Feature Tip: Add private address tag to any address under My Name Tag !
Overview
ETH Balance
0 ETH
Eth Value
$0.00Latest 1 from a total of 1 transactions
| Transaction Hash |
Method
|
Block
|
From
|
|
To
|
||||
|---|---|---|---|---|---|---|---|---|---|
| Refund | 24492439 | 3 days ago | IN | 0 ETH | 0.00000895 |
Latest 1 internal transaction
Advanced mode:
| Parent Transaction Hash | Method | Block |
From
|
|
To
|
||
|---|---|---|---|---|---|---|---|
| 0x3d602d80 | 24491836 | 3 days ago | Contract Creation | 0 ETH |
Loading...
Loading
Loading...
Loading
Cross-Chain Transactions
Loading...
Loading
Minimal Proxy Contract for 0x3ecf799670ef704b38b8088f0c61eefc30a93802
Contract Name:
EscrowImplementation
Compiler Version
v0.8.20+commit.a1b79de6
Optimization Enabled:
Yes with 200 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
import {SignatureChecker} from "@openzeppelin/contracts/utils/cryptography/SignatureChecker.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {EIP712} from "@openzeppelin/contracts/utils/cryptography/EIP712.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IEscrowImplementation} from "./interfaces/IEscrowImplementation.sol";
import {IEscrowRouter} from "./interfaces/IEscrowRouter.sol";
import {IResolverWhitelist} from "./interfaces/IResolverWhitelist.sol";
import {Validation} from "./libraries/Validation.sol";
import {Escrow} from "./Escrow.sol";
/**
* @title EscrowImplementation
* @notice Implementation contract for individual escrow instances created via clones
* @dev This contract serves as the implementation for minimal proxy clones
* Each clone holds tokens for a specific order and releases them upon secret revelation
*/
contract EscrowImplementation is IEscrowImplementation, EIP712, Escrow {
using SafeERC20 for IERC20;
using Validation for address;
/// @dev EIP-712 type hash for refund authorization
bytes32 private constant REFUND_TYPEHASH = keccak256("Refund(bytes32 orderHash)");
/// @dev EIP-712 type hash for fast refund authorization
bytes32 private constant FAST_REFUND_TYPEHASH = keccak256("FastRefund(bytes32 orderHash)");
/// @notice Address of the router contract that creates clones
/// @dev Immutable so it's stored in bytecode and accessible to all proxy clones
address public immutable ROUTER;
/// @notice Address of this implementation contract
/// @dev Immutable so it's stored in bytecode and accessible to all proxy clones
address public immutable IMPLEMENTATION;
/// @notice Resolver whitelist contract for authorization checks
IResolverWhitelist public immutable RESOLVER_WHITELIST;
/// @notice Address authorized to sign withdrawToUser requests
/// @dev Immutable so it's stored in bytecode and accessible to all proxy clones
address public immutable SIGNER_ADDRESS;
/**
* @notice Initializes the implementation contract
* @param _router Address of the router contract that will create clones
* @param _resolverWhitelist Address of the resolver whitelist contract
* @param _signerAddress Address authorized to sign withdrawToUser requests
*/
constructor(
address _router,
IResolverWhitelist _resolverWhitelist,
address _signerAddress
) EIP712("EscrowImplementation", "1") {
_router.requireNonZero();
_signerAddress.requireNonZero();
ROUTER = _router;
RESOLVER_WHITELIST = _resolverWhitelist;
SIGNER_ADDRESS = _signerAddress;
IMPLEMENTATION = address(this);
}
/**
* @notice Withdraws escrowed tokens by revealing the secret
* @dev Validates the secret against the hash, checks resolver authorization,
* verifies this is the correct proxy instance, and transfers tokens to resolver
* @param order The order details containing all escrow parameters
* @param secret The secret that when hashed matches the stored secretHash
* @param resolverWithdraw The address that will receive the tokens
*/
function withdraw(IEscrowRouter.Order calldata order, bytes calldata secret, address resolverWithdraw) external {
if (!checkSecret(order.secretHash, secret)) {
revert InvalidSecret();
}
if (
!RESOLVER_WHITELIST.checkWithdraw(resolverWithdraw) ||
!RESOLVER_WHITELIST.checkSameResolver(order.resolverDeposit, resolverWithdraw)
) revert InvalidResolver();
bytes32 orderHash = getOrderHash(
order.nonce,
order.resolverDeposit,
order.user,
order.token,
order.amount,
order.secretHash,
order.deadline
);
// Verify this method is called on the correct proxy contract
if (!checkOrderDataValidity(orderHash, IMPLEMENTATION, ROUTER, address(this))) {
revert InvalidOrderData();
}
// Transfer actual balance from this contract (proxy) to the resolver
// Using balanceOf instead of order.amount to handle fee-on-transfer tokens
uint256 balance = IERC20(order.token).balanceOf(address(this));
if (balance == 0) revert NoBalance();
IERC20(order.token).safeTransfer(resolverWithdraw, balance);
emit Withdraw(order.user, resolverWithdraw, order.token, order.resolverDeposit, balance);
}
/**
* @notice Refunds escrowed tokens to the user with backend authorization after timelock expires
* @dev Requires a valid signature from the authorized backend signer
* Can only be called after the order deadline has passed
* Used for refunds without revealing the secret
* @param order The order details containing all escrow parameters
* @param signature Backend signature authorizing the refund to user
*/
function refund(IEscrowRouter.Order calldata order, bytes calldata signature) external {
// Check that timelock has expired
if (block.timestamp < order.deadline) {
revert TimelockNotExpired();
}
bytes32 orderHash = getOrderHash(
order.nonce,
order.resolverDeposit,
order.user,
order.token,
order.amount,
order.secretHash,
order.deadline
);
// Verify this method is called on the correct proxy contract
if (!checkOrderDataValidity(orderHash, IMPLEMENTATION, ROUTER, address(this))) {
revert InvalidOrderData();
}
// Verify backend signature authorizing this refund
_checkSignature(orderHash, signature, REFUND_TYPEHASH);
// Transfer actual balance from proxy to the user
// Using balanceOf instead of order.amount to handle fee-on-transfer tokens
uint256 balance = IERC20(order.token).balanceOf(address(this));
if (balance == 0) revert NoBalance();
IERC20(order.token).safeTransfer(order.user, balance);
emit Refund(order.user, order.token, order.resolverDeposit, balance);
}
/**
* @notice Fast refund with both backend and resolver authorization (no timelock required)
* @dev Requires valid signatures from both the authorized backend signer and the resolver
* Can be called at any time without waiting for deadline
* Used for fast refunds when both parties agree
* @param order The order details containing all escrow parameters
* @param backendSignature Backend signature authorizing the fast refund
* @param resolverSignature Resolver signature authorizing the fast refund
*/
function fastRefund(
IEscrowRouter.Order calldata order,
bytes calldata backendSignature,
bytes calldata resolverSignature
) external {
bytes32 orderHash = getOrderHash(
order.nonce,
order.resolverDeposit,
order.user,
order.token,
order.amount,
order.secretHash,
order.deadline
);
// Verify this method is called on the correct proxy contract
if (!checkOrderDataValidity(orderHash, IMPLEMENTATION, ROUTER, address(this))) {
revert InvalidOrderData();
}
// Verify both backend and resolver signatures
_checkSignature(orderHash, backendSignature, FAST_REFUND_TYPEHASH);
_checkResolverSignature(orderHash, resolverSignature, order.resolverDeposit);
// Transfer actual balance from proxy to the user
// Using balanceOf instead of order.amount to handle fee-on-transfer tokens
uint256 balance = IERC20(order.token).balanceOf(address(this));
if (balance == 0) revert NoBalance();
IERC20(order.token).safeTransfer(order.user, balance);
emit FastRefund(order.user, order.token, order.resolverDeposit, balance);
}
/**
* @notice Verifies that a secret matches the stored hash
* @dev Uses keccak256 hashing for secret verification
* @param secretHash The expected hash of the secret
* @param secret The revealed secret to verify
* @return bool True if the secret matches the hash, false otherwise
*/
function checkSecret(bytes32 secretHash, bytes calldata secret) internal pure returns (bool) {
return keccak256(secret) == secretHash;
}
/**
* @notice Verifies that an EIP-712 signature is valid for backend-signed operations
* @dev Creates typed data hash using orderHash and specified typehash, then verifies signature
* @param orderHash The hash of the order data being signed
* @param signature The signature to verify
* @param typehash The EIP-712 typehash for the specific operation
*/
function _checkSignature(bytes32 orderHash, bytes calldata signature, bytes32 typehash) private view {
// Create the struct hash using the provided typehash
bytes32 structHash = keccak256(abi.encode(typehash, orderHash));
// Create the EIP-712 typed data hash
bytes32 typedDataHash = _hashTypedDataV4(structHash);
// Verify signature against backend signer
bool isValid = SignatureChecker.isValidSignatureNow(SIGNER_ADDRESS, typedDataHash, signature);
if (!isValid) {
revert InvalidSignature();
}
}
/**
* @notice Verifies that an EIP-712 signature is valid for resolver-signed operations
* @dev Creates typed data hash using orderHash and verifies signature against resolver address
* @param orderHash The hash of the order data being signed
* @param signature The signature to verify
* @param resolverAddress The resolver's address to verify signature against
*/
function _checkResolverSignature(
bytes32 orderHash,
bytes calldata signature,
address resolverAddress
) private view {
// Create the struct hash for FastRefund
bytes32 structHash = keccak256(abi.encode(FAST_REFUND_TYPEHASH, orderHash));
// Create the EIP-712 typed data hash
bytes32 typedDataHash = _hashTypedDataV4(structHash);
// Verify signature against resolver address
bool isValid = SignatureChecker.isValidSignatureNow(resolverAddress, typedDataHash, signature);
if (!isValid) {
revert InvalidSignature();
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (interfaces/IERC1271.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-1271 standard signature validation method for
* contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
*/
interface IERC1271 {
/**
* @dev Should return whether the signature provided is valid for the provided data
* @param hash Hash of the data to be signed
* @param signature Signature byte array associated with `hash`
*/
function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";
/**
* @title IERC1363
* @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
*
* Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
* after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
*/
interface IERC1363 is IERC20, IERC165 {
/*
* Note: the ERC-165 identifier for this interface is 0xb0202a11.
* 0xb0202a11 ===
* bytes4(keccak256('transferAndCall(address,uint256)')) ^
* bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
* bytes4(keccak256('approveAndCall(address,uint256)')) ^
* bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
*/
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @param data Additional data with no specified format, sent in call to `spender`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../utils/introspection/IERC165.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../token/ERC20/IERC20.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)
pragma solidity ^0.8.20;
interface IERC5267 {
/**
* @dev MAY be emitted to signal that the domain could have changed.
*/
event EIP712DomainChanged();
/**
* @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
* signature.
*/
function eip712Domain()
external
view
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (proxy/Clones.sol)
pragma solidity ^0.8.20;
import {Create2} from "../utils/Create2.sol";
import {Errors} from "../utils/Errors.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-1167[ERC-1167] is a standard for
* deploying minimal proxy contracts, also known as "clones".
*
* > To simply and cheaply clone contract functionality in an immutable way, this standard specifies
* > a minimal bytecode implementation that delegates all calls to a known, fixed address.
*
* The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2`
* (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the
* deterministic method.
*/
library Clones {
error CloneArgumentsTooLong();
/**
* @dev Deploys and returns the address of a clone that mimics the behavior of `implementation`.
*
* This function uses the create opcode, which should never revert.
*/
function clone(address implementation) internal returns (address instance) {
return clone(implementation, 0);
}
/**
* @dev Same as {xref-Clones-clone-address-}[clone], but with a `value` parameter to send native currency
* to the new contract.
*
* NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
* to always have enough balance for new deployments. Consider exposing this function under a payable method.
*/
function clone(address implementation, uint256 value) internal returns (address instance) {
if (address(this).balance < value) {
revert Errors.InsufficientBalance(address(this).balance, value);
}
assembly ("memory-safe") {
// Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
// of the `implementation` address with the bytecode before the address.
mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
// Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
instance := create(value, 0x09, 0x37)
}
if (instance == address(0)) {
revert Errors.FailedDeployment();
}
}
/**
* @dev Deploys and returns the address of a clone that mimics the behavior of `implementation`.
*
* This function uses the create2 opcode and a `salt` to deterministically deploy
* the clone. Using the same `implementation` and `salt` multiple times will revert, since
* the clones cannot be deployed twice at the same address.
*/
function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) {
return cloneDeterministic(implementation, salt, 0);
}
/**
* @dev Same as {xref-Clones-cloneDeterministic-address-bytes32-}[cloneDeterministic], but with
* a `value` parameter to send native currency to the new contract.
*
* NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
* to always have enough balance for new deployments. Consider exposing this function under a payable method.
*/
function cloneDeterministic(
address implementation,
bytes32 salt,
uint256 value
) internal returns (address instance) {
if (address(this).balance < value) {
revert Errors.InsufficientBalance(address(this).balance, value);
}
assembly ("memory-safe") {
// Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
// of the `implementation` address with the bytecode before the address.
mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
// Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
instance := create2(value, 0x09, 0x37, salt)
}
if (instance == address(0)) {
revert Errors.FailedDeployment();
}
}
/**
* @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
*/
function predictDeterministicAddress(
address implementation,
bytes32 salt,
address deployer
) internal pure returns (address predicted) {
assembly ("memory-safe") {
let ptr := mload(0x40)
mstore(add(ptr, 0x38), deployer)
mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff)
mstore(add(ptr, 0x14), implementation)
mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73)
mstore(add(ptr, 0x58), salt)
mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37))
predicted := and(keccak256(add(ptr, 0x43), 0x55), 0xffffffffffffffffffffffffffffffffffffffff)
}
}
/**
* @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
*/
function predictDeterministicAddress(
address implementation,
bytes32 salt
) internal view returns (address predicted) {
return predictDeterministicAddress(implementation, salt, address(this));
}
/**
* @dev Deploys and returns the address of a clone that mimics the behavior of `implementation` with custom
* immutable arguments. These are provided through `args` and cannot be changed after deployment. To
* access the arguments within the implementation, use {fetchCloneArgs}.
*
* This function uses the create opcode, which should never revert.
*/
function cloneWithImmutableArgs(address implementation, bytes memory args) internal returns (address instance) {
return cloneWithImmutableArgs(implementation, args, 0);
}
/**
* @dev Same as {xref-Clones-cloneWithImmutableArgs-address-bytes-}[cloneWithImmutableArgs], but with a `value`
* parameter to send native currency to the new contract.
*
* NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
* to always have enough balance for new deployments. Consider exposing this function under a payable method.
*/
function cloneWithImmutableArgs(
address implementation,
bytes memory args,
uint256 value
) internal returns (address instance) {
if (address(this).balance < value) {
revert Errors.InsufficientBalance(address(this).balance, value);
}
bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args);
assembly ("memory-safe") {
instance := create(value, add(bytecode, 0x20), mload(bytecode))
}
if (instance == address(0)) {
revert Errors.FailedDeployment();
}
}
/**
* @dev Deploys and returns the address of a clone that mimics the behavior of `implementation` with custom
* immutable arguments. These are provided through `args` and cannot be changed after deployment. To
* access the arguments within the implementation, use {fetchCloneArgs}.
*
* This function uses the create2 opcode and a `salt` to deterministically deploy the clone. Using the same
* `implementation`, `args` and `salt` multiple times will revert, since the clones cannot be deployed twice
* at the same address.
*/
function cloneDeterministicWithImmutableArgs(
address implementation,
bytes memory args,
bytes32 salt
) internal returns (address instance) {
return cloneDeterministicWithImmutableArgs(implementation, args, salt, 0);
}
/**
* @dev Same as {xref-Clones-cloneDeterministicWithImmutableArgs-address-bytes-bytes32-}[cloneDeterministicWithImmutableArgs],
* but with a `value` parameter to send native currency to the new contract.
*
* NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
* to always have enough balance for new deployments. Consider exposing this function under a payable method.
*/
function cloneDeterministicWithImmutableArgs(
address implementation,
bytes memory args,
bytes32 salt,
uint256 value
) internal returns (address instance) {
bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args);
return Create2.deploy(value, salt, bytecode);
}
/**
* @dev Computes the address of a clone deployed using {Clones-cloneDeterministicWithImmutableArgs}.
*/
function predictDeterministicAddressWithImmutableArgs(
address implementation,
bytes memory args,
bytes32 salt,
address deployer
) internal pure returns (address predicted) {
bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args);
return Create2.computeAddress(salt, keccak256(bytecode), deployer);
}
/**
* @dev Computes the address of a clone deployed using {Clones-cloneDeterministicWithImmutableArgs}.
*/
function predictDeterministicAddressWithImmutableArgs(
address implementation,
bytes memory args,
bytes32 salt
) internal view returns (address predicted) {
return predictDeterministicAddressWithImmutableArgs(implementation, args, salt, address(this));
}
/**
* @dev Get the immutable args attached to a clone.
*
* - If `instance` is a clone that was deployed using `clone` or `cloneDeterministic`, this
* function will return an empty array.
* - If `instance` is a clone that was deployed using `cloneWithImmutableArgs` or
* `cloneDeterministicWithImmutableArgs`, this function will return the args array used at
* creation.
* - If `instance` is NOT a clone deployed using this library, the behavior is undefined. This
* function should only be used to check addresses that are known to be clones.
*/
function fetchCloneArgs(address instance) internal view returns (bytes memory) {
bytes memory result = new bytes(instance.code.length - 45); // revert if length is too short
assembly ("memory-safe") {
extcodecopy(instance, add(result, 32), 45, mload(result))
}
return result;
}
/**
* @dev Helper that prepares the initcode of the proxy with immutable args.
*
* An assembly variant of this function requires copying the `args` array, which can be efficiently done using
* `mcopy`. Unfortunately, that opcode is not available before cancun. A pure solidity implementation using
* abi.encodePacked is more expensive but also more portable and easier to review.
*
* NOTE: https://eips.ethereum.org/EIPS/eip-170[EIP-170] limits the length of the contract code to 24576 bytes.
* With the proxy code taking 45 bytes, that limits the length of the immutable args to 24531 bytes.
*/
function _cloneCodeWithImmutableArgs(
address implementation,
bytes memory args
) private pure returns (bytes memory) {
if (args.length > 24531) revert CloneArgumentsTooLong();
return
abi.encodePacked(
hex"61",
uint16(args.length + 45),
hex"3d81600a3d39f3363d3d373d3d3d363d73",
implementation,
hex"5af43d82803e903d91602b57fd5bf3",
args
);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC-20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
/**
* @dev An operation with an ERC-20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Variant of {safeTransfer} that returns a bool instead of reverting if the operation is not successful.
*/
function trySafeTransfer(IERC20 token, address to, uint256 value) internal returns (bool) {
return _callOptionalReturnBool(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Variant of {safeTransferFrom} that returns a bool instead of reverting if the operation is not successful.
*/
function trySafeTransferFrom(IERC20 token, address from, address to, uint256 value) internal returns (bool) {
return _callOptionalReturnBool(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*
* NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
* only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
* set here.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
safeTransfer(token, to, value);
} else if (!token.transferAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
* has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferFromAndCallRelaxed(
IERC1363 token,
address from,
address to,
uint256 value,
bytes memory data
) internal {
if (to.code.length == 0) {
safeTransferFrom(token, from, to, value);
} else if (!token.transferFromAndCall(from, to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
* Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
* once without retrying, and relies on the returned value to be true.
*
* Reverts if the returned value is other than `true`.
*/
function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
forceApprove(token, to, value);
} else if (!token.approveAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
// bubble errors
if iszero(success) {
let ptr := mload(0x40)
returndatacopy(ptr, 0, returndatasize())
revert(ptr, returndatasize())
}
returnSize := returndatasize()
returnValue := mload(0)
}
if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
bool success;
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
returnSize := returndatasize()
returnValue := mload(0)
}
return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Create2.sol)
pragma solidity ^0.8.20;
import {Errors} from "./Errors.sol";
/**
* @dev Helper to make usage of the `CREATE2` EVM opcode easier and safer.
* `CREATE2` can be used to compute in advance the address where a smart
* contract will be deployed, which allows for interesting new mechanisms known
* as 'counterfactual interactions'.
*
* See the https://eips.ethereum.org/EIPS/eip-1014#motivation[EIP] for more
* information.
*/
library Create2 {
/**
* @dev There's no code to deploy.
*/
error Create2EmptyBytecode();
/**
* @dev Deploys a contract using `CREATE2`. The address where the contract
* will be deployed can be known in advance via {computeAddress}.
*
* The bytecode for a contract can be obtained from Solidity with
* `type(contractName).creationCode`.
*
* Requirements:
*
* - `bytecode` must not be empty.
* - `salt` must have not been used for `bytecode` already.
* - the factory must have a balance of at least `amount`.
* - if `amount` is non-zero, `bytecode` must have a `payable` constructor.
*/
function deploy(uint256 amount, bytes32 salt, bytes memory bytecode) internal returns (address addr) {
if (address(this).balance < amount) {
revert Errors.InsufficientBalance(address(this).balance, amount);
}
if (bytecode.length == 0) {
revert Create2EmptyBytecode();
}
assembly ("memory-safe") {
addr := create2(amount, add(bytecode, 0x20), mload(bytecode), salt)
// if no address was created, and returndata is not empty, bubble revert
if and(iszero(addr), not(iszero(returndatasize()))) {
let p := mload(0x40)
returndatacopy(p, 0, returndatasize())
revert(p, returndatasize())
}
}
if (addr == address(0)) {
revert Errors.FailedDeployment();
}
}
/**
* @dev Returns the address where a contract will be stored if deployed via {deploy}. Any change in the
* `bytecodeHash` or `salt` will result in a new destination address.
*/
function computeAddress(bytes32 salt, bytes32 bytecodeHash) internal view returns (address) {
return computeAddress(salt, bytecodeHash, address(this));
}
/**
* @dev Returns the address where a contract will be stored if deployed via {deploy} from a contract located at
* `deployer`. If `deployer` is this contract's address, returns the same value as {computeAddress}.
*/
function computeAddress(bytes32 salt, bytes32 bytecodeHash, address deployer) internal pure returns (address addr) {
assembly ("memory-safe") {
let ptr := mload(0x40) // Get free memory pointer
// | | ↓ ptr ... ↓ ptr + 0x0B (start) ... ↓ ptr + 0x20 ... ↓ ptr + 0x40 ... |
// |-------------------|---------------------------------------------------------------------------|
// | bytecodeHash | CCCCCCCCCCCCC...CC |
// | salt | BBBBBBBBBBBBB...BB |
// | deployer | 000000...0000AAAAAAAAAAAAAAAAAAA...AA |
// | 0xFF | FF |
// |-------------------|---------------------------------------------------------------------------|
// | memory | 000000...00FFAAAAAAAAAAAAAAAAAAA...AABBBBBBBBBBBBB...BBCCCCCCCCCCCCC...CC |
// | keccak(start, 85) | ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ |
mstore(add(ptr, 0x40), bytecodeHash)
mstore(add(ptr, 0x20), salt)
mstore(ptr, deployer) // Right-aligned with 12 preceding garbage bytes
let start := add(ptr, 0x0b) // The hashed data starts at the final garbage byte which we will set to 0xff
mstore8(start, 0xff)
addr := and(keccak256(start, 85), 0xffffffffffffffffffffffffffffffffffffffff)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.20;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature derives the `address(0)`.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(
bytes32 hash,
bytes memory signature
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
assembly ("memory-safe") {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/cryptography/EIP712.sol)
pragma solidity ^0.8.20;
import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
*
* The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
* encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
* does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
* produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
* separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
* separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
*
* @custom:oz-upgrades-unsafe-allow state-variable-immutable
*/
abstract contract EIP712 is IERC5267 {
using ShortStrings for *;
bytes32 private constant TYPE_HASH =
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
// Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
// invalidate the cached domain separator if the chain id changes.
bytes32 private immutable _cachedDomainSeparator;
uint256 private immutable _cachedChainId;
address private immutable _cachedThis;
bytes32 private immutable _hashedName;
bytes32 private immutable _hashedVersion;
ShortString private immutable _name;
ShortString private immutable _version;
// slither-disable-next-line constable-states
string private _nameFallback;
// slither-disable-next-line constable-states
string private _versionFallback;
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
constructor(string memory name, string memory version) {
_name = name.toShortStringWithFallback(_nameFallback);
_version = version.toShortStringWithFallback(_versionFallback);
_hashedName = keccak256(bytes(name));
_hashedVersion = keccak256(bytes(version));
_cachedChainId = block.chainid;
_cachedDomainSeparator = _buildDomainSeparator();
_cachedThis = address(this);
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view returns (bytes32) {
if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
return _cachedDomainSeparator;
} else {
return _buildDomainSeparator();
}
}
function _buildDomainSeparator() private view returns (bytes32) {
return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
}
/**
* @inheritdoc IERC5267
*/
function eip712Domain()
public
view
virtual
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
)
{
return (
hex"0f", // 01111
_EIP712Name(),
_EIP712Version(),
block.chainid,
address(this),
bytes32(0),
new uint256[](0)
);
}
/**
* @dev The name parameter for the EIP712 domain.
*
* NOTE: By default this function reads _name which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Name() internal view returns (string memory) {
return _name.toStringWithFallback(_nameFallback);
}
/**
* @dev The version parameter for the EIP712 domain.
*
* NOTE: By default this function reads _version which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Version() internal view returns (string memory) {
return _version.toStringWithFallback(_versionFallback);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/cryptography/MessageHashUtils.sol)
pragma solidity ^0.8.20;
import {Strings} from "../Strings.sol";
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing a bytes32 `messageHash` with
* `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
* hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
*
* NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
* keccak256, although any bytes32 value can be safely used because the final digest will
* be re-hashed.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
}
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing an arbitrary `message` with
* `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
* hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
return
keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x00` (data with intended validator).
*
* The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
* `validator` address. Then hashing the result.
*
* See {ECDSA-recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(hex"19_00", validator, data));
}
/**
* @dev Variant of {toDataWithIntendedValidatorHash-address-bytes} optimized for cases where `data` is a bytes32.
*/
function toDataWithIntendedValidatorHash(
address validator,
bytes32 messageHash
) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, hex"19_00")
mstore(0x02, shl(96, validator))
mstore(0x16, messageHash)
digest := keccak256(0x00, 0x36)
}
}
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\x19\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* See {ECDSA-recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
let ptr := mload(0x40)
mstore(ptr, hex"19_01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/SignatureChecker.sol)
pragma solidity ^0.8.20;
import {ECDSA} from "./ECDSA.sol";
import {IERC1271} from "../../interfaces/IERC1271.sol";
/**
* @dev Signature verification helper that can be used instead of `ECDSA.recover` to seamlessly support both ECDSA
* signatures from externally owned accounts (EOAs) as well as ERC-1271 signatures from smart contract wallets like
* Argent and Safe Wallet (previously Gnosis Safe).
*/
library SignatureChecker {
/**
* @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the
* signature is validated against that smart contract using ERC-1271, otherwise it's validated using `ECDSA.recover`.
*
* NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
* change through time. It could return true at block N and false at block N+1 (or the opposite).
*/
function isValidSignatureNow(address signer, bytes32 hash, bytes memory signature) internal view returns (bool) {
if (signer.code.length == 0) {
(address recovered, ECDSA.RecoverError err, ) = ECDSA.tryRecover(hash, signature);
return err == ECDSA.RecoverError.NoError && recovered == signer;
} else {
return isValidERC1271SignatureNow(signer, hash, signature);
}
}
/**
* @dev Checks if a signature is valid for a given signer and data hash. The signature is validated
* against the signer smart contract using ERC-1271.
*
* NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
* change through time. It could return true at block N and false at block N+1 (or the opposite).
*/
function isValidERC1271SignatureNow(
address signer,
bytes32 hash,
bytes memory signature
) internal view returns (bool) {
(bool success, bytes memory result) = signer.staticcall(
abi.encodeCall(IERC1271.isValidSignature, (hash, signature))
);
return (success &&
result.length >= 32 &&
abi.decode(result, (bytes32)) == bytes32(IERC1271.isValidSignature.selector));
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of common custom errors used in multiple contracts
*
* IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
* It is recommended to avoid relying on the error API for critical functionality.
*
* _Available since v5.1._
*/
library Errors {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error InsufficientBalance(uint256 balance, uint256 needed);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedCall();
/**
* @dev The deployment failed.
*/
error FailedDeployment();
/**
* @dev A necessary precompile is missing.
*/
error MissingPrecompile(address);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Return the 512-bit addition of two uint256.
*
* The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
*/
function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
assembly ("memory-safe") {
low := add(a, b)
high := lt(low, a)
}
}
/**
* @dev Return the 512-bit multiplication of two uint256.
*
* The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
*/
function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
// 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = high * 2²⁵⁶ + low.
assembly ("memory-safe") {
let mm := mulmod(a, b, not(0))
low := mul(a, b)
high := sub(sub(mm, low), lt(mm, low))
}
}
/**
* @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
success = c >= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a - b;
success = c <= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a * b;
assembly ("memory-safe") {
// Only true when the multiplication doesn't overflow
// (c / a == b) || (a == 0)
success := or(eq(div(c, a), b), iszero(a))
}
// equivalent to: success ? c : 0
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `DIV` opcode returns zero when the denominator is 0.
result := div(a, b)
}
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `MOD` opcode returns zero when the denominator is 0.
result := mod(a, b)
}
}
}
/**
* @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryAdd(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
*/
function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
(, uint256 result) = trySub(a, b);
return result;
}
/**
* @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryMul(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
// Handle non-overflow cases, 256 by 256 division.
if (high == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return low / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= high) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [high low].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
high := sub(high, gt(remainder, low))
low := sub(low, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly ("memory-safe") {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [high low] by twos.
low := div(low, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from high into low.
low |= high * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
// is no longer required.
result = low * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
*/
function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
if (high >= 1 << n) {
Panic.panic(Panic.UNDER_OVERFLOW);
}
return (high << (256 - n)) | (low >> n);
}
}
/**
* @dev Calculates x * y >> n with full precision, following the selected rounding direction.
*/
function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// If upper 8 bits of 16-bit half set, add 8 to result
r |= SafeCast.toUint((x >> r) > 0xff) << 3;
// If upper 4 bits of 8-bit half set, add 4 to result
r |= SafeCast.toUint((x >> r) > 0xf) << 2;
// Shifts value right by the current result and use it as an index into this lookup table:
//
// | x (4 bits) | index | table[index] = MSB position |
// |------------|---------|-----------------------------|
// | 0000 | 0 | table[0] = 0 |
// | 0001 | 1 | table[1] = 0 |
// | 0010 | 2 | table[2] = 1 |
// | 0011 | 3 | table[3] = 1 |
// | 0100 | 4 | table[4] = 2 |
// | 0101 | 5 | table[5] = 2 |
// | 0110 | 6 | table[6] = 2 |
// | 0111 | 7 | table[7] = 2 |
// | 1000 | 8 | table[8] = 3 |
// | 1001 | 9 | table[9] = 3 |
// | 1010 | 10 | table[10] = 3 |
// | 1011 | 11 | table[11] = 3 |
// | 1100 | 12 | table[12] = 3 |
// | 1101 | 13 | table[13] = 3 |
// | 1110 | 14 | table[14] = 3 |
// | 1111 | 15 | table[15] = 3 |
//
// The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
assembly ("memory-safe") {
r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
}
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
}
}
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
// Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
// taking advantage of the most significant (or "sign" bit) in two's complement representation.
// This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
// the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
int256 mask = n >> 255;
// A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
return uint256((n + mask) ^ mask);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/ShortStrings.sol)
pragma solidity ^0.8.20;
import {StorageSlot} from "./StorageSlot.sol";
// | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
// | length | 0x BB |
type ShortString is bytes32;
/**
* @dev This library provides functions to convert short memory strings
* into a `ShortString` type that can be used as an immutable variable.
*
* Strings of arbitrary length can be optimized using this library if
* they are short enough (up to 31 bytes) by packing them with their
* length (1 byte) in a single EVM word (32 bytes). Additionally, a
* fallback mechanism can be used for every other case.
*
* Usage example:
*
* ```solidity
* contract Named {
* using ShortStrings for *;
*
* ShortString private immutable _name;
* string private _nameFallback;
*
* constructor(string memory contractName) {
* _name = contractName.toShortStringWithFallback(_nameFallback);
* }
*
* function name() external view returns (string memory) {
* return _name.toStringWithFallback(_nameFallback);
* }
* }
* ```
*/
library ShortStrings {
// Used as an identifier for strings longer than 31 bytes.
bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
error StringTooLong(string str);
error InvalidShortString();
/**
* @dev Encode a string of at most 31 chars into a `ShortString`.
*
* This will trigger a `StringTooLong` error is the input string is too long.
*/
function toShortString(string memory str) internal pure returns (ShortString) {
bytes memory bstr = bytes(str);
if (bstr.length > 31) {
revert StringTooLong(str);
}
return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
}
/**
* @dev Decode a `ShortString` back to a "normal" string.
*/
function toString(ShortString sstr) internal pure returns (string memory) {
uint256 len = byteLength(sstr);
// using `new string(len)` would work locally but is not memory safe.
string memory str = new string(32);
assembly ("memory-safe") {
mstore(str, len)
mstore(add(str, 0x20), sstr)
}
return str;
}
/**
* @dev Return the length of a `ShortString`.
*/
function byteLength(ShortString sstr) internal pure returns (uint256) {
uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
if (result > 31) {
revert InvalidShortString();
}
return result;
}
/**
* @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
*/
function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
if (bytes(value).length < 32) {
return toShortString(value);
} else {
StorageSlot.getStringSlot(store).value = value;
return ShortString.wrap(FALLBACK_SENTINEL);
}
}
/**
* @dev Decode a string that was encoded to `ShortString` or written to storage using {toShortStringWithFallback}.
*/
function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return toString(value);
} else {
return store;
}
}
/**
* @dev Return the length of a string that was encoded to `ShortString` or written to storage using
* {toShortStringWithFallback}.
*
* WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
* actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
*/
function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return byteLength(value);
} else {
return bytes(store).length;
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.20;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC-1967 implementation slot:
* ```solidity
* contract ERC1967 {
* // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(newImplementation.code.length > 0);
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*
* TIP: Consider using this library along with {SlotDerivation}.
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct Int256Slot {
int256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Int256Slot` with member `value` located at `slot`.
*/
function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
/**
* @dev Returns a `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
using SafeCast for *;
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
uint256 private constant SPECIAL_CHARS_LOOKUP =
(1 << 0x08) | // backspace
(1 << 0x09) | // tab
(1 << 0x0a) | // newline
(1 << 0x0c) | // form feed
(1 << 0x0d) | // carriage return
(1 << 0x22) | // double quote
(1 << 0x5c); // backslash
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev The string being parsed contains characters that are not in scope of the given base.
*/
error StringsInvalidChar();
/**
* @dev The string being parsed is not a properly formatted address.
*/
error StringsInvalidAddressFormat();
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
assembly ("memory-safe") {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
assembly ("memory-safe") {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
* representation, according to EIP-55.
*/
function toChecksumHexString(address addr) internal pure returns (string memory) {
bytes memory buffer = bytes(toHexString(addr));
// hash the hex part of buffer (skip length + 2 bytes, length 40)
uint256 hashValue;
assembly ("memory-safe") {
hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
}
for (uint256 i = 41; i > 1; --i) {
// possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
// case shift by xoring with 0x20
buffer[i] ^= 0x20;
}
hashValue >>= 4;
}
return string(buffer);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
/**
* @dev Parse a decimal string and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input) internal pure returns (uint256) {
return parseUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
uint256 result = 0;
for (uint256 i = begin; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 9) return (false, 0);
result *= 10;
result += chr;
}
return (true, result);
}
/**
* @dev Parse a decimal string and returns the value as a `int256`.
*
* Requirements:
* - The string must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input) internal pure returns (int256) {
return parseInt(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
(bool success, int256 value) = tryParseInt(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
* the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
}
uint256 private constant ABS_MIN_INT256 = 2 ** 255;
/**
* @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character or if the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, int256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseIntUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseIntUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, int256 value) {
bytes memory buffer = bytes(input);
// Check presence of a negative sign.
bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
bool positiveSign = sign == bytes1("+");
bool negativeSign = sign == bytes1("-");
uint256 offset = (positiveSign || negativeSign).toUint();
(bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);
if (absSuccess && absValue < ABS_MIN_INT256) {
return (true, negativeSign ? -int256(absValue) : int256(absValue));
} else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
return (true, type(int256).min);
} else return (false, 0);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input) internal pure returns (uint256) {
return parseHexUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseHexUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
* invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseHexUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseHexUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
// skip 0x prefix if present
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 offset = hasPrefix.toUint() * 2;
uint256 result = 0;
for (uint256 i = begin + offset; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 15) return (false, 0);
result *= 16;
unchecked {
// Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
// This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked.
result += chr;
}
}
return (true, result);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input) internal pure returns (address) {
return parseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
(bool success, address value) = tryParseAddress(input, begin, end);
if (!success) revert StringsInvalidAddressFormat();
return value;
}
/**
* @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
* formatted address. See {parseAddress-string} requirements.
*/
function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
return tryParseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
* formatted address. See {parseAddress-string-uint256-uint256} requirements.
*/
function tryParseAddress(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, address value) {
if (end > bytes(input).length || begin > end) return (false, address(0));
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 expectedLength = 40 + hasPrefix.toUint() * 2;
// check that input is the correct length
if (end - begin == expectedLength) {
// length guarantees that this does not overflow, and value is at most type(uint160).max
(bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
return (s, address(uint160(v)));
} else {
return (false, address(0));
}
}
function _tryParseChr(bytes1 chr) private pure returns (uint8) {
uint8 value = uint8(chr);
// Try to parse `chr`:
// - Case 1: [0-9]
// - Case 2: [a-f]
// - Case 3: [A-F]
// - otherwise not supported
unchecked {
if (value > 47 && value < 58) value -= 48;
else if (value > 96 && value < 103) value -= 87;
else if (value > 64 && value < 71) value -= 55;
else return type(uint8).max;
}
return value;
}
/**
* @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata.
*
* WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped.
*
* NOTE: This function escapes all unicode characters, and not just the ones in ranges defined in section 2.5 of
* RFC-4627 (U+0000 to U+001F, U+0022 and U+005C). ECMAScript's `JSON.parse` does recover escaped unicode
* characters that are not in this range, but other tooling may provide different results.
*/
function escapeJSON(string memory input) internal pure returns (string memory) {
bytes memory buffer = bytes(input);
bytes memory output = new bytes(2 * buffer.length); // worst case scenario
uint256 outputLength = 0;
for (uint256 i; i < buffer.length; ++i) {
bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i));
if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) {
output[outputLength++] = "\\";
if (char == 0x08) output[outputLength++] = "b";
else if (char == 0x09) output[outputLength++] = "t";
else if (char == 0x0a) output[outputLength++] = "n";
else if (char == 0x0c) output[outputLength++] = "f";
else if (char == 0x0d) output[outputLength++] = "r";
else if (char == 0x5c) output[outputLength++] = "\\";
else if (char == 0x22) {
// solhint-disable-next-line quotes
output[outputLength++] = '"';
}
} else {
output[outputLength++] = char;
}
}
// write the actual length and deallocate unused memory
assembly ("memory-safe") {
mstore(output, outputLength)
mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63)))))
}
return string(output);
}
/**
* @dev Reads a bytes32 from a bytes array without bounds checking.
*
* NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
* assembly block as such would prevent some optimizations.
*/
function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
// This is not memory safe in the general case, but all calls to this private function are within bounds.
assembly ("memory-safe") {
value := mload(add(buffer, add(0x20, offset)))
}
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
import {Clones} from "@openzeppelin/contracts/proxy/Clones.sol";
/**
* @title Escrow
* @notice Abstract base contract providing shared functionality for escrow contracts
* @dev Contains utility functions used by both router and implementation contracts
*/
abstract contract Escrow {
/**
* @notice Computes a unique hash for an order based on its parameters
* @dev Used for deterministic proxy address generation and order verification
* The hash ensures each unique order has a unique proxy address
* @param nonce Unique nonce from the Permit2 signature
* @param resolverDeposit Address of the resolver that deposited the funds
* @param user Address of the user who owns the tokens
* @param token Address of the ERC20 token being escrowed
* @param amount Amount of tokens being escrowed
* @param secretHash Hash of the secret required to unlock the escrow
* @param deadline Timestamp after which refund can be made without resolver approval
* @return bytes32 Unique hash identifying this specific order
*/
function getOrderHash(
uint256 nonce,
address resolverDeposit,
address user,
address token,
uint256 amount,
bytes32 secretHash,
uint256 deadline
) internal pure returns (bytes32) {
return keccak256(abi.encode(nonce, resolverDeposit, user, token, amount, secretHash, deadline));
}
/**
* @notice Verifies that an address matches the expected deterministic proxy address
* @dev Calculates the CREATE2 address and compares it with the expected address
* Used to ensure calls are made to the correct proxy contract
* @param orderHash The hash used as salt for CREATE2 deployment
* @param implementation Address of the implementation contract
* @param deployer Address of the deployer (router) contract
* @param expectedAddress The address to verify (should be the proxy)
* @return bool True if expectedAddress matches the calculated proxy address
*/
function checkOrderDataValidity(
bytes32 orderHash,
address implementation,
address deployer,
address expectedAddress
) internal pure returns (bool) {
return expectedAddress == Clones.predictDeterministicAddress(implementation, orderHash, deployer);
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
import {IEscrowRouter} from "./IEscrowRouter.sol";
interface IEscrowImplementation {
/**
* @notice Emitted when a resolver withdraws deposited tokens by revealing the secret
* @param user The address of the user
* @param resolverWithdraw The address of the resolver receiving the tokens
* @param token The address of the token being withdrawn
* @param resolverDeposit Address from which the resolver made the deposit
* @param amount The amount of tokens being withdrawn
*/
event Withdraw(
address indexed user,
address indexed resolverWithdraw,
address indexed token,
address resolverDeposit,
uint256 amount
);
/**
* @notice Emitted when deposited tokens are returned to the user via backend authorization
* @dev This occurs when resolver fails to complete the fulfill in time (refund scenario)
* @param user The address receiving the refunded tokens
* @param token The address of the token being refunded
* @param amount The amount of tokens being returned
* @param resolverDeposit The address of the resolver that failed to complete withdrawal
*/
event Refund(address indexed user, address indexed token, address indexed resolverDeposit, uint256 amount);
/**
* @notice Emitted when fast refund is executed with both backend and resolver approval
* @param user The address receiving the refunded tokens
* @param token The address of the token being refunded
* @param amount The amount of tokens being returned
* @param resolverDeposit The address of the resolver
*/
event FastRefund(address indexed user, address indexed token, address indexed resolverDeposit, uint256 amount);
/// @notice Thrown when provided secret doesn't match the secretHash
error InvalidSecret();
/// @notice Thrown when resolver addresses don't match or belong to different resolvers
error InvalidResolver();
/// @notice Thrown when order data doesn't match the expected proxy
error InvalidOrderData();
/// @notice Thrown when proxy has no balance to withdraw
error NoBalance();
/// @notice Thrown when signature is invalid
error InvalidSignature();
/// @notice Thrown when timelock has not expired yet
error TimelockNotExpired();
/**
* @notice Withdraws escrowed tokens to the resolver by revealing the secret.
* @dev
* - Validates the provided secret against the stored hash.
* - Ensures the resolverWithdraw address belongs to the same resolver as the deposit address.
* - Checks that the caller (msg.sender) is whitelisted in the ResolversWhitelist contract.
* - Verifies that the function is executed on the correct proxy instance.
* - Transfers the escrowed tokens from the proxy to the resolver.
*
* @param order Struct containing all escrow parameters.
* @param secret Secret value that must match the stored secret hash.
* @param resolverWithdraw Address authorized to receive the withdrawn tokens.
*/
function withdraw(IEscrowRouter.Order calldata order, bytes memory secret, address resolverWithdraw) external;
/**
* @notice Refunds escrowed tokens to the user with backend authorization after timelock expires.
* @dev
* - Used for user refunds when the swap cannot be completed (no secret revealed).
* - Can only be called after the order deadline has passed.
* - Ensures the function is executed on the correct proxy instance.
* - Validates the backend signature that authorizes this refund operation.
* - Transfers escrowed tokens from the proxy contract back to the user.
*
* @param order Struct containing all escrow parameters.
* @param signature Signature from the authorized backend, validating the refund.
*/
function refund(IEscrowRouter.Order calldata order, bytes calldata signature) external;
/**
* @notice Refunds escrowed tokens to the user with both backend and resolver authorization (no timelock).
* @dev
* - Used for fast refunds when both parties agree without waiting for deadline.
* - Does not require timelock to expire - can be called at any time.
* - Ensures the function is executed on the correct proxy instance.
* - Validates both backend and resolver signatures.
* - Transfers escrowed tokens from the proxy contract back to the user.
*
* @param order Struct containing all escrow parameters.
* @param backendSignature Signature from the authorized backend.
* @param resolverSignature Signature from the resolver (resolverDeposit address).
*/
function fastRefund(
IEscrowRouter.Order calldata order,
bytes calldata backendSignature,
bytes calldata resolverSignature
) external;
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
import {ISignatureTransfer} from "../../lib/permit2/src/interfaces/ISignatureTransfer.sol";
import {IFulfillmentBase, FulfillmentRequest} from "./IFulfillmentBase.sol";
/**
* @title IEscrowRouter
* @notice Interface for the EscrowRouter contract managing deposits and swaps
* @dev Extends IFulfillmentBase for shared fulfillment functionality
*/
interface IEscrowRouter is IFulfillmentBase {
/**
* @notice Emitted when a deposit is made
* @param intentId Unique identifier for the intent
* @param user Address of the user who initiated the deposit
* @param resolver Address of the resolver handling the deposit
* @param tokenIn Input token address
* @param amountIn Input token amount
* @param tokenOut Output token address (same as tokenIn for simple deposits)
* @param amountOut Output token amount (same as amountIn for simple deposits)
* @param deadline Timestamp after which refund can be made without resolver approval
* @param proxy Address of the deployed proxy contract
*/
event Deposit(
bytes16 indexed intentId,
address indexed user,
address indexed resolver,
address tokenIn,
uint256 amountIn,
address tokenOut,
uint256 amountOut,
uint256 deadline,
address proxy
);
/**
* @notice Emitted when a swap is executed
* @param intentId Unique identifier for the intent
* @param user Address of the user who initiated the swap
* @param resolver Address of the resolver who fulfilled it
* @param tokenIn Input token address
* @param amountIn Input token amount
* @param tokenOut Output token address
* @param amountOut Actual output amount received
* @param recipient Final recipient address
*/
event Swap(
bytes16 indexed intentId,
address indexed user,
address indexed resolver,
address tokenIn,
uint256 amountIn,
address tokenOut,
uint256 amountOut,
address recipient
);
/**
* @notice Emitted when a direct transfer is executed (Escrow as a feature)
* @param intentId Unique identifier for the intent
* @param user Address of the user who initiated the transfer
* @param resolver Address of the resolver who initiated the transfer (deposit address)
* @param tokenIn Input token address
* @param amountIn Input token amount
* @param tokenOut Output token address (same as tokenIn for simple transfers)
* @param amountOut Output token amount (same as amountIn for simple transfers)
* @param recipient Address that received the tokens (withdraw address)
*/
event DirectTransfer(
bytes16 indexed intentId,
address indexed user,
address indexed resolver,
address tokenIn,
uint256 amountIn,
address tokenOut,
uint256 amountOut,
address recipient
);
/**
* @notice Emitted when the implementation contract address is set
* @param oldImplementation The previous implementation contract address
* @param newImplementation The new implementation contract address
*/
event ImplementationSet(address indexed oldImplementation, address indexed newImplementation);
/// @notice Thrown when the caller is not in the resolver whitelist
error ResolverNotInWhitelist();
/// @notice Thrown when the witness hash doesn't match the provided data
error InvalidWitness();
/// @notice Thrown when the output token doesn't match the fulfillment request token
error InvalidOutputToken();
/// @notice Thrown when the intentId doesn't match between permit2 and fulfillment signatures
error InvalidIntentId();
/// @notice Thrown when the caller does not match the resolver address
error CallerNotMatchingResolver();
/// @notice Thrown when the deadline is in the past
error DeadlineExpired();
/**
* @notice Data structure for simple deposit operations
* @param resolverDepositAddress Address of the resolver handling the deposit
* @param secretHash Hash of the secret used for hashlock mechanism
* @param deadline Timestamp after which refund can be made without resolver approval
*/
struct DepositData {
address resolverDepositAddress;
bytes32 secretHash;
uint256 deadline;
}
/**
* @notice Data structure for deposit operations with DEX swap
* @dev Used when resolver swaps illiquid tokens to liquid tokens before locking
* @param resolverDepositAddress Address of the resolver handling the deposit
* @param secretHash Hash of the secret used for hashlock mechanism
* @param tokenOut Address of the token to receive after DEX swap
* @param minAmountOut Minimum acceptable amount of output tokens
* @param maxAmountOut Maximum expected amount of output tokens
* @param deadline Timestamp after which refund can be made without resolver approval
*/
struct DepositDexData {
address resolverDepositAddress;
bytes32 secretHash;
address tokenOut;
uint256 minAmountOut;
uint256 maxAmountOut;
uint256 deadline;
}
/**
* @notice Data structure for swap witness data
* @param resolverSwapAddress Address of the resolver executing the swap
* @param tokenOut Address of the token user expects to receive
*/
struct SwapData {
address resolverSwapAddress;
address tokenOut;
}
/**
* @notice Data structure for direct transfer operations
* @dev Used when tokens should be transferred directly to resolver without proxy deployment
* @param resolverDepositAddress Address of the resolver initiating the transfer (caller validation)
* @param resolverWithdrawAddress Address that will receive the tokens
*/
struct DirectTransferData {
address resolverDepositAddress;
address resolverWithdrawAddress;
}
/**
* @notice Data structure for direct transfer operations with DEX swap
* @dev Used when tokens should be swapped and transferred directly to resolver without proxy deployment
* @param resolverDepositAddress Address of the resolver initiating the transfer (caller validation)
* @param resolverWithdrawAddress Address that will receive the swapped tokens
* @param tokenOut Address of the token to receive after DEX swap
* @param minAmountOut Minimum acceptable amount of output tokens
* @param maxAmountOut Maximum expected amount of output tokens
*/
struct DirectTransferDexData {
address resolverDepositAddress;
address resolverWithdrawAddress;
address tokenOut;
uint256 minAmountOut;
uint256 maxAmountOut;
}
/**
* @notice Parameters for fulfillment operations
* @param request The fulfillment request containing intent details
* @param signature Backend signature authorizing the fulfillment
* @param signer Address of the authorized signer
* @param resolverMaxAmount Maximum amount resolver is willing to provide
* @param resolverData Additional data passed to the resolver's executor
*/
struct FulfillmentParams {
FulfillmentRequest request;
bytes signature;
address signer;
uint256 resolverMaxAmount;
bytes resolverData;
}
/**
* @notice Complete order data structure
* @dev Used for tracking and validation of orders
* @param nonce Nonce from Permit2 signature
* @param resolverDeposit Address of the resolver handling deposits
* @param user Address of the user who owns the tokens
* @param token Address of the token being deposited
* @param amount Amount of tokens being deposited
* @param secretHash Hash of the secret for hashlock mechanism
* @param deadline Timestamp after which refund can be made without resolver approval
*/
struct Order {
uint256 nonce;
address resolverDeposit;
address user;
address token;
uint256 amount;
bytes32 secretHash;
uint256 deadline;
}
/**
* @notice Sets the implementation contract address for proxy deployments
* @dev Can only be called by the contract owner
* @param _implementation Address of the escrow implementation contract
*/
function setImplementation(address _implementation) external;
/**
* @notice Handles a simple deposit into escrow using Permit2 signature
* @dev Flow:
* 1. Validates resolver is whitelisted and matches caller
* 2. Verifies witness data matches signed hash
* 3. Validates input parameters (secretHash, token, amount)
* 4. Calculates deterministic proxy address
* 5. Deploys proxy contract
* 6. Transfers tokens directly to proxy via Permit2
* @param permit Permit2 transfer parameters
* @param user User's address (token owner)
* @param witness Hash of witness data signed by the user
* @param witnessTypeString EIP-712 type string for signature verification
* @param signature User's EIP-712 signature authorizing the transfer
* @param depositData Struct containing resolver address and secret hash
* @param intentId Unique identifier for this deposit intent
*/
function deposit(
ISignatureTransfer.PermitTransferFrom memory permit,
address user,
bytes32 witness,
string calldata witnessTypeString,
bytes calldata signature,
DepositData memory depositData,
bytes16 intentId
) external;
/**
* @notice Handles a deposit with DEX swap into escrow using Permit2 signature
* @dev Flow:
* 1. Validates resolver is whitelisted and matches caller
* 2. Verifies witness data matches signed hash
* 3. Gets executor address from whitelist
* 4. Validates all input parameters
* 5. Transfers user's tokens to executor via Permit2
* 6. Calls executor to swap tokens on DEX
* 7. Verifies correct output amount received
* 8. Calculates deterministic proxy address using OUTPUT token and amount
* 9. Deploys proxy contract
* 10. Transfers swapped tokens to proxy
* @param permit Permit2 transfer parameters for input tokens
* @param user User's address (token owner)
* @param witness Hash of witness data signed by the user
* @param witnessTypeString EIP-712 type string for signature verification
* @param signature User's EIP-712 signature authorizing the transfer
* @param depositData Struct containing deposit parameters including output token details
* @param resolverData Additional data passed to executor for DEX swap logic
* @param intentId Unique identifier for this deposit intent
*/
function deposit(
ISignatureTransfer.PermitTransferFrom memory permit,
address user,
bytes32 witness,
string calldata witnessTypeString,
bytes calldata signature,
DepositDexData calldata depositData,
bytes calldata resolverData,
bytes16 intentId
) external;
/**
* @notice Performs a single-chain atomic swap in one transaction
* @dev Flow:
* 1. Validates resolver is whitelisted and matches caller
* 2. Verifies witness data matches signed hash
* 3. Validates intentId matches in both permit2 and fulfillment signatures
* 4. Validates fulfillment signature from authorized backend signer
* 5. Gets executor address and validates parameters
* 6. Determines output token (handles WETH unwrapping if needed)
* 7. Transfers user's input tokens to executor via Permit2
* 8. Calls executor to perform swap
* 9. Verifies correct output amount received within bounds
* 10. Unwraps WETH to ETH if necessary
* 11. Transfers output tokens/ETH to user
* @param permit Permit2 transfer parameters for user's input tokens
* @param user User's address (token owner)
* @param witness Hash of the witness data (SwapData) signed by the user
* @param witnessTypeString EIP-712 type string for witness verification
* @param permitSignature User's signature for Permit2 transfer
* @param swapData Swap parameters including resolver address and expected output token
* @param fulfillmentParams Fulfillment parameters including backend signature and amount bounds
*/
function swap(
ISignatureTransfer.PermitTransferFrom memory permit,
address user,
bytes32 witness,
string calldata witnessTypeString,
bytes calldata permitSignature,
SwapData calldata swapData,
FulfillmentParams calldata fulfillmentParams
) external;
/**
* @notice Transfers tokens directly to resolver without proxy deployment (Escrow as a feature)
* @dev Flow:
* 1. Validates resolver deposit address is whitelisted and matches caller
* 2. Validates resolver withdraw address is whitelisted
* 3. Validates both addresses belong to the same resolver
* 4. Verifies witness data matches signed hash
* 5. Validates input parameters (token, amount)
* 6. Transfers tokens directly to resolver withdraw address via Permit2
* @param permit Permit2 transfer parameters
* @param user User's address (token owner)
* @param witness Hash of witness data signed by the user
* @param witnessTypeString EIP-712 type string for signature verification
* @param signature User's EIP-712 signature authorizing the transfer
* @param transferData Struct containing resolver deposit and withdraw addresses
* @param intentId Unique identifier for this transfer intent
*/
function directTransfer(
ISignatureTransfer.PermitTransferFrom memory permit,
address user,
bytes32 witness,
string calldata witnessTypeString,
bytes calldata signature,
DirectTransferData calldata transferData,
bytes16 intentId
) external;
/**
* @notice Transfers tokens with DEX swap directly to resolver without proxy deployment (Escrow as a feature)
* @dev Flow:
* 1. Validates resolver deposit address is whitelisted and matches caller
* 2. Validates resolver withdraw address is whitelisted
* 3. Validates both addresses belong to the same resolver
* 4. Verifies witness data matches signed hash
* 5. Gets executor address from whitelist
* 6. Validates all input parameters
* 7. Transfers user's tokens to executor via Permit2
* 8. Calls executor to swap tokens on DEX
* 9. Verifies correct output amount received
* 10. Transfers swapped tokens directly to resolver withdraw address
* @param permit Permit2 transfer parameters for input tokens
* @param user User's address (token owner)
* @param witness Hash of witness data signed by the user
* @param witnessTypeString EIP-712 type string for signature verification
* @param signature User's EIP-712 signature authorizing the transfer
* @param transferData Struct containing transfer parameters including output token details
* @param resolverData Additional data passed to executor for DEX swap logic
* @param intentId Unique identifier for this transfer intent
*/
function directTransfer(
ISignatureTransfer.PermitTransferFrom memory permit,
address user,
bytes32 witness,
string calldata witnessTypeString,
bytes calldata signature,
DirectTransferDexData calldata transferData,
bytes calldata resolverData,
bytes16 intentId
) external;
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
import {IWETH} from "./IWETH.sol";
/**
* @notice Data structure for a fulfillment request
* @dev This struct is used for EIP-712 signature verification
* @param intentId Unique identifier for the intent being fulfilled
* @param to Recipient address that will receive the fulfilled tokens
* @param token Token address to be received (use NATIVE_TOKEN sentinel for ETH)
* @param minAmount Minimum acceptable amount for the fulfillment
* @param maxAmount Maximum amount that can be fulfilled
* @param deadline Unix timestamp after which the request expires
*/
struct FulfillmentRequest {
bytes16 intentId;
address to;
address token;
uint256 minAmount;
uint256 maxAmount;
uint256 deadline;
}
/**
* @title IFulfillmentBase
* @notice Interface defining shared fulfillment functionality, errors, and events
* @dev Base interface inherited by both Fulfillment and EscrowRouter contracts
*/
interface IFulfillmentBase {
/// @notice Thrown when an address parameter is zero or invalid
error InvalidAddress();
/// @notice Thrown when an amount doesn't match expected value
error InvalidAmount();
/// @notice Thrown when fulfilled amount is below minimum required
error InsufficientAmount();
/// @notice Thrown when fulfilled amount exceeds maximum allowed
error ExcessiveAmount();
/// @notice Thrown when signature verification fails
error InvalidSignature();
/// @notice Thrown when signer is not authorized
error InvalidSigner();
/// @notice Thrown when fulfillment request deadline has passed
error FulfillmentRequestExpired();
/// @notice Thrown when native ETH transfer fails
error NativeTransferFailed();
/// @notice Thrown when input arrays have mismatched lengths
error InvalidInput();
/// @notice Thrown when ETH is received from an address other than WETH
error OnlyWETH();
/**
* @notice Emitted when signer permissions are updated
* @param signers Array of signer addresses updated
* @param allowed Array of corresponding permission statuses
*/
event SignersUpdated(address[] indexed signers, bool[] allowed);
/**
* @notice Updates the authorization status of signer addresses
* @param signers Array of signer addresses to update
* @param allowed Array of boolean values indicating authorization status
* @dev Can only be called by the contract owner
*/
function setSigners(address[] memory signers, bool[] memory allowed) external;
/**
* @notice Computes the EIP-712 hash of a fulfillment request
* @param request The fulfillment request to hash
* @return bytes32 The EIP-712 compliant hash of the request
* @dev Used for signature verification
*/
function hashFulfillmentRequest(FulfillmentRequest calldata request) external view returns (bytes32);
/**
* @notice Checks if an address is an authorized signer
* @param signer The address to check
* @return bool True if the address is an authorized signer
*/
function signers(address signer) external view returns (bool);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
/**
* @title IResolverWhitelist
* @notice Interface for managing whitelisted resolvers and their authorized addresses
* @dev Maintains separate lists for deposit and withdraw addresses per resolver
* Enables access control for escrow operations
*/
interface IResolverWhitelist {
/// @notice Thrown when attempting to add a resolver that is already active
error ResolverAlreadyActive();
/// @notice Thrown when attempting to modify a resolver that is not active
error ResolverNotActive();
/// @notice Thrown when an address does not belong to the specified resolver
error AddressNotInResolver();
/// @notice Thrown when attempting to activate a resolver that is not initialized
error ResolverNotInitialized();
/// @notice Thrown when an address is already assigned to another resolver
error AddressAlreadyAssigned();
/**
* @notice Emitted when a resolver's active status changes
* @param resolverId Unique identifier of the resolver
* @param active New active status (true = active, false = inactive)
*/
event ResolverActiveChanged(bytes16 indexed resolverId, bool indexed active);
/**
* @notice Emitted when deposit addresses are added to a resolver
* @param resolverId Unique identifier of the resolver
* @param addr Array of addresses added for deposit authorization
*/
event DepositAddressesAdded(bytes16 indexed resolverId, address[] addr);
/**
* @notice Emitted when deposit addresses are removed from a resolver
* @param resolverId Unique identifier of the resolver
* @param addr Array of addresses removed from deposit authorization
*/
event DepositAddressesRemoved(bytes16 indexed resolverId, address[] addr);
/**
* @notice Emitted when withdraw addresses are added to a resolver
* @param resolverId Unique identifier of the resolver
* @param addr Array of addresses added for withdraw authorization
*/
event WithdrawAddressesAdded(bytes16 indexed resolverId, address[] addr);
/**
* @notice Emitted when withdraw addresses are removed from a resolver
* @param resolverId Unique identifier of the resolver
* @param addr Array of addresses removed from withdraw authorization
*/
event WithdrawAddressesRemoved(bytes16 indexed resolverId, address[] addr);
/**
* @notice Emitted when a deposit address is enabled or disabled
* @param resolverId Unique identifier of the resolver
* @param addr Address that was enabled/disabled
* @param enabled New enabled status (true = enabled, false = disabled)
*/
event DepositAddressEnabledChanged(bytes16 indexed resolverId, address indexed addr, bool indexed enabled);
/**
* @notice Emitted when a withdraw address is enabled or disabled
* @param resolverId Unique identifier of the resolver
* @param addr Address that was enabled/disabled
* @param enabled New enabled status (true = enabled, false = disabled)
*/
event WithdrawAddressEnabledChanged(bytes16 indexed resolverId, address indexed addr, bool indexed enabled);
/**
* @notice Emitted when a new resolver is added to the whitelist
* @param resolverId Unique identifier of the new resolver
* @param executor Address of the executor contract for this resolver
* @param depositAddresses Initial array of authorized deposit addresses
* @param withdrawAddresses Initial array of authorized withdraw addresses
*/
event NewResolverAdded(
bytes16 indexed resolverId,
address executor,
address[] depositAddresses,
address[] withdrawAddresses
);
/**
* @notice Emitted when a resolver's executor contract address is updated
* @param resolverId Unique identifier of the resolver
* @param executor New executor contract address
*/
event ExecutorSet(bytes16 indexed resolverId, address indexed executor);
/**
* @notice Activates or deactivates a resolver
* @dev Only active resolvers can participate in deposits and withdrawals
* @param resolverId Unique identifier for the resolver
* @param active True to activate, false to deactivate
*/
function setActive(bytes16 resolverId, bool active) external;
/**
* @notice Checks if a resolver is active
* @param resolverId Unique identifier for the resolver
* @return bool True if the resolver is active
*/
function isActive(bytes16 resolverId) external view returns (bool);
/**
* @notice Adds multiple deposit addresses to a resolver's whitelist
* @dev The addresses will be authorized to create deposits for this resolver
* @param resolverId Unique identifier for the resolver
* @param addresses Array of addresses to authorize for deposits
*/
function addDepositAddresses(bytes16 resolverId, address[] calldata addresses) external;
/**
* @notice Adds multiple withdraw addresses to a resolver's whitelist
* @dev The addresses will be authorized to receive withdrawals for this resolver
* @param resolverId Unique identifier for the resolver
* @param addresses Array of addresses to authorize for withdrawals
*/
function addWithdrawAddresses(bytes16 resolverId, address[] calldata addresses) external;
/**
* @notice Removes multiple deposit addresses from a resolver's whitelist
* @dev The addresses will no longer be authorized to create deposits
* @param resolverId Unique identifier for the resolver
* @param addresses Array of addresses to remove from deposit authorization
*/
function removeDepositAddresses(bytes16 resolverId, address[] calldata addresses) external;
/**
* @notice Removes multiple withdraw addresses from a resolver's whitelist
* @dev The addresses will no longer be authorized to receive withdrawals
* @param resolverId Unique identifier for the resolver
* @param addresses Array of addresses to remove from withdraw authorization
*/
function removeWithdrawAddresses(bytes16 resolverId, address[] calldata addresses) external;
/**
* @notice Enables or disables a specific deposit address for a resolver
* @dev Allows fine-grained control over individual addresses without removing them
* The address must already be registered to the resolver
* @param resolverId Unique identifier for the resolver
* @param addr Address to enable or disable
* @param enabled True to enable, false to disable
*/
function setDepositAddressEnabled(bytes16 resolverId, address addr, bool enabled) external;
/**
* @notice Enables or disables a specific withdraw address for a resolver
* @dev Allows fine-grained control over individual addresses without removing them
* The address must already be registered to the resolver
* @param resolverId Unique identifier for the resolver
* @param addr Address to enable or disable
* @param enabled True to enable, false to disable
*/
function setWithdrawAddressEnabled(bytes16 resolverId, address addr, bool enabled) external;
/**
* @notice Adds a new resolver with executor and initial authorized addresses
* @dev Activates the resolver and adds all provided addresses in one transaction
* @param resolverId Unique identifier for the new resolver
* @param executor Address of the executor contract for this resolver
* @param depositAddresses Array of addresses to authorize for deposits
* @param withdrawAddresses Array of addresses to authorize for withdrawals
*/
function addNewResolver(
bytes16 resolverId,
address executor,
address[] calldata depositAddresses,
address[] calldata withdrawAddresses
) external;
/**
* @notice Sets or updates the executor contract address for a resolver
* @dev Executor is the contract that performs swaps and fulfillments
* @param resolverId Unique identifier for the resolver
* @param executor Address of the executor contract
*/
function setExecutor(bytes16 resolverId, address executor) external;
/**
* @notice Checks if an address is authorized to create deposits
* @dev Verifies both that the address is whitelisted and the resolver is active
* @param addr Address to check
* @return bool True if the address is authorized for deposits
*/
function checkDeposit(address addr) external view returns (bool);
/**
* @notice Checks if an address is authorized to receive withdrawals
* @dev Verifies both that the address is whitelisted and the resolver is active
* @param addr Address to check
* @return bool True if the address is authorized for withdrawals
*/
function checkWithdraw(address addr) external view returns (bool);
/**
* @notice Verifies that deposit and withdrawal addresses belong to the same resolver
* @dev Used to ensure funds can only be withdrawn by the same resolver that deposited them
* @param depositAddr The address used for deposit
* @param withdrawAddr The address requesting withdrawal
* @return bool True if both addresses belong to the same resolver
*/
function checkSameResolver(address depositAddr, address withdrawAddr) external view returns (bool);
/**
* @notice Retrieves the executor contract address associated with a deposit address
* @dev Looks up the resolver ID from the deposit address, then returns its executor
* @param depositAddr The deposit address to query
* @return address The executor contract address for the resolver, or zero address if not found
*/
function getExecutorByDepositAddress(address depositAddr) external view returns (address);
/**
* @notice Returns the resolver ID associated with a deposit address
* @param addr The deposit address to query
* @return bytes16 The resolver ID, or bytes16(0) if not registered
*/
function depositToResolverId(address addr) external view returns (bytes16);
/**
* @notice Returns the resolver ID associated with a withdraw address
* @param addr The withdraw address to query
* @return bytes16 The resolver ID, or bytes16(0) if not registered
*/
function withdrawToResolverId(address addr) external view returns (bytes16);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
interface IWETH {
event Approval(address indexed src, address indexed guy, uint wad);
event Transfer(address indexed src, address indexed dst, uint wad);
event Deposit(address indexed dst, uint wad);
event Withdrawal(address indexed src, uint wad);
function deposit() external payable;
function withdraw(uint wad) external;
function totalSupply() external view returns (uint);
function approve(address guy, uint wad) external returns (bool);
function transfer(address dst, uint wad) external returns (bool);
function transferFrom(address src, address dst, uint wad) external returns (bool);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
/**
* @title Validation
* @notice Library for common input validation functions
* @dev Provides reusable validation logic with custom errors for gas efficiency
*/
library Validation {
/// @notice Thrown when a zero address is provided where it's not allowed
error ZeroAddress();
/// @notice Thrown when a zero amount is provided where it's not allowed
error ZeroAmount();
/// @notice Thrown when a zero hash is provided where it's not allowed
error ZeroHash();
/// @notice Validates that an address is not zero
/// @param addr The address to validate
function requireNonZero(address addr) internal pure {
if (addr == address(0)) revert ZeroAddress();
}
/// @notice Validates that an amount is not zero
/// @param amount The amount to validate
function requireNonZero(uint256 amount) internal pure {
if (amount == 0) revert ZeroAmount();
}
/// @notice Validates that a bytes32 hash is not zero
/// @param hash The hash to validate
function requireNonZero(bytes32 hash) internal pure {
if (hash == bytes32(0)) revert ZeroHash();
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IEIP712 {
function DOMAIN_SEPARATOR() external view returns (bytes32);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {IEIP712} from "./IEIP712.sol";
/// @title SignatureTransfer
/// @notice Handles ERC20 token transfers through signature based actions
/// @dev Requires user's token approval on the Permit2 contract
interface ISignatureTransfer is IEIP712 {
/// @notice Thrown when the requested amount for a transfer is larger than the permissioned amount
/// @param maxAmount The maximum amount a spender can request to transfer
error InvalidAmount(uint256 maxAmount);
/// @notice Thrown when the number of tokens permissioned to a spender does not match the number of tokens being transferred
/// @dev If the spender does not need to transfer the number of tokens permitted, the spender can request amount 0 to be transferred
error LengthMismatch();
/// @notice Emits an event when the owner successfully invalidates an unordered nonce.
event UnorderedNonceInvalidation(address indexed owner, uint256 word, uint256 mask);
/// @notice The token and amount details for a transfer signed in the permit transfer signature
struct TokenPermissions {
// ERC20 token address
address token;
// the maximum amount that can be spent
uint256 amount;
}
/// @notice The signed permit message for a single token transfer
struct PermitTransferFrom {
TokenPermissions permitted;
// a unique value for every token owner's signature to prevent signature replays
uint256 nonce;
// deadline on the permit signature
uint256 deadline;
}
/// @notice Specifies the recipient address and amount for batched transfers.
/// @dev Recipients and amounts correspond to the index of the signed token permissions array.
/// @dev Reverts if the requested amount is greater than the permitted signed amount.
struct SignatureTransferDetails {
// recipient address
address to;
// spender requested amount
uint256 requestedAmount;
}
/// @notice Used to reconstruct the signed permit message for multiple token transfers
/// @dev Do not need to pass in spender address as it is required that it is msg.sender
/// @dev Note that a user still signs over a spender address
struct PermitBatchTransferFrom {
// the tokens and corresponding amounts permitted for a transfer
TokenPermissions[] permitted;
// a unique value for every token owner's signature to prevent signature replays
uint256 nonce;
// deadline on the permit signature
uint256 deadline;
}
/// @notice A map from token owner address and a caller specified word index to a bitmap. Used to set bits in the bitmap to prevent against signature replay protection
/// @dev Uses unordered nonces so that permit messages do not need to be spent in a certain order
/// @dev The mapping is indexed first by the token owner, then by an index specified in the nonce
/// @dev It returns a uint256 bitmap
/// @dev The index, or wordPosition is capped at type(uint248).max
function nonceBitmap(address, uint256) external view returns (uint256);
/// @notice Transfers a token using a signed permit message
/// @dev Reverts if the requested amount is greater than the permitted signed amount
/// @param permit The permit data signed over by the owner
/// @param owner The owner of the tokens to transfer
/// @param transferDetails The spender's requested transfer details for the permitted token
/// @param signature The signature to verify
function permitTransferFrom(
PermitTransferFrom memory permit,
SignatureTransferDetails calldata transferDetails,
address owner,
bytes calldata signature
) external;
/// @notice Transfers a token using a signed permit message
/// @notice Includes extra data provided by the caller to verify signature over
/// @dev The witness type string must follow EIP712 ordering of nested structs and must include the TokenPermissions type definition
/// @dev Reverts if the requested amount is greater than the permitted signed amount
/// @param permit The permit data signed over by the owner
/// @param owner The owner of the tokens to transfer
/// @param transferDetails The spender's requested transfer details for the permitted token
/// @param witness Extra data to include when checking the user signature
/// @param witnessTypeString The EIP-712 type definition for remaining string stub of the typehash
/// @param signature The signature to verify
function permitWitnessTransferFrom(
PermitTransferFrom memory permit,
SignatureTransferDetails calldata transferDetails,
address owner,
bytes32 witness,
string calldata witnessTypeString,
bytes calldata signature
) external;
/// @notice Transfers multiple tokens using a signed permit message
/// @param permit The permit data signed over by the owner
/// @param owner The owner of the tokens to transfer
/// @param transferDetails Specifies the recipient and requested amount for the token transfer
/// @param signature The signature to verify
function permitTransferFrom(
PermitBatchTransferFrom memory permit,
SignatureTransferDetails[] calldata transferDetails,
address owner,
bytes calldata signature
) external;
/// @notice Transfers multiple tokens using a signed permit message
/// @dev The witness type string must follow EIP712 ordering of nested structs and must include the TokenPermissions type definition
/// @notice Includes extra data provided by the caller to verify signature over
/// @param permit The permit data signed over by the owner
/// @param owner The owner of the tokens to transfer
/// @param transferDetails Specifies the recipient and requested amount for the token transfer
/// @param witness Extra data to include when checking the user signature
/// @param witnessTypeString The EIP-712 type definition for remaining string stub of the typehash
/// @param signature The signature to verify
function permitWitnessTransferFrom(
PermitBatchTransferFrom memory permit,
SignatureTransferDetails[] calldata transferDetails,
address owner,
bytes32 witness,
string calldata witnessTypeString,
bytes calldata signature
) external;
/// @notice Invalidates the bits specified in mask for the bitmap at the word position
/// @dev The wordPos is maxed at type(uint248).max
/// @param wordPos A number to index the nonceBitmap at
/// @param mask A bitmap masked against msg.sender's current bitmap at the word position
function invalidateUnorderedNonces(uint256 wordPos, uint256 mask) external;
}{
"optimizer": {
"enabled": true,
"runs": 200
},
"viaIR": true,
"evmVersion": "paris",
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
}
}Contract ABI
API[{"inputs":[{"internalType":"address","name":"_router","type":"address"},{"internalType":"contract IResolverWhitelist","name":"_resolverWhitelist","type":"address"},{"internalType":"address","name":"_signerAddress","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"InvalidOrderData","type":"error"},{"inputs":[],"name":"InvalidResolver","type":"error"},{"inputs":[],"name":"InvalidSecret","type":"error"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[],"name":"InvalidSignature","type":"error"},{"inputs":[],"name":"NoBalance","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"inputs":[],"name":"TimelockNotExpired","type":"error"},{"inputs":[],"name":"ZeroAddress","type":"error"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":true,"internalType":"address","name":"resolverDeposit","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"FastRefund","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":true,"internalType":"address","name":"resolverDeposit","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Refund","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"address","name":"resolverWithdraw","type":"address"},{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"address","name":"resolverDeposit","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[],"name":"IMPLEMENTATION","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"RESOLVER_WHITELIST","outputs":[{"internalType":"contract IResolverWhitelist","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ROUTER","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SIGNER_ADDRESS","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"address","name":"resolverDeposit","type":"address"},{"internalType":"address","name":"user","type":"address"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes32","name":"secretHash","type":"bytes32"},{"internalType":"uint256","name":"deadline","type":"uint256"}],"internalType":"struct IEscrowRouter.Order","name":"order","type":"tuple"},{"internalType":"bytes","name":"backendSignature","type":"bytes"},{"internalType":"bytes","name":"resolverSignature","type":"bytes"}],"name":"fastRefund","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"address","name":"resolverDeposit","type":"address"},{"internalType":"address","name":"user","type":"address"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes32","name":"secretHash","type":"bytes32"},{"internalType":"uint256","name":"deadline","type":"uint256"}],"internalType":"struct IEscrowRouter.Order","name":"order","type":"tuple"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"refund","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"address","name":"resolverDeposit","type":"address"},{"internalType":"address","name":"user","type":"address"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes32","name":"secretHash","type":"bytes32"},{"internalType":"uint256","name":"deadline","type":"uint256"}],"internalType":"struct IEscrowRouter.Order","name":"order","type":"tuple"},{"internalType":"bytes","name":"secret","type":"bytes"},{"internalType":"address","name":"resolverWithdraw","type":"address"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]Loading...
Loading
Loading...
Loading
Net Worth in USD
$0.00
Net Worth in ETH
0
Multichain Portfolio | 34 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.