ETH Price: $1,975.54 (+0.35%)

Contract Diff Checker

Contract Name:
Trophy

Contract Source Code:

File 1 of 1 : Trophy

pragma solidity ^0.4.13;

library AddressUtils {

  /**
   * Returns whether the target address is a contract
   * @dev This function will return false if invoked during the constructor of a contract,
   * as the code is not actually created until after the constructor finishes.
   * @param _addr address to check
   * @return whether the target address is a contract
   */
  function isContract(address _addr) internal view returns (bool) {
    uint256 size;
    // XXX Currently there is no better way to check if there is a contract in an address
    // than to check the size of the code at that address.
    // See https://ethereum.stackexchange.com/a/14016/36603
    // for more details about how this works.
    // TODO Check this again before the Serenity release, because all addresses will be
    // contracts then.
    // solium-disable-next-line security/no-inline-assembly
    assembly { size := extcodesize(_addr) }
    return size > 0;
  }

}

interface ERC165 {

  /**
   * @notice Query if a contract implements an interface
   * @param _interfaceId The interface identifier, as specified in ERC-165
   * @dev Interface identification is specified in ERC-165. This function
   * uses less than 30,000 gas.
   */
  function supportsInterface(bytes4 _interfaceId)
    external
    view
    returns (bool);
}

contract SupportsInterfaceWithLookup is ERC165 {

  bytes4 public constant InterfaceId_ERC165 = 0x01ffc9a7;
  /**
   * 0x01ffc9a7 ===
   *   bytes4(keccak256('supportsInterface(bytes4)'))
   */

  /**
   * @dev a mapping of interface id to whether or not it's supported
   */
  mapping(bytes4 => bool) internal supportedInterfaces;

  /**
   * @dev A contract implementing SupportsInterfaceWithLookup
   * implement ERC165 itself
   */
  constructor()
    public
  {
    _registerInterface(InterfaceId_ERC165);
  }

  /**
   * @dev implement supportsInterface(bytes4) using a lookup table
   */
  function supportsInterface(bytes4 _interfaceId)
    external
    view
    returns (bool)
  {
    return supportedInterfaces[_interfaceId];
  }

  /**
   * @dev private method for registering an interface
   */
  function _registerInterface(bytes4 _interfaceId)
    internal
  {
    require(_interfaceId != 0xffffffff);
    supportedInterfaces[_interfaceId] = true;
  }
}

library SafeMath {

  /**
  * @dev Multiplies two numbers, throws on overflow.
  */
  function mul(uint256 _a, uint256 _b) internal pure returns (uint256 c) {
    // Gas optimization: this is cheaper than asserting 'a' not being zero, but the
    // benefit is lost if 'b' is also tested.
    // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522
    if (_a == 0) {
      return 0;
    }

    c = _a * _b;
    assert(c / _a == _b);
    return c;
  }

  /**
  * @dev Integer division of two numbers, truncating the quotient.
  */
  function div(uint256 _a, uint256 _b) internal pure returns (uint256) {
    // assert(_b > 0); // Solidity automatically throws when dividing by 0
    // uint256 c = _a / _b;
    // assert(_a == _b * c + _a % _b); // There is no case in which this doesn't hold
    return _a / _b;
  }

  /**
  * @dev Subtracts two numbers, throws on overflow (i.e. if subtrahend is greater than minuend).
  */
  function sub(uint256 _a, uint256 _b) internal pure returns (uint256) {
    assert(_b <= _a);
    return _a - _b;
  }

  /**
  * @dev Adds two numbers, throws on overflow.
  */
  function add(uint256 _a, uint256 _b) internal pure returns (uint256 c) {
    c = _a + _b;
    assert(c >= _a);
    return c;
  }
}

contract ERC721Basic is ERC165 {

  bytes4 internal constant InterfaceId_ERC721 = 0x80ac58cd;
  /*
   * 0x80ac58cd ===
   *   bytes4(keccak256('balanceOf(address)')) ^
   *   bytes4(keccak256('ownerOf(uint256)')) ^
   *   bytes4(keccak256('approve(address,uint256)')) ^
   *   bytes4(keccak256('getApproved(uint256)')) ^
   *   bytes4(keccak256('setApprovalForAll(address,bool)')) ^
   *   bytes4(keccak256('isApprovedForAll(address,address)')) ^
   *   bytes4(keccak256('transferFrom(address,address,uint256)')) ^
   *   bytes4(keccak256('safeTransferFrom(address,address,uint256)')) ^
   *   bytes4(keccak256('safeTransferFrom(address,address,uint256,bytes)'))
   */

  bytes4 internal constant InterfaceId_ERC721Exists = 0x4f558e79;
  /*
   * 0x4f558e79 ===
   *   bytes4(keccak256('exists(uint256)'))
   */

  bytes4 internal constant InterfaceId_ERC721Enumerable = 0x780e9d63;
  /**
   * 0x780e9d63 ===
   *   bytes4(keccak256('totalSupply()')) ^
   *   bytes4(keccak256('tokenOfOwnerByIndex(address,uint256)')) ^
   *   bytes4(keccak256('tokenByIndex(uint256)'))
   */

  bytes4 internal constant InterfaceId_ERC721Metadata = 0x5b5e139f;
  /**
   * 0x5b5e139f ===
   *   bytes4(keccak256('name()')) ^
   *   bytes4(keccak256('symbol()')) ^
   *   bytes4(keccak256('tokenURI(uint256)'))
   */

  event Transfer(
    address indexed _from,
    address indexed _to,
    uint256 indexed _tokenId
  );
  event Approval(
    address indexed _owner,
    address indexed _approved,
    uint256 indexed _tokenId
  );
  event ApprovalForAll(
    address indexed _owner,
    address indexed _operator,
    bool _approved
  );

  function balanceOf(address _owner) public view returns (uint256 _balance);
  function ownerOf(uint256 _tokenId) public view returns (address _owner);
  function exists(uint256 _tokenId) public view returns (bool _exists);

  function approve(address _to, uint256 _tokenId) public;
  function getApproved(uint256 _tokenId)
    public view returns (address _operator);

  function setApprovalForAll(address _operator, bool _approved) public;
  function isApprovedForAll(address _owner, address _operator)
    public view returns (bool);

  function transferFrom(address _from, address _to, uint256 _tokenId) public;
  function safeTransferFrom(address _from, address _to, uint256 _tokenId)
    public;

  function safeTransferFrom(
    address _from,
    address _to,
    uint256 _tokenId,
    bytes _data
  )
    public;
}

contract ERC721Enumerable is ERC721Basic {
  function totalSupply() public view returns (uint256);
  function tokenOfOwnerByIndex(
    address _owner,
    uint256 _index
  )
    public
    view
    returns (uint256 _tokenId);

  function tokenByIndex(uint256 _index) public view returns (uint256);
}

contract ERC721Metadata is ERC721Basic {
  function name() external view returns (string _name);
  function symbol() external view returns (string _symbol);
  function tokenURI(uint256 _tokenId) public view returns (string);
}

contract ERC721 is ERC721Basic, ERC721Enumerable, ERC721Metadata {
}

contract ERC721BasicToken is SupportsInterfaceWithLookup, ERC721Basic {

  using SafeMath for uint256;
  using AddressUtils for address;

  // Equals to `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`
  // which can be also obtained as `ERC721Receiver(0).onERC721Received.selector`
  bytes4 private constant ERC721_RECEIVED = 0x150b7a02;

  // Mapping from token ID to owner
  mapping (uint256 => address) internal tokenOwner;

  // Mapping from token ID to approved address
  mapping (uint256 => address) internal tokenApprovals;

  // Mapping from owner to number of owned token
  mapping (address => uint256) internal ownedTokensCount;

  // Mapping from owner to operator approvals
  mapping (address => mapping (address => bool)) internal operatorApprovals;

  constructor()
    public
  {
    // register the supported interfaces to conform to ERC721 via ERC165
    _registerInterface(InterfaceId_ERC721);
    _registerInterface(InterfaceId_ERC721Exists);
  }

  /**
   * @dev Gets the balance of the specified address
   * @param _owner address to query the balance of
   * @return uint256 representing the amount owned by the passed address
   */
  function balanceOf(address _owner) public view returns (uint256) {
    require(_owner != address(0));
    return ownedTokensCount[_owner];
  }

  /**
   * @dev Gets the owner of the specified token ID
   * @param _tokenId uint256 ID of the token to query the owner of
   * @return owner address currently marked as the owner of the given token ID
   */
  function ownerOf(uint256 _tokenId) public view returns (address) {
    address owner = tokenOwner[_tokenId];
    require(owner != address(0));
    return owner;
  }

  /**
   * @dev Returns whether the specified token exists
   * @param _tokenId uint256 ID of the token to query the existence of
   * @return whether the token exists
   */
  function exists(uint256 _tokenId) public view returns (bool) {
    address owner = tokenOwner[_tokenId];
    return owner != address(0);
  }

  /**
   * @dev Approves another address to transfer the given token ID
   * The zero address indicates there is no approved address.
   * There can only be one approved address per token at a given time.
   * Can only be called by the token owner or an approved operator.
   * @param _to address to be approved for the given token ID
   * @param _tokenId uint256 ID of the token to be approved
   */
  function approve(address _to, uint256 _tokenId) public {
    address owner = ownerOf(_tokenId);
    require(_to != owner);
    require(msg.sender == owner || isApprovedForAll(owner, msg.sender));

    tokenApprovals[_tokenId] = _to;
    emit Approval(owner, _to, _tokenId);
  }

  /**
   * @dev Gets the approved address for a token ID, or zero if no address set
   * @param _tokenId uint256 ID of the token to query the approval of
   * @return address currently approved for the given token ID
   */
  function getApproved(uint256 _tokenId) public view returns (address) {
    return tokenApprovals[_tokenId];
  }

  /**
   * @dev Sets or unsets the approval of a given operator
   * An operator is allowed to transfer all tokens of the sender on their behalf
   * @param _to operator address to set the approval
   * @param _approved representing the status of the approval to be set
   */
  function setApprovalForAll(address _to, bool _approved) public {
    require(_to != msg.sender);
    operatorApprovals[msg.sender][_to] = _approved;
    emit ApprovalForAll(msg.sender, _to, _approved);
  }

  /**
   * @dev Tells whether an operator is approved by a given owner
   * @param _owner owner address which you want to query the approval of
   * @param _operator operator address which you want to query the approval of
   * @return bool whether the given operator is approved by the given owner
   */
  function isApprovedForAll(
    address _owner,
    address _operator
  )
    public
    view
    returns (bool)
  {
    return operatorApprovals[_owner][_operator];
  }

  /**
   * @dev Transfers the ownership of a given token ID to another address
   * Usage of this method is discouraged, use `safeTransferFrom` whenever possible
   * Requires the msg sender to be the owner, approved, or operator
   * @param _from current owner of the token
   * @param _to address to receive the ownership of the given token ID
   * @param _tokenId uint256 ID of the token to be transferred
  */
  function transferFrom(
    address _from,
    address _to,
    uint256 _tokenId
  )
    public
  {
    require(isApprovedOrOwner(msg.sender, _tokenId));
    require(_from != address(0));
    require(_to != address(0));

    clearApproval(_from, _tokenId);
    removeTokenFrom(_from, _tokenId);
    addTokenTo(_to, _tokenId);

    emit Transfer(_from, _to, _tokenId);
  }

  /**
   * @dev Safely transfers the ownership of a given token ID to another address
   * If the target address is a contract, it must implement `onERC721Received`,
   * which is called upon a safe transfer, and return the magic value
   * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise,
   * the transfer is reverted.
   *
   * Requires the msg sender to be the owner, approved, or operator
   * @param _from current owner of the token
   * @param _to address to receive the ownership of the given token ID
   * @param _tokenId uint256 ID of the token to be transferred
  */
  function safeTransferFrom(
    address _from,
    address _to,
    uint256 _tokenId
  )
    public
  {
    // solium-disable-next-line arg-overflow
    safeTransferFrom(_from, _to, _tokenId, "");
  }

  /**
   * @dev Safely transfers the ownership of a given token ID to another address
   * If the target address is a contract, it must implement `onERC721Received`,
   * which is called upon a safe transfer, and return the magic value
   * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise,
   * the transfer is reverted.
   * Requires the msg sender to be the owner, approved, or operator
   * @param _from current owner of the token
   * @param _to address to receive the ownership of the given token ID
   * @param _tokenId uint256 ID of the token to be transferred
   * @param _data bytes data to send along with a safe transfer check
   */
  function safeTransferFrom(
    address _from,
    address _to,
    uint256 _tokenId,
    bytes _data
  )
    public
  {
    transferFrom(_from, _to, _tokenId);
    // solium-disable-next-line arg-overflow
    require(checkAndCallSafeTransfer(_from, _to, _tokenId, _data));
  }

  /**
   * @dev Returns whether the given spender can transfer a given token ID
   * @param _spender address of the spender to query
   * @param _tokenId uint256 ID of the token to be transferred
   * @return bool whether the msg.sender is approved for the given token ID,
   *  is an operator of the owner, or is the owner of the token
   */
  function isApprovedOrOwner(
    address _spender,
    uint256 _tokenId
  )
    internal
    view
    returns (bool)
  {
    address owner = ownerOf(_tokenId);
    // Disable solium check because of
    // https://github.com/duaraghav8/Solium/issues/175
    // solium-disable-next-line operator-whitespace
    return (
      _spender == owner ||
      getApproved(_tokenId) == _spender ||
      isApprovedForAll(owner, _spender)
    );
  }

  /**
   * @dev Internal function to mint a new token
   * Reverts if the given token ID already exists
   * @param _to The address that will own the minted token
   * @param _tokenId uint256 ID of the token to be minted by the msg.sender
   */
  function _mint(address _to, uint256 _tokenId) internal {
    require(_to != address(0));
    addTokenTo(_to, _tokenId);
    emit Transfer(address(0), _to, _tokenId);
  }

  /**
   * @dev Internal function to burn a specific token
   * Reverts if the token does not exist
   * @param _tokenId uint256 ID of the token being burned by the msg.sender
   */
  function _burn(address _owner, uint256 _tokenId) internal {
    clearApproval(_owner, _tokenId);
    removeTokenFrom(_owner, _tokenId);
    emit Transfer(_owner, address(0), _tokenId);
  }

  /**
   * @dev Internal function to clear current approval of a given token ID
   * Reverts if the given address is not indeed the owner of the token
   * @param _owner owner of the token
   * @param _tokenId uint256 ID of the token to be transferred
   */
  function clearApproval(address _owner, uint256 _tokenId) internal {
    require(ownerOf(_tokenId) == _owner);
    if (tokenApprovals[_tokenId] != address(0)) {
      tokenApprovals[_tokenId] = address(0);
    }
  }

  /**
   * @dev Internal function to add a token ID to the list of a given address
   * @param _to address representing the new owner of the given token ID
   * @param _tokenId uint256 ID of the token to be added to the tokens list of the given address
   */
  function addTokenTo(address _to, uint256 _tokenId) internal {
    require(tokenOwner[_tokenId] == address(0));
    tokenOwner[_tokenId] = _to;
    ownedTokensCount[_to] = ownedTokensCount[_to].add(1);
  }

  /**
   * @dev Internal function to remove a token ID from the list of a given address
   * @param _from address representing the previous owner of the given token ID
   * @param _tokenId uint256 ID of the token to be removed from the tokens list of the given address
   */
  function removeTokenFrom(address _from, uint256 _tokenId) internal {
    require(ownerOf(_tokenId) == _from);
    ownedTokensCount[_from] = ownedTokensCount[_from].sub(1);
    tokenOwner[_tokenId] = address(0);
  }

  /**
   * @dev Internal function to invoke `onERC721Received` on a target address
   * The call is not executed if the target address is not a contract
   * @param _from address representing the previous owner of the given token ID
   * @param _to target address that will receive the tokens
   * @param _tokenId uint256 ID of the token to be transferred
   * @param _data bytes optional data to send along with the call
   * @return whether the call correctly returned the expected magic value
   */
  function checkAndCallSafeTransfer(
    address _from,
    address _to,
    uint256 _tokenId,
    bytes _data
  )
    internal
    returns (bool)
  {
    if (!_to.isContract()) {
      return true;
    }
    bytes4 retval = ERC721Receiver(_to).onERC721Received(
      msg.sender, _from, _tokenId, _data);
    return (retval == ERC721_RECEIVED);
  }
}

contract Trophy is SupportsInterfaceWithLookup, ERC721BasicToken, ERC721 {

    // Use solidity-stringutils
    using strings for *;

    // Token name
    string internal name_;

    // Token symbol
    string internal symbol_;

    // Mapping from owner to list of owned token IDs
    mapping(address => uint256[]) public ownedTokens;

    // Mapping from token ID to index of the owner tokens list
    mapping(uint256 => uint256) public ownedTokensIndex;

    // Array with all token ids, used for enumeration
    uint256[] public allTokens;

    // Mapping from token id to position in the allTokens array
    mapping(uint256 => uint256) public allTokensIndex;

    // Super administrator for this contract
    address public manager;

    // Next token identifier
    uint256 public nextTokenId = 1;

    // Next token type
    uint256 public nextTokenType = 1;

    // URI prefix for all token URIs
    string public tokenURIPrefix;

    // Types associated with tokens
    mapping (uint256 => uint256) public tokenTypes;

    // Owners of types
    mapping (uint256 => address) public tokenTypeIssuers;

    // A mapping of token id to issuer
    mapping (uint256 => address) public tokenIssuer;

    // A map of tokens by a type
    mapping (uint256 => uint256[]) public tokensByType;

    // Event emitted upon token type creation
    event TokenTypeCreated(
        address _issuer,
        uint256 _type,
        uint256 _timestamp
    );

    // Event emmited upon token is issued
    event TokenIssued(
        address _issuer,
        address _owner,
        uint256 _type,
        uint256 _tokenId,
        uint256 _timestamp
    );

    // Event emmited upon token is revoked
    event TokenRevoked(
        address _issuer,
        address _owner,
        uint256 _type,
        uint256 _tokenId,
        uint256 _timestamp
    );

    // Event emmited upon token issuance is transferred
    event IssuanceTransferred(
        uint256 _type,
        address _oldIssuer,
        address _newIssuer,
        uint256 _timestamp
    );

    // Event emmited upon transfer all tokens
    event TransferAll(
        address _oldAddress,
        address _newAddress,
        uint256 _timestamp
    );

    /**
    * @dev Constructor function
    */
    constructor(string _name, string _symbol, string _tokenURIPrefix) public {
        name_ = _name;
        symbol_ = _symbol;
        manager = msg.sender;
        tokenURIPrefix = _tokenURIPrefix;

        // register the supported interfaces to conform to ERC721 via ERC165
        _registerInterface(InterfaceId_ERC721Enumerable);
        _registerInterface(InterfaceId_ERC721Metadata);
    }

    /**
     * @dev Gets the token name
     * @return string representing the token name
     */
    function name() external view returns (string) {
        return name_;
    }

    /**
     * @dev Gets the token symbol
     * @return string representing the token symbol
     */
    function symbol() external view returns (string) {
        return symbol_;
    }

    /**
     * @dev Returns an URI for a given token ID
     * Throws if the token ID does not exist. May return an empty string.
     * @param _tokenId uint256 ID of the token to query
     */
    function tokenURI(uint256 _tokenId) public view returns (string) {
        require(tokenOwner[_tokenId] != address(0));
        return tokenURIPrefix.toSlice().concat(uint2str(_tokenId).toSlice());
    }

    /**
     * @dev Gets the token ID at a given index of the tokens list of the requested owner
     * @param _owner address owning the tokens list to be accessed
     * @param _index uint256 representing the index to be accessed of the requested tokens list
     * @return uint256 token ID at the given index of the tokens list owned by the requested address
     */
    function tokenOfOwnerByIndex(
        address _owner,
        uint256 _index
    )
    public
    view
    returns (uint256)
    {
        require(_index < balanceOf(_owner));
        return ownedTokens[_owner][_index];
    }

    /**
    * @dev Gets the total amount of tokens stored by the contract
    * @return uint256 representing the total amount of tokens
     */
    function totalSupply() public view returns (uint256) {
        return allTokens.length;
    }

    /**
    * @dev Gets the token ID at a given index of all the tokens in this contract
    * Reverts if the index is greater or equal to the total number of tokens
    * @param _index uint256 representing the index to be accessed of the tokens list
    * @return uint256 token ID at the given index of the tokens list
     */
    function tokenByIndex(uint256 _index) public view returns (uint256) {
        require(_index < totalSupply());
        return allTokens[_index];
    }

    /**
     * @dev Implements ERC 721
     */
    function implementsERC721() public pure returns (bool) {
        return true;
    }

    /**
    * @dev Creates a new token type
    * @param _issuer address of the new token type issuer
    */
    function createType(address _issuer) external {
        require(
            msg.sender == manager || msg.sender == _issuer,
            "Only managers can issue trophies on behalf of others."
        );

        tokenTypeIssuers[nextTokenType] = _issuer;
        emit TokenTypeCreated(_issuer, nextTokenType, block.timestamp); // solium-disable-line security/no-block-members
        nextTokenType++;
    }

    /**
     * @dev Issues a new token
     * @param _issuer address of the new token type issuer
     */
    function issue(address _issuer, address _owner, uint256 _type) public {
        require(
            (msg.sender == manager && tokenTypeIssuers[_type] != 0) || (msg.sender == _issuer && tokenTypeIssuers[_type] == _issuer), // solium-disable-line indentation
            "Only managers and issuers can issue trophies."
        );

        _mint(_owner, nextTokenId);
        tokenTypes[nextTokenId] = _type;
        tokensByType[_type].push(nextTokenId);

        emit TokenIssued(
            _issuer,
            _owner,
            _type,
            nextTokenId,
            block.timestamp // solium-disable-line security/no-block-members
        );

        nextTokenId++;
    }

    /**
     * @dev issues the same token to many addresses
     * @param _issuer address of the new token type issuer
     * @param _owners an array of addresses of token holders
     * @param _type type of an token
     */
    function issueBatch(address _issuer, address[] _owners, uint256 _type) external {
        require(_owners.length > 0, "Owners cannot be empty");

        for (uint256 index = 0; index < _owners.length; index++ ) {
            issue(_issuer, _owners[index], _type);
        }
    }

    /**
     * @dev Revokes issuance permissions to another address
     */
    function revoke(uint256 _tokenId) external {
        address owner = tokenOwner[_tokenId];
        uint256 tokenType = tokenTypes[_tokenId];
        address issuer = tokenTypeIssuers[tokenType];

        require(
            msg.sender == manager || msg.sender == issuer || msg.sender == owner,
            "Only managers, owners, and issuers of the trophy can revoke them."
        );

        _burn(owner, _tokenId);

        uint256 tokenIndex;
        bool tokenFound;
        for (uint256 i = 0; i < tokensByType[tokenType].length; i++) {
            if (tokensByType[tokenType][i] == _tokenId) {
                tokenIndex = i;
                tokenFound = true;
                break;
            }
        }
        require(tokenFound, "token not found");

        uint256 lastTokenIndex = tokensByType[tokenType].length.sub(1);
        uint256 lastToken = tokensByType[tokenType][lastTokenIndex];

        tokensByType[tokenType][tokenIndex] = lastToken;
        tokensByType[tokenType][lastTokenIndex] = 0;

        emit TokenRevoked(
            issuer,
            owner,
            tokenType,
            _tokenId,
            block.timestamp // solium-disable-line security/no-block-members
        );
    }

    /**
    * @dev Transfers issuance permissions to another address
    */
    function transferIssuer(uint256 _type, address _oldIssuer, address _newIssuer) external {
        require(
            msg.sender == manager || (msg.sender == _oldIssuer && tokenTypeIssuers[_type] == _oldIssuer),
            "Only managers and issuers can transfer issuance of trophies."
        );

        tokenTypeIssuers[_type] = _newIssuer;
        emit IssuanceTransferred(
            _type,
            _oldIssuer,
            _newIssuer,
            block.timestamp // solium-disable-line security/no-block-members
        );
    }

    /**
    * @dev Transfers all tokens to a new address
     */
    function transferAll(uint256 _type, address _oldAddress, address _newAddress) external {
        require(
            msg.sender == manager || (msg.sender == _oldAddress && tokenTypeIssuers[_type] == _oldAddress),
            "Only managers and issuers can transfer all tokens to a new address."
        );

        for (uint256 i = 0; i < ownedTokens[_oldAddress].length; i++) {
            uint256 token = ownedTokens[_oldAddress][i];
            removeTokenFrom(_oldAddress, token);
            addTokenTo(_newAddress, token);
        }
        emit TransferAll(_oldAddress, _newAddress, block.timestamp); // solium-disable-line security/no-block-members
    }

    /**
     * @dev Restrict all transfers
     */
    function transferFrom(address _from, address _to, uint256 _tokenId) public {
        require(false, "Transfers of trophies are not allowed.");
    }

    /**
     * @dev Restrict all transfers
     */
    function safeTransferFrom(address _from, address _to, uint256 _tokenId) public {
        require(false, "Transfers of trophies are not allowed.");
    }

    /**
     * @dev Restrict all transfers
     */
    function setApprovalForAll(address _to, bool _approved) public {
        require(false, "Transfers of trophies are not allowed.");
    }

    /**
     * @dev Restrict all transfers
     */
    function approve(address _to, uint256 _tokenId) public {
        require(false, "Transfers of trophies are not allowed.");
    }

    /**
     * @dev Internal function to mint a new token
     * Reverts if the given token ID already exists
     * @param _to address the beneficiary that will own the minted token
     * @param _tokenId uint256 ID of the token to be minted by the msg.sender
     */
    function _mint(address _to, uint256 _tokenId) internal {
        super._mint(_to, _tokenId);

        allTokensIndex[_tokenId] = allTokens.length;
        allTokens.push(_tokenId);
    }

    /**
    * @dev Internal function to burn a specific token
    * Reverts if the token does not exist
        * @param _owner owner of the token to burn
        * @param _tokenId uint256 ID of the token being burned by the msg.sender
     */
    function _burn(address _owner, uint256 _tokenId) internal {
        super._burn(_owner, _tokenId);

        // Reorg all tokens array
        uint256 tokenIndex = allTokensIndex[_tokenId];
        uint256 lastTokenIndex = allTokens.length.sub(1);
        uint256 lastToken = allTokens[lastTokenIndex];

        allTokens[tokenIndex] = lastToken;
        allTokens[lastTokenIndex] = 0;

        allTokens.length--;
        allTokensIndex[_tokenId] = 0;
        allTokensIndex[lastToken] = tokenIndex;
    }

    /**
    * @dev Internal function to add a token ID to the list of a given address
    * @param _to address representing the new owner of the given token ID
    * @param _tokenId uint256 ID of the token to be added to the tokens list of the given address
     */
    function addTokenTo(address _to, uint256 _tokenId) internal {
        super.addTokenTo(_to, _tokenId);
        uint256 length = ownedTokens[_to].length;
        ownedTokens[_to].push(_tokenId);
        ownedTokensIndex[_tokenId] = length;
    }

    /**
    * @dev Internal function to remove a token ID from the list of a given address
    * @param _from address representing the previous owner of the given token ID
    * @param _tokenId uint256 ID of the token to be removed from the tokens list of the given address
     */
    function removeTokenFrom(address _from, uint256 _tokenId) internal {
        super.removeTokenFrom(_from, _tokenId);

        // To prevent a gap in the array, we store the last token in the index of the token to delete, and
        // then delete the last slot.
        uint256 tokenIndex = ownedTokensIndex[_tokenId];
        uint256 lastTokenIndex = ownedTokens[_from].length.sub(1);
        uint256 lastToken = ownedTokens[_from][lastTokenIndex];

        ownedTokens[_from][tokenIndex] = lastToken;
        // This also deletes the contents at the last position of the array
        ownedTokens[_from].length--;

        // Note that this will handle single-element arrays. In that case, both tokenIndex and lastTokenIndex are going to
        // be zero. Then we can make sure that we will remove _tokenId from the ownedTokens list since we are first swapping
        // the lastToken to the first position, and then dropping the element placed in the last position of the list

        ownedTokensIndex[_tokenId] = 0;
        ownedTokensIndex[lastToken] = tokenIndex;
    }

    /**
    * @dev Converts a uint256 to a decimal string
    */
    function uint2str(uint256 i) internal pure returns (string) {
        if (i == 0) return "0";
        uint256 j = i;
        uint256 m = i;
        uint256 length;
        while (j != 0){
            length++;
            j /= 10;
        }
        bytes memory bstr = new bytes(length);
        uint256 k = length - 1;
        while (m != 0){
            bstr[k--] = byte(48 + m % 10);
            m /= 10;
        }
        return string(bstr);
    }
}

contract ERC721Receiver {
  /**
   * @dev Magic value to be returned upon successful reception of an NFT
   *  Equals to `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`,
   *  which can be also obtained as `ERC721Receiver(0).onERC721Received.selector`
   */
  bytes4 internal constant ERC721_RECEIVED = 0x150b7a02;

  /**
   * @notice Handle the receipt of an NFT
   * @dev The ERC721 smart contract calls this function on the recipient
   * after a `safetransfer`. This function MAY throw to revert and reject the
   * transfer. Return of other than the magic value MUST result in the
   * transaction being reverted.
   * Note: the contract address is always the message sender.
   * @param _operator The address which called `safeTransferFrom` function
   * @param _from The address which previously owned the token
   * @param _tokenId The NFT identifier which is being transferred
   * @param _data Additional data with no specified format
   * @return `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`
   */
  function onERC721Received(
    address _operator,
    address _from,
    uint256 _tokenId,
    bytes _data
  )
    public
    returns(bytes4);
}

library strings {
    struct slice {
        uint _len;
        uint _ptr;
    }

    function memcpy(uint dest, uint src, uint len) private pure {
        // Copy word-length chunks while possible
        for(; len >= 32; len -= 32) {
            assembly {
                mstore(dest, mload(src))
            }
            dest += 32;
            src += 32;
        }

        // Copy remaining bytes
        uint mask = 256 ** (32 - len) - 1;
        assembly {
            let srcpart := and(mload(src), not(mask))
            let destpart := and(mload(dest), mask)
            mstore(dest, or(destpart, srcpart))
        }
    }

    /*
     * @dev Returns a slice containing the entire string.
     * @param self The string to make a slice from.
     * @return A newly allocated slice containing the entire string.
     */
    function toSlice(string memory self) internal pure returns (slice memory) {
        uint ptr;
        assembly {
            ptr := add(self, 0x20)
        }
        return slice(bytes(self).length, ptr);
    }

    /*
     * @dev Returns the length of a null-terminated bytes32 string.
     * @param self The value to find the length of.
     * @return The length of the string, from 0 to 32.
     */
    function len(bytes32 self) internal pure returns (uint) {
        uint ret;
        if (self == 0)
            return 0;
        if (self & 0xffffffffffffffffffffffffffffffff == 0) {
            ret += 16;
            self = bytes32(uint(self) / 0x100000000000000000000000000000000);
        }
        if (self & 0xffffffffffffffff == 0) {
            ret += 8;
            self = bytes32(uint(self) / 0x10000000000000000);
        }
        if (self & 0xffffffff == 0) {
            ret += 4;
            self = bytes32(uint(self) / 0x100000000);
        }
        if (self & 0xffff == 0) {
            ret += 2;
            self = bytes32(uint(self) / 0x10000);
        }
        if (self & 0xff == 0) {
            ret += 1;
        }
        return 32 - ret;
    }

    /*
     * @dev Returns a slice containing the entire bytes32, interpreted as a
     *      null-terminated utf-8 string.
     * @param self The bytes32 value to convert to a slice.
     * @return A new slice containing the value of the input argument up to the
     *         first null.
     */
    function toSliceB32(bytes32 self) internal pure returns (slice memory ret) {
        // Allocate space for `self` in memory, copy it there, and point ret at it
        assembly {
            let ptr := mload(0x40)
            mstore(0x40, add(ptr, 0x20))
            mstore(ptr, self)
            mstore(add(ret, 0x20), ptr)
        }
        ret._len = len(self);
    }

    /*
     * @dev Returns a new slice containing the same data as the current slice.
     * @param self The slice to copy.
     * @return A new slice containing the same data as `self`.
     */
    function copy(slice memory self) internal pure returns (slice memory) {
        return slice(self._len, self._ptr);
    }

    /*
     * @dev Copies a slice to a new string.
     * @param self The slice to copy.
     * @return A newly allocated string containing the slice's text.
     */
    function toString(slice memory self) internal pure returns (string memory) {
        string memory ret = new string(self._len);
        uint retptr;
        assembly { retptr := add(ret, 32) }

        memcpy(retptr, self._ptr, self._len);
        return ret;
    }

    /*
     * @dev Returns the length in runes of the slice. Note that this operation
     *      takes time proportional to the length of the slice; avoid using it
     *      in loops, and call `slice.empty()` if you only need to know whether
     *      the slice is empty or not.
     * @param self The slice to operate on.
     * @return The length of the slice in runes.
     */
    function len(slice memory self) internal pure returns (uint l) {
        // Starting at ptr-31 means the LSB will be the byte we care about
        uint ptr = self._ptr - 31;
        uint end = ptr + self._len;
        for (l = 0; ptr < end; l++) {
            uint8 b;
            assembly { b := and(mload(ptr), 0xFF) }
            if (b < 0x80) {
                ptr += 1;
            } else if(b < 0xE0) {
                ptr += 2;
            } else if(b < 0xF0) {
                ptr += 3;
            } else if(b < 0xF8) {
                ptr += 4;
            } else if(b < 0xFC) {
                ptr += 5;
            } else {
                ptr += 6;
            }
        }
    }

    /*
     * @dev Returns true if the slice is empty (has a length of 0).
     * @param self The slice to operate on.
     * @return True if the slice is empty, False otherwise.
     */
    function empty(slice memory self) internal pure returns (bool) {
        return self._len == 0;
    }

    /*
     * @dev Returns a positive number if `other` comes lexicographically after
     *      `self`, a negative number if it comes before, or zero if the
     *      contents of the two slices are equal. Comparison is done per-rune,
     *      on unicode codepoints.
     * @param self The first slice to compare.
     * @param other The second slice to compare.
     * @return The result of the comparison.
     */
    function compare(slice memory self, slice memory other) internal pure returns (int) {
        uint shortest = self._len;
        if (other._len < self._len)
            shortest = other._len;

        uint selfptr = self._ptr;
        uint otherptr = other._ptr;
        for (uint idx = 0; idx < shortest; idx += 32) {
            uint a;
            uint b;
            assembly {
                a := mload(selfptr)
                b := mload(otherptr)
            }
            if (a != b) {
                // Mask out irrelevant bytes and check again
                uint256 mask = uint256(-1); // 0xffff...
                if(shortest < 32) {
                  mask = ~(2 ** (8 * (32 - shortest + idx)) - 1);
                }
                uint256 diff = (a & mask) - (b & mask);
                if (diff != 0)
                    return int(diff);
            }
            selfptr += 32;
            otherptr += 32;
        }
        return int(self._len) - int(other._len);
    }

    /*
     * @dev Returns true if the two slices contain the same text.
     * @param self The first slice to compare.
     * @param self The second slice to compare.
     * @return True if the slices are equal, false otherwise.
     */
    function equals(slice memory self, slice memory other) internal pure returns (bool) {
        return compare(self, other) == 0;
    }

    /*
     * @dev Extracts the first rune in the slice into `rune`, advancing the
     *      slice to point to the next rune and returning `self`.
     * @param self The slice to operate on.
     * @param rune The slice that will contain the first rune.
     * @return `rune`.
     */
    function nextRune(slice memory self, slice memory rune) internal pure returns (slice memory) {
        rune._ptr = self._ptr;

        if (self._len == 0) {
            rune._len = 0;
            return rune;
        }

        uint l;
        uint b;
        // Load the first byte of the rune into the LSBs of b
        assembly { b := and(mload(sub(mload(add(self, 32)), 31)), 0xFF) }
        if (b < 0x80) {
            l = 1;
        } else if(b < 0xE0) {
            l = 2;
        } else if(b < 0xF0) {
            l = 3;
        } else {
            l = 4;
        }

        // Check for truncated codepoints
        if (l > self._len) {
            rune._len = self._len;
            self._ptr += self._len;
            self._len = 0;
            return rune;
        }

        self._ptr += l;
        self._len -= l;
        rune._len = l;
        return rune;
    }

    /*
     * @dev Returns the first rune in the slice, advancing the slice to point
     *      to the next rune.
     * @param self The slice to operate on.
     * @return A slice containing only the first rune from `self`.
     */
    function nextRune(slice memory self) internal pure returns (slice memory ret) {
        nextRune(self, ret);
    }

    /*
     * @dev Returns the number of the first codepoint in the slice.
     * @param self The slice to operate on.
     * @return The number of the first codepoint in the slice.
     */
    function ord(slice memory self) internal pure returns (uint ret) {
        if (self._len == 0) {
            return 0;
        }

        uint word;
        uint length;
        uint divisor = 2 ** 248;

        // Load the rune into the MSBs of b
        assembly { word:= mload(mload(add(self, 32))) }
        uint b = word / divisor;
        if (b < 0x80) {
            ret = b;
            length = 1;
        } else if(b < 0xE0) {
            ret = b & 0x1F;
            length = 2;
        } else if(b < 0xF0) {
            ret = b & 0x0F;
            length = 3;
        } else {
            ret = b & 0x07;
            length = 4;
        }

        // Check for truncated codepoints
        if (length > self._len) {
            return 0;
        }

        for (uint i = 1; i < length; i++) {
            divisor = divisor / 256;
            b = (word / divisor) & 0xFF;
            if (b & 0xC0 != 0x80) {
                // Invalid UTF-8 sequence
                return 0;
            }
            ret = (ret * 64) | (b & 0x3F);
        }

        return ret;
    }

    /*
     * @dev Returns the keccak-256 hash of the slice.
     * @param self The slice to hash.
     * @return The hash of the slice.
     */
    function keccak(slice memory self) internal pure returns (bytes32 ret) {
        assembly {
            ret := keccak256(mload(add(self, 32)), mload(self))
        }
    }

    /*
     * @dev Returns true if `self` starts with `needle`.
     * @param self The slice to operate on.
     * @param needle The slice to search for.
     * @return True if the slice starts with the provided text, false otherwise.
     */
    function startsWith(slice memory self, slice memory needle) internal pure returns (bool) {
        if (self._len < needle._len) {
            return false;
        }

        if (self._ptr == needle._ptr) {
            return true;
        }

        bool equal;
        assembly {
            let length := mload(needle)
            let selfptr := mload(add(self, 0x20))
            let needleptr := mload(add(needle, 0x20))
            equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))
        }
        return equal;
    }

    /*
     * @dev If `self` starts with `needle`, `needle` is removed from the
     *      beginning of `self`. Otherwise, `self` is unmodified.
     * @param self The slice to operate on.
     * @param needle The slice to search for.
     * @return `self`
     */
    function beyond(slice memory self, slice memory needle) internal pure returns (slice memory) {
        if (self._len < needle._len) {
            return self;
        }

        bool equal = true;
        if (self._ptr != needle._ptr) {
            assembly {
                let length := mload(needle)
                let selfptr := mload(add(self, 0x20))
                let needleptr := mload(add(needle, 0x20))
                equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))
            }
        }

        if (equal) {
            self._len -= needle._len;
            self._ptr += needle._len;
        }

        return self;
    }

    /*
     * @dev Returns true if the slice ends with `needle`.
     * @param self The slice to operate on.
     * @param needle The slice to search for.
     * @return True if the slice starts with the provided text, false otherwise.
     */
    function endsWith(slice memory self, slice memory needle) internal pure returns (bool) {
        if (self._len < needle._len) {
            return false;
        }

        uint selfptr = self._ptr + self._len - needle._len;

        if (selfptr == needle._ptr) {
            return true;
        }

        bool equal;
        assembly {
            let length := mload(needle)
            let needleptr := mload(add(needle, 0x20))
            equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))
        }

        return equal;
    }

    /*
     * @dev If `self` ends with `needle`, `needle` is removed from the
     *      end of `self`. Otherwise, `self` is unmodified.
     * @param self The slice to operate on.
     * @param needle The slice to search for.
     * @return `self`
     */
    function until(slice memory self, slice memory needle) internal pure returns (slice memory) {
        if (self._len < needle._len) {
            return self;
        }

        uint selfptr = self._ptr + self._len - needle._len;
        bool equal = true;
        if (selfptr != needle._ptr) {
            assembly {
                let length := mload(needle)
                let needleptr := mload(add(needle, 0x20))
                equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))
            }
        }

        if (equal) {
            self._len -= needle._len;
        }

        return self;
    }

    // Returns the memory address of the first byte of the first occurrence of
    // `needle` in `self`, or the first byte after `self` if not found.
    function findPtr(uint selflen, uint selfptr, uint needlelen, uint needleptr) private pure returns (uint) {
        uint ptr = selfptr;
        uint idx;

        if (needlelen <= selflen) {
            if (needlelen <= 32) {
                bytes32 mask = bytes32(~(2 ** (8 * (32 - needlelen)) - 1));

                bytes32 needledata;
                assembly { needledata := and(mload(needleptr), mask) }

                uint end = selfptr + selflen - needlelen;
                bytes32 ptrdata;
                assembly { ptrdata := and(mload(ptr), mask) }

                while (ptrdata != needledata) {
                    if (ptr >= end)
                        return selfptr + selflen;
                    ptr++;
                    assembly { ptrdata := and(mload(ptr), mask) }
                }
                return ptr;
            } else {
                // For long needles, use hashing
                bytes32 hash;
                assembly { hash := keccak256(needleptr, needlelen) }

                for (idx = 0; idx <= selflen - needlelen; idx++) {
                    bytes32 testHash;
                    assembly { testHash := keccak256(ptr, needlelen) }
                    if (hash == testHash)
                        return ptr;
                    ptr += 1;
                }
            }
        }
        return selfptr + selflen;
    }

    // Returns the memory address of the first byte after the last occurrence of
    // `needle` in `self`, or the address of `self` if not found.
    function rfindPtr(uint selflen, uint selfptr, uint needlelen, uint needleptr) private pure returns (uint) {
        uint ptr;

        if (needlelen <= selflen) {
            if (needlelen <= 32) {
                bytes32 mask = bytes32(~(2 ** (8 * (32 - needlelen)) - 1));

                bytes32 needledata;
                assembly { needledata := and(mload(needleptr), mask) }

                ptr = selfptr + selflen - needlelen;
                bytes32 ptrdata;
                assembly { ptrdata := and(mload(ptr), mask) }

                while (ptrdata != needledata) {
                    if (ptr <= selfptr)
                        return selfptr;
                    ptr--;
                    assembly { ptrdata := and(mload(ptr), mask) }
                }
                return ptr + needlelen;
            } else {
                // For long needles, use hashing
                bytes32 hash;
                assembly { hash := keccak256(needleptr, needlelen) }
                ptr = selfptr + (selflen - needlelen);
                while (ptr >= selfptr) {
                    bytes32 testHash;
                    assembly { testHash := keccak256(ptr, needlelen) }
                    if (hash == testHash)
                        return ptr + needlelen;
                    ptr -= 1;
                }
            }
        }
        return selfptr;
    }

    /*
     * @dev Modifies `self` to contain everything from the first occurrence of
     *      `needle` to the end of the slice. `self` is set to the empty slice
     *      if `needle` is not found.
     * @param self The slice to search and modify.
     * @param needle The text to search for.
     * @return `self`.
     */
    function find(slice memory self, slice memory needle) internal pure returns (slice memory) {
        uint ptr = findPtr(self._len, self._ptr, needle._len, needle._ptr);
        self._len -= ptr - self._ptr;
        self._ptr = ptr;
        return self;
    }

    /*
     * @dev Modifies `self` to contain the part of the string from the start of
     *      `self` to the end of the first occurrence of `needle`. If `needle`
     *      is not found, `self` is set to the empty slice.
     * @param self The slice to search and modify.
     * @param needle The text to search for.
     * @return `self`.
     */
    function rfind(slice memory self, slice memory needle) internal pure returns (slice memory) {
        uint ptr = rfindPtr(self._len, self._ptr, needle._len, needle._ptr);
        self._len = ptr - self._ptr;
        return self;
    }

    /*
     * @dev Splits the slice, setting `self` to everything after the first
     *      occurrence of `needle`, and `token` to everything before it. If
     *      `needle` does not occur in `self`, `self` is set to the empty slice,
     *      and `token` is set to the entirety of `self`.
     * @param self The slice to split.
     * @param needle The text to search for in `self`.
     * @param token An output parameter to which the first token is written.
     * @return `token`.
     */
    function split(slice memory self, slice memory needle, slice memory token) internal pure returns (slice memory) {
        uint ptr = findPtr(self._len, self._ptr, needle._len, needle._ptr);
        token._ptr = self._ptr;
        token._len = ptr - self._ptr;
        if (ptr == self._ptr + self._len) {
            // Not found
            self._len = 0;
        } else {
            self._len -= token._len + needle._len;
            self._ptr = ptr + needle._len;
        }
        return token;
    }

    /*
     * @dev Splits the slice, setting `self` to everything after the first
     *      occurrence of `needle`, and returning everything before it. If
     *      `needle` does not occur in `self`, `self` is set to the empty slice,
     *      and the entirety of `self` is returned.
     * @param self The slice to split.
     * @param needle The text to search for in `self`.
     * @return The part of `self` up to the first occurrence of `delim`.
     */
    function split(slice memory self, slice memory needle) internal pure returns (slice memory token) {
        split(self, needle, token);
    }

    /*
     * @dev Splits the slice, setting `self` to everything before the last
     *      occurrence of `needle`, and `token` to everything after it. If
     *      `needle` does not occur in `self`, `self` is set to the empty slice,
     *      and `token` is set to the entirety of `self`.
     * @param self The slice to split.
     * @param needle The text to search for in `self`.
     * @param token An output parameter to which the first token is written.
     * @return `token`.
     */
    function rsplit(slice memory self, slice memory needle, slice memory token) internal pure returns (slice memory) {
        uint ptr = rfindPtr(self._len, self._ptr, needle._len, needle._ptr);
        token._ptr = ptr;
        token._len = self._len - (ptr - self._ptr);
        if (ptr == self._ptr) {
            // Not found
            self._len = 0;
        } else {
            self._len -= token._len + needle._len;
        }
        return token;
    }

    /*
     * @dev Splits the slice, setting `self` to everything before the last
     *      occurrence of `needle`, and returning everything after it. If
     *      `needle` does not occur in `self`, `self` is set to the empty slice,
     *      and the entirety of `self` is returned.
     * @param self The slice to split.
     * @param needle The text to search for in `self`.
     * @return The part of `self` after the last occurrence of `delim`.
     */
    function rsplit(slice memory self, slice memory needle) internal pure returns (slice memory token) {
        rsplit(self, needle, token);
    }

    /*
     * @dev Counts the number of nonoverlapping occurrences of `needle` in `self`.
     * @param self The slice to search.
     * @param needle The text to search for in `self`.
     * @return The number of occurrences of `needle` found in `self`.
     */
    function count(slice memory self, slice memory needle) internal pure returns (uint cnt) {
        uint ptr = findPtr(self._len, self._ptr, needle._len, needle._ptr) + needle._len;
        while (ptr <= self._ptr + self._len) {
            cnt++;
            ptr = findPtr(self._len - (ptr - self._ptr), ptr, needle._len, needle._ptr) + needle._len;
        }
    }

    /*
     * @dev Returns True if `self` contains `needle`.
     * @param self The slice to search.
     * @param needle The text to search for in `self`.
     * @return True if `needle` is found in `self`, false otherwise.
     */
    function contains(slice memory self, slice memory needle) internal pure returns (bool) {
        return rfindPtr(self._len, self._ptr, needle._len, needle._ptr) != self._ptr;
    }

    /*
     * @dev Returns a newly allocated string containing the concatenation of
     *      `self` and `other`.
     * @param self The first slice to concatenate.
     * @param other The second slice to concatenate.
     * @return The concatenation of the two strings.
     */
    function concat(slice memory self, slice memory other) internal pure returns (string memory) {
        string memory ret = new string(self._len + other._len);
        uint retptr;
        assembly { retptr := add(ret, 32) }
        memcpy(retptr, self._ptr, self._len);
        memcpy(retptr + self._len, other._ptr, other._len);
        return ret;
    }

    /*
     * @dev Joins an array of slices, using `self` as a delimiter, returning a
     *      newly allocated string.
     * @param self The delimiter to use.
     * @param parts A list of slices to join.
     * @return A newly allocated string containing all the slices in `parts`,
     *         joined with `self`.
     */
    function join(slice memory self, slice[] memory parts) internal pure returns (string memory) {
        if (parts.length == 0)
            return "";

        uint length = self._len * (parts.length - 1);
        for(uint i = 0; i < parts.length; i++)
            length += parts[i]._len;

        string memory ret = new string(length);
        uint retptr;
        assembly { retptr := add(ret, 32) }

        for(i = 0; i < parts.length; i++) {
            memcpy(retptr, parts[i]._ptr, parts[i]._len);
            retptr += parts[i]._len;
            if (i < parts.length - 1) {
                memcpy(retptr, self._ptr, self._len);
                retptr += self._len;
            }
        }

        return ret;
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):