mload(bytecode), salt)
// if no address was created, and returndata is not empty, bubble revert
if and(iszero(addr), not(iszero(returndatasize()))) {
let p := mload(0x40)
returndatacopy(p, 0, returndatasize())
revert(p, returndatasize())
}
}
if (addr == address(0)) {
revert Errors.FailedDeployment();
}
}
/**
* @dev Returns the address where a contract will be stored if deployed via {deploy}. Any change in the
* `bytecodeHash` or `salt` will result in a new destination address.
*/
function computeAddress(bytes32 salt, bytes32 bytecodeHash) internal view returns (address) {
return computeAddress(salt, bytecodeHash, address(this));
}
/**
* @dev Returns the address where a contract will be stored if deployed via {deploy} from a contract located at
* `deployer`. If `deployer` is this contract's address, returns the same value as {computeAddress}.
*/
function computeAddress(bytes32 salt, bytes32 bytecodeHash, address deployer) internal pure returns (address addr) {
assembly ("memory-safe") {
let ptr := mload(0x40) // Get free memory pointer
// | | ↓ ptr ... ↓ ptr + 0x0B (start) ... ↓ ptr + 0x20 ... ↓ ptr + 0x40 ... |
// |-------------------|---------------------------------------------------------------------------|
// | bytecodeHash | CCCCCCCCCCCCC...CC |
// | salt | BBBBBBBBBBBBB...BB |
// | deployer | 000000...0000AAAAAAAAAAAAAAAAAAA...AA |
// | 0xFF | FF |
// |-------------------|---------------------------------------------------------------------------|
// | memory | 000000...00FFAAAAAAAAAAAAAAAAAAA...AABBBBBBBBBBBBB...BBCCCCCCCCCCCCC...CC |
// | keccak(start, 85) | ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ |
mstore(add(ptr, 0x40), bytecodeHash)
mstore(add(ptr, 0x20), salt)
mstore(ptr, deployer) // Right-aligned with 12 preceding garbage bytes
let start := add(ptr, 0x0b) // The hashed data starts at the final garbage byte which we will set to 0xff
mstore8(start, 0xff)
addr := and(keccak256(start, 85), 0xffffffffffffffffffffffffffffffffffffffff)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of common custom errors used in multiple contracts
*
* IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
* It is recommended to avoid relying on the error API for critical functionality.
*
* _Available since v5.1._
*/
library Errors {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error InsufficientBalance(uint256 balance, uint256 needed);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedCall();
/**
* @dev The deployment failed.
*/
error FailedDeployment();
/**
* @dev A necessary precompile is missing.
*/
error MissingPrecompile(address);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";
/**
* @title IERC1363
* @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
*
* Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
* after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
*/
interface IERC1363 is IERC20, IERC165 {
/*
* Note: the ERC-165 identifier for this interface is 0xb0202a11.
* 0xb0202a11 ===
* bytes4(keccak256('transferAndCall(address,uint256)')) ^
* bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
* bytes4(keccak256('approveAndCall(address,uint256)')) ^
* bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
*/
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @param data Additional data with no specified format, sent in call to `spender`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (access/Ownable2Step.sol)
pragma solidity ^0.8.20;
import {Ownable} from "./Ownable.sol";
/**
* @dev Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* This extension of the {Ownable} contract includes a two-step mechanism to transfer
* ownership, where the new owner must call {acceptOwnership} in order to replace the
* old one. This can help prevent common mistakes, such as transfers of ownership to
* incorrect accounts, or to contracts that are unable to interact with the
* permission system.
*
* The initial owner is specified at deployment time in the constructor for `Ownable`. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2Step is Ownable {
address private _pendingOwner;
event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
return _pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
* Can only be called by the current owner.
*
* Setting `newOwner` to the zero address is allowed; this can be used to cancel an initiated ownership transfer.
*/
function transferOwnership(address newOwner) public virtual override onlyOwner {
_pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
delete _pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() public virtual {
address sender = _msgSender();
if (pendingOwner() != sender) {
revert OwnableUnauthorizedAccount(sender);
}
_transferOwnership(sender);
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;
import {Ownable2Step, Ownable} from "@oz/access/Ownable2Step.sol";
import {UUPSUpgradeable, ERC1967Utils} from "@oz/proxy/utils/UUPSUpgradeable.sol";
import {LockParams} from "./libraries/LockLib.sol";
import {BaseStaker} from "./staker/BaseStaker.sol";
type MilestoneId is uint96;
type StakerVersion is uint256;
enum MilestoneStatus {
Pending,
Failed,
Succeeded
}
interface IRegistry {
event UpdatedRevoker(address revoker);
event UpdatedRevokerOperator(address revokerOperator);
event UpdatedExecuteAllowedAt(uint256 executeAllowedAt);
event UpdatedUnlockStartTime(uint256 unlockStartTime);
event StakerRegistered(StakerVersion version, address implementation);
event MilestoneAdded(MilestoneId milestoneId);
event MilestoneStatusUpdated(MilestoneId milestoneId, MilestoneStatus status);
error InvalidExecuteAllowedAt(uint256 newExecuteAllowedAt, uint256 currentExecuteAllowedAt);
error InvalidUnlockStartTime(uint256 newUnlockStartTime, uint256 currentUnlockStartTime);
error InvalidUnlockDuration();
error InvalidUnlockCliffDuration();
error InvalidStakerImplementation(address implementation);
error UnRegisteredStaker(StakerVersion version);
error InvalidMilestoneId(MilestoneId milestoneId);
error InvalidMilestoneStatus(MilestoneId milestoneId);
function setRevoker(address _revoker) external;
function setRevokerOperator(address _revokerOperator) external;
function setExecuteAllowedAt(uint256 _executeAllowedAt) external;
function setUnlockStartTime(uint256 _unlockStartTime) external;
function registerStakerImplementation(address _implementation) external;
function addMilestone() external returns (MilestoneId);
function setMilestoneStatus(MilestoneId _milestoneId, MilestoneStatus _status) external;
function getRevoker() external view returns (address);
function getRevokerOperator() external view returns (address);
function getExecuteAllowedAt() external view returns (uint256);
function getUnlockStartTime() external view returns (uint256);
function getGlobalLockParams() external view returns (LockParams memory);
function getStakerImplementation(StakerVersion _version) external view returns (address);
function getNextStakerVersion() external view returns (StakerVersion);
function getMilestoneStatus(MilestoneId _milestoneId) external view returns (MilestoneStatus);
function getNextMilestoneId() external view returns (MilestoneId);
}
contract Registry is Ownable2Step, IRegistry {
uint256 internal immutable UNLOCK_CLIFF_DURATION;
uint256 internal immutable UNLOCK_LOCK_DURATION;
// @note An initial value set to be the unix timestamp of 1st of January 2027
uint256 internal unlockStartTime = 1798761600;
uint256 internal executeAllowedAt = 1798761600;
address internal revoker;
address internal revokerOperator;
StakerVersion internal nextStakerVersion;
mapping(StakerVersion version => address implementation) internal stakerImplementations;
MilestoneId internal nextMilestoneId;
mapping(MilestoneId milestoneId => MilestoneStatus status) internal milestones;
constructor(address __owner, uint256 _unlockCliffDuration, uint256 _unlockLockDuration) Ownable(__owner) {
require(_unlockLockDuration > 0, InvalidUnlockDuration());
require(_unlockLockDuration >= _unlockCliffDuration, InvalidUnlockCliffDuration());
UNLOCK_CLIFF_DURATION = _unlockCliffDuration;
UNLOCK_LOCK_DURATION = _unlockLockDuration;
// @note Register the base staker implementation
stakerImplementations[StakerVersion.wrap(0)] = address(new BaseStaker());
nextStakerVersion = StakerVersion.wrap(1);
}
/**
* @notice Add a new milestone
*
* @dev Only callable by the owner
*
* @return The milestone id
*/
function addMilestone() external override(IRegistry) onlyOwner returns (MilestoneId) {
MilestoneId milestoneId = nextMilestoneId;
nextMilestoneId = MilestoneId.wrap(MilestoneId.unwrap(nextMilestoneId) + 1);
milestones[milestoneId] = MilestoneStatus.Pending; // To be explicit
emit MilestoneAdded(milestoneId);
return milestoneId;
}
function setMilestoneStatus(MilestoneId _milestoneId, MilestoneStatus _status)
external
override(IRegistry)
onlyOwner
{
require(getMilestoneStatus(_milestoneId) == MilestoneStatus.Pending, InvalidMilestoneStatus(_milestoneId));
require(_status != MilestoneStatus.Pending, InvalidMilestoneStatus(_milestoneId));
milestones[_milestoneId] = _status;
emit MilestoneStatusUpdated(_milestoneId, _status);
}
/**
* @notice Register a new staker implementation
*
* @dev Only callable by the owner
*
* @param _implementation The address of the staker implementation
*/
function registerStakerImplementation(address _implementation) external override(IRegistry) onlyOwner {
require(
UUPSUpgradeable(_implementation).proxiableUUID() == ERC1967Utils.IMPLEMENTATION_SLOT,
InvalidStakerImplementation(_implementation)
);
StakerVersion version = nextStakerVersion;
nextStakerVersion = StakerVersion.wrap(StakerVersion.unwrap(nextStakerVersion) + 1);
stakerImplementations[version] = _implementation;
emit StakerRegistered(version, _implementation);
}
/**
* @notice Set the revoker address
*
* @dev Only callable by the owner
*
* @param _revoker The address of the revoker
*/
function setRevoker(address _revoker) external override(IRegistry) onlyOwner {
revoker = _revoker;
emit UpdatedRevoker(_revoker);
}
function setRevokerOperator(address _revokerOperator) external override(IRegistry) onlyOwner {
revokerOperator = _revokerOperator;
emit UpdatedRevokerOperator(_revokerOperator);
}
/**
* @notice Set the execute allowed at timestamp
* Can only be decreased to avoid unintentional updates and give some guarantees to LATP beneficiaries
*
* @dev Only callable by the owner
*
* @param _executeAllowedAt The timestamp of when the execute is allowed
*/
function setExecuteAllowedAt(uint256 _executeAllowedAt) external override(IRegistry) onlyOwner {
require(_executeAllowedAt < executeAllowedAt, InvalidExecuteAllowedAt(_executeAllowedAt, executeAllowedAt));
executeAllowedAt = _executeAllowedAt;
emit UpdatedExecuteAllowedAt(_executeAllowedAt);
}
/**
* @notice Set the unlock start time
* Can only be decreased to avoid unintentional updates and give some guarantees to LATP beneficiaries
*
* @dev Only callable by the owner
*
* @param _unlockStartTime The timestamp of when the unlock starts
*/
function setUnlockStartTime(uint256 _unlockStartTime) external override(IRegistry) onlyOwner {
require(_unlockStartTime < unlockStartTime, InvalidUnlockStartTime(_unlockStartTime, unlockStartTime));
unlockStartTime = _unlockStartTime;
emit UpdatedUnlockStartTime(_unlockStartTime);
}
/**
* @notice Get the revoker address
*
* @return The address of the revoker
*/
function getRevoker() external view override(IRegistry) returns (address) {
return revoker;
}
function getRevokerOperator() external view override(IRegistry) returns (address) {
return revokerOperator;
}
/**
* @notice Get the execute allowed at timestamp
*
* @return The timestamp of when the execute is allowed
*/
function getExecuteAllowedAt() external view override(IRegistry) returns (uint256) {
return executeAllowedAt;
}
/**
* @notice Get the unlock start time
*
* @return The timestamp of when the unlock starts
*/
function getUnlockStartTime() external view override(IRegistry) returns (uint256) {
return unlockStartTime;
}
/**
* @notice Get the lock params for the global unlocking schedule
*
* @return The global lock params
*/
function getGlobalLockParams() external view override(IRegistry) returns (LockParams memory) {
return LockParams({
startTime: unlockStartTime, cliffDuration: UNLOCK_CLIFF_DURATION, lockDuration: UNLOCK_LOCK_DURATION
});
}
/**
* @notice Get the implementation for a given staker version
*
* @param _version The version of the staker
*
* @return The implementation for the given staker version
*/
function getStakerImplementation(StakerVersion _version) external view override(IRegistry) returns (address) {
require(StakerVersion.unwrap(_version) < StakerVersion.unwrap(nextStakerVersion), UnRegisteredStaker(_version));
return stakerImplementations[_version];
}
/**
* @notice Get the next staker version
*
* @return The next staker version
*/
function getNextStakerVersion() external view override(IRegistry) returns (StakerVersion) {
return nextStakerVersion;
}
function getNextMilestoneId() external view override(IRegistry) returns (MilestoneId) {
return nextMilestoneId;
}
function getMilestoneStatus(MilestoneId _milestoneId) public view override(IRegistry) returns (MilestoneStatus) {
require(
MilestoneId.unwrap(_milestoneId) < MilestoneId.unwrap(nextMilestoneId), InvalidMilestoneId(_milestoneId)
);
return milestones[_milestoneId];
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;
import {IRegistry} from "../Registry.sol";
import {LATP} from "../atps/linear/LATP.sol";
import {IERC20} from "@oz/token/ERC20/IERC20.sol";
library LATPFactory {
/**
* @notice Deploy the LATP implementation
* @param _registry The registry
* @param _token The token
* @return The LATP implementation
*/
function deployImplementation(IRegistry _registry, IERC20 _token) external returns (LATP) {
return new LATP(_registry, _token);
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;
import {IRegistry} from "../Registry.sol";
import {NCATP} from "../atps/noclaim/NCATP.sol";
import {IERC20} from "@oz/token/ERC20/IERC20.sol";
library NCATPFactory {
/**
* @notice Deploy the NCATP implementation
* @param _registry The registry
* @param _token The token
* @return The NCATP implementation
*/
function deployImplementation(IRegistry _registry, IERC20 _token) external returns (NCATP) {
return new NCATP(_registry, _token);
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;
import {IRegistry} from "../Registry.sol";
import {MATP} from "../atps/milestone/MATP.sol";
import {IERC20} from "@oz/token/ERC20/IERC20.sol";
library MATPFactory {
/**
* @notice Deploy the MATP implementation
* @param _registry The registry
* @param _token The token
* @return The MATP implementation
*/
function deployImplementation(IRegistry _registry, IERC20 _token) external returns (MATP) {
return new MATP(_registry, _token);
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;
import {ERC1967Proxy} from "@oz/proxy/ERC1967/ERC1967Proxy.sol";
import {UUPSUpgradeable} from "@oz/proxy/utils/UUPSUpgradeable.sol";
import {IERC20} from "@oz/token/ERC20/IERC20.sol";
import {SafeERC20} from "@oz/token/ERC20/utils/SafeERC20.sol";
import {Math} from "@oz/utils/math/Math.sol";
import {SafeCast} from "@oz/utils/math/SafeCast.sol";
import {LockParams, Lock, LockLib} from "./../../libraries/LockLib.sol";
import {IRegistry, StakerVersion} from "./../../Registry.sol";
import {IBaseStaker} from "./../../staker/BaseStaker.sol";
import {ILATPCore, IATPCore, LATPStorage, RevokableParams} from "./ILATP.sol";
/**
* @title Linear Aztec Token Position Core
* @notice The core logic of the Linear Aztec Token Position
* @dev This contract is abstract and cannot be deployed on its own.
* It is meant to be inherited by the `LATP` contract.
* MUST be deployed using the `ATPFactory` contract.
*/
abstract contract LATPCore is ILATPCore {
using SafeCast for uint256;
using SafeERC20 for IERC20;
using LockLib for Lock;
IERC20 internal immutable TOKEN;
IRegistry internal immutable REGISTRY;
uint256 internal allocation;
address internal beneficiary;
IBaseStaker internal staker;
address internal operator;
uint256 internal claimed = 0;
LATPStorage internal store;
/**
* @dev The caller must be the beneficiary
*/
modifier onlyBeneficiary() {
require(msg.sender == beneficiary, NotBeneficiary(msg.sender, beneficiary));
_;
}
/**
* @dev Since we are using the `Clones` library to create the LATP's to use
* we can't use the constructor to initialize the individual ones, but
* we can use it to initialize values that will be shared across all the clones.
*
* @param _registry The registry
* @param _token The token
*/
constructor(IRegistry _registry, IERC20 _token) {
require(address(_registry) != address(0), InvalidRegistry(address(_registry)));
require(address(_token) != address(0), InvalidTokenAddress(address(_token)));
TOKEN = _token;
REGISTRY = _registry;
staker = IBaseStaker(address(0xdead));
}
/**
* @notice Initialize the Aztec Token Position
* Creates a `Staker`, sets the `beneficiary` and `allocation`
* If the LATP is revokable, it will set the `accumulation` lock as well
*
* @dev If run twice, the `staker` will already be set and this will revert
* with the `AlreadyInitialized` error
*
* @dev When done by the `ATPFactory` this will happen in the same transaction as LATP creation
*
* @param _beneficiary The address of the beneficiary
* @param _allocation The amount of tokens to allocate to the LATP
* @param _revokableParams The parameters for the accumulation lock and revoke beneficiary, if the LATP is revokable
*/
function initialize(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
external
override(ILATPCore)
{
require(address(staker) == address(0), AlreadyInitialized());
require(_beneficiary != address(0), InvalidBeneficiary(address(0)));
require(_allocation > 0, AllocationMustBeGreaterThanZero());
beneficiary = _beneficiary;
allocation = _allocation;
staker = createStaker();
if (_revokableParams.revokeBeneficiary != address(0)) {
LockLib.assertValid(_revokableParams.lockParams);
store = LATPStorage({
isRevokable: true,
accumulationStartTime: _revokableParams.lockParams.startTime.toUint32(),
accumulationCliffDuration: _revokableParams.lockParams.cliffDuration.toUint32(),
accumulationLockDuration: _revokableParams.lockParams.lockDuration.toUint32(),
revokeBeneficiary: _revokableParams.revokeBeneficiary
});
} else {
// If the LATP is non-revokable, the store will be all 0, so we do not need to set storage
// We will however check that the lock params are empty, to reduce potential for confusion
require(LockLib.isEmpty(_revokableParams.lockParams), LockParamsMustBeEmpty());
}
}
/**
* @notice Upgrade the staker contract to a new version
*
* @param _version The version of the staker to upgrade to
*/
function upgradeStaker(StakerVersion _version) external override(IATPCore) onlyBeneficiary {
address impl = REGISTRY.getStakerImplementation(_version);
UUPSUpgradeable(address(staker)).upgradeToAndCall(impl, "");
require(staker.getATP() == address(this), InvalidUpgrade());
emit StakerUpgraded(_version);
}
/**
* @notice Update the operator of the staker contract
*
* @param _operator The address of the new operator
*/
function updateStakerOperator(address _operator) external override(IATPCore) onlyBeneficiary {
operator = _operator;
emit StakerOperatorUpdated(_operator);
}
/**
* @notice Cancel the accumulation of assets
*
* @return The amount of tokens revoked
*/
function revoke() external override(IATPCore) returns (uint256) {
require(store.isRevokable, NotRevokable());
address revoker = REGISTRY.getRevoker();
require(msg.sender == revoker, NotRevoker(msg.sender, revoker));
Lock memory accumulationLock = getAccumulationLock();
require(!accumulationLock.hasEnded(block.timestamp), LockHasEnded());
uint256 debt = getRevokableAmount();
store.isRevokable = false;
TOKEN.safeTransfer(store.revokeBeneficiary, debt);
emit Revoked(debt);
return debt;
}
/**
* @notice Rescue funds that have been sent to the contract by mistake
* Allows the beneficiary to transfer funds that are not unlock token from the contract.
*
* @param _asset The asset to rescue
* @param _to The address to send the assets to
*/
function rescueFunds(address _asset, address _to) external override(IATPCore) onlyBeneficiary {
require(_asset != address(TOKEN), InvalidAsset(_asset));
IERC20 asset = IERC20(_asset);
uint256 amount = asset.balanceOf(address(this));
asset.safeTransfer(_to, amount);
emit Rescued(_asset, _to, amount);
}
/**
* @notice Authorizes the staker contract for the specified amount.
*
* @param _allowance The amount of tokens to authorize the staker contract for
*/
function approveStaker(uint256 _allowance) external override(IATPCore) onlyBeneficiary {
// slither-disable-start block-timestamp
// As we are not relying on block.timestamp for randomness but merely for when we will toggle
// the EXECUTE_ALLOWED_AT flag, and time will only ever increase, we can safely ignore the warning.
uint256 executeAllowedAt = REGISTRY.getExecuteAllowedAt();
require(block.timestamp >= executeAllowedAt, ExecutionNotAllowedYet(block.timestamp, executeAllowedAt));
// slither-disable-end block-timestamp
uint256 stakeable = getStakeableAmount();
require(stakeable >= _allowance, InsufficientStakeable(stakeable, _allowance));
TOKEN.approve(address(staker), _allowance);
emit ApprovedStaker(_allowance);
}
/**
* @notice Claim the amount of tokens that are available for the owner to claim.
*
* @dev The `caller` must be the `beneficiary`
*
* @return The amount of tokens claimed
*/
function claim() external virtual override(IATPCore) onlyBeneficiary returns (uint256) {
uint256 amount = getClaimable();
require(amount > 0, NoClaimable());
claimed += amount;
TOKEN.safeTransfer(msg.sender, amount);
// @note After the transfer, we need to ensure that the allowance is not too high.
// Namely, if the allowance is larger than the stakeable amount it should be reduced.
uint256 stakeable = getStakeableAmount();
uint256 allowance = TOKEN.allowance(address(this), address(staker));
if (stakeable < allowance) {
TOKEN.approve(address(staker), stakeable);
}
emit Claimed(amount);
return amount;
}
function getOperator() public view override(IATPCore) returns (address) {
return operator;
}
function getBeneficiary() public view override(IATPCore) returns (address) {
return beneficiary;
}
/**
* @notice Compute the amount of tokens that can be claimed.
*
* @return The amount of tokens that can be claimed
*/
function getClaimable() public view override(IATPCore) returns (uint256) {
Lock memory globalLock = getGlobalLock();
uint256 unlocked = globalLock.hasEnded(block.timestamp)
? type(uint256).max
: (globalLock.unlockedAt(block.timestamp) - claimed);
return Math.min(TOKEN.balanceOf(address(this)) - getRevokableAmount(), unlocked);
}
/**
* @notice Get the global unlock schedule lock
*
* @return The global lock
*/
function getGlobalLock() public view override(IATPCore) returns (Lock memory) {
return LockLib.createLock(REGISTRY.getGlobalLockParams(), allocation);
}
/**
* @notice Get the accumulation lock
*
* @return The accumulation lock or empty if not revokable
*/
function getAccumulationLock() public view override(ILATPCore) returns (Lock memory) {
require(store.isRevokable, NotRevokable());
return LockLib.createLock(
LockParams({
startTime: store.accumulationStartTime,
cliffDuration: store.accumulationCliffDuration,
lockDuration: store.accumulationLockDuration
}),
allocation
);
}
/**
* @notice Get the amount of tokens that can be revoked
*
* @return The amount of tokens that can be revoked
*/
function getRevokableAmount() public view override(ILATPCore) returns (uint256) {
if (!store.isRevokable) {
return 0;
}
return allocation - getAccumulationLock().unlockedAt(block.timestamp);
}
/**
* @notice Get the amount of tokens that can be staked
*
* @return The amount of tokens that can be staked
*/
function getStakeableAmount() public view override(ILATPCore) returns (uint256) {
if (!store.isRevokable) {
return type(uint256).max;
}
return TOKEN.balanceOf(address(this)) - getRevokableAmount();
}
/**
* @notice Create a new staker contract with the `ERC1967Proxy`
* the initial implementation used will the be `BaseStaker`
*
* @return The new staker contract
*/
function createStaker() private returns (IBaseStaker) {
address impl = REGISTRY.getStakerImplementation(StakerVersion.wrap(0));
ERC1967Proxy proxy = new ERC1967Proxy(impl, abi.encodeCall(IBaseStaker.initialize, address(this)));
IBaseStaker _staker = IBaseStaker(address(proxy));
emit StakerInitialized(_staker);
return _staker;
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;
import {ERC1967Proxy} from "@oz/proxy/ERC1967/ERC1967Proxy.sol";
import {UUPSUpgradeable} from "@oz/proxy/utils/UUPSUpgradeable.sol";
import {IERC20} from "@oz/token/ERC20/IERC20.sol";
import {SafeERC20} from "@oz/token/ERC20/utils/SafeERC20.sol";
import {Math} from "@oz/utils/math/Math.sol";
import {SafeCast} from "@oz/utils/math/SafeCast.sol";
import {Lock, LockLib} from "./../../libraries/LockLib.sol";
import {IRegistry, StakerVersion, MilestoneId, MilestoneStatus} from "./../../Registry.sol";
import {IBaseStaker} from "./../../staker/BaseStaker.sol";
import {IMATPCore, IATPCore} from "./IMATP.sol";
/**
* @title Milestone Aztec Token Position Core
* @notice The core logic of the Milestone Aztec Token Position
* @dev This contract is abstract and cannot be deployed on its own.
* It is meant to be inherited by the `MATP` contract.
* MUST be deployed using the `ATPFactory` contract.
*/
abstract contract MATPCore is IMATPCore {
using SafeCast for uint256;
using SafeERC20 for IERC20;
using LockLib for Lock;
IERC20 internal immutable TOKEN;
IRegistry internal immutable REGISTRY;
uint256 internal allocation;
// 160 + 96 = 256
address internal beneficiary;
MilestoneId internal milestoneId;
IBaseStaker internal staker;
address internal operator;
uint256 internal claimed = 0;
bool internal isRevoked = false;
/**
* @dev The caller must be the beneficiary, or if the milestone have failed it must be the revoker
*/
modifier onlyBeneficiary() {
address _beneficiary = getBeneficiary();
require(msg.sender == _beneficiary, NotBeneficiary(msg.sender, _beneficiary));
_;
}
/**
* @dev Since we are using the `Clones` library to create the ATP's to use
* we can't use the constructor to initialize the individual ones, but
* we can use it to initialize values that will be shared across all the clones.
*
* @param _registry The registry
* @param _token The token
*/
constructor(IRegistry _registry, IERC20 _token) {
require(address(_registry) != address(0), InvalidRegistry(address(_registry)));
require(address(_token) != address(0), InvalidTokenAddress(address(_token)));
TOKEN = _token;
REGISTRY = _registry;
staker = IBaseStaker(address(0xdead));
}
/**
* @notice Initialize the Aztec Token Position
* Creates a `Staker`, sets the `beneficiary` and `allocation`
* If the ATP is revokable, it will set the `accumulation` lock as well
*
* @dev If run twice, the `staker` will already be set and this will revert
* with the `AlreadyInitialized` error
*
* @dev When done by the `ATPFactory` this will happen in the same transaction as ATP creation
*
* @param _beneficiary The address of the beneficiary
* @param _allocation The amount of tokens to allocate to the ATP
* @param _milestoneId The milestone id
*/
function initialize(address _beneficiary, uint256 _allocation, MilestoneId _milestoneId)
external
override(IMATPCore)
{
require(address(staker) == address(0), AlreadyInitialized());
require(_beneficiary != address(0), InvalidBeneficiary(address(0)));
require(_allocation > 0, AllocationMustBeGreaterThanZero());
require(
REGISTRY.getMilestoneStatus(_milestoneId) == MilestoneStatus.Pending,
IRegistry.InvalidMilestoneStatus(_milestoneId)
);
beneficiary = _beneficiary;
milestoneId = _milestoneId;
allocation = _allocation;
staker = createStaker();
}
/**
* @notice Upgrade the staker contract to a new version
*
* @param _version The version of the staker to upgrade to
*/
function upgradeStaker(StakerVersion _version) external override(IATPCore) onlyBeneficiary {
address impl = REGISTRY.getStakerImplementation(_version);
UUPSUpgradeable(address(staker)).upgradeToAndCall(impl, "");
require(staker.getATP() == address(this), InvalidUpgrade());
emit StakerUpgraded(_version);
}
/**
* @notice Cancel the accumulation of assets
*
* @return The amount of tokens revoked
*/
function revoke() external override(IATPCore) returns (uint256) {
require(!isRevoked, NotRevokable());
require(REGISTRY.getMilestoneStatus(milestoneId) == MilestoneStatus.Pending, NotRevokable());
address revoker = REGISTRY.getRevoker();
require(msg.sender == revoker, NotRevoker(msg.sender, revoker));
isRevoked = true;
emit Revoked(allocation);
return allocation;
}
/**
* @notice Rescue funds that have been sent to the contract by mistake
* Allows the beneficiary to transfer funds that are not unlock token from the contract.
*
* @param _asset The asset to rescue
* @param _to The address to send the assets to
*/
function rescueFunds(address _asset, address _to) external override(IATPCore) {
require(_asset != address(TOKEN), InvalidAsset(_asset));
require(msg.sender == beneficiary, NotBeneficiary(msg.sender, beneficiary));
IERC20 asset = IERC20(_asset);
uint256 amount = asset.balanceOf(address(this));
asset.safeTransfer(_to, amount);
emit Rescued(_asset, _to, amount);
}
/**
* @notice Authorizes the staker contract for the specified amount.
*
* @param _allowance The amount of tokens to authorize the staker contract for
*/
function approveStaker(uint256 _allowance) external override(IATPCore) onlyBeneficiary {
// slither-disable-start block-timestamp
// As we are not relying on block.timestamp for randomness but merely for when we will toggle
// the EXECUTE_ALLOWED_AT flag, and time will only ever increase, we can safely ignore the warning.
uint256 executeAllowedAt = REGISTRY.getExecuteAllowedAt();
require(block.timestamp >= executeAllowedAt, ExecutionNotAllowedYet(block.timestamp, executeAllowedAt));
// slither-disable-end block-timestamp
TOKEN.approve(address(staker), _allowance);
emit ApprovedStaker(_allowance);
}
/**
* @notice Claim the amount of tokens that are available for the owner to claim.
*
* @dev The `caller` must be the `beneficiary`
*
* @return The amount of tokens claimed
*/
function claim() external override(IATPCore) onlyBeneficiary returns (uint256) {
uint256 amount = getClaimable();
require(amount > 0, NoClaimable());
claimed += amount;
TOKEN.safeTransfer(msg.sender, amount);
emit Claimed(amount);
return amount;
}
/**
* @notice Update the operator of the staker contract
*
* @param _operator The address of the new operator
*/
function updateStakerOperator(address _operator) public override(IATPCore) onlyBeneficiary {
require(!isRevoked && REGISTRY.getMilestoneStatus(milestoneId) != MilestoneStatus.Failed, RevokedOrFailed());
operator = _operator;
emit StakerOperatorUpdated(_operator);
}
/**
* @notice Compute the amount of tokens that can be claimed.
*
* @return The amount of tokens that can be claimed
*/
function getClaimable() public view override(IATPCore) returns (uint256) {
MilestoneStatus status = REGISTRY.getMilestoneStatus(milestoneId);
if (isRevoked || status == MilestoneStatus.Failed) {
// When revoked or milestone failed, the lock is ignored as it is the revoker
// claiming, and it should be able to bypass these
return TOKEN.balanceOf(address(this));
}
if (status != MilestoneStatus.Succeeded) {
return 0;
}
Lock memory globalLock = getGlobalLock();
uint256 unlocked = globalLock.hasEnded(block.timestamp)
? type(uint256).max
: (globalLock.unlockedAt(block.timestamp) - claimed);
return Math.min(TOKEN.balanceOf(address(this)), unlocked);
}
/**
* @notice Get the global unlock schedule lock
*
* @return The global lock
*/
function getGlobalLock() public view override(IATPCore) returns (Lock memory) {
return LockLib.createLock(REGISTRY.getGlobalLockParams(), allocation);
}
/**
* @notice Get the beneficiary of the ATP
* If the milestone has failed or ATP was revoked, the beneficiary is the revoker
*
* @return The beneficiary
*/
function getBeneficiary() public view override(IATPCore) returns (address) {
if (isRevoked || REGISTRY.getMilestoneStatus(milestoneId) == MilestoneStatus.Failed) {
return REGISTRY.getRevoker();
}
return beneficiary;
}
/**
* @notice Get the operator of the staker contract
* If the milestone has failed or ATP was revoked, the operator is the revoker operator
*
* @return The operator
*/
function getOperator() public view override(IATPCore) returns (address) {
if (isRevoked || REGISTRY.getMilestoneStatus(milestoneId) == MilestoneStatus.Failed) {
return REGISTRY.getRevokerOperator();
}
return operator;
}
/**
* @notice Create a new staker contract with the `ERC1967Proxy`
* the initial implementation used will the be `BaseStaker`
*
* @return The new staker contract
*/
function createStaker() private returns (IBaseStaker) {
address impl = REGISTRY.getStakerImplementation(StakerVersion.wrap(0));
ERC1967Proxy proxy = new ERC1967Proxy(impl, abi.encodeCall(IBaseStaker.initialize, address(this)));
IBaseStaker _staker = IBaseStaker(address(proxy));
emit StakerInitialized(_staker);
return _staker;
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;
import {ERC1967Utils} from "@oz/proxy/ERC1967/ERC1967Utils.sol";
import {UUPSUpgradeable} from "@oz/proxy/utils/UUPSUpgradeable.sol";
import {IATPCore} from "../atps/base/IATP.sol";
interface IBaseStaker {
function initialize(address _atp) external;
function getATP() external view returns (address);
function getOperator() external view returns (address);
function getImplementation() external view returns (address);
}
contract BaseStaker is IBaseStaker, UUPSUpgradeable {
address internal atp;
error AlreadyInitialized();
error ZeroATP();
error NotATP(address caller, address atp);
error NotOperator(address caller, address operator);
error UnSupportedOperation();
modifier onlyOperator() {
address operator = getOperator();
require(msg.sender == operator, NotOperator(msg.sender, operator));
_;
}
modifier onlyATP() {
require(msg.sender == address(atp), NotATP(msg.sender, address(atp)));
_;
}
constructor() {
atp = address(0xdead);
}
function initialize(address _atp) external virtual override(IBaseStaker) {
require(address(_atp) != address(0), ZeroATP());
require(address(atp) == address(0), AlreadyInitialized());
atp = _atp;
}
function getImplementation() external view virtual override(IBaseStaker) returns (address) {
return ERC1967Utils.getImplementation();
}
function getATP() public view virtual override(IBaseStaker) returns (address) {
return atp;
}
function getOperator() public view virtual override(IBaseStaker) returns (address) {
return IATPCore(atp).getOperator();
}
function _authorizeUpgrade(address _newImplementation) internal virtual override(UUPSUpgradeable) onlyATP {}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
using SafeCast for *;
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
uint256 private constant SPECIAL_CHARS_LOOKUP =
(1 << 0x08) | // backspace
(1 << 0x09) | // tab
(1 << 0x0a) | // newline
(1 << 0x0c) | // form feed
(1 << 0x0d) | // carriage return
(1 << 0x22) | // double quote
(1 << 0x5c); // backslash
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev The string being parsed contains characters that are not in scope of the given base.
*/
error StringsInvalidChar();
/**
* @dev The string being parsed is not a properly formatted address.
*/
error StringsInvalidAddressFormat();
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
assembly ("memory-safe") {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
assembly ("memory-safe") {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
* representation, according to EIP-55.
*/
function toChecksumHexString(address addr) internal pure returns (string memory) {
bytes memory buffer = bytes(toHexString(addr));
// hash the hex part of buffer (skip length + 2 bytes, length 40)
uint256 hashValue;
assembly ("memory-safe") {
hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
}
for (uint256 i = 41; i > 1; --i) {
// possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
// case shift by xoring with 0x20
buffer[i] ^= 0x20;
}
hashValue >>= 4;
}
return string(buffer);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
/**
* @dev Parse a decimal string and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input) internal pure returns (uint256) {
return parseUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
uint256 result = 0;
for (uint256 i = begin; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 9) return (false, 0);
result *= 10;
result += chr;
}
return (true, result);
}
/**
* @dev Parse a decimal string and returns the value as a `int256`.
*
* Requirements:
* - The string must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input) internal pure returns (int256) {
return parseInt(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
(bool success, int256 value) = tryParseInt(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
* the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
}
uint256 private constant ABS_MIN_INT256 = 2 ** 255;
/**
* @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character or if the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, int256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseIntUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseIntUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, int256 value) {
bytes memory buffer = bytes(input);
// Check presence of a negative sign.
bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
bool positiveSign = sign == bytes1("+");
bool negativeSign = sign == bytes1("-");
uint256 offset = (positiveSign || negativeSign).toUint();
(bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);
if (absSuccess && absValue < ABS_MIN_INT256) {
return (true, negativeSign ? -int256(absValue) : int256(absValue));
} else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
return (true, type(int256).min);
} else return (false, 0);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input) internal pure returns (uint256) {
return parseHexUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseHexUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
* invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseHexUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseHexUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
// skip 0x prefix if present
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 offset = hasPrefix.toUint() * 2;
uint256 result = 0;
for (uint256 i = begin + offset; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 15) return (false, 0);
result *= 16;
unchecked {
// Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
// This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked.
result += chr;
}
}
return (true, result);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input) internal pure returns (address) {
return parseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
(bool success, address value) = tryParseAddress(input, begin, end);
if (!success) revert StringsInvalidAddressFormat();
return value;
}
/**
* @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
* formatted address. See {parseAddress-string} requirements.
*/
function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
return tryParseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
* formatted address. See {parseAddress-string-uint256-uint256} requirements.
*/
function tryParseAddress(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, address value) {
if (end > bytes(input).length || begin > end) return (false, address(0));
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 expectedLength = 40 + hasPrefix.toUint() * 2;
// check that input is the correct length
if (end - begin == expectedLength) {
// length guarantees that this does not overflow, and value is at most type(uint160).max
(bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
return (s, address(uint160(v)));
} else {
return (false, address(0));
}
}
function _tryParseChr(bytes1 chr) private pure returns (uint8) {
uint8 value = uint8(chr);
// Try to parse `chr`:
// - Case 1: [0-9]
// - Case 2: [a-f]
// - Case 3: [A-F]
// - otherwise not supported
unchecked {
if (value > 47 && value < 58) value -= 48;
else if (value > 96 && value < 103) value -= 87;
else if (value > 64 && value < 71) value -= 55;
else return type(uint8).max;
}
return value;
}
/**
* @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata.
*
* WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped.
*
* NOTE: This function escapes all unicode characters, and not just the ones in ranges defined in section 2.5 of
* RFC-4627 (U+0000 to U+001F, U+0022 and U+005C). ECMAScript's `JSON.parse` does recover escaped unicode
* characters that are not in this range, but other tooling may provide different results.
*/
function escapeJSON(string memory input) internal pure returns (string memory) {
bytes memory buffer = bytes(input);
bytes memory output = new bytes(2 * buffer.length); // worst case scenario
uint256 outputLength = 0;
for (uint256 i; i < buffer.length; ++i) {
bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i));
if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) {
output[outputLength++] = "\\";
if (char == 0x08) output[outputLength++] = "b";
else if (char == 0x09) output[outputLength++] = "t";
else if (char == 0x0a) output[outputLength++] = "n";
else if (char == 0x0c) output[outputLength++] = "f";
else if (char == 0x0d) output[outputLength++] = "r";
else if (char == 0x5c) output[outputLength++] = "\\";
else if (char == 0x22) {
// solhint-disable-next-line quotes
output[outputLength++] = '"';
}
} else {
output[outputLength++] = char;
}
}
// write the actual length and deallocate unused memory
assembly ("memory-safe") {
mstore(output, outputLength)
mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63)))))
}
return string(output);
}
/**
* @dev Reads a bytes32 from a bytes array without bounds checking.
*
* NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
* assembly block as such would prevent some optimizations.
*/
function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
// This is not memory safe in the general case, but all calls to this private function are within bounds.
assembly ("memory-safe") {
value := mload(add(buffer, add(0x20, offset)))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.20;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC-1967 implementation slot:
* ```solidity
* contract ERC1967 {
* // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(newImplementation.code.length > 0);
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*
* TIP: Consider using this library along with {SlotDerivation}.
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct Int256Slot {
int256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Int256Slot` with member `value` located at `slot`.
*/
function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
/**
* @dev Returns a `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @title ConstantsLib
/// @notice Library containing protocol constants
library ConstantsLib {
/// @notice we use milli-bips, or one thousandth of a basis point
uint24 constant MPS = 1e7;
/// @notice The upper bound of a ValueX7 value
uint256 constant X7_UPPER_BOUND = type(uint256).max / 1e7;
/// @notice The maximum total supply of tokens that can be sold in the Auction
/// @dev This is set to 2^100 tokens, which is just above 1e30, or one trillion units of a token with 18 decimals.
/// This upper bound is chosen to prevent the Auction from being used with an extremely large token supply,
/// which would restrict the clearing price to be a very low price in the calculation below.
uint128 constant MAX_TOTAL_SUPPLY = 1 << 100;
/// @notice The minimum allowable floor price is type(uint32).max + 1
/// @dev This is the minimum price that fits in a uint160 after being inversed
uint256 constant MIN_FLOOR_PRICE = uint256(type(uint32).max) + 1;
/// @notice The minimum allowable tick spacing
/// @dev We don't support tick spacings of 1 to avoid edge cases where the rounding of the clearing price
/// would cause the price to move between initialized ticks.
uint256 constant MIN_TICK_SPACING = 2;
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
library FixedPointMathLib {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The operation failed, as the output exceeds the maximum value of uint256.
error ExpOverflow();
/// @dev The operation failed, as the output exceeds the maximum value of uint256.
error FactorialOverflow();
/// @dev The operation failed, due to an overflow.
error RPowOverflow();
/// @dev The mantissa is too big to fit.
error MantissaOverflow();
/// @dev The operation failed, due to an multiplication overflow.
error MulWadFailed();
/// @dev The operation failed, due to an multiplication overflow.
error SMulWadFailed();
/// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
error DivWadFailed();
/// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
error SDivWadFailed();
/// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
error MulDivFailed();
/// @dev The division failed, as the denominator is zero.
error DivFailed();
/// @dev The full precision multiply-divide operation failed, either due
/// to the result being larger than 256 bits, or a division by a zero.
error FullMulDivFailed();
/// @dev The output is undefined, as the input is less-than-or-equal to zero.
error LnWadUndefined();
/// @dev The input outside the acceptable domain.
error OutOfDomain();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CONSTANTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The scalar of ETH and most ERC20s.
uint256 internal constant WAD = 1e18;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* SIMPLIFIED FIXED POINT OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Equivalent to `(x * y) / WAD` rounded down.
function mulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
if gt(x, div(not(0), y)) {
if y {
mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
revert(0x1c, 0x04)
}
}
z := div(mul(x, y), WAD)
}
}
/// @dev Equivalent to `(x * y) / WAD` rounded down.
function sMulWad(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(x, y)
// Equivalent to `require((x == 0 || z / x == y) && !(x == -1 && y == type(int256).min))`.
if iszero(gt(or(iszero(x), eq(sdiv(z, x), y)), lt(not(x), eq(y, shl(255, 1))))) {
mstore(0x00, 0xedcd4dd4) // `SMulWadFailed()`.
revert(0x1c, 0x04)
}
z := sdiv(z, WAD)
}
}
/// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
function rawMulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := div(mul(x, y), WAD)
}
}
/// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
function rawSMulWad(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := sdiv(mul(x, y), WAD)
}
}
/// @dev Equivalent to `(x * y) / WAD` rounded up.
function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(x, y)
// Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
if iszero(eq(div(z, y), x)) {
if y {
mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
revert(0x1c, 0x04)
}
}
z := add(iszero(iszero(mod(z, WAD))), div(z, WAD))
}
}
/// @dev Equivalent to `(x * y) / WAD` rounded up, but without overflow checks.
function rawMulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD))
}
}
/// @dev Equivalent to `(x * WAD) / y` rounded down.
function divWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`.
if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) {
mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
revert(0x1c, 0x04)
}
z := div(mul(x, WAD), y)
}
}
/// @dev Equivalent to `(x * WAD) / y` rounded down.
function sDivWad(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(x, WAD)
// Equivalent to `require(y != 0 && ((x * WAD) / WAD == x))`.
if iszero(mul(y, eq(sdiv(z, WAD), x))) {
mstore(0x00, 0x5c43740d) // `SDivWadFailed()`.
revert(0x1c, 0x04)
}
z := sdiv(z, y)
}
}
/// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
function rawDivWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := div(mul(x, WAD), y)
}
}
/// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
function rawSDivWad(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := sdiv(mul(x, WAD), y)
}
}
/// @dev Equivalent to `(x * WAD) / y` rounded up.
function divWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`.
if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) {
mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
revert(0x1c, 0x04)
}
z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
}
}
/// @dev Equivalent to `(x * WAD) / y` rounded up, but without overflow and divide by zero checks.
function rawDivWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
}
}
/// @dev Equivalent to `x` to the power of `y`.
/// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`.
/// Note: This function is an approximation.
function powWad(int256 x, int256 y) internal pure returns (int256) {
// Using `ln(x)` means `x` must be greater than 0.
return expWad((lnWad(x) * y) / int256(WAD));
}
/// @dev Returns `exp(x)`, denominated in `WAD`.
/// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
/// Note: This function is an approximation. Monotonically increasing.
function expWad(int256 x) internal pure returns (int256 r) {
unchecked {
// When the result is less than 0.5 we return zero.
// This happens when `x <= (log(1e-18) * 1e18) ~ -4.15e19`.
if (x <= -41446531673892822313) return r;
/// @solidity memory-safe-assembly
assembly {
// When the result is greater than `(2**255 - 1) / 1e18` we can not represent it as
// an int. This happens when `x >= floor(log((2**255 - 1) / 1e18) * 1e18) ≈ 135`.
if iszero(slt(x, 135305999368893231589)) {
mstore(0x00, 0xa37bfec9) // `ExpOverflow()`.
revert(0x1c, 0x04)
}
}
// `x` is now in the range `(-42, 136) * 1e18`. Convert to `(-42, 136) * 2**96`
// for more intermediate precision and a binary basis. This base conversion
// is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
x = (x << 78) / 5 ** 18;
// Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
// of two such that exp(x) = exp(x') * 2**k, where k is an integer.
// Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96;
x = x - k * 54916777467707473351141471128;
// `k` is in the range `[-61, 195]`.
// Evaluate using a (6, 7)-term rational approximation.
// `p` is made monic, we'll multiply by a scale factor later.
int256 y = x + 1346386616545796478920950773328;
y = ((y * x) >> 96) + 57155421227552351082224309758442;
int256 p = y + x - 94201549194550492254356042504812;
p = ((p * y) >> 96) + 28719021644029726153956944680412240;
p = p * x + (4385272521454847904659076985693276 << 96);
// We leave `p` in `2**192` basis so we don't need to scale it back up for the division.
int256 q = x - 2855989394907223263936484059900;
q = ((q * x) >> 96) + 50020603652535783019961831881945;
q = ((q * x) >> 96) - 533845033583426703283633433725380;
q = ((q * x) >> 96) + 3604857256930695427073651918091429;
q = ((q * x) >> 96) - 14423608567350463180887372962807573;
q = ((q * x) >> 96) + 26449188498355588339934803723976023;
/// @solidity memory-safe-assembly
assembly {
// Div in assembly because solidity adds a zero check despite the unchecked.
// The q polynomial won't have zeros in the domain as all its roots are complex.
// No scaling is necessary because p is already `2**96` too large.
r := sdiv(p, q)
}
// r should be in the range `(0.09, 0.25) * 2**96`.
// We now need to multiply r by:
// - The scale factor `s ≈ 6.031367120`.
// - The `2**k` factor from the range reduction.
// - The `1e18 / 2**96` factor for base conversion.
// We do this all at once, with an intermediate result in `2**213`
// basis, so the final right shift is always by a positive amount.
r = int256(
(uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)
);
}
}
/// @dev Returns `ln(x)`, denominated in `WAD`.
/// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
/// Note: This function is an approximation. Monotonically increasing.
function lnWad(int256 x) internal pure returns (int256 r) {
/// @solidity memory-safe-assembly
assembly {
// We want to convert `x` from `10**18` fixed point to `2**96` fixed point.
// We do this by multiplying by `2**96 / 10**18`. But since
// `ln(x * C) = ln(x) + ln(C)`, we can simply do nothing here
// and add `ln(2**96 / 10**18)` at the end.
// Compute `k = log2(x) - 96`, `r = 159 - k = 255 - log2(x) = 255 ^ log2(x)`.
r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffff, shr(r, x))))
r := or(r, shl(3, lt(0xff, shr(r, x))))
// We place the check here for more optimal stack operations.
if iszero(sgt(x, 0)) {
mstore(0x00, 0x1615e638) // `LnWadUndefined()`.
revert(0x1c, 0x04)
}
// forgefmt: disable-next-item
r := xor(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff))
// Reduce range of x to (1, 2) * 2**96
// ln(2^k * x) = k * ln(2) + ln(x)
x := shr(159, shl(r, x))
// Evaluate using a (8, 8)-term rational approximation.
// `p` is made monic, we will multiply by a scale factor later.
// forgefmt: disable-next-item
let p := sub( // This heavily nested expression is to avoid stack-too-deep for via-ir.
sar(96, mul(add(43456485725739037958740375743393,
sar(96, mul(add(24828157081833163892658089445524,
sar(96, mul(add(3273285459638523848632254066296,
x), x))), x))), x)), 11111509109440967052023855526967)
p := sub(sar(96, mul(p, x)), 45023709667254063763336534515857)
p := sub(sar(96, mul(p, x)), 14706773417378608786704636184526)
p := sub(mul(p, x), shl(96, 795164235651350426258249787498))
// We leave `p` in `2**192` basis so we don't need to scale it back up for the division.
// `q` is monic by convention.
let q := add(5573035233440673466300451813936, x)
q := add(71694874799317883764090561454958, sar(96, mul(x, q)))
q := add(283447036172924575727196451306956, sar(96, mul(x, q)))
q := add(401686690394027663651624208769553, sar(96, mul(x, q)))
q := add(204048457590392012362485061816622, sar(96, mul(x, q)))
q := add(31853899698501571402653359427138, sar(96, mul(x, q)))
q := add(909429971244387300277376558375, sar(96, mul(x, q)))
// `p / q` is in the range `(0, 0.125) * 2**96`.
// Finalization, we need to:
// - Multiply by the scale factor `s = 5.549…`.
// - Add `ln(2**96 / 10**18)`.
// - Add `k * ln(2)`.
// - Multiply by `10**18 / 2**96 = 5**18 >> 78`.
// The q polynomial is known not to have zeros in the domain.
// No scaling required because p is already `2**96` too large.
p := sdiv(p, q)
// Multiply by the scaling factor: `s * 5**18 * 2**96`, base is now `5**18 * 2**192`.
p := mul(1677202110996718588342820967067443963516166, p)
// Add `ln(2) * k * 5**18 * 2**192`.
// forgefmt: disable-next-item
p := add(mul(16597577552685614221487285958193947469193820559219878177908093499208371, sub(159, r)), p)
// Add `ln(2**96 / 10**18) * 5**18 * 2**192`.
p := add(600920179829731861736702779321621459595472258049074101567377883020018308, p)
// Base conversion: mul `2**18 / 2**192`.
r := sar(174, p)
}
}
/// @dev Returns `W_0(x)`, denominated in `WAD`.
/// See: https://en.wikipedia.org/wiki/Lambert_W_function
/// a.k.a. Product log function. This is an approximation of the principal branch.
/// Note: This function is an approximation. Monotonically increasing.
function lambertW0Wad(int256 x) internal pure returns (int256 w) {
// forgefmt: disable-next-item
unchecked {
if ((w = x) <= -367879441171442322) revert OutOfDomain(); // `x` less than `-1/e`.
(int256 wad, int256 p) = (int256(WAD), x);
uint256 c; // Whether we need to avoid catastrophic cancellation.
uint256 i = 4; // Number of iterations.
if (w <= 0x1ffffffffffff) {
if (-0x4000000000000 <= w) {
i = 1; // Inputs near zero only take one step to converge.
} else if (w <= -0x3ffffffffffffff) {
i = 32; // Inputs near `-1/e` take very long to converge.
}
} else if (uint256(w >> 63) == uint256(0)) {
/// @solidity memory-safe-assembly
assembly {
// Inline log2 for more performance, since the range is small.
let v := shr(49, w)
let l := shl(3, lt(0xff, v))
l := add(or(l, byte(and(0x1f, shr(shr(l, v), 0x8421084210842108cc6318c6db6d54be)),
0x0706060506020504060203020504030106050205030304010505030400000000)), 49)
w := sdiv(shl(l, 7), byte(sub(l, 31), 0x0303030303030303040506080c13))
c := gt(l, 60)
i := add(2, add(gt(l, 53), c))
}
} else {
int256 ll = lnWad(w = lnWad(w));
/// @solidity memory-safe-assembly
assembly {
// `w = ln(x) - ln(ln(x)) + b * ln(ln(x)) / ln(x)`.
w := add(sdiv(mul(ll, 1023715080943847266), w), sub(w, ll))
i := add(3, iszero(shr(68, x)))
c := iszero(shr(143, x))
}
if (c == uint256(0)) {
do { // If `x` is big, use Newton's so that intermediate values won't overflow.
int256 e = expWad(w);
/// @solidity memory-safe-assembly
assembly {
let t := mul(w, div(e, wad))
w := sub(w, sdiv(sub(t, x), div(add(e, t), wad)))
}
if (p <= w) break;
p = w;
} while (--i != uint256(0));
/// @solidity memory-safe-assembly
assembly {
w := sub(w, sgt(w, 2))
}
return w;
}
}
do { // Otherwise, use Halley's for faster convergence.
int256 e = expWad(w);
/// @solidity memory-safe-assembly
assembly {
let t := add(w, wad)
let s := sub(mul(w, e), mul(x, wad))
w := sub(w, sdiv(mul(s, wad), sub(mul(e, t), sdiv(mul(add(t, wad), s), add(t, t)))))
}
if (p <= w) break;
p = w;
} while (--i != c);
/// @solidity memory-safe-assembly
assembly {
w := sub(w, sgt(w, 2))
}
// For certain ranges of `x`, we'll use the quadratic-rate recursive formula of
// R. Iacono and J.P. Boyd for the last iteration, to avoid catastrophic cancellation.
if (c == uint256(0)) return w;
int256 t = w | 1;
/// @solidity memory-safe-assembly
assembly {
x := sdiv(mul(x, wad), t)
}
x = (t * (wad + lnWad(x)));
/// @solidity memory-safe-assembly
assembly {
w := sdiv(x, add(wad, t))
}
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* GENERAL NUMBER UTILITIES */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns `a * b == x * y`, with full precision.
function fullMulEq(uint256 a, uint256 b, uint256 x, uint256 y)
internal
pure
returns (bool result)
{
/// @solidity memory-safe-assembly
assembly {
result := and(eq(mul(a, b), mul(x, y)), eq(mulmod(x, y, not(0)), mulmod(a, b, not(0))))
}
}
/// @dev Calculates `floor(x * y / d)` with full precision.
/// Throws if result overflows a uint256 or when `d` is zero.
/// Credit to Remco Bloemen under MIT license: https://2π.com/21/muldiv
function fullMulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// 512-bit multiply `[p1 p0] = x * y`.
// Compute the product mod `2**256` and mod `2**256 - 1`
// then use the Chinese Remainder Theorem to reconstruct
// the 512 bit result. The result is stored in two 256
// variables such that `product = p1 * 2**256 + p0`.
// Temporarily use `z` as `p0` to save gas.
z := mul(x, y) // Lower 256 bits of `x * y`.
for {} 1 {} {
// If overflows.
if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
let mm := mulmod(x, y, not(0))
let p1 := sub(mm, add(z, lt(mm, z))) // Upper 256 bits of `x * y`.
/*------------------- 512 by 256 division --------------------*/
// Make division exact by subtracting the remainder from `[p1 p0]`.
let r := mulmod(x, y, d) // Compute remainder using mulmod.
let t := and(d, sub(0, d)) // The least significant bit of `d`. `t >= 1`.
// Make sure `z` is less than `2**256`. Also prevents `d == 0`.
// Placing the check here seems to give more optimal stack operations.
if iszero(gt(d, p1)) {
mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
revert(0x1c, 0x04)
}
d := div(d, t) // Divide `d` by `t`, which is a power of two.
// Invert `d mod 2**256`
// Now that `d` is an odd number, it has an inverse
// modulo `2**256` such that `d * inv = 1 mod 2**256`.
// Compute the inverse by starting with a seed that is correct
// correct for four bits. That is, `d * inv = 1 mod 2**4`.
let inv := xor(2, mul(3, d))
// Now use Newton-Raphson iteration to improve the precision.
// Thanks to Hensel's lifting lemma, this also works in modular
// arithmetic, doubling the correct bits in each step.
inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**8
inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**16
inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**32
inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**64
inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**128
z :=
mul(
// Divide [p1 p0] by the factors of two.
// Shift in bits from `p1` into `p0`. For this we need
// to flip `t` such that it is `2**256 / t`.
or(mul(sub(p1, gt(r, z)), add(div(sub(0, t), t), 1)), div(sub(z, r), t)),
mul(sub(2, mul(d, inv)), inv) // inverse mod 2**256
)
break
}
z := div(z, d)
break
}
}
}
/// @dev Calculates `floor(x * y / d)` with full precision.
/// Behavior is undefined if `d` is zero or the final result cannot fit in 256 bits.
/// Performs the full 512 bit calculation regardless.
function fullMulDivUnchecked(uint256 x, uint256 y, uint256 d)
internal
pure
returns (uint256 z)
{
/// @solidity memory-safe-assembly
assembly {
z := mul(x, y)
let mm := mulmod(x, y, not(0))
let p1 := sub(mm, add(z, lt(mm, z)))
let t := and(d, sub(0, d))
let r := mulmod(x, y, d)
d := div(d, t)
let inv := xor(2, mul(3, d))
inv := mul(inv, sub(2, mul(d, inv)))
inv := mul(inv, sub(2, mul(d, inv)))
inv := mul(inv, sub(2, mul(d, inv)))
inv := mul(inv, sub(2, mul(d, inv)))
inv := mul(inv, sub(2, mul(d, inv)))
z :=
mul(
or(mul(sub(p1, gt(r, z)), add(div(sub(0, t), t), 1)), div(sub(z, r), t)),
mul(sub(2, mul(d, inv)), inv)
)
}
}
/// @dev Calculates `floor(x * y / d)` with full precision, rounded up.
/// Throws if result overflows a uint256 or when `d` is zero.
/// Credit to Uniswap-v3-core under MIT license:
/// https://github.com/Uniswap/v3-core/blob/main/contracts/libraries/FullMath.sol
function fullMulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
z = fullMulDiv(x, y, d);
/// @solidity memory-safe-assembly
assembly {
if mulmod(x, y, d) {
z := add(z, 1)
if iszero(z) {
mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
revert(0x1c, 0x04)
}
}
}
}
/// @dev Calculates `floor(x * y / 2 ** n)` with full precision.
/// Throws if result overflows a uint256.
/// Credit to Philogy under MIT license:
/// https://github.com/SorellaLabs/angstrom/blob/main/contracts/src/libraries/X128MathLib.sol
function fullMulDivN(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Temporarily use `z` as `p0` to save gas.
z := mul(x, y) // Lower 256 bits of `x * y`. We'll call this `z`.
for {} 1 {} {
if iszero(or(iszero(x), eq(div(z, x), y))) {
let k := and(n, 0xff) // `n`, cleaned.
let mm := mulmod(x, y, not(0))
let p1 := sub(mm, add(z, lt(mm, z))) // Upper 256 bits of `x * y`.
// | p1 | z |
// Before: | p1_0 ¦ p1_1 | z_0 ¦ z_1 |
// Final: | 0 ¦ p1_0 | p1_1 ¦ z_0 |
// Check that final `z` doesn't overflow by checking that p1_0 = 0.
if iszero(shr(k, p1)) {
z := add(shl(sub(256, k), p1), shr(k, z))
break
}
mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
revert(0x1c, 0x04)
}
z := shr(and(n, 0xff), z)
break
}
}
}
/// @dev Returns `floor(x * y / d)`.
/// Reverts if `x * y` overflows, or `d` is zero.
function mulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(x, y)
// Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
mstore(0x00, 0xad251c27) // `MulDivFailed()`.
revert(0x1c, 0x04)
}
z := div(z, d)
}
}
/// @dev Returns `ceil(x * y / d)`.
/// Reverts if `x * y` overflows, or `d` is zero.
function mulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(x, y)
// Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
mstore(0x00, 0xad251c27) // `MulDivFailed()`.
revert(0x1c, 0x04)
}
z := add(iszero(iszero(mod(z, d))), div(z, d))
}
}
/// @dev Returns `x`, the modular multiplicative inverse of `a`, such that `(a * x) % n == 1`.
function invMod(uint256 a, uint256 n) internal pure returns (uint256 x) {
/// @solidity memory-safe-assembly
assembly {
let g := n
let r := mod(a, n)
for { let y := 1 } 1 {} {
let q := div(g, r)
let t := g
g := r
r := sub(t, mul(r, q))
let u := x
x := y
y := sub(u, mul(y, q))
if iszero(r) { break }
}
x := mul(eq(g, 1), add(x, mul(slt(x, 0), n)))
}
}
/// @dev Returns `ceil(x / d)`.
/// Reverts if `d` is zero.
function divUp(uint256 x, uint256 d) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
if iszero(d) {
mstore(0x00, 0x65244e4e) // `DivFailed()`.
revert(0x1c, 0x04)
}
z := add(iszero(iszero(mod(x, d))), div(x, d))
}
}
/// @dev Returns `max(0, x - y)`. Alias for `saturatingSub`.
function zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(gt(x, y), sub(x, y))
}
}
/// @dev Returns `max(0, x - y)`.
function saturatingSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(gt(x, y), sub(x, y))
}
}
/// @dev Returns `min(2 ** 256 - 1, x + y)`.
function saturatingAdd(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := or(sub(0, lt(add(x, y), x)), add(x, y))
}
}
/// @dev Returns `min(2 ** 256 - 1, x * y)`.
function saturatingMul(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := or(sub(or(iszero(x), eq(div(mul(x, y), x), y)), 1), mul(x, y))
}
}
/// @dev Returns `condition ? x : y`, without branching.
function ternary(bool condition, uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(x, mul(xor(x, y), iszero(condition)))
}
}
/// @dev Returns `condition ? x : y`, without branching.
function ternary(bool condition, bytes32 x, bytes32 y) internal pure returns (bytes32 z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(x, mul(xor(x, y), iszero(condition)))
}
}
/// @dev Returns `condition ? x : y`, without branching.
function ternary(bool condition, address x, address y) internal pure returns (address z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(x, mul(xor(x, y), iszero(condition)))
}
}
/// @dev Returns `x != 0 ? x : y`, without branching.
function coalesce(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := or(x, mul(y, iszero(x)))
}
}
/// @dev Returns `x != bytes32(0) ? x : y`, without branching.
function coalesce(bytes32 x, bytes32 y) internal pure returns (bytes32 z) {
/// @solidity memory-safe-assembly
assembly {
z := or(x, mul(y, iszero(x)))
}
}
/// @dev Returns `x != address(0) ? x : y`, without branching.
function coalesce(address x, address y) internal pure returns (address z) {
/// @solidity memory-safe-assembly
assembly {
z := or(x, mul(y, iszero(shl(96, x))))
}
}
/// @dev Exponentiate `x` to `y` by squaring, denominated in base `b`.
/// Reverts if the computation overflows.
function rpow(uint256 x, uint256 y, uint256 b) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(b, iszero(y)) // `0 ** 0 = 1`. Otherwise, `0 ** n = 0`.
if x {
z := xor(b, mul(xor(b, x), and(y, 1))) // `z = isEven(y) ? scale : x`
let half := shr(1, b) // Divide `b` by 2.
// Divide `y` by 2 every iteration.
for { y := shr(1, y) } y { y := shr(1, y) } {
let xx := mul(x, x) // Store x squared.
let xxRound := add(xx, half) // Round to the nearest number.
// Revert if `xx + half` overflowed, or if `x ** 2` overflows.
if or(lt(xxRound, xx), shr(128, x)) {
mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
revert(0x1c, 0x04)
}
x := div(xxRound, b) // Set `x` to scaled `xxRound`.
// If `y` is odd:
if and(y, 1) {
let zx := mul(z, x) // Compute `z * x`.
let zxRound := add(zx, half) // Round to the nearest number.
// If `z * x` overflowed or `zx + half` overflowed:
if or(xor(div(zx, x), z), lt(zxRound, zx)) {
// Revert if `x` is non-zero.
if x {
mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
revert(0x1c, 0x04)
}
}
z := div(zxRound, b) // Return properly scaled `zxRound`.
}
}
}
}
}
/// @dev Returns the square root of `x`, rounded down.
function sqrt(uint256 x) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`.
z := 181 // The "correct" value is 1, but this saves a multiplication later.
// This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
// start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
// Let `y = x / 2**r`. We check `y >= 2**(k + 8)`
// but shift right by `k` bits to ensure that if `x >= 256`, then `y >= 256`.
let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x))
r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffffff, shr(r, x))))
z := shl(shr(1, r), z)
// Goal was to get `z*z*y` within a small factor of `x`. More iterations could
// get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`.
// We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small.
// That's not possible if `x < 256` but we can just verify those cases exhaustively.
// Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`.
// Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`.
// Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps.
// For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)`
// is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`,
// with largest error when `s = 1` and when `s = 256` or `1/256`.
// Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`.
// Then we can estimate `sqrt(y)` using
// `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`.
// There is no overflow risk here since `y < 2**136` after the first branch above.
z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181.
// Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
// If `x+1` is a perfect square, the Babylonian method cycles between
// `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor.
// See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
z := sub(z, lt(div(x, z), z))
}
}
/// @dev Returns the cube root of `x`, rounded down.
/// Credit to bout3fiddy and pcaversaccio under AGPLv3 license:
/// https://github.com/pcaversaccio/snekmate/blob/main/src/snekmate/utils/math.vy
/// Formally verified by xuwinnie:
/// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf
function cbrt(uint256 x) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
let r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffff, shr(r, x))))
r := or(r, shl(3, lt(0xff, shr(r, x))))
// Makeshift lookup table to nudge the approximate log2 result.
z := div(shl(div(r, 3), shl(lt(0xf, shr(r, x)), 0xf)), xor(7, mod(r, 3)))
// Newton-Raphson's.
z := div(add(add(div(x, mul(z, z)), z), z), 3)
z := div(add(add(div(x, mul(z, z)), z), z), 3)
z := div(add(add(div(x, mul(z, z)), z), z), 3)
z := div(add(add(div(x, mul(z, z)), z), z), 3)
z := div(add(add(div(x, mul(z, z)), z), z), 3)
z := div(add(add(div(x, mul(z, z)), z), z), 3)
z := div(add(add(div(x, mul(z, z)), z), z), 3)
// Round down.
z := sub(z, lt(div(x, mul(z, z)), z))
}
}
/// @dev Returns the square root of `x`, denominated in `WAD`, rounded down.
function sqrtWad(uint256 x) internal pure returns (uint256 z) {
unchecked {
if (x <= type(uint256).max / 10 ** 18) return sqrt(x * 10 ** 18);
z = (1 + sqrt(x)) * 10 ** 9;
z = (fullMulDivUnchecked(x, 10 ** 18, z) + z) >> 1;
}
/// @solidity memory-safe-assembly
assembly {
z := sub(z, gt(999999999999999999, sub(mulmod(z, z, x), 1))) // Round down.
}
}
/// @dev Returns the cube root of `x`, denominated in `WAD`, rounded down.
/// Formally verified by xuwinnie:
/// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf
function cbrtWad(uint256 x) internal pure returns (uint256 z) {
unchecked {
if (x <= type(uint256).max / 10 ** 36) return cbrt(x * 10 ** 36);
z = (1 + cbrt(x)) * 10 ** 12;
z = (fullMulDivUnchecked(x, 10 ** 36, z * z) + z + z) / 3;
}
/// @solidity memory-safe-assembly
assembly {
let p := x
for {} 1 {} {
if iszero(shr(229, p)) {
if iszero(shr(199, p)) {
p := mul(p, 100000000000000000) // 10 ** 17.
break
}
p := mul(p, 100000000) // 10 ** 8.
break
}
if iszero(shr(249, p)) { p := mul(p, 100) }
break
}
let t := mulmod(mul(z, z), z, p)
z := sub(z, gt(lt(t, shr(1, p)), iszero(t))) // Round down.
}
}
/// @dev Returns `sqrt(x * y)`. Also called the geometric mean.
function mulSqrt(uint256 x, uint256 y) internal pure returns (uint256 z) {
if (x == y) return x;
uint256 p = rawMul(x, y);
if (y == rawDiv(p, x)) return sqrt(p);
for (z = saturatingMul(rawAdd(sqrt(x), 1), rawAdd(sqrt(y), 1));; z = avg(z, p)) {
if ((p = fullMulDivUnchecked(x, y, z)) >= z) break;
}
}
/// @dev Returns the factorial of `x`.
function factorial(uint256 x) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := 1
if iszero(lt(x, 58)) {
mstore(0x00, 0xaba0f2a2) // `FactorialOverflow()`.
revert(0x1c, 0x04)
}
for {} x { x := sub(x, 1) } { z := mul(z, x) }
}
}
/// @dev Returns the log2 of `x`.
/// Equivalent to computing the index of the most significant bit (MSB) of `x`.
/// Returns 0 if `x` is zero.
function log2(uint256 x) internal pure returns (uint256 r) {
/// @solidity memory-safe-assembly
assembly {
r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffff, shr(r, x))))
r := or(r, shl(3, lt(0xff, shr(r, x))))
// forgefmt: disable-next-item
r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
0x0706060506020504060203020504030106050205030304010505030400000000))
}
}
/// @dev Returns the log2 of `x`, rounded up.
/// Returns 0 if `x` is zero.
function log2Up(uint256 x) internal pure returns (uint256 r) {
r = log2(x);
/// @solidity memory-safe-assembly
assembly {
r := add(r, lt(shl(r, 1), x))
}
}
/// @dev Returns the log10 of `x`.
/// Returns 0 if `x` is zero.
function log10(uint256 x) internal pure returns (uint256 r) {
/// @solidity memory-safe-assembly
assembly {
if iszero(lt(x, 100000000000000000000000000000000000000)) {
x := div(x, 100000000000000000000000000000000000000)
r := 38
}
if iszero(lt(x, 100000000000000000000)) {
x := div(x, 100000000000000000000)
r := add(r, 20)
}
if iszero(lt(x, 10000000000)) {
x := div(x, 10000000000)
r := add(r, 10)
}
if iszero(lt(x, 100000)) {
x := div(x, 100000)
r := add(r, 5)
}
r := add(r, add(gt(x, 9), add(gt(x, 99), add(gt(x, 999), gt(x, 9999)))))
}
}
/// @dev Returns the log10 of `x`, rounded up.
/// Returns 0 if `x` is zero.
function log10Up(uint256 x) internal pure returns (uint256 r) {
r = log10(x);
/// @solidity memory-safe-assembly
assembly {
r := add(r, lt(exp(10, r), x))
}
}
/// @dev Returns the log256 of `x`.
/// Returns 0 if `x` is zero.
function log256(uint256 x) internal pure returns (uint256 r) {
/// @solidity memory-safe-assembly
assembly {
r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffff, shr(r, x))))
r := or(shr(3, r), lt(0xff, shr(r, x)))
}
}
/// @dev Returns the log256 of `x`, rounded up.
/// Returns 0 if `x` is zero.
function log256Up(uint256 x) internal pure returns (uint256 r) {
r = log256(x);
/// @solidity memory-safe-assembly
assembly {
r := add(r, lt(shl(shl(3, r), 1), x))
}
}
/// @dev Returns the scientific notation format `mantissa * 10 ** exponent` of `x`.
/// Useful for compressing prices (e.g. using 25 bit mantissa and 7 bit exponent).
function sci(uint256 x) internal pure returns (uint256 mantissa, uint256 exponent) {
/// @solidity memory-safe-assembly
assembly {
mantissa := x
if mantissa {
if iszero(mod(mantissa, 1000000000000000000000000000000000)) {
mantissa := div(mantissa, 1000000000000000000000000000000000)
exponent := 33
}
if iszero(mod(mantissa, 10000000000000000000)) {
mantissa := div(mantissa, 10000000000000000000)
exponent := add(exponent, 19)
}
if iszero(mod(mantissa, 1000000000000)) {
mantissa := div(mantissa, 1000000000000)
exponent := add(exponent, 12)
}
if iszero(mod(mantissa, 1000000)) {
mantissa := div(mantissa, 1000000)
exponent := add(exponent, 6)
}
if iszero(mod(mantissa, 10000)) {
mantissa := div(mantissa, 10000)
exponent := add(exponent, 4)
}
if iszero(mod(mantissa, 100)) {
mantissa := div(mantissa, 100)
exponent := add(exponent, 2)
}
if iszero(mod(mantissa, 10)) {
mantissa := div(mantissa, 10)
exponent := add(exponent, 1)
}
}
}
}
/// @dev Convenience function for packing `x` into a smaller number using `sci`.
/// The `mantissa` will be in bits [7..255] (the upper 249 bits).
/// The `exponent` will be in bits [0..6] (the lower 7 bits).
/// Use `SafeCastLib` to safely ensure that the `packed` number is small
/// enough to fit in the desired unsigned integer type:
/// ```
/// uint32 packed = SafeCastLib.toUint32(FixedPointMathLib.packSci(777 ether));
/// ```
function packSci(uint256 x) internal pure returns (uint256 packed) {
(x, packed) = sci(x); // Reuse for `mantissa` and `exponent`.
/// @solidity memory-safe-assembly
assembly {
if shr(249, x) {
mstore(0x00, 0xce30380c) // `MantissaOverflow()`.
revert(0x1c, 0x04)
}
packed := or(shl(7, x), packed)
}
}
/// @dev Convenience function for unpacking a packed number from `packSci`.
function unpackSci(uint256 packed) internal pure returns (uint256 unpacked) {
unchecked {
unpacked = (packed >> 7) * 10 ** (packed & 0x7f);
}
}
/// @dev Returns the average of `x` and `y`. Rounds towards zero.
function avg(uint256 x, uint256 y) internal pure returns (uint256 z) {
unchecked {
z = (x & y) + ((x ^ y) >> 1);
}
}
/// @dev Returns the average of `x` and `y`. Rounds towards negative infinity.
function avg(int256 x, int256 y) internal pure returns (int256 z) {
unchecked {
z = (x >> 1) + (y >> 1) + (x & y & 1);
}
}
/// @dev Returns the absolute value of `x`.
function abs(int256 x) internal pure returns (uint256 z) {
unchecked {
z = (uint256(x) + uint256(x >> 255)) ^ uint256(x >> 255);
}
}
/// @dev Returns the absolute distance between `x` and `y`.
function dist(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := add(xor(sub(0, gt(x, y)), sub(y, x)), gt(x, y))
}
}
/// @dev Returns the absolute distance between `x` and `y`.
function dist(int256 x, int256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := add(xor(sub(0, sgt(x, y)), sub(y, x)), sgt(x, y))
}
}
/// @dev Returns the minimum of `x` and `y`.
function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(x, mul(xor(x, y), lt(y, x)))
}
}
/// @dev Returns the minimum of `x` and `y`.
function min(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(x, mul(xor(x, y), slt(y, x)))
}
}
/// @dev Returns the maximum of `x` and `y`.
function max(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(x, mul(xor(x, y), gt(y, x)))
}
}
/// @dev Returns the maximum of `x` and `y`.
function max(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(x, mul(xor(x, y), sgt(y, x)))
}
}
/// @dev Returns `x`, bounded to `minValue` and `maxValue`.
function clamp(uint256 x, uint256 minValue, uint256 maxValue)
internal
pure
returns (uint256 z)
{
/// @solidity memory-safe-assembly
assembly {
z := xor(x, mul(xor(x, minValue), gt(minValue, x)))
z := xor(z, mul(xor(z, maxValue), lt(maxValue, z)))
}
}
/// @dev Returns `x`, bounded to `minValue` and `maxValue`.
function clamp(int256 x, int256 minValue, int256 maxValue) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(x, mul(xor(x, minValue), sgt(minValue, x)))
z := xor(z, mul(xor(z, maxValue), slt(maxValue, z)))
}
}
/// @dev Returns greatest common divisor of `x` and `y`.
function gcd(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
for { z := x } y {} {
let t := y
y := mod(z, y)
z := t
}
}
}
/// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`,
/// with `t` clamped between `begin` and `end` (inclusive).
/// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
/// If `begins == end`, returns `t <= begin ? a : b`.
function lerp(uint256 a, uint256 b, uint256 t, uint256 begin, uint256 end)
internal
pure
returns (uint256)
{
if (begin > end) (t, begin, end) = (~t, ~begin, ~end);
if (t <= begin) return a;
if (t >= end) return b;
unchecked {
if (b >= a) return a + fullMulDiv(b - a, t - begin, end - begin);
return a - fullMulDiv(a - b, t - begin, end - begin);
}
}
/// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`.
/// with `t` clamped between `begin` and `end` (inclusive).
/// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
/// If `begins == end`, returns `t <= begin ? a : b`.
function lerp(int256 a, int256 b, int256 t, int256 begin, int256 end)
internal
pure
returns (int256)
{
if (begin > end) (t, begin, end) = (~t, ~begin, ~end);
if (t <= begin) return a;
if (t >= end) return b;
// forgefmt: disable-next-item
unchecked {
if (b >= a) return int256(uint256(a) + fullMulDiv(uint256(b - a),
uint256(t - begin), uint256(end - begin)));
return int256(uint256(a) - fullMulDiv(uint256(a - b),
uint256(t - begin), uint256(end - begin)));
}
}
/// @dev Returns if `x` is an even number. Some people may need this.
function isEven(uint256 x) internal pure returns (bool) {
return x & uint256(1) == uint256(0);
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* RAW NUMBER OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns `x + y`, without checking for overflow.
function rawAdd(uint256 x, uint256 y) internal pure returns (uint256 z) {
unchecked {
z = x + y;
}
}
/// @dev Returns `x + y`, without checking for overflow.
function rawAdd(int256 x, int256 y) internal pure returns (int256 z) {
unchecked {
z = x + y;
}
}
/// @dev Returns `x - y`, without checking for underflow.
function rawSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
unchecked {
z = x - y;
}
}
/// @dev Returns `x - y`, without checking for underflow.
function rawSub(int256 x, int256 y) internal pure returns (int256 z) {
unchecked {
z = x - y;
}
}
/// @dev Returns `x * y`, without checking for overflow.
function rawMul(uint256 x, uint256 y) internal pure returns (uint256 z) {
unchecked {
z = x * y;
}
}
/// @dev Returns `x * y`, without checking for overflow.
function rawMul(int256 x, int256 y) internal pure returns (int256 z) {
unchecked {
z = x * y;
}
}
/// @dev Returns `x / y`, returning 0 if `y` is zero.
function rawDiv(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := div(x, y)
}
}
/// @dev Returns `x / y`, returning 0 if `y` is zero.
function rawSDiv(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := sdiv(x, y)
}
}
/// @dev Returns `x % y`, returning 0 if `y` is zero.
function rawMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mod(x, y)
}
}
/// @dev Returns `x % y`, returning 0 if `y` is zero.
function rawSMod(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := smod(x, y)
}
}
/// @dev Returns `(x + y) % d`, return 0 if `d` if zero.
function rawAddMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := addmod(x, y, d)
}
}
/// @dev Returns `(x * y) % d`, return 0 if `d` if zero.
function rawMulMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mulmod(x, y, d)
}
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
import {ConstantsLib} from './ConstantsLib.sol';
struct Bid {
uint64 startBlock; // Block number when the bid was first made in
uint24 startCumulativeMps; // Cumulative mps at the start of the bid
uint64 exitedBlock; // Block number when the bid was exited
uint256 maxPrice; // The max price of the bid
address owner; // Who will receive the tokens filled and currency refunded
uint256 amountQ96; // User's currency amount in Q96 form
uint256 tokensFilled; // Amount of tokens filled
}
/// @title BidLib
library BidLib {
using BidLib for *;
/// @dev Error thrown when a bid is submitted with no remaining percentage of the auction
/// This is prevented by the auction contract as bids cannot be submitted when the auction is sold out,
/// but we catch it instead of reverting with division by zero.
error MpsRemainingIsZero();
/// @notice Calculate the number of mps remaining in the auction since the bid was submitted
/// @param bid The bid to calculate the remaining mps for
/// @return The number of mps remaining in the auction
function mpsRemainingInAuctionAfterSubmission(Bid memory bid) internal pure returns (uint24) {
return ConstantsLib.MPS - bid.startCumulativeMps;
}
/// @notice Scale a bid amount to its effective amount over the remaining percentage of the auction
/// This is an important normalization step to ensure that we can calculate the currencyRaised
/// when cumulative demand is less than supply using the original supply schedule.
/// @param bid The bid to scale
/// @return The scaled amount
function toEffectiveAmount(Bid memory bid) internal pure returns (uint256) {
uint24 mpsRemainingInAuction = bid.mpsRemainingInAuctionAfterSubmission();
if (mpsRemainingInAuction == 0) revert MpsRemainingIsZero();
return bid.amountQ96 * ConstantsLib.MPS / mpsRemainingInAuction;
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
struct AuctionStep {
uint24 mps; // Mps to sell per block in the step
uint64 startBlock; // Start block of the step (inclusive)
uint64 endBlock; // Ending block of the step (exclusive)
}
/// @notice Library for auction step calculations and parsing
library StepLib {
using StepLib for *;
/// @notice The size of a uint64 in bytes
uint256 public constant UINT64_SIZE = 8;
/// @notice Error thrown when the offset is too large for the data length
error StepLib__InvalidOffsetTooLarge();
/// @notice Error thrown when the offset is not at a step boundary - a uint64 aligned offset
error StepLib__InvalidOffsetNotAtStepBoundary();
/// @notice Unpack the mps and block delta from the auction steps data
function parse(bytes8 data) internal pure returns (uint24 mps, uint40 blockDelta) {
mps = uint24(bytes3(data));
blockDelta = uint40(uint64(data));
}
/// @notice Load a word at `offset` from data and parse it into mps and blockDelta
function get(bytes memory data, uint256 offset) internal pure returns (uint24 mps, uint40 blockDelta) {
// Offset cannot be greater than the data length
if (offset >= data.length) revert StepLib__InvalidOffsetTooLarge();
// Offset must be a multiple of a step (uint64 - uint24|uint40)
if (offset % UINT64_SIZE != 0) revert StepLib__InvalidOffsetNotAtStepBoundary();
assembly {
let packedValue := mload(add(add(data, 0x20), offset))
packedValue := shr(192, packedValue)
mps := shr(40, packedValue)
blockDelta := and(packedValue, 0xFFFFFFFFFF)
}
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
import {IERC20Minimal} from '../interfaces/external/IERC20Minimal.sol';
type Currency is address;
using CurrencyLibrary for Currency global;
/// @title CurrencyLibrary
/// @dev This library allows for transferring and holding native tokens and ERC20 tokens
/// @dev Forked from https://github.com/Uniswap/v4-core/blob/main/src/types/Currency.sol but modified to not bubble up reverts
library CurrencyLibrary {
/// @notice Thrown when a native transfer fails
error NativeTransferFailed();
/// @notice Thrown when an ERC20 transfer fails
error ERC20TransferFailed();
/// @notice A constant to represent the native currency
Currency public constant ADDRESS_ZERO = Currency.wrap(address(0));
function transfer(Currency currency, address to, uint256 amount) internal {
// altered from https://github.com/transmissions11/solmate/blob/44a9963d4c78111f77caa0e65d677b8b46d6f2e6/src/utils/SafeTransferLib.sol
// modified custom error selectors
bool success;
if (currency.isAddressZero()) {
assembly ('memory-safe') {
// Transfer the ETH and revert if it fails.
success := call(gas(), to, amount, 0, 0, 0, 0)
}
// revert with NativeTransferFailed
if (!success) {
revert NativeTransferFailed();
}
} else {
assembly ('memory-safe') {
// Get a pointer to some free memory.
let fmp := mload(0x40)
// Write the abi-encoded calldata into memory, beginning with the function selector.
mstore(fmp, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
mstore(add(fmp, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
mstore(add(fmp, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.
success := and(
// Set success to whether the call reverted, if not we check it either
// returned exactly 1 (can't just be non-zero data), or had no return data.
or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
// We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
// We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
// Counterintuitively, this call must be positioned second to the or() call in the
// surrounding and() call or else returndatasize() will be zero during the computation.
call(gas(), currency, 0, fmp, 68, 0, 32)
)
// Now clean the memory we used
mstore(fmp, 0) // 4 byte `selector` and 28 bytes of `to` were stored here
mstore(add(fmp, 0x20), 0) // 4 bytes of `to` and 28 bytes of `amount` were stored here
mstore(add(fmp, 0x40), 0) // 4 bytes of `amount` were stored here
}
// revert with ERC20TransferFailed
if (!success) {
revert ERC20TransferFailed();
}
}
}
function balanceOf(Currency currency, address owner) internal view returns (uint256) {
if (currency.isAddressZero()) {
return owner.balance;
} else {
return IERC20Minimal(Currency.unwrap(currency)).balanceOf(owner);
}
}
function isAddressZero(Currency currency) internal pure returns (bool) {
return Currency.unwrap(currency) == Currency.unwrap(ADDRESS_ZERO);
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @notice Minimal ERC20 interface
interface IERC20Minimal {
/// @notice Returns an account's balance in the token
/// @param account The account for which to look up the number of tokens it has, i.e. its balance
/// @return The number of tokens held by the account
function balanceOf(address account) external view returns (uint256);
/// @notice Transfers the amount of token from the `msg.sender` to the recipient
/// @param recipient The account that will receive the amount transferred
/// @param amount The number of tokens to send from the sender to the recipient
/// @return Returns true for a successful transfer, false for an unsuccessful transfer
function transfer(address recipient, uint256 amount) external returns (bool);
/// @notice Approves the spender to spend the amount of tokens from the `msg.sender`
/// @param spender The account that will be allowed to spend the amount
/// @param amount The number of tokens to allow the spender to spend
/// @return Returns true for a successful approval, false for an unsuccessful approval
function approve(address spender, uint256 amount) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../token/ERC20/IERC20.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../utils/introspection/IERC165.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (proxy/utils/UUPSUpgradeable.sol)
pragma solidity ^0.8.22;
import {IERC1822Proxiable} from "../../interfaces/draft-IERC1822.sol";
import {ERC1967Utils} from "../ERC1967/ERC1967Utils.sol";
/**
* @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
* {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
*
* A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
* reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
* `UUPSUpgradeable` with a custom implementation of upgrades.
*
* The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
*/
abstract contract UUPSUpgradeable is IERC1822Proxiable {
/// @custom:oz-upgrades-unsafe-allow state-variable-immutable
address private immutable __self = address(this);
/**
* @dev The version of the upgrade interface of the contract. If this getter is missing, both `upgradeTo(address)`
* and `upgradeToAndCall(address,bytes)` are present, and `upgradeTo` must be used if no function should be called,
* while `upgradeToAndCall` will invoke the `receive` function if the second argument is the empty byte string.
* If the getter returns `"5.0.0"`, only `upgradeToAndCall(address,bytes)` is present, and the second argument must
* be the empty byte string if no function should be called, making it impossible to invoke the `receive` function
* during an upgrade.
*/
string public constant UPGRADE_INTERFACE_VERSION = "5.0.0";
/**
* @dev The call is from an unauthorized context.
*/
error UUPSUnauthorizedCallContext();
/**
* @dev The storage `slot` is unsupported as a UUID.
*/
error UUPSUnsupportedProxiableUUID(bytes32 slot);
/**
* @dev Check that the execution is being performed through a delegatecall call and that the execution context is
* a proxy contract with an implementation (as defined in ERC-1967) pointing to self. This should only be the case
* for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
* function through ERC-1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
* fail.
*/
modifier onlyProxy() {
_checkProxy();
_;
}
/**
* @dev Check that the execution is not being performed through a delegate call. This allows a function to be
* callable on the implementing contract but not through proxies.
*/
modifier notDelegated() {
_checkNotDelegated();
_;
}
/**
* @dev Implementation of the ERC-1822 {proxiableUUID} function. This returns the storage slot used by the
* implementation. It is used to validate the implementation's compatibility when performing an upgrade.
*
* IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
* bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
* function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
*/
function proxiableUUID() external view virtual notDelegated returns (bytes32) {
return ERC1967Utils.IMPLEMENTATION_SLOT;
}
/**
* @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
* encoded in `data`.
*
* Calls {_authorizeUpgrade}.
*
* Emits an {Upgraded} event.
*
* @custom:oz-upgrades-unsafe-allow-reachable delegatecall
*/
function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy {
_authorizeUpgrade(newImplementation);
_upgradeToAndCallUUPS(newImplementation, data);
}
/**
* @dev Reverts if the execution is not performed via delegatecall or the execution
* context is not of a proxy with an ERC-1967 compliant implementation pointing to self.
*/
function _checkProxy() internal view virtual {
if (
address(this) == __self || // Must be called through delegatecall
ERC1967Utils.getImplementation() != __self // Must be called through an active proxy
) {
revert UUPSUnauthorizedCallContext();
}
}
/**
* @dev Reverts if the execution is performed via delegatecall.
* See {notDelegated}.
*/
function _checkNotDelegated() internal view virtual {
if (address(this) != __self) {
// Must not be called through delegatecall
revert UUPSUnauthorizedCallContext();
}
}
/**
* @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
* {upgradeToAndCall}.
*
* Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
*
* ```solidity
* function _authorizeUpgrade(address) internal onlyOwner {}
* ```
*/
function _authorizeUpgrade(address newImplementation) internal virtual;
/**
* @dev Performs an implementation upgrade with a security check for UUPS proxies, and additional setup call.
*
* As a security check, {proxiableUUID} is invoked in the new implementation, and the return value
* is expected to be the implementation slot in ERC-1967.
*
* Emits an {IERC1967-Upgraded} event.
*/
function _upgradeToAndCallUUPS(address newImplementation, bytes memory data) private {
try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
if (slot != ERC1967Utils.IMPLEMENTATION_SLOT) {
revert UUPSUnsupportedProxiableUUID(slot);
}
ERC1967Utils.upgradeToAndCall(newImplementation, data);
} catch {
// The implementation is not UUPS
revert ERC1967Utils.ERC1967InvalidImplementation(newImplementation);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (proxy/ERC1967/ERC1967Proxy.sol)
pragma solidity ^0.8.22;
import {Proxy} from "../Proxy.sol";
import {ERC1967Utils} from "./ERC1967Utils.sol";
/**
* @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
* implementation address that can be changed. This address is stored in storage in the location specified by
* https://eips.ethereum.org/EIPS/eip-1967[ERC-1967], so that it doesn't conflict with the storage layout of the
* implementation behind the proxy.
*/
contract ERC1967Proxy is Proxy {
/**
* @dev Initializes the upgradeable proxy with an initial implementation specified by `implementation`.
*
* If `_data` is nonempty, it's used as data in a delegate call to `implementation`. This will typically be an
* encoded function call, and allows initializing the storage of the proxy like a Solidity constructor.
*
* Requirements:
*
* - If `data` is empty, `msg.value` must be zero.
*/
constructor(address implementation, bytes memory _data) payable {
ERC1967Utils.upgradeToAndCall(implementation, _data);
}
/**
* @dev Returns the current implementation address.
*
* TIP: To get this value clients can read directly from the storage slot shown below (specified by ERC-1967) using
* the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
* `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
*/
function _implementation() internal view virtual override returns (address) {
return ERC1967Utils.getImplementation();
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Return the 512-bit addition of two uint256.
*
* The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
*/
function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
assembly ("memory-safe") {
low := add(a, b)
high := lt(low, a)
}
}
/**
* @dev Return the 512-bit multiplication of two uint256.
*
* The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
*/
function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
// 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = high * 2²⁵⁶ + low.
assembly ("memory-safe") {
let mm := mulmod(a, b, not(0))
low := mul(a, b)
high := sub(sub(mm, low), lt(mm, low))
}
}
/**
* @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
success = c >= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a - b;
success = c <= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a * b;
assembly ("memory-safe") {
// Only true when the multiplication doesn't overflow
// (c / a == b) || (a == 0)
success := or(eq(div(c, a), b), iszero(a))
}
// equivalent to: success ? c : 0
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `DIV` opcode returns zero when the denominator is 0.
result := div(a, b)
}
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `MOD` opcode returns zero when the denominator is 0.
result := mod(a, b)
}
}
}
/**
* @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryAdd(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
*/
function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
(, uint256 result) = trySub(a, b);
return result;
}
/**
* @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryMul(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
// Handle non-overflow cases, 256 by 256 division.
if (high == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return low / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= high) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [high low].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
high := sub(high, gt(remainder, low))
low := sub(low, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly ("memory-safe") {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [high low] by twos.
low := div(low, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from high into low.
low |= high * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
// is no longer required.
result = low * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
*/
function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
if (high >= 1 << n) {
Panic.panic(Panic.UNDER_OVERFLOW);
}
return (high << (256 - n)) | (low >> n);
}
}
/**
* @dev Calculates x * y >> n with full precision, following the selected rounding direction.
*/
function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// If upper 8 bits of 16-bit half set, add 8 to result
r |= SafeCast.toUint((x >> r) > 0xff) << 3;
// If upper 4 bits of 8-bit half set, add 4 to result
r |= SafeCast.toUint((x >> r) > 0xf) << 2;
// Shifts value right by the current result and use it as an index into this lookup table:
//
// | x (4 bits) | index | table[index] = MSB position |
// |------------|---------|-----------------------------|
// | 0000 | 0 | table[0] = 0 |
// | 0001 | 1 | table[1] = 0 |
// | 0010 | 2 | table[2] = 1 |
// | 0011 | 3 | table[3] = 1 |
// | 0100 | 4 | table[4] = 2 |
// | 0101 | 5 | table[5] = 2 |
// | 0110 | 6 | table[6] = 2 |
// | 0111 | 7 | table[7] = 2 |
// | 1000 | 8 | table[8] = 3 |
// | 1001 | 9 | table[9] = 3 |
// | 1010 | 10 | table[10] = 3 |
// | 1011 | 11 | table[11] = 3 |
// | 1100 | 12 | table[12] = 3 |
// | 1101 | 13 | table[13] = 3 |
// | 1110 | 14 | table[14] = 3 |
// | 1111 | 15 | table[15] = 3 |
//
// The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
assembly ("memory-safe") {
r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
}
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (proxy/ERC1967/ERC1967Utils.sol)
pragma solidity ^0.8.22;
import {IBeacon} from "../beacon/IBeacon.sol";
import {IERC1967} from "../../interfaces/IERC1967.sol";
import {Address} from "../../utils/Address.sol";
import {StorageSlot} from "../../utils/StorageSlot.sol";
/**
* @dev This library provides getters and event emitting update functions for
* https://eips.ethereum.org/EIPS/eip-1967[ERC-1967] slots.
*/
library ERC1967Utils {
/**
* @dev Storage slot with the address of the current implementation.
* This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1.
*/
// solhint-disable-next-line private-vars-leading-underscore
bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
/**
* @dev The `implementation` of the proxy is invalid.
*/
error ERC1967InvalidImplementation(address implementation);
/**
* @dev The `admin` of the proxy is invalid.
*/
error ERC1967InvalidAdmin(address admin);
/**
* @dev The `beacon` of the proxy is invalid.
*/
error ERC1967InvalidBeacon(address beacon);
/**
* @dev An upgrade function sees `msg.value > 0` that may be lost.
*/
error ERC1967NonPayable();
/**
* @dev Returns the current implementation address.
*/
function getImplementation() internal view returns (address) {
return StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value;
}
/**
* @dev Stores a new address in the ERC-1967 implementation slot.
*/
function _setImplementation(address newImplementation) private {
if (newImplementation.code.length == 0) {
revert ERC1967InvalidImplementation(newImplementation);
}
StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value = newImplementation;
}
/**
* @dev Performs implementation upgrade with additional setup call if data is nonempty.
* This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
* to avoid stuck value in the contract.
*
* Emits an {IERC1967-Upgraded} event.
*/
function upgradeToAndCall(address newImplementation, bytes memory data) internal {
_setImplementation(newImplementation);
emit IERC1967.Upgraded(newImplementation);
if (data.length > 0) {
Address.functionDelegateCall(newImplementation, data);
} else {
_checkNonPayable();
}
}
/**
* @dev Storage slot with the admin of the contract.
* This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1.
*/
// solhint-disable-next-line private-vars-leading-underscore
bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
/**
* @dev Returns the current admin.
*
* TIP: To get this value clients can read directly from the storage slot shown below (specified by ERC-1967) using
* the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
* `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
*/
function getAdmin() internal view returns (address) {
return StorageSlot.getAddressSlot(ADMIN_SLOT).value;
}
/**
* @dev Stores a new address in the ERC-1967 admin slot.
*/
function _setAdmin(address newAdmin) private {
if (newAdmin == address(0)) {
revert ERC1967InvalidAdmin(address(0));
}
StorageSlot.getAddressSlot(ADMIN_SLOT).value = newAdmin;
}
/**
* @dev Changes the admin of the proxy.
*
* Emits an {IERC1967-AdminChanged} event.
*/
function changeAdmin(address newAdmin) internal {
emit IERC1967.AdminChanged(getAdmin(), newAdmin);
_setAdmin(newAdmin);
}
/**
* @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
* This is the keccak-256 hash of "eip1967.proxy.beacon" subtracted by 1.
*/
// solhint-disable-next-line private-vars-leading-underscore
bytes32 internal constant BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
/**
* @dev Returns the current beacon.
*/
function getBeacon() internal view returns (address) {
return StorageSlot.getAddressSlot(BEACON_SLOT).value;
}
/**
* @dev Stores a new beacon in the ERC-1967 beacon slot.
*/
function _setBeacon(address newBeacon) private {
if (newBeacon.code.length == 0) {
revert ERC1967InvalidBeacon(newBeacon);
}
StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon;
address beaconImplementation = IBeacon(newBeacon).implementation();
if (beaconImplementation.code.length == 0) {
revert ERC1967InvalidImplementation(beaconImplementation);
}
}
/**
* @dev Change the beacon and trigger a setup call if data is nonempty.
* This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
* to avoid stuck value in the contract.
*
* Emits an {IERC1967-BeaconUpgraded} event.
*
* CAUTION: Invoking this function has no effect on an instance of {BeaconProxy} since v5, since
* it uses an immutable beacon without looking at the value of the ERC-1967 beacon slot for
* efficiency.
*/
function upgradeBeaconToAndCall(address newBeacon, bytes memory data) internal {
_setBeacon(newBeacon);
emit IERC1967.BeaconUpgraded(newBeacon);
if (data.length > 0) {
Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
} else {
_checkNonPayable();
}
}
/**
* @dev Reverts if `msg.value` is not zero. It can be used to avoid `msg.value` stuck in the contract
* if an upgrade doesn't perform an initialization call.
*/
function _checkNonPayable() private {
if (msg.value > 0) {
revert ERC1967NonPayable();
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
}
}
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
// Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
// taking advantage of the most significant (or "sign" bit) in two's complement representation.
// This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
// the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
int256 mask = n >> 255;
// A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
return uint256((n + mask) ^ mask);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC1822.sol)
pragma solidity ^0.8.20;
/**
* @dev ERC-1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
* proxy whose upgrades are fully controlled by the current implementation.
*/
interface IERC1822Proxiable {
/**
* @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
* address.
*
* IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
* bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
* function revert if invoked through a proxy.
*/
function proxiableUUID() external view returns (bytes32);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/Proxy.sol)
pragma solidity ^0.8.20;
/**
* @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
* instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
* be specified by overriding the virtual {_implementation} function.
*
* Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
* different contract through the {_delegate} function.
*
* The success and return data of the delegated call will be returned back to the caller of the proxy.
*/
abstract contract Proxy {
/**
* @dev Delegates the current call to `implementation`.
*
* This function does not return to its internal call site, it will return directly to the external caller.
*/
function _delegate(address implementation) internal virtual {
assembly {
// Copy msg.data. We take full control of memory in this inline assembly
// block because it will not return to Solidity code. We overwrite the
// Solidity scratch pad at memory position 0.
calldatacopy(0, 0, calldatasize())
// Call the implementation.
// out and outsize are 0 because we don't know the size yet.
let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
// Copy the returned data.
returndatacopy(0, 0, returndatasize())
switch result
// delegatecall returns 0 on error.
case 0 {
revert(0, returndatasize())
}
default {
return(0, returndatasize())
}
}
}
/**
* @dev This is a virtual function that should be overridden so it returns the address to which the fallback
* function and {_fallback} should delegate.
*/
function _implementation() internal view virtual returns (address);
/**
* @dev Delegates the current call to the address returned by `_implementation()`.
*
* This function does not return to its internal call site, it will return directly to the external caller.
*/
function _fallback() internal virtual {
_delegate(_implementation());
}
/**
* @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
* function in the contract matches the call data.
*/
fallback() external payable virtual {
_fallback();
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol)
pragma solidity ^0.8.20;
/**
* @dev This is the interface that {BeaconProxy} expects of its beacon.
*/
interface IBeacon {
/**
* @dev Must return an address that can be used as a delegate call target.
*
* {UpgradeableBeacon} will check that this address is a contract.
*/
function implementation() external view returns (address);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1967.sol)
pragma solidity ^0.8.20;
/**
* @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
*/
interface IERC1967 {
/**
* @dev Emitted when the implementation is upgraded.
*/
event Upgraded(address indexed implementation);
/**
* @dev Emitted when the admin account has changed.
*/
event AdminChanged(address previousAdmin, address newAdmin);
/**
* @dev Emitted when the beacon is changed.
*/
event BeaconUpgraded(address indexed beacon);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (utils/Address.sol)
pragma solidity ^0.8.20;
import {Errors} from "./Errors.sol";
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert Errors.InsufficientBalance(address(this).balance, amount);
}
(bool success, bytes memory returndata) = recipient.call{value: amount}("");
if (!success) {
_revert(returndata);
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {Errors.FailedCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert Errors.InsufficientBalance(address(this).balance, value);
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
* of an unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {Errors.FailedCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
assembly ("memory-safe") {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert Errors.FailedCall();
}
}
}{
"remappings": [
"src/=src/",
"test/=test/",
"@aztec/=lib/l1-contracts/src/",
"@aztec-test/=lib/l1-contracts/test/",
"@openzeppelin/=lib/openzeppelin-contracts/",
"@oz/=lib/openzeppelin-contracts/contracts/",
"forge-std/=lib/forge-std/src/",
"@atp/=lib/teegeeee/src/",
"@atp-mock/=lib/teegeeee/src/test/mocks/",
"@zkpassport/=lib/circuits/src/solidity/src/",
"@splits/=lib/splits-contracts-monorepo/packages/splits-v2/src/",
"@predicate/=lib/predicate-contracts/src/",
"@teegeeee/=lib/teegeeee/src/",
"@twap-auction/=lib/liquidity-launcher/lib/continuous-clearing-auction/src/",
"@twap-auction-test/=lib/liquidity-launcher/lib/continuous-clearing-auction/test/",
"@launcher/=lib/liquidity-launcher/src/",
"@v4c/=lib/liquidity-launcher/lib/v4-core/src/",
"@v4p/=lib/liquidity-launcher/lib/v4-periphery/src/",
"@aztec-blob-lib/=lib/l1-contracts/src/core/libraries/rollup/",
"@ensdomains/=lib/liquidity-launcher/lib/v4-core/node_modules/@ensdomains/",
"@openzeppelin-latest/=lib/liquidity-launcher/lib/openzeppelin-contracts/",
"@openzeppelin-upgrades-v4.9.0/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-upgradeable-v4.9.0/",
"@openzeppelin-upgrades/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-upgradeable/",
"@openzeppelin-v4.9.0/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-v4.9.0/",
"@optimism/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/",
"@solady/=lib/liquidity-launcher/lib/solady/",
"@test/=lib/l1-contracts/test/",
"@uniswap/v4-core/=lib/liquidity-launcher/lib/v4-core/",
"@uniswap/v4-periphery/=lib/liquidity-launcher/lib/v4-periphery/",
"@zkpassport-test/=lib/l1-contracts/lib/circuits/src/solidity/test/",
"btt/=lib/liquidity-launcher/lib/continuous-clearing-auction/test/btt/",
"circuits/=lib/circuits/src/",
"continuous-clearing-auction/=lib/liquidity-launcher/lib/continuous-clearing-auction/",
"ds-test/=lib/predicate-contracts/lib/forge-std/lib/ds-test/src/",
"eigenlayer-contracts/=lib/predicate-contracts/lib/eigenlayer-contracts/",
"eigenlayer-middleware/=lib/predicate-contracts/lib/eigenlayer-middleware/",
"erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
"forge-gas-snapshot/=lib/liquidity-launcher/lib/continuous-clearing-auction/lib/forge-gas-snapshot/src/",
"halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
"hardhat/=lib/liquidity-launcher/lib/v4-core/node_modules/hardhat/",
"kontrol-cheatcodes/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/kontrol-cheatcodes/src/",
"l1-contracts/=lib/l1-contracts/src/",
"lib-keccak/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/lib-keccak/contracts/",
"liquidity-launcher/=lib/liquidity-launcher/",
"merkle-distributor/=lib/liquidity-launcher/lib/merkle-distributor/",
"openzeppelin-contracts-4.7/=lib/liquidity-launcher/lib/openzeppelin-contracts-4.7/",
"openzeppelin-contracts-upgradeable-v4.9.0/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-upgradeable-v4.9.0/",
"openzeppelin-contracts-upgradeable/=lib/predicate-contracts/lib/openzeppelin-contracts-upgradeable/",
"openzeppelin-contracts-v4.9.0/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-v4.9.0/",
"openzeppelin-contracts-v5/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/openzeppelin-contracts-v5/",
"openzeppelin-contracts/=lib/openzeppelin-contracts/",
"openzeppelin-foundry-upgrades/=lib/predicate-contracts/lib/openzeppelin-foundry-upgrades/src/",
"openzeppelin-upgradeable/=lib/predicate-contracts/lib/openzeppelin-contracts-upgradeable/contracts/",
"openzeppelin/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-upgradeable-v4.9.0/contracts/",
"optimism/=lib/liquidity-launcher/lib/optimism/",
"permit2/=lib/liquidity-launcher/lib/permit2/",
"predicate-contracts/=lib/predicate-contracts/src/",
"safe-contracts/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/safe-contracts/contracts/",
"solady-v0.0.245/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/solady-v0.0.245/src/",
"solady/=lib/liquidity-launcher/lib/solady/src/",
"solmate/=lib/predicate-contracts/lib/solmate/src/",
"splits-contracts-monorepo/=lib/splits-contracts-monorepo/",
"teegeeee/=lib/teegeeee/src/",
"utils/=lib/predicate-contracts/lib/utils/",
"v4-core/=lib/liquidity-launcher/lib/v4-core/src/",
"v4-periphery/=lib/liquidity-launcher/lib/v4-periphery/",
"zkpassport-packages/=lib/zkpassport-packages/"
],
"optimizer": {
"enabled": true,
"runs": 200
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "ipfs",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "prague",
"viaIR": false
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"string","name":"_name","type":"string"},{"internalType":"string","name":"_symbol","type":"string"},{"internalType":"contract IERC20","name":"_underlyingTokenAddress","type":"address"},{"internalType":"contract IATPFactoryNonces","name":"_atpFactory","type":"address"},{"internalType":"address","name":"_foundationAddress","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"currentNonce","type":"uint256"}],"name":"InvalidAccountNonce","type":"error"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"inputs":[],"name":"VirtualAztecToken__AuctionNotSet","type":"error"},{"inputs":[],"name":"VirtualAztecToken__InvalidEIP712SetBeneficiarySiganture","type":"error"},{"inputs":[],"name":"VirtualAztecToken__NotImplemented","type":"error"},{"inputs":[],"name":"VirtualAztecToken__Recover__InvalidAddress","type":"error"},{"inputs":[],"name":"VirtualAztecToken__ScreeningFailed","type":"error"},{"inputs":[],"name":"VirtualAztecToken__SignatureDeadlineExpired","type":"error"},{"inputs":[],"name":"VirtualAztecToken__StrategyNotSet","type":"error"},{"inputs":[],"name":"VirtualAztecToken__UnderlyingTokensNotBacked","type":"error"},{"inputs":[],"name":"VirtualAztecToken__ZeroAddress","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_owner","type":"address"},{"indexed":true,"internalType":"address","name":"_beneficiary","type":"address"}],"name":"AtpBeneficiarySet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"contract IContinuousClearingAuction","name":"auctionAddress","type":"address"}],"name":"AuctionAddressSet","type":"event"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_screeningProvider","type":"address"}],"name":"ScreeningProviderSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"strategyAddress","type":"address"}],"name":"StrategyAddressSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"UnderlyingTokensRecovered","type":"event"},{"inputs":[],"name":"ATP_FACTORY","outputs":[{"internalType":"contract IATPFactoryNonces","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"FOUNDATION_ADDRESS","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MIN_STAKE_AMOUNT","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SET_ATP_BENEFICIARY_WITH_SIGNATURE_TYPEHASH","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"UNDERLYING_TOKEN_ADDRESS","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"}],"name":"atpBeneficiaries","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"auctionAddress","outputs":[{"internalType":"contract IContinuousClearingAuction","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"internalType":"address","name":"_beneficiary","type":"address"},{"internalType":"uint256","name":"_deadline","type":"uint256"},{"internalType":"uint256","name":"_nonce","type":"uint256"}],"name":"getSetAtpBeneficiaryWithSignatureDigest","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"mint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_beneficiary","type":"address"}],"name":"pendingAtpBalance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_beneficiary","type":"address"},{"internalType":"bytes","name":"_screeningData","type":"bytes"}],"name":"setAtpBeneficiary","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"internalType":"address","name":"_beneficiary","type":"address"},{"internalType":"uint256","name":"_deadline","type":"uint256"},{"components":[{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"},{"internalType":"uint8","name":"v","type":"uint8"}],"internalType":"struct IVirtualAztecToken.Signature","name":"_signature","type":"tuple"},{"internalType":"bytes","name":"_screeningData","type":"bytes"}],"name":"setAtpBeneficiaryWithSignature","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IContinuousClearingAuction","name":"_auctionAddress","type":"address"}],"name":"setAuctionAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_screeningProvider","type":"address"}],"name":"setScreeningProvider","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_strategyAddress","type":"address"}],"name":"setStrategyAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"strategyAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"sweepIntoAtp","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_from","type":"address"},{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]Contract Creation Code
6101c0604052348015610010575f5ffd5b5060405161257738038061257783398101604081905261002f9161038a565b33604051806040016040528060118152602001702b34b93a3ab0b620bd3a32b1aa37b5b2b760791b815250604051806040016040528060018152602001603160f81b8152508787816003908161008591906104ad565b50600461009282826104ad565b506100a291508390506005610216565b610120526100b1816006610216565b61014052815160208084019190912060e052815190820120610100524660a05261013d60e05161010051604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201529081019290925260608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b60805250503060c0526001600160a01b03811661017457604051631e4fbdf760e01b81525f60048201526024015b60405180910390fd5b61017d81610248565b506001600160a01b0383166101a55760405163e50cda1160e01b815260040160405180910390fd5b6001600160a01b0382166101cc5760405163e50cda1160e01b815260040160405180910390fd5b6001600160a01b0381166101f35760405163e50cda1160e01b815260040160405180910390fd5b6001600160a01b039283166101605290821661018052166101a052506105bf9050565b5f6020835110156102315761022a83610299565b9050610242565b8161023c84826104ad565b5060ff90505b92915050565b600780546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b5f5f829050601f815111156102c3578260405163305a27a960e01b815260040161016b9190610567565b80516102ce8261059c565b179392505050565b634e487b7160e01b5f52604160045260245ffd5b5f82601f8301126102f9575f5ffd5b81516001600160401b03811115610312576103126102d6565b604051601f8201601f19908116603f011681016001600160401b0381118282101715610340576103406102d6565b604052818152838201602001851015610357575f5ffd5b8160208501602083015e5f918101602001919091529392505050565b6001600160a01b0381168114610387575f5ffd5b50565b5f5f5f5f5f60a0868803121561039e575f5ffd5b85516001600160401b038111156103b3575f5ffd5b6103bf888289016102ea565b602088015190965090506001600160401b038111156103dc575f5ffd5b6103e8888289016102ea565b94505060408601516103f981610373565b606087015190935061040a81610373565b608087015190925061041b81610373565b809150509295509295909350565b600181811c9082168061043d57607f821691505b60208210810361045b57634e487b7160e01b5f52602260045260245ffd5b50919050565b601f8211156104a857805f5260205f20601f840160051c810160208510156104865750805b601f840160051c820191505b818110156104a5575f8155600101610492565b50505b505050565b81516001600160401b038111156104c6576104c66102d6565b6104da816104d48454610429565b84610461565b6020601f82116001811461050c575f83156104f55750848201515b5f19600385901b1c1916600184901b1784556104a5565b5f84815260208120601f198516915b8281101561053b578785015182556020948501946001909201910161051b565b508482101561055857868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b602081525f82518060208401528060208501604085015e5f604082850101526040601f19601f83011684010191505092915050565b8051602080830151919081101561045b575f1960209190910360031b1b16919050565b60805160a05160c05160e05161010051610120516101405161016051610180516101a051611f036106745f395f81816104370152610d3c01525f81816102ae01528181610f2e01528181610fca015281816110cd015261116901525f81816103fd0152818161074c015281816107eb01528181610da501528181610f5d01526110fc01525f61132401525f6112f201525f61167901525f61165101525f6115ac01525f6115d601525f6116000152611f035ff3fe608060405234801561000f575f5ffd5b50600436106101dc575f3560e01c80637e57136b116101095780639b117afa1161009e578063ccb7afae1161006e578063ccb7afae1461046a578063dd62ed3e14610492578063f2fde38b146104ca578063fa1bd42a146104dd575f5ffd5b80639b117afa146103f8578063a9059cbb1461041f578063acfd18c614610432578063bc6b74ab14610459575f5ffd5b80638da5cb5b116100d95780638da5cb5b146103a557806393ac3638146103b657806395d89b41146103c957806399472c3d146103d1575f5ffd5b80637e57136b1461033c5780637ecebe001461034f5780638308dbb81461037757806384b0196e1461038a575f5ffd5b8063313ce5671161017f5780635476ea9e1161014f5780635476ea9e146102e857806370a08231146102f9578063715018a6146103215780637897c30a14610329575f5ffd5b8063313ce567146102745780633f8ec4431461028357806340c10f191461029657806352e98baf146102a9575f5ffd5b80631de3f0a5116101ba5780631de3f0a51461023357806323b872dd1461023d57806324cfba9f1461025057806327ed718814610263575f5ffd5b806306fdde03146101e0578063095ea7b3146101fe57806318160ddd14610221575b5f5ffd5b6101e8610508565b6040516101f59190611aa3565b60405180910390f35b61021161020c366004611ac9565b610598565b60405190151581526020016101f5565b6002545b6040519081526020016101f5565b61023b6105b1565b005b61021161024b366004611af3565b6105d2565b61023b61025e366004611b31565b61061f565b610225692a5a058fc295ed00000081565b604051601281526020016101f5565b610225610291366004611b4c565b6106a3565b61023b6102a4366004611ac9565b610722565b6102d07f000000000000000000000000000000000000000000000000000000000000000081565b6040516001600160a01b0390911681526020016101f5565b6009546001600160a01b03166102d0565b610225610307366004611b31565b6001600160a01b03165f9081526020819052604090205490565b61023b610890565b61023b610337366004611b31565b6108a3565b61023b61034a366004611bd4565b61091b565b61022561035d366004611b31565b6001600160a01b03165f9081526008602052604090205490565b61023b610385366004611c25565b610a2b565b610392610c03565b6040516101f59796959493929190611d05565b6007546001600160a01b03166102d0565b61023b6103c4366004611b31565b610c45565b6101e8610cc2565b6102257f458512ee55d0d8960ed5851bb36066bea707832d115d8c103adda817b3a6d9a581565b6102d07f000000000000000000000000000000000000000000000000000000000000000081565b61021161042d366004611ac9565b610cd1565b6102d07f000000000000000000000000000000000000000000000000000000000000000081565b600a546001600160a01b03166102d0565b610225610478366004611b31565b6001600160a01b03165f908152600d602052604090205490565b6102256104a0366004611d9b565b6001600160a01b039182165f90815260016020908152604080832093909416825291909152205490565b61023b6104d8366004611b31565b610ea9565b6102d06104eb366004611b31565b6001600160a01b039081165f908152600c60205260409020541690565b60606003805461051790611dd2565b80601f016020809104026020016040519081016040528092919081815260200182805461054390611dd2565b801561058e5780601f106105655761010080835404028352916020019161058e565b820191905f5260205f20905b81548152906001019060200180831161057157829003601f168201915b5050505050905090565b5f336105a5818585610ee8565b60019150505b92915050565b335f818152600d602052604081208054919055906105cf9082610efa565b50565b600a545f906001600160a01b03908116908416036105fc576105f58484846111ba565b9050610618565b6040516001625a36b360e11b0319815260040160405180910390fd5b9392505050565b6106276111dd565b6001600160a01b03811661064e5760405163e50cda1160e01b815260040160405180910390fd5b600a80546001600160a01b0319166001600160a01b0383169081179091556040519081527f3219984ef7a0387d5933babe52f101bd6433712de232efdfc738b522ab39cea7906020015b60405180910390a150565b604080517f458512ee55d0d8960ed5851bb36066bea707832d115d8c103adda817b3a6d9a560208201526001600160a01b038087169282019290925290841660608201526080810183905260a081018290525f906107199060c0016040516020818303038152906040528051906020012061120a565b95945050505050565b61072a6111dd565b6040516323b872dd60e01b8152336004820152306024820152604481018290527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316906323b872dd906064016020604051808303815f875af115801561079a573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107be9190611e0a565b505f6107c960025490565b6040516370a0823160e01b81523060048201529091505f906001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016906370a0823190602401602060405180830381865afa158015610830573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906108549190611e29565b9050806108618484611e40565b11156108805760405163a1290e2d60e01b815260040160405180910390fd5b61088a8484611236565b50505050565b6108986111dd565b6108a15f61126e565b565b6108ab6111dd565b6001600160a01b0381166108d25760405163e50cda1160e01b815260040160405180910390fd5b600b80546001600160a01b0319166001600160a01b0383169081179091556040517fc5cf6d5e3444427b33b98207d42a162be1911161d916e238ee0bf92830b9a698905f90a250565b6001600160a01b0383166109425760405163e50cda1160e01b815260040160405180910390fd5b600b54604051631290746b60e21b81526001600160a01b0390911690634a41d1ac9061097690869086908690600401611e5f565b6020604051808303815f875af1158015610992573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109b69190611e0a565b6109d35760405163e8c3fcc160e01b815260040160405180910390fd5b335f818152600c602052604080822080546001600160a01b0319166001600160a01b03881690811790915590519092917f1d19d2c25156a3da334105d717b055b26dda6eec7c389300879c676305a4cea291a3505050565b83421115610a4c5760405163f5d9c90f60e01b815260040160405180910390fd5b6001600160a01b038616610a735760405163e50cda1160e01b815260040160405180910390fd5b6001600160a01b038516610a9a5760405163e50cda1160e01b815260040160405180910390fd5b6001600160a01b0386165f90815260086020526040812080546001810190915590610ac7888888856106a3565b90505f610ae1828760400151885f015189602001516112bf565b9050886001600160a01b0316816001600160a01b031614610b15576040516348ad83cb60e01b815260040160405180910390fd5b600b54604051631290746b60e21b81526001600160a01b0390911690634a41d1ac90610b49908b9089908990600401611e5f565b6020604051808303815f875af1158015610b65573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610b899190611e0a565b610ba65760405163e8c3fcc160e01b815260040160405180910390fd5b6001600160a01b038981165f818152600c602052604080822080546001600160a01b031916948d169485179055517f1d19d2c25156a3da334105d717b055b26dda6eec7c389300879c676305a4cea29190a3505050505050505050565b5f6060805f5f5f6060610c146112eb565b610c1c61131d565b604080515f80825260208201909252600f60f81b9b939a50919850469750309650945092509050565b610c4d6111dd565b6001600160a01b038116610c745760405163e50cda1160e01b815260040160405180910390fd5b600980546001600160a01b0319166001600160a01b0383169081179091556040519081527fe1fb0bb38491d3ce2b84b948749bf22afca6489efd61dbc0b1ea9bad18530cc690602001610698565b60606004805461051790611dd2565b6009545f906001600160a01b0316610cfc57604051637b71ff8960e01b815260040160405180910390fd5b600a546001600160a01b0316610d25576040516304df89ed60e21b815260040160405180910390fd5b6009546001600160a01b031633148015610d7057507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316836001600160a01b0316145b15610e1657610d7f338361134a565b60405163a9059cbb60e01b81526001600160a01b038481166004830152602482018490527f0000000000000000000000000000000000000000000000000000000000000000169063a9059cbb906044016020604051808303815f875af1158015610deb573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610e0f9190611e0a565b90506105ab565b6009546001600160a01b03163303610e6857610e32338361134a565b6001600160a01b0383165f908152600d602052604081208054849290610e59908490611e40565b90915550600191506105ab9050565b600a546001600160a01b031633148015610e9057506009546001600160a01b03848116911614155b15610e9f57610d7f338361134a565b610618838361137e565b610eb16111dd565b6001600160a01b038116610edf57604051631e4fbdf760e01b81525f60048201526024015b60405180910390fd5b6105cf8161126e565b610ef5838383600161138b565b505050565b5f610f048361145d565b9050692a5a058fc295ed00000082106110b65760405163a9059cbb60e01b81526001600160a01b037f000000000000000000000000000000000000000000000000000000000000000081166004830152602482018490527f0000000000000000000000000000000000000000000000000000000000000000169063a9059cbb906044016020604051808303815f875af1158015610fa3573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610fc79190611e0a565b507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663ebfc3de2828460405180604001604052805f6001600160a01b0316815260200161101b61148c565b9052604080516001600160e01b031960e087901b1681526001600160a01b039485166004820152602481019390935281519093166044830152602090810151805160648401529081015160848301529091015160a482015260c4016020604051808303815f875af1158015611092573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061088a9190611e9e565b60405163a9059cbb60e01b81526001600160a01b037f000000000000000000000000000000000000000000000000000000000000000081166004830152602482018490527f0000000000000000000000000000000000000000000000000000000000000000169063a9059cbb906044016020604051808303815f875af1158015611142573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906111669190611e0a565b507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316637e0ef685828460405180604001604052805f6001600160a01b0316815260200161101b61148c565b5f336111c78582856114cd565b6111d2858585611543565b506001949350505050565b6007546001600160a01b031633146108a15760405163118cdaa760e01b8152336004820152602401610ed6565b5f6105ab6112166115a0565b8360405161190160f01b8152600281019290925260228201526042902090565b6001600160a01b03821661125f5760405163ec442f0560e01b81525f6004820152602401610ed6565b61126a5f83836116c9565b5050565b600780546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b5f5f5f5f6112cf888888886117ef565b9250925092506112df82826118b7565b50909695505050505050565b60606113187f0000000000000000000000000000000000000000000000000000000000000000600561196f565b905090565b60606113187f0000000000000000000000000000000000000000000000000000000000000000600661196f565b6001600160a01b03821661137357604051634b637e8f60e11b81525f6004820152602401610ed6565b61126a825f836116c9565b5f336105a5818585611543565b6001600160a01b0384166113b45760405163e602df0560e01b81525f6004820152602401610ed6565b6001600160a01b0383166113dd57604051634a1406b160e11b81525f6004820152602401610ed6565b6001600160a01b038085165f908152600160209081526040808320938716835292905220829055801561088a57826001600160a01b0316846001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b9258460405161144f91815260200190565b60405180910390a350505050565b6001600160a01b038082165f908152600c602052604081205490911680156114855792915050565b5090919050565b6114ad60405180606001604052805f81526020015f81526020015f81525090565b60405180606001604052805f81526020015f81526020015f815250905090565b6001600160a01b038381165f908152600160209081526040808320938616835292905220545f1981101561088a578181101561153557604051637dc7a0d960e11b81526001600160a01b03841660048201526024810182905260448101839052606401610ed6565b61088a84848484035f61138b565b6001600160a01b03831661156c57604051634b637e8f60e11b81525f6004820152602401610ed6565b6001600160a01b0382166115955760405163ec442f0560e01b81525f6004820152602401610ed6565b610ef58383836116c9565b5f306001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000161480156115f857507f000000000000000000000000000000000000000000000000000000000000000046145b1561162257507f000000000000000000000000000000000000000000000000000000000000000090565b611318604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527f0000000000000000000000000000000000000000000000000000000000000000918101919091527f000000000000000000000000000000000000000000000000000000000000000060608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b6001600160a01b0383166116f3578060025f8282546116e89190611e40565b909155506117639050565b6001600160a01b0383165f90815260208190526040902054818110156117455760405163391434e360e21b81526001600160a01b03851660048201526024810182905260448101839052606401610ed6565b6001600160a01b0384165f9081526020819052604090209082900390555b6001600160a01b03821661177f5760028054829003905561179d565b6001600160a01b0382165f9081526020819052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef836040516117e291815260200190565b60405180910390a3505050565b5f80807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a084111561182857505f915060039050826118ad565b604080515f808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa158015611879573d5f5f3e3d5ffd5b5050604051601f1901519150506001600160a01b0381166118a457505f9250600191508290506118ad565b92505f91508190505b9450945094915050565b5f8260038111156118ca576118ca611eb9565b036118d3575050565b60018260038111156118e7576118e7611eb9565b036119055760405163f645eedf60e01b815260040160405180910390fd5b600282600381111561191957611919611eb9565b0361193a5760405163fce698f760e01b815260048101829052602401610ed6565b600382600381111561194e5761194e611eb9565b0361126a576040516335e2f38360e21b815260048101829052602401610ed6565b606060ff831461198257610e0f83611a11565b81805461198e90611dd2565b80601f01602080910402602001604051908101604052809291908181526020018280546119ba90611dd2565b8015611a055780601f106119dc57610100808354040283529160200191611a05565b820191905f5260205f20905b8154815290600101906020018083116119e857829003601f168201915b505050505090506105ab565b60605f611a1d83611a4e565b6040805160208082528183019092529192505f91906020820181803683375050509182525060208101929092525090565b5f60ff8216601f8111156105ab57604051632cd44ac360e21b815260040160405180910390fd5b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b602081525f6106186020830184611a75565b6001600160a01b03811681146105cf575f5ffd5b5f5f60408385031215611ada575f5ffd5b8235611ae581611ab5565b946020939093013593505050565b5f5f5f60608486031215611b05575f5ffd5b8335611b1081611ab5565b92506020840135611b2081611ab5565b929592945050506040919091013590565b5f60208284031215611b41575f5ffd5b813561061881611ab5565b5f5f5f5f60808587031215611b5f575f5ffd5b8435611b6a81611ab5565b93506020850135611b7a81611ab5565b93969395505050506040820135916060013590565b5f5f83601f840112611b9f575f5ffd5b50813567ffffffffffffffff811115611bb6575f5ffd5b602083019150836020828501011115611bcd575f5ffd5b9250929050565b5f5f5f60408486031215611be6575f5ffd5b8335611bf181611ab5565b9250602084013567ffffffffffffffff811115611c0c575f5ffd5b611c1886828701611b8f565b9497909650939450505050565b5f5f5f5f5f5f86880360e0811215611c3b575f5ffd5b8735611c4681611ab5565b96506020880135611c5681611ab5565b9550604088013594506060605f1982011215611c70575f5ffd5b506040516060810181811067ffffffffffffffff82111715611ca057634e487b7160e01b5f52604160045260245ffd5b604052606088013581526080880135602082015260a088013560ff81168114611cc7575f5ffd5b6040820152925060c087013567ffffffffffffffff811115611ce7575f5ffd5b611cf389828a01611b8f565b979a9699509497509295939492505050565b60ff60f81b8816815260e060208201525f611d2360e0830189611a75565b8281036040840152611d358189611a75565b606084018890526001600160a01b038716608085015260a0840186905283810360c0850152845180825260208087019350909101905f5b81811015611d8a578351835260209384019390920191600101611d6c565b50909b9a5050505050505050505050565b5f5f60408385031215611dac575f5ffd5b8235611db781611ab5565b91506020830135611dc781611ab5565b809150509250929050565b600181811c90821680611de657607f821691505b602082108103611e0457634e487b7160e01b5f52602260045260245ffd5b50919050565b5f60208284031215611e1a575f5ffd5b81518015158114610618575f5ffd5b5f60208284031215611e39575f5ffd5b5051919050565b808201808211156105ab57634e487b7160e01b5f52601160045260245ffd5b6001600160a01b03841681526040602082018190528101829052818360608301375f818301606090810191909152601f909201601f1916010192915050565b5f60208284031215611eae575f5ffd5b815161061881611ab5565b634e487b7160e01b5f52602160045260245ffdfea2646970667358221220a0a798969ec17936a8f1faa7c72c5197bb3e874ec548e40f4b7cc93b8bdc841564736f6c634300081e003300000000000000000000000000000000000000000000000000000000000000a000000000000000000000000000000000000000000000000000000000000000e0000000000000000000000000a27ec0006e59f245217ff08cd52a7e8b169e62d200000000000000000000000042df694edf32d5ac19a75e1c7f91c982a7f2a16100000000000000000000000013620833364653fa125ccdd7cf54b9e4a22ab6d900000000000000000000000000000000000000000000000000000000000000115669727475616c417a746563546f6b656e000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000456415a5400000000000000000000000000000000000000000000000000000000
Deployed Bytecode
0x608060405234801561000f575f5ffd5b50600436106101dc575f3560e01c80637e57136b116101095780639b117afa1161009e578063ccb7afae1161006e578063ccb7afae1461046a578063dd62ed3e14610492578063f2fde38b146104ca578063fa1bd42a146104dd575f5ffd5b80639b117afa146103f8578063a9059cbb1461041f578063acfd18c614610432578063bc6b74ab14610459575f5ffd5b80638da5cb5b116100d95780638da5cb5b146103a557806393ac3638146103b657806395d89b41146103c957806399472c3d146103d1575f5ffd5b80637e57136b1461033c5780637ecebe001461034f5780638308dbb81461037757806384b0196e1461038a575f5ffd5b8063313ce5671161017f5780635476ea9e1161014f5780635476ea9e146102e857806370a08231146102f9578063715018a6146103215780637897c30a14610329575f5ffd5b8063313ce567146102745780633f8ec4431461028357806340c10f191461029657806352e98baf146102a9575f5ffd5b80631de3f0a5116101ba5780631de3f0a51461023357806323b872dd1461023d57806324cfba9f1461025057806327ed718814610263575f5ffd5b806306fdde03146101e0578063095ea7b3146101fe57806318160ddd14610221575b5f5ffd5b6101e8610508565b6040516101f59190611aa3565b60405180910390f35b61021161020c366004611ac9565b610598565b60405190151581526020016101f5565b6002545b6040519081526020016101f5565b61023b6105b1565b005b61021161024b366004611af3565b6105d2565b61023b61025e366004611b31565b61061f565b610225692a5a058fc295ed00000081565b604051601281526020016101f5565b610225610291366004611b4c565b6106a3565b61023b6102a4366004611ac9565b610722565b6102d07f00000000000000000000000042df694edf32d5ac19a75e1c7f91c982a7f2a16181565b6040516001600160a01b0390911681526020016101f5565b6009546001600160a01b03166102d0565b610225610307366004611b31565b6001600160a01b03165f9081526020819052604090205490565b61023b610890565b61023b610337366004611b31565b6108a3565b61023b61034a366004611bd4565b61091b565b61022561035d366004611b31565b6001600160a01b03165f9081526008602052604090205490565b61023b610385366004611c25565b610a2b565b610392610c03565b6040516101f59796959493929190611d05565b6007546001600160a01b03166102d0565b61023b6103c4366004611b31565b610c45565b6101e8610cc2565b6102257f458512ee55d0d8960ed5851bb36066bea707832d115d8c103adda817b3a6d9a581565b6102d07f000000000000000000000000a27ec0006e59f245217ff08cd52a7e8b169e62d281565b61021161042d366004611ac9565b610cd1565b6102d07f00000000000000000000000013620833364653fa125ccdd7cf54b9e4a22ab6d981565b600a546001600160a01b03166102d0565b610225610478366004611b31565b6001600160a01b03165f908152600d602052604090205490565b6102256104a0366004611d9b565b6001600160a01b039182165f90815260016020908152604080832093909416825291909152205490565b61023b6104d8366004611b31565b610ea9565b6102d06104eb366004611b31565b6001600160a01b039081165f908152600c60205260409020541690565b60606003805461051790611dd2565b80601f016020809104026020016040519081016040528092919081815260200182805461054390611dd2565b801561058e5780601f106105655761010080835404028352916020019161058e565b820191905f5260205f20905b81548152906001019060200180831161057157829003601f168201915b5050505050905090565b5f336105a5818585610ee8565b60019150505b92915050565b335f818152600d602052604081208054919055906105cf9082610efa565b50565b600a545f906001600160a01b03908116908416036105fc576105f58484846111ba565b9050610618565b6040516001625a36b360e11b0319815260040160405180910390fd5b9392505050565b6106276111dd565b6001600160a01b03811661064e5760405163e50cda1160e01b815260040160405180910390fd5b600a80546001600160a01b0319166001600160a01b0383169081179091556040519081527f3219984ef7a0387d5933babe52f101bd6433712de232efdfc738b522ab39cea7906020015b60405180910390a150565b604080517f458512ee55d0d8960ed5851bb36066bea707832d115d8c103adda817b3a6d9a560208201526001600160a01b038087169282019290925290841660608201526080810183905260a081018290525f906107199060c0016040516020818303038152906040528051906020012061120a565b95945050505050565b61072a6111dd565b6040516323b872dd60e01b8152336004820152306024820152604481018290527f000000000000000000000000a27ec0006e59f245217ff08cd52a7e8b169e62d26001600160a01b0316906323b872dd906064016020604051808303815f875af115801561079a573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107be9190611e0a565b505f6107c960025490565b6040516370a0823160e01b81523060048201529091505f906001600160a01b037f000000000000000000000000a27ec0006e59f245217ff08cd52a7e8b169e62d216906370a0823190602401602060405180830381865afa158015610830573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906108549190611e29565b9050806108618484611e40565b11156108805760405163a1290e2d60e01b815260040160405180910390fd5b61088a8484611236565b50505050565b6108986111dd565b6108a15f61126e565b565b6108ab6111dd565b6001600160a01b0381166108d25760405163e50cda1160e01b815260040160405180910390fd5b600b80546001600160a01b0319166001600160a01b0383169081179091556040517fc5cf6d5e3444427b33b98207d42a162be1911161d916e238ee0bf92830b9a698905f90a250565b6001600160a01b0383166109425760405163e50cda1160e01b815260040160405180910390fd5b600b54604051631290746b60e21b81526001600160a01b0390911690634a41d1ac9061097690869086908690600401611e5f565b6020604051808303815f875af1158015610992573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109b69190611e0a565b6109d35760405163e8c3fcc160e01b815260040160405180910390fd5b335f818152600c602052604080822080546001600160a01b0319166001600160a01b03881690811790915590519092917f1d19d2c25156a3da334105d717b055b26dda6eec7c389300879c676305a4cea291a3505050565b83421115610a4c5760405163f5d9c90f60e01b815260040160405180910390fd5b6001600160a01b038616610a735760405163e50cda1160e01b815260040160405180910390fd5b6001600160a01b038516610a9a5760405163e50cda1160e01b815260040160405180910390fd5b6001600160a01b0386165f90815260086020526040812080546001810190915590610ac7888888856106a3565b90505f610ae1828760400151885f015189602001516112bf565b9050886001600160a01b0316816001600160a01b031614610b15576040516348ad83cb60e01b815260040160405180910390fd5b600b54604051631290746b60e21b81526001600160a01b0390911690634a41d1ac90610b49908b9089908990600401611e5f565b6020604051808303815f875af1158015610b65573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610b899190611e0a565b610ba65760405163e8c3fcc160e01b815260040160405180910390fd5b6001600160a01b038981165f818152600c602052604080822080546001600160a01b031916948d169485179055517f1d19d2c25156a3da334105d717b055b26dda6eec7c389300879c676305a4cea29190a3505050505050505050565b5f6060805f5f5f6060610c146112eb565b610c1c61131d565b604080515f80825260208201909252600f60f81b9b939a50919850469750309650945092509050565b610c4d6111dd565b6001600160a01b038116610c745760405163e50cda1160e01b815260040160405180910390fd5b600980546001600160a01b0319166001600160a01b0383169081179091556040519081527fe1fb0bb38491d3ce2b84b948749bf22afca6489efd61dbc0b1ea9bad18530cc690602001610698565b60606004805461051790611dd2565b6009545f906001600160a01b0316610cfc57604051637b71ff8960e01b815260040160405180910390fd5b600a546001600160a01b0316610d25576040516304df89ed60e21b815260040160405180910390fd5b6009546001600160a01b031633148015610d7057507f00000000000000000000000013620833364653fa125ccdd7cf54b9e4a22ab6d96001600160a01b0316836001600160a01b0316145b15610e1657610d7f338361134a565b60405163a9059cbb60e01b81526001600160a01b038481166004830152602482018490527f000000000000000000000000a27ec0006e59f245217ff08cd52a7e8b169e62d2169063a9059cbb906044016020604051808303815f875af1158015610deb573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610e0f9190611e0a565b90506105ab565b6009546001600160a01b03163303610e6857610e32338361134a565b6001600160a01b0383165f908152600d602052604081208054849290610e59908490611e40565b90915550600191506105ab9050565b600a546001600160a01b031633148015610e9057506009546001600160a01b03848116911614155b15610e9f57610d7f338361134a565b610618838361137e565b610eb16111dd565b6001600160a01b038116610edf57604051631e4fbdf760e01b81525f60048201526024015b60405180910390fd5b6105cf8161126e565b610ef5838383600161138b565b505050565b5f610f048361145d565b9050692a5a058fc295ed00000082106110b65760405163a9059cbb60e01b81526001600160a01b037f00000000000000000000000042df694edf32d5ac19a75e1c7f91c982a7f2a16181166004830152602482018490527f000000000000000000000000a27ec0006e59f245217ff08cd52a7e8b169e62d2169063a9059cbb906044016020604051808303815f875af1158015610fa3573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610fc79190611e0a565b507f00000000000000000000000042df694edf32d5ac19a75e1c7f91c982a7f2a1616001600160a01b031663ebfc3de2828460405180604001604052805f6001600160a01b0316815260200161101b61148c565b9052604080516001600160e01b031960e087901b1681526001600160a01b039485166004820152602481019390935281519093166044830152602090810151805160648401529081015160848301529091015160a482015260c4016020604051808303815f875af1158015611092573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061088a9190611e9e565b60405163a9059cbb60e01b81526001600160a01b037f00000000000000000000000042df694edf32d5ac19a75e1c7f91c982a7f2a16181166004830152602482018490527f000000000000000000000000a27ec0006e59f245217ff08cd52a7e8b169e62d2169063a9059cbb906044016020604051808303815f875af1158015611142573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906111669190611e0a565b507f00000000000000000000000042df694edf32d5ac19a75e1c7f91c982a7f2a1616001600160a01b0316637e0ef685828460405180604001604052805f6001600160a01b0316815260200161101b61148c565b5f336111c78582856114cd565b6111d2858585611543565b506001949350505050565b6007546001600160a01b031633146108a15760405163118cdaa760e01b8152336004820152602401610ed6565b5f6105ab6112166115a0565b8360405161190160f01b8152600281019290925260228201526042902090565b6001600160a01b03821661125f5760405163ec442f0560e01b81525f6004820152602401610ed6565b61126a5f83836116c9565b5050565b600780546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b5f5f5f5f6112cf888888886117ef565b9250925092506112df82826118b7565b50909695505050505050565b60606113187f5669727475616c417a746563546f6b656e000000000000000000000000000011600561196f565b905090565b60606113187f3100000000000000000000000000000000000000000000000000000000000001600661196f565b6001600160a01b03821661137357604051634b637e8f60e11b81525f6004820152602401610ed6565b61126a825f836116c9565b5f336105a5818585611543565b6001600160a01b0384166113b45760405163e602df0560e01b81525f6004820152602401610ed6565b6001600160a01b0383166113dd57604051634a1406b160e11b81525f6004820152602401610ed6565b6001600160a01b038085165f908152600160209081526040808320938716835292905220829055801561088a57826001600160a01b0316846001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b9258460405161144f91815260200190565b60405180910390a350505050565b6001600160a01b038082165f908152600c602052604081205490911680156114855792915050565b5090919050565b6114ad60405180606001604052805f81526020015f81526020015f81525090565b60405180606001604052805f81526020015f81526020015f815250905090565b6001600160a01b038381165f908152600160209081526040808320938616835292905220545f1981101561088a578181101561153557604051637dc7a0d960e11b81526001600160a01b03841660048201526024810182905260448101839052606401610ed6565b61088a84848484035f61138b565b6001600160a01b03831661156c57604051634b637e8f60e11b81525f6004820152602401610ed6565b6001600160a01b0382166115955760405163ec442f0560e01b81525f6004820152602401610ed6565b610ef58383836116c9565b5f306001600160a01b037f0000000000000000000000004b00c30ceba3f188407c6e6741cc5b43561f1f6e161480156115f857507f000000000000000000000000000000000000000000000000000000000000000146145b1561162257507f087cf2357647d8ecced08ecb8efa7aa209c4f666b2b5bdeb6d6eb27ec93a03d290565b611318604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527fb3c8a883b6bd77ed340b295e26202eabe4ef74e3f1bab7e0c987db91f38081f5918101919091527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc660608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b6001600160a01b0383166116f3578060025f8282546116e89190611e40565b909155506117639050565b6001600160a01b0383165f90815260208190526040902054818110156117455760405163391434e360e21b81526001600160a01b03851660048201526024810182905260448101839052606401610ed6565b6001600160a01b0384165f9081526020819052604090209082900390555b6001600160a01b03821661177f5760028054829003905561179d565b6001600160a01b0382165f9081526020819052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef836040516117e291815260200190565b60405180910390a3505050565b5f80807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a084111561182857505f915060039050826118ad565b604080515f808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa158015611879573d5f5f3e3d5ffd5b5050604051601f1901519150506001600160a01b0381166118a457505f9250600191508290506118ad565b92505f91508190505b9450945094915050565b5f8260038111156118ca576118ca611eb9565b036118d3575050565b60018260038111156118e7576118e7611eb9565b036119055760405163f645eedf60e01b815260040160405180910390fd5b600282600381111561191957611919611eb9565b0361193a5760405163fce698f760e01b815260048101829052602401610ed6565b600382600381111561194e5761194e611eb9565b0361126a576040516335e2f38360e21b815260048101829052602401610ed6565b606060ff831461198257610e0f83611a11565b81805461198e90611dd2565b80601f01602080910402602001604051908101604052809291908181526020018280546119ba90611dd2565b8015611a055780601f106119dc57610100808354040283529160200191611a05565b820191905f5260205f20905b8154815290600101906020018083116119e857829003601f168201915b505050505090506105ab565b60605f611a1d83611a4e565b6040805160208082528183019092529192505f91906020820181803683375050509182525060208101929092525090565b5f60ff8216601f8111156105ab57604051632cd44ac360e21b815260040160405180910390fd5b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b602081525f6106186020830184611a75565b6001600160a01b03811681146105cf575f5ffd5b5f5f60408385031215611ada575f5ffd5b8235611ae581611ab5565b946020939093013593505050565b5f5f5f60608486031215611b05575f5ffd5b8335611b1081611ab5565b92506020840135611b2081611ab5565b929592945050506040919091013590565b5f60208284031215611b41575f5ffd5b813561061881611ab5565b5f5f5f5f60808587031215611b5f575f5ffd5b8435611b6a81611ab5565b93506020850135611b7a81611ab5565b93969395505050506040820135916060013590565b5f5f83601f840112611b9f575f5ffd5b50813567ffffffffffffffff811115611bb6575f5ffd5b602083019150836020828501011115611bcd575f5ffd5b9250929050565b5f5f5f60408486031215611be6575f5ffd5b8335611bf181611ab5565b9250602084013567ffffffffffffffff811115611c0c575f5ffd5b611c1886828701611b8f565b9497909650939450505050565b5f5f5f5f5f5f86880360e0811215611c3b575f5ffd5b8735611c4681611ab5565b96506020880135611c5681611ab5565b9550604088013594506060605f1982011215611c70575f5ffd5b506040516060810181811067ffffffffffffffff82111715611ca057634e487b7160e01b5f52604160045260245ffd5b604052606088013581526080880135602082015260a088013560ff81168114611cc7575f5ffd5b6040820152925060c087013567ffffffffffffffff811115611ce7575f5ffd5b611cf389828a01611b8f565b979a9699509497509295939492505050565b60ff60f81b8816815260e060208201525f611d2360e0830189611a75565b8281036040840152611d358189611a75565b606084018890526001600160a01b038716608085015260a0840186905283810360c0850152845180825260208087019350909101905f5b81811015611d8a578351835260209384019390920191600101611d6c565b50909b9a5050505050505050505050565b5f5f60408385031215611dac575f5ffd5b8235611db781611ab5565b91506020830135611dc781611ab5565b809150509250929050565b600181811c90821680611de657607f821691505b602082108103611e0457634e487b7160e01b5f52602260045260245ffd5b50919050565b5f60208284031215611e1a575f5ffd5b81518015158114610618575f5ffd5b5f60208284031215611e39575f5ffd5b5051919050565b808201808211156105ab57634e487b7160e01b5f52601160045260245ffd5b6001600160a01b03841681526040602082018190528101829052818360608301375f818301606090810191909152601f909201601f1916010192915050565b5f60208284031215611eae575f5ffd5b815161061881611ab5565b634e487b7160e01b5f52602160045260245ffdfea2646970667358221220a0a798969ec17936a8f1faa7c72c5197bb3e874ec548e40f4b7cc93b8bdc841564736f6c634300081e0033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
00000000000000000000000000000000000000000000000000000000000000a000000000000000000000000000000000000000000000000000000000000000e0000000000000000000000000a27ec0006e59f245217ff08cd52a7e8b169e62d200000000000000000000000042df694edf32d5ac19a75e1c7f91c982a7f2a16100000000000000000000000013620833364653fa125ccdd7cf54b9e4a22ab6d900000000000000000000000000000000000000000000000000000000000000115669727475616c417a746563546f6b656e000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000456415a5400000000000000000000000000000000000000000000000000000000
-----Decoded View---------------
Arg [0] : _name (string): VirtualAztecToken
Arg [1] : _symbol (string): VAZT
Arg [2] : _underlyingTokenAddress (address): 0xA27EC0006e59f245217Ff08CD52A7E8b169E62D2
Arg [3] : _atpFactory (address): 0x42Df694EdF32d5AC19A75E1c7f91C982a7F2a161
Arg [4] : _foundationAddress (address): 0x13620833364653fa125cCDD7Cf54b9e4A22AB6d9
-----Encoded View---------------
9 Constructor Arguments found :
Arg [0] : 00000000000000000000000000000000000000000000000000000000000000a0
Arg [1] : 00000000000000000000000000000000000000000000000000000000000000e0
Arg [2] : 000000000000000000000000a27ec0006e59f245217ff08cd52a7e8b169e62d2
Arg [3] : 00000000000000000000000042df694edf32d5ac19a75e1c7f91c982a7f2a161
Arg [4] : 00000000000000000000000013620833364653fa125ccdd7cf54b9e4a22ab6d9
Arg [5] : 0000000000000000000000000000000000000000000000000000000000000011
Arg [6] : 5669727475616c417a746563546f6b656e000000000000000000000000000000
Arg [7] : 0000000000000000000000000000000000000000000000000000000000000004
Arg [8] : 56415a5400000000000000000000000000000000000000000000000000000000
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.
Add Token to MetaMask (Web3)