More Info
Private Name Tags
ContractCreator
TokenTracker
Latest 25 from a total of 5,681 transactions
| Transaction Hash |
Method
|
Block
|
From
|
|
To
|
||||
|---|---|---|---|---|---|---|---|---|---|
| Set Approval For... | 24435391 | 10 days ago | IN | 0 ETH | 0.00000959 | ||||
| Set Approval For... | 24435391 | 10 days ago | IN | 0 ETH | 0.00000961 | ||||
| Set Approval For... | 24435377 | 10 days ago | IN | 0 ETH | 0.00001136 | ||||
| Set Approval For... | 24435374 | 10 days ago | IN | 0 ETH | 0.00001125 | ||||
| Set Approval For... | 24431508 | 11 days ago | IN | 0 ETH | 0.00000161 | ||||
| Set Approval For... | 24350222 | 22 days ago | IN | 0 ETH | 0.00006299 | ||||
| Set Approval For... | 24317355 | 27 days ago | IN | 0 ETH | 0.00000187 | ||||
| Safe Transfer Fr... | 24303680 | 28 days ago | IN | 0 ETH | 0.00000093 | ||||
| Set Approval For... | 24215099 | 41 days ago | IN | 0 ETH | 0.00009381 | ||||
| Set Approval For... | 24190489 | 44 days ago | IN | 0 ETH | 0.00001557 | ||||
| Safe Transfer Fr... | 24168739 | 47 days ago | IN | 0 ETH | 0.00000547 | ||||
| Set Approval For... | 24126520 | 53 days ago | IN | 0 ETH | 0.00009591 | ||||
| Set Approval For... | 24053256 | 63 days ago | IN | 0 ETH | 0.00000064 | ||||
| Set Approval For... | 24001444 | 71 days ago | IN | 0 ETH | 0.00001319 | ||||
| Set Approval For... | 23952969 | 77 days ago | IN | 0 ETH | 0.00000272 | ||||
| Set Approval For... | 23895507 | 86 days ago | IN | 0 ETH | 0.00002418 | ||||
| Set Approval For... | 23881127 | 88 days ago | IN | 0 ETH | 0.00000719 | ||||
| Set Approval For... | 23752707 | 106 days ago | IN | 0 ETH | 0.00002969 | ||||
| Set Approval For... | 23724207 | 110 days ago | IN | 0 ETH | 0.00003039 | ||||
| Set Approval For... | 23705720 | 112 days ago | IN | 0 ETH | 0.00009603 | ||||
| Set Approval For... | 23683512 | 115 days ago | IN | 0 ETH | 0.00003811 | ||||
| Set Approval For... | 23676985 | 116 days ago | IN | 0 ETH | 0.00004806 | ||||
| Set Approval For... | 23676980 | 116 days ago | IN | 0 ETH | 0.00006172 | ||||
| Safe Transfer Fr... | 23676975 | 116 days ago | IN | 0 ETH | 0.00002631 | ||||
| Set Approval For... | 23676934 | 116 days ago | IN | 0 ETH | 0.0000486 |
Latest 25 internal transactions (View All)
Advanced mode:
| Parent Transaction Hash | Method | Block |
From
|
|
To
|
||
|---|---|---|---|---|---|---|---|
| Transfer | 21831883 | 374 days ago | 1 ETH | ||||
| Transfer | 21831883 | 374 days ago | 1 ETH | ||||
| Transfer | 21831883 | 374 days ago | 1 ETH | ||||
| Transfer | 21831883 | 374 days ago | 1 ETH | ||||
| Transfer | 21831883 | 374 days ago | 1 ETH | ||||
| Transfer | 21831883 | 374 days ago | 1 ETH | ||||
| Transfer | 21831883 | 374 days ago | 1 ETH | ||||
| Transfer | 21831883 | 374 days ago | 1 ETH | ||||
| Transfer | 21831882 | 374 days ago | 1 ETH | ||||
| Transfer | 21831881 | 374 days ago | 1 ETH | ||||
| Transfer | 21831881 | 374 days ago | 1 ETH | ||||
| Transfer | 21831881 | 374 days ago | 1 ETH | ||||
| Transfer | 21831880 | 374 days ago | 1 ETH | ||||
| Transfer | 21831880 | 374 days ago | 1 ETH | ||||
| Transfer | 21831880 | 374 days ago | 1 ETH | ||||
| Transfer | 21831880 | 374 days ago | 1 ETH | ||||
| Transfer | 21831879 | 374 days ago | 1 ETH | ||||
| Transfer | 21831879 | 374 days ago | 1 ETH | ||||
| Transfer | 21831879 | 374 days ago | 1 ETH | ||||
| Transfer | 21831879 | 374 days ago | 1 ETH | ||||
| Transfer | 21831879 | 374 days ago | 1 ETH | ||||
| Transfer | 21831879 | 374 days ago | 1 ETH | ||||
| Transfer | 21831879 | 374 days ago | 1 ETH | ||||
| Transfer | 21831879 | 374 days ago | 1 ETH | ||||
| Transfer | 21831879 | 374 days ago | 1 ETH |
Loading...
Loading
Loading...
Loading
Cross-Chain Transactions
Loading...
Loading
Contract Name:
MegaETH
Compiler Version
v0.8.28+commit.7893614a
Optimization Enabled:
Yes with 200 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
import "@openzeppelin/contracts/token/ERC721/ERC721.sol";
import "@openzeppelin/contracts/access/Ownable2Step.sol";
import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import "@openzeppelin/contracts/utils/Strings.sol";
/// @title MegaETH NFT Collection
/// @notice This contract implements a two-phase NFT minting system with whitelist and guaranteed mint functionality
/// @dev Implements soulbound NFTs with phased minting, merkle proofs for whitelisting
contract MegaETH is ERC721, Ownable2Step, ReentrancyGuard {
using Strings for uint256;
// Custom Errors
error SoldOut();
error AlreadyMinted();
error MintingNotStarted();
error MintingEnded();
error InvalidProof();
error InsufficientPayment();
error PaymentNotRequired();
error Phase1SoldOut();
error Phase1NotCompleted();
error Phase2SoldOut();
error TokenIsSoulbound();
error TokenIdInvalid();
error TokenNotMintedYet();
error WithdrawalFailed();
error PhasesNotInitialized();
error ContractPaused();
error InvalidGuranteedStartTime();
error InvalidPhase2StartTime();
error InvalidPhaseEndTime();
error InvalidPaymentReceiver();
error NotAuthorized();
// Constants
/// @notice Maximum number of NFTs that can be minted
uint256 public constant MAX_SUPPLY = 10000;
/// @notice Price per NFT in ETH
uint256 public constant PRICE = 1 ether;
/// @notice Maximum supply for phase 1 minting
uint256 public constant PHASE1_SUPPLY = 5000;
/// @notice Maximum supply for phase 2 minting
uint256 public constant PHASE2_SUPPLY = 5000;
/// @notice Address that receives payment for mints
address public immutable PAYMENT_RECEIVER;
// State variables
uint256 public totalSupply;
string public baseURI;
bool public paused;
// Phase timing variables
uint256 public phase1GuaranteedStart;
uint256 public phase1WhitelistStart;
uint256 public phase1End;
uint256 public phase2GuaranteedStart;
uint256 public phase2WhitelistStart;
uint256 public phase2End;
// Merkle roots
bytes32 public phase1GuaranteedRoot;
bytes32 public phase1WhitelistRoot;
bytes32 public phase1FreeMintRoot;
bytes32 public phase2GuaranteedRoot;
bytes32 public phase2WhitelistRoot;
bytes32 public phase2FreeMintRoot;
// Mapping to track minted status
mapping(address => bool) public hasMinted;
/// @notice Emitted when a new token is minted
/// @param to Address receiving the NFT
/// @param tokenId ID of the minted token
/// @param phase Current minting phase (1 or 2)
event Minted(address indexed to, uint256 tokenId, uint256 phase);
/// @notice Emitted when contract pause state changes
/// @param isPaused New pause state
event ContractPausedEvent(bool isPaused);
/// @notice Defines different types of minting methods available
enum MintType {
PHASE1_GUARANTEED,
PHASE1_WHITELIST,
PHASE1_FREE,
PHASE2_GUARANTEED,
PHASE2_WHITELIST,
PHASE2_FREE
}
/// @notice Ensures caller is owner or payment receiver
modifier onlyAdmin() {
if (msg.sender != owner() && msg.sender != PAYMENT_RECEIVER) {
revert NotAuthorized();
}
_;
}
/// @notice Ensures contract is not paused
modifier whenNotPaused() {
if (paused) revert ContractPaused();
_;
}
/// @notice Ensures all phase timings are initialized
modifier phaseInitialized() {
if (
phase1GuaranteedStart == 0 ||
phase1WhitelistStart == 0 ||
phase1End == 0 ||
phase2GuaranteedStart == 0 ||
phase2WhitelistStart == 0 ||
phase2End == 0
) revert PhasesNotInitialized();
_;
}
/// @notice Validates phase timing sequence
modifier validPhaseTimings(
uint256 guaranteedStart,
uint256 whitelistStart,
uint256 end
) {
if (guaranteedStart >= end) revert InvalidPhaseEndTime();
if (whitelistStart >= end) revert InvalidPhaseEndTime();
if (guaranteedStart > whitelistStart)
revert InvalidGuranteedStartTime();
_;
}
/// @notice Initializes the contract with payment receiver address
/// @param _paymentReceiver Address to receive mint payments
constructor(
address _paymentReceiver
) ERC721("MegaETH NFT", "MEGA") Ownable(msg.sender) {
if (_paymentReceiver == address(0)) revert InvalidPaymentReceiver();
PAYMENT_RECEIVER = _paymentReceiver;
}
/// @notice Mints an NFT based on specified mint type and proof
/// @param mintType Type of mint to perform
/// @param merkleProof Proof of whitelist inclusion
/// @dev Handles different mint types with respective validations
function mint(
MintType mintType,
bytes32[] calldata merkleProof
) external payable nonReentrant phaseInitialized whenNotPaused {
if (totalSupply >= MAX_SUPPLY) revert SoldOut();
if (hasMinted[msg.sender]) revert AlreadyMinted();
bytes32 merkleRoot;
uint256 startTime;
uint256 endTime;
bool requiresPayment;
if (mintType == MintType.PHASE1_GUARANTEED) {
merkleRoot = phase1GuaranteedRoot;
startTime = phase1GuaranteedStart;
endTime = phase1WhitelistStart;
requiresPayment = true;
if (totalSupply >= PHASE1_SUPPLY) revert Phase1SoldOut();
} else if (mintType == MintType.PHASE1_WHITELIST) {
merkleRoot = phase1WhitelistRoot;
startTime = phase1WhitelistStart;
endTime = phase1End;
requiresPayment = true;
if (totalSupply >= PHASE1_SUPPLY) revert Phase1SoldOut();
} else if (mintType == MintType.PHASE1_FREE) {
merkleRoot = phase1FreeMintRoot;
startTime = phase1GuaranteedStart;
endTime = phase1WhitelistStart;
requiresPayment = false;
if (totalSupply >= PHASE1_SUPPLY) revert Phase1SoldOut();
} else if (mintType == MintType.PHASE2_GUARANTEED) {
merkleRoot = phase2GuaranteedRoot;
startTime = phase2GuaranteedStart;
endTime = phase2WhitelistStart;
requiresPayment = true;
if (block.timestamp <= phase1End) revert Phase1NotCompleted();
} else if (mintType == MintType.PHASE2_WHITELIST) {
merkleRoot = phase2WhitelistRoot;
startTime = phase2WhitelistStart;
endTime = phase2End;
requiresPayment = true;
if (block.timestamp <= phase1End) revert Phase1NotCompleted();
} else if (mintType == MintType.PHASE2_FREE) {
merkleRoot = phase2FreeMintRoot;
startTime = phase2GuaranteedStart;
endTime = phase2WhitelistStart;
requiresPayment = false;
if (block.timestamp <= phase1End) revert Phase1NotCompleted();
}
if (block.timestamp < startTime) revert MintingNotStarted();
if (block.timestamp > endTime) revert MintingEnded();
if (
!MerkleProof.verify(
merkleProof,
merkleRoot,
keccak256(abi.encodePacked(msg.sender))
)
) {
revert InvalidProof();
}
if (requiresPayment) {
if (msg.value != PRICE) revert InsufficientPayment();
(bool success, ) = PAYMENT_RECEIVER.call{value: msg.value}("");
if (!success) revert WithdrawalFailed();
} else {
if (msg.value > 0) revert PaymentNotRequired();
}
_mintInternal(msg.sender);
}
/// @notice Internal function to handle the NFT minting process
/// @param to Address to receive the NFT
/// @dev Handles the actual minting and updates relevant state
function _mintInternal(address to) internal {
uint256 tokenId = totalSupply;
_safeMint(to, tokenId);
totalSupply++;
hasMinted[to] = true;
emit Minted(to, tokenId, totalSupply <= PHASE1_SUPPLY ? 1 : 2);
}
/// @notice Override of _update to implement soulbound mechanism
/// @dev Prevents transfers after initial mint
function _update(
address to,
uint256 tokenId,
address auth
) internal virtual override returns (address) {
address from = _ownerOf(tokenId);
// Allow minting, but prevent transfers
if (from != address(0)) {
revert TokenIsSoulbound();
}
return super._update(to, tokenId, auth);
}
/// @notice Sets the contract's pause state
/// @param _paused New pause state
function setPaused(bool _paused) external onlyAdmin {
paused = _paused;
emit ContractPausedEvent(_paused);
}
/// @notice Sets the base URI for token metadata
/// @param newBaseURI New base URI string
function setBaseURI(string calldata newBaseURI) external onlyAdmin {
baseURI = newBaseURI;
}
/// @notice Sets the timing parameters for phase 1
/// @param _guaranteedStart Start time for guaranteed mints
/// @param _whitelistStart Start time for whitelist mints
/// @param _end End time for phase 1
function setPhase1Times(
uint256 _guaranteedStart,
uint256 _whitelistStart,
uint256 _end
)
external
onlyAdmin
validPhaseTimings(_guaranteedStart, _whitelistStart, _end)
{
phase1GuaranteedStart = _guaranteedStart;
phase1WhitelistStart = _whitelistStart;
phase1End = _end;
}
/// @notice Sets the timing parameters for phase 2
/// @param _guaranteedStart Start time for guaranteed mints
/// @param _whitelistStart Start time for whitelist mints
/// @param _end End time for phase 2
function setPhase2Times(
uint256 _guaranteedStart,
uint256 _whitelistStart,
uint256 _end
)
external
onlyAdmin
validPhaseTimings(_guaranteedStart, _whitelistStart, _end)
{
if (_guaranteedStart < phase1End) revert InvalidPhase2StartTime();
phase2GuaranteedStart = _guaranteedStart;
phase2WhitelistStart = _whitelistStart;
phase2End = _end;
}
/// @notice Sets all merkle roots for whitelist verification
/// @param _phase1GuaranteedRoot Root for phase 1 guaranteed list
/// @param _phase1WhitelistRoot Root for phase 1 whitelist
/// @param _phase1FreeMintRoot Root for phase 1 free mints
/// @param _phase2GuaranteedRoot Root for phase 2 guaranteed list
/// @param _phase2WhitelistRoot Root for phase 2 whitelist
/// @param _phase2FreeMintRoot Root for phase 2 free mints
function setMerkleRoots(
bytes32 _phase1GuaranteedRoot,
bytes32 _phase1WhitelistRoot,
bytes32 _phase1FreeMintRoot,
bytes32 _phase2GuaranteedRoot,
bytes32 _phase2WhitelistRoot,
bytes32 _phase2FreeMintRoot
) external onlyAdmin {
phase1GuaranteedRoot = _phase1GuaranteedRoot;
phase1WhitelistRoot = _phase1WhitelistRoot;
phase1FreeMintRoot = _phase1FreeMintRoot;
phase2GuaranteedRoot = _phase2GuaranteedRoot;
phase2WhitelistRoot = _phase2WhitelistRoot;
phase2FreeMintRoot = _phase2FreeMintRoot;
}
/// @notice Returns base URI for computing {tokenURI}
/// @return Base URI string
function _baseURI() internal view virtual override returns (string memory) {
return baseURI;
}
/// @notice Returns the URI for a given token
/// @param tokenId ID of the token to get URI for
/// @return Token URI string
function tokenURI(
uint256 tokenId
) public view virtual override returns (string memory) {
return string(abi.encodePacked(baseURI, tokenId.toString()));
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/ERC721.sol)
pragma solidity ^0.8.20;
import {IERC721} from "./IERC721.sol";
import {IERC721Metadata} from "./extensions/IERC721Metadata.sol";
import {ERC721Utils} from "./utils/ERC721Utils.sol";
import {Context} from "../../utils/Context.sol";
import {Strings} from "../../utils/Strings.sol";
import {IERC165, ERC165} from "../../utils/introspection/ERC165.sol";
import {IERC721Errors} from "../../interfaces/draft-IERC6093.sol";
/**
* @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC-721] Non-Fungible Token Standard, including
* the Metadata extension, but not including the Enumerable extension, which is available separately as
* {ERC721Enumerable}.
*/
abstract contract ERC721 is Context, ERC165, IERC721, IERC721Metadata, IERC721Errors {
using Strings for uint256;
// Token name
string private _name;
// Token symbol
string private _symbol;
mapping(uint256 tokenId => address) private _owners;
mapping(address owner => uint256) private _balances;
mapping(uint256 tokenId => address) private _tokenApprovals;
mapping(address owner => mapping(address operator => bool)) private _operatorApprovals;
/**
* @dev Initializes the contract by setting a `name` and a `symbol` to the token collection.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
return
interfaceId == type(IERC721).interfaceId ||
interfaceId == type(IERC721Metadata).interfaceId ||
super.supportsInterface(interfaceId);
}
/**
* @dev See {IERC721-balanceOf}.
*/
function balanceOf(address owner) public view virtual returns (uint256) {
if (owner == address(0)) {
revert ERC721InvalidOwner(address(0));
}
return _balances[owner];
}
/**
* @dev See {IERC721-ownerOf}.
*/
function ownerOf(uint256 tokenId) public view virtual returns (address) {
return _requireOwned(tokenId);
}
/**
* @dev See {IERC721Metadata-name}.
*/
function name() public view virtual returns (string memory) {
return _name;
}
/**
* @dev See {IERC721Metadata-symbol}.
*/
function symbol() public view virtual returns (string memory) {
return _symbol;
}
/**
* @dev See {IERC721Metadata-tokenURI}.
*/
function tokenURI(uint256 tokenId) public view virtual returns (string memory) {
_requireOwned(tokenId);
string memory baseURI = _baseURI();
return bytes(baseURI).length > 0 ? string.concat(baseURI, tokenId.toString()) : "";
}
/**
* @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
* token will be the concatenation of the `baseURI` and the `tokenId`. Empty
* by default, can be overridden in child contracts.
*/
function _baseURI() internal view virtual returns (string memory) {
return "";
}
/**
* @dev See {IERC721-approve}.
*/
function approve(address to, uint256 tokenId) public virtual {
_approve(to, tokenId, _msgSender());
}
/**
* @dev See {IERC721-getApproved}.
*/
function getApproved(uint256 tokenId) public view virtual returns (address) {
_requireOwned(tokenId);
return _getApproved(tokenId);
}
/**
* @dev See {IERC721-setApprovalForAll}.
*/
function setApprovalForAll(address operator, bool approved) public virtual {
_setApprovalForAll(_msgSender(), operator, approved);
}
/**
* @dev See {IERC721-isApprovedForAll}.
*/
function isApprovedForAll(address owner, address operator) public view virtual returns (bool) {
return _operatorApprovals[owner][operator];
}
/**
* @dev See {IERC721-transferFrom}.
*/
function transferFrom(address from, address to, uint256 tokenId) public virtual {
if (to == address(0)) {
revert ERC721InvalidReceiver(address(0));
}
// Setting an "auth" arguments enables the `_isAuthorized` check which verifies that the token exists
// (from != 0). Therefore, it is not needed to verify that the return value is not 0 here.
address previousOwner = _update(to, tokenId, _msgSender());
if (previousOwner != from) {
revert ERC721IncorrectOwner(from, tokenId, previousOwner);
}
}
/**
* @dev See {IERC721-safeTransferFrom}.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) public {
safeTransferFrom(from, to, tokenId, "");
}
/**
* @dev See {IERC721-safeTransferFrom}.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public virtual {
transferFrom(from, to, tokenId);
ERC721Utils.checkOnERC721Received(_msgSender(), from, to, tokenId, data);
}
/**
* @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist
*
* IMPORTANT: Any overrides to this function that add ownership of tokens not tracked by the
* core ERC-721 logic MUST be matched with the use of {_increaseBalance} to keep balances
* consistent with ownership. The invariant to preserve is that for any address `a` the value returned by
* `balanceOf(a)` must be equal to the number of tokens such that `_ownerOf(tokenId)` is `a`.
*/
function _ownerOf(uint256 tokenId) internal view virtual returns (address) {
return _owners[tokenId];
}
/**
* @dev Returns the approved address for `tokenId`. Returns 0 if `tokenId` is not minted.
*/
function _getApproved(uint256 tokenId) internal view virtual returns (address) {
return _tokenApprovals[tokenId];
}
/**
* @dev Returns whether `spender` is allowed to manage `owner`'s tokens, or `tokenId` in
* particular (ignoring whether it is owned by `owner`).
*
* WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this
* assumption.
*/
function _isAuthorized(address owner, address spender, uint256 tokenId) internal view virtual returns (bool) {
return
spender != address(0) &&
(owner == spender || isApprovedForAll(owner, spender) || _getApproved(tokenId) == spender);
}
/**
* @dev Checks if `spender` can operate on `tokenId`, assuming the provided `owner` is the actual owner.
* Reverts if:
* - `spender` does not have approval from `owner` for `tokenId`.
* - `spender` does not have approval to manage all of `owner`'s assets.
*
* WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this
* assumption.
*/
function _checkAuthorized(address owner, address spender, uint256 tokenId) internal view virtual {
if (!_isAuthorized(owner, spender, tokenId)) {
if (owner == address(0)) {
revert ERC721NonexistentToken(tokenId);
} else {
revert ERC721InsufficientApproval(spender, tokenId);
}
}
}
/**
* @dev Unsafe write access to the balances, used by extensions that "mint" tokens using an {ownerOf} override.
*
* NOTE: the value is limited to type(uint128).max. This protect against _balance overflow. It is unrealistic that
* a uint256 would ever overflow from increments when these increments are bounded to uint128 values.
*
* WARNING: Increasing an account's balance using this function tends to be paired with an override of the
* {_ownerOf} function to resolve the ownership of the corresponding tokens so that balances and ownership
* remain consistent with one another.
*/
function _increaseBalance(address account, uint128 value) internal virtual {
unchecked {
_balances[account] += value;
}
}
/**
* @dev Transfers `tokenId` from its current owner to `to`, or alternatively mints (or burns) if the current owner
* (or `to`) is the zero address. Returns the owner of the `tokenId` before the update.
*
* The `auth` argument is optional. If the value passed is non 0, then this function will check that
* `auth` is either the owner of the token, or approved to operate on the token (by the owner).
*
* Emits a {Transfer} event.
*
* NOTE: If overriding this function in a way that tracks balances, see also {_increaseBalance}.
*/
function _update(address to, uint256 tokenId, address auth) internal virtual returns (address) {
address from = _ownerOf(tokenId);
// Perform (optional) operator check
if (auth != address(0)) {
_checkAuthorized(from, auth, tokenId);
}
// Execute the update
if (from != address(0)) {
// Clear approval. No need to re-authorize or emit the Approval event
_approve(address(0), tokenId, address(0), false);
unchecked {
_balances[from] -= 1;
}
}
if (to != address(0)) {
unchecked {
_balances[to] += 1;
}
}
_owners[tokenId] = to;
emit Transfer(from, to, tokenId);
return from;
}
/**
* @dev Mints `tokenId` and transfers it to `to`.
*
* WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible
*
* Requirements:
*
* - `tokenId` must not exist.
* - `to` cannot be the zero address.
*
* Emits a {Transfer} event.
*/
function _mint(address to, uint256 tokenId) internal {
if (to == address(0)) {
revert ERC721InvalidReceiver(address(0));
}
address previousOwner = _update(to, tokenId, address(0));
if (previousOwner != address(0)) {
revert ERC721InvalidSender(address(0));
}
}
/**
* @dev Mints `tokenId`, transfers it to `to` and checks for `to` acceptance.
*
* Requirements:
*
* - `tokenId` must not exist.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function _safeMint(address to, uint256 tokenId) internal {
_safeMint(to, tokenId, "");
}
/**
* @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is
* forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
*/
function _safeMint(address to, uint256 tokenId, bytes memory data) internal virtual {
_mint(to, tokenId);
ERC721Utils.checkOnERC721Received(_msgSender(), address(0), to, tokenId, data);
}
/**
* @dev Destroys `tokenId`.
* The approval is cleared when the token is burned.
* This is an internal function that does not check if the sender is authorized to operate on the token.
*
* Requirements:
*
* - `tokenId` must exist.
*
* Emits a {Transfer} event.
*/
function _burn(uint256 tokenId) internal {
address previousOwner = _update(address(0), tokenId, address(0));
if (previousOwner == address(0)) {
revert ERC721NonexistentToken(tokenId);
}
}
/**
* @dev Transfers `tokenId` from `from` to `to`.
* As opposed to {transferFrom}, this imposes no restrictions on msg.sender.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
*
* Emits a {Transfer} event.
*/
function _transfer(address from, address to, uint256 tokenId) internal {
if (to == address(0)) {
revert ERC721InvalidReceiver(address(0));
}
address previousOwner = _update(to, tokenId, address(0));
if (previousOwner == address(0)) {
revert ERC721NonexistentToken(tokenId);
} else if (previousOwner != from) {
revert ERC721IncorrectOwner(from, tokenId, previousOwner);
}
}
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking that contract recipients
* are aware of the ERC-721 standard to prevent tokens from being forever locked.
*
* `data` is additional data, it has no specified format and it is sent in call to `to`.
*
* This internal function is like {safeTransferFrom} in the sense that it invokes
* {IERC721Receiver-onERC721Received} on the receiver, and can be used to e.g.
* implement alternative mechanisms to perform token transfer, such as signature-based.
*
* Requirements:
*
* - `tokenId` token must exist and be owned by `from`.
* - `to` cannot be the zero address.
* - `from` cannot be the zero address.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function _safeTransfer(address from, address to, uint256 tokenId) internal {
_safeTransfer(from, to, tokenId, "");
}
/**
* @dev Same as {xref-ERC721-_safeTransfer-address-address-uint256-}[`_safeTransfer`], with an additional `data` parameter which is
* forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
*/
function _safeTransfer(address from, address to, uint256 tokenId, bytes memory data) internal virtual {
_transfer(from, to, tokenId);
ERC721Utils.checkOnERC721Received(_msgSender(), from, to, tokenId, data);
}
/**
* @dev Approve `to` to operate on `tokenId`
*
* The `auth` argument is optional. If the value passed is non 0, then this function will check that `auth` is
* either the owner of the token, or approved to operate on all tokens held by this owner.
*
* Emits an {Approval} event.
*
* Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
*/
function _approve(address to, uint256 tokenId, address auth) internal {
_approve(to, tokenId, auth, true);
}
/**
* @dev Variant of `_approve` with an optional flag to enable or disable the {Approval} event. The event is not
* emitted in the context of transfers.
*/
function _approve(address to, uint256 tokenId, address auth, bool emitEvent) internal virtual {
// Avoid reading the owner unless necessary
if (emitEvent || auth != address(0)) {
address owner = _requireOwned(tokenId);
// We do not use _isAuthorized because single-token approvals should not be able to call approve
if (auth != address(0) && owner != auth && !isApprovedForAll(owner, auth)) {
revert ERC721InvalidApprover(auth);
}
if (emitEvent) {
emit Approval(owner, to, tokenId);
}
}
_tokenApprovals[tokenId] = to;
}
/**
* @dev Approve `operator` to operate on all of `owner` tokens
*
* Requirements:
* - operator can't be the address zero.
*
* Emits an {ApprovalForAll} event.
*/
function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
if (operator == address(0)) {
revert ERC721InvalidOperator(operator);
}
_operatorApprovals[owner][operator] = approved;
emit ApprovalForAll(owner, operator, approved);
}
/**
* @dev Reverts if the `tokenId` doesn't have a current owner (it hasn't been minted, or it has been burned).
* Returns the owner.
*
* Overrides to ownership logic should be done to {_ownerOf}.
*/
function _requireOwned(uint256 tokenId) internal view returns (address) {
address owner = _ownerOf(tokenId);
if (owner == address(0)) {
revert ERC721NonexistentToken(tokenId);
}
return owner;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (access/Ownable2Step.sol)
pragma solidity ^0.8.20;
import {Ownable} from "./Ownable.sol";
/**
* @dev Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* This extension of the {Ownable} contract includes a two-step mechanism to transfer
* ownership, where the new owner must call {acceptOwnership} in order to replace the
* old one. This can help prevent common mistakes, such as transfers of ownership to
* incorrect accounts, or to contracts that are unable to interact with the
* permission system.
*
* The initial owner is specified at deployment time in the constructor for `Ownable`. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2Step is Ownable {
address private _pendingOwner;
event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
return _pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
* Can only be called by the current owner.
*
* Setting `newOwner` to the zero address is allowed; this can be used to cancel an initiated ownership transfer.
*/
function transferOwnership(address newOwner) public virtual override onlyOwner {
_pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
delete _pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() public virtual {
address sender = _msgSender();
if (pendingOwner() != sender) {
revert OwnableUnauthorizedAccount(sender);
}
_transferOwnership(sender);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MerkleProof.sol)
// This file was procedurally generated from scripts/generate/templates/MerkleProof.js.
pragma solidity ^0.8.20;
import {Hashes} from "./Hashes.sol";
/**
* @dev These functions deal with verification of Merkle Tree proofs.
*
* The tree and the proofs can be generated using our
* https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
* You will find a quickstart guide in the readme.
*
* WARNING: You should avoid using leaf values that are 64 bytes long prior to
* hashing, or use a hash function other than keccak256 for hashing leaves.
* This is because the concatenation of a sorted pair of internal nodes in
* the Merkle tree could be reinterpreted as a leaf value.
* OpenZeppelin's JavaScript library generates Merkle trees that are safe
* against this attack out of the box.
*
* IMPORTANT: Consider memory side-effects when using custom hashing functions
* that access memory in an unsafe way.
*
* NOTE: This library supports proof verification for merkle trees built using
* custom _commutative_ hashing functions (i.e. `H(a, b) == H(b, a)`). Proving
* leaf inclusion in trees built using non-commutative hashing functions requires
* additional logic that is not supported by this library.
*/
library MerkleProof {
/**
*@dev The multiproof provided is not valid.
*/
error MerkleProofInvalidMultiproof();
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*
* This version handles proofs in memory with the default hashing function.
*/
function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProof(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leaves & pre-images are assumed to be sorted.
*
* This version handles proofs in memory with the default hashing function.
*/
function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*
* This version handles proofs in memory with a custom hashing function.
*/
function verify(
bytes32[] memory proof,
bytes32 root,
bytes32 leaf,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bool) {
return processProof(proof, leaf, hasher) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leaves & pre-images are assumed to be sorted.
*
* This version handles proofs in memory with a custom hashing function.
*/
function processProof(
bytes32[] memory proof,
bytes32 leaf,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = hasher(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*
* This version handles proofs in calldata with the default hashing function.
*/
function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProofCalldata(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leaves & pre-images are assumed to be sorted.
*
* This version handles proofs in calldata with the default hashing function.
*/
function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*
* This version handles proofs in calldata with a custom hashing function.
*/
function verifyCalldata(
bytes32[] calldata proof,
bytes32 root,
bytes32 leaf,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bool) {
return processProofCalldata(proof, leaf, hasher) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leaves & pre-images are assumed to be sorted.
*
* This version handles proofs in calldata with a custom hashing function.
*/
function processProofCalldata(
bytes32[] calldata proof,
bytes32 leaf,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = hasher(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* This version handles multiproofs in memory with the default hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*
* NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
* The `leaves` must be validated independently. See {processMultiProof}.
*/
function multiProofVerify(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProof(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* This version handles multiproofs in memory with the default hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
* and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
* validating the leaves elsewhere.
*/
function processMultiProof(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofFlagsLen = proofFlags.length;
// Check proof validity.
if (leavesLen + proof.length != proofFlagsLen + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](proofFlagsLen);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < proofFlagsLen; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = Hashes.commutativeKeccak256(a, b);
}
if (proofFlagsLen > 0) {
if (proofPos != proof.length) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[proofFlagsLen - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* This version handles multiproofs in memory with a custom hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*
* NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
* The `leaves` must be validated independently. See {processMultiProof}.
*/
function multiProofVerify(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bool) {
return processMultiProof(proof, proofFlags, leaves, hasher) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* This version handles multiproofs in memory with a custom hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
* and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
* validating the leaves elsewhere.
*/
function processMultiProof(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofFlagsLen = proofFlags.length;
// Check proof validity.
if (leavesLen + proof.length != proofFlagsLen + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](proofFlagsLen);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < proofFlagsLen; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = hasher(a, b);
}
if (proofFlagsLen > 0) {
if (proofPos != proof.length) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[proofFlagsLen - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* This version handles multiproofs in calldata with the default hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*
* NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
* The `leaves` must be validated independently. See {processMultiProofCalldata}.
*/
function multiProofVerifyCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* This version handles multiproofs in calldata with the default hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
* and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
* validating the leaves elsewhere.
*/
function processMultiProofCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofFlagsLen = proofFlags.length;
// Check proof validity.
if (leavesLen + proof.length != proofFlagsLen + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](proofFlagsLen);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < proofFlagsLen; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = Hashes.commutativeKeccak256(a, b);
}
if (proofFlagsLen > 0) {
if (proofPos != proof.length) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[proofFlagsLen - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* This version handles multiproofs in calldata with a custom hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*
* NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
* The `leaves` must be validated independently. See {processMultiProofCalldata}.
*/
function multiProofVerifyCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves, hasher) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* This version handles multiproofs in calldata with a custom hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
* and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
* validating the leaves elsewhere.
*/
function processMultiProofCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofFlagsLen = proofFlags.length;
// Check proof validity.
if (leavesLen + proof.length != proofFlagsLen + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](proofFlagsLen);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < proofFlagsLen; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = hasher(a, b);
}
if (proofFlagsLen > 0) {
if (proofPos != proof.length) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[proofFlagsLen - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
* consider using {ReentrancyGuardTransient} instead.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
uint256 private _status;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
constructor() {
_status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
if (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == ENTERED;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
assembly ("memory-safe") {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
assembly ("memory-safe") {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
* representation, according to EIP-55.
*/
function toChecksumHexString(address addr) internal pure returns (string memory) {
bytes memory buffer = bytes(toHexString(addr));
// hash the hex part of buffer (skip length + 2 bytes, length 40)
uint256 hashValue;
assembly ("memory-safe") {
hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
}
for (uint256 i = 41; i > 1; --i) {
// possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
// case shift by xoring with 0x20
buffer[i] ^= 0x20;
}
hashValue >>= 4;
}
return string(buffer);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC-721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC-721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
* {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC-721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the address zero.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Metadata.sol)
pragma solidity ^0.8.20;
import {IERC721} from "../IERC721.sol";
/**
* @title ERC-721 Non-Fungible Token Standard, optional metadata extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
*/
interface IERC721Metadata is IERC721 {
/**
* @dev Returns the token collection name.
*/
function name() external view returns (string memory);
/**
* @dev Returns the token collection symbol.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId) external view returns (string memory);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/utils/ERC721Utils.sol)
pragma solidity ^0.8.20;
import {IERC721Receiver} from "../IERC721Receiver.sol";
import {IERC721Errors} from "../../../interfaces/draft-IERC6093.sol";
/**
* @dev Library that provide common ERC-721 utility functions.
*
* See https://eips.ethereum.org/EIPS/eip-721[ERC-721].
*
* _Available since v5.1._
*/
library ERC721Utils {
/**
* @dev Performs an acceptance check for the provided `operator` by calling {IERC721-onERC721Received}
* on the `to` address. The `operator` is generally the address that initiated the token transfer (i.e. `msg.sender`).
*
* The acceptance call is not executed and treated as a no-op if the target address doesn't contain code (i.e. an EOA).
* Otherwise, the recipient must implement {IERC721Receiver-onERC721Received} and return the acceptance magic value to accept
* the transfer.
*/
function checkOnERC721Received(
address operator,
address from,
address to,
uint256 tokenId,
bytes memory data
) internal {
if (to.code.length > 0) {
try IERC721Receiver(to).onERC721Received(operator, from, tokenId, data) returns (bytes4 retval) {
if (retval != IERC721Receiver.onERC721Received.selector) {
// Token rejected
revert IERC721Errors.ERC721InvalidReceiver(to);
}
} catch (bytes memory reason) {
if (reason.length == 0) {
// non-IERC721Receiver implementer
revert IERC721Errors.ERC721InvalidReceiver(to);
} else {
assembly ("memory-safe") {
revert(add(32, reason), mload(reason))
}
}
}
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/ERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard ERC-20 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
*/
interface IERC20Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC20InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC20InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
* @param spender Address that may be allowed to operate on tokens without being their owner.
* @param allowance Amount of tokens a `spender` is allowed to operate with.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC20InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `spender` to be approved. Used in approvals.
* @param spender Address that may be allowed to operate on tokens without being their owner.
*/
error ERC20InvalidSpender(address spender);
}
/**
* @dev Standard ERC-721 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
*/
interface IERC721Errors {
/**
* @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
* Used in balance queries.
* @param owner Address of the current owner of a token.
*/
error ERC721InvalidOwner(address owner);
/**
* @dev Indicates a `tokenId` whose `owner` is the zero address.
* @param tokenId Identifier number of a token.
*/
error ERC721NonexistentToken(uint256 tokenId);
/**
* @dev Indicates an error related to the ownership over a particular token. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param tokenId Identifier number of a token.
* @param owner Address of the current owner of a token.
*/
error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC721InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC721InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param tokenId Identifier number of a token.
*/
error ERC721InsufficientApproval(address operator, uint256 tokenId);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC721InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC721InvalidOperator(address operator);
}
/**
* @dev Standard ERC-1155 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
*/
interface IERC1155Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
* @param tokenId Identifier number of a token.
*/
error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC1155InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC1155InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param owner Address of the current owner of a token.
*/
error ERC1155MissingApprovalForAll(address operator, address owner);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC1155InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC1155InvalidOperator(address operator);
/**
* @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
* Used in batch transfers.
* @param idsLength Length of the array of token identifiers
* @param valuesLength Length of the array of token amounts
*/
error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/Hashes.sol)
pragma solidity ^0.8.20;
/**
* @dev Library of standard hash functions.
*
* _Available since v5.1._
*/
library Hashes {
/**
* @dev Commutative Keccak256 hash of a sorted pair of bytes32. Frequently used when working with merkle proofs.
*
* NOTE: Equivalent to the `standardNodeHash` in our https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
*/
function commutativeKeccak256(bytes32 a, bytes32 b) internal pure returns (bytes32) {
return a < b ? _efficientKeccak256(a, b) : _efficientKeccak256(b, a);
}
/**
* @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
*/
function _efficientKeccak256(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
assembly ("memory-safe") {
mstore(0x00, a)
mstore(0x20, b)
value := keccak256(0x00, 0x40)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2²⁵⁶ + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= prod1) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 exp;
unchecked {
exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
value >>= exp;
result += exp;
exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
value >>= exp;
result += exp;
exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
value >>= exp;
result += exp;
exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
value >>= exp;
result += exp;
exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
value >>= exp;
result += exp;
exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
value >>= exp;
result += exp;
exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
value >>= exp;
result += exp;
result += SafeCast.toUint(value > 1);
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 isGt;
unchecked {
isGt = SafeCast.toUint(value > (1 << 128) - 1);
value >>= isGt * 128;
result += isGt * 16;
isGt = SafeCast.toUint(value > (1 << 64) - 1);
value >>= isGt * 64;
result += isGt * 8;
isGt = SafeCast.toUint(value > (1 << 32) - 1);
value >>= isGt * 32;
result += isGt * 4;
isGt = SafeCast.toUint(value > (1 << 16) - 1);
value >>= isGt * 16;
result += isGt * 2;
result += SafeCast.toUint(value > (1 << 8) - 1);
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
}
}
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
// Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
// taking advantage of the most significant (or "sign" bit) in two's complement representation.
// This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
// the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
int256 mask = n >> 255;
// A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
return uint256((n + mask) ^ mask);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/IERC721Receiver.sol)
pragma solidity ^0.8.20;
/**
* @title ERC-721 token receiver interface
* @dev Interface for any contract that wants to support safeTransfers
* from ERC-721 asset contracts.
*/
interface IERC721Receiver {
/**
* @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
* by `operator` from `from`, this function is called.
*
* It must return its Solidity selector to confirm the token transfer.
* If any other value is returned or the interface is not implemented by the recipient, the transfer will be
* reverted.
*
* The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
*/
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}{
"remappings": [
"@openzeppelin/=lib/openzeppelin-contracts/",
"@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
"ds-test/=lib/openzeppelin-contracts/lib/forge-std/lib/ds-test/src/",
"erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
"forge-std/=lib/forge-std/src/",
"halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
"openzeppelin-contracts/=lib/openzeppelin-contracts/"
],
"optimizer": {
"enabled": true,
"runs": 200
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "ipfs",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "cancun",
"viaIR": false,
"libraries": {}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"address","name":"_paymentReceiver","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AlreadyMinted","type":"error"},{"inputs":[],"name":"ContractPaused","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"address","name":"owner","type":"address"}],"name":"ERC721IncorrectOwner","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ERC721InsufficientApproval","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC721InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"}],"name":"ERC721InvalidOperator","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"ERC721InvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC721InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC721InvalidSender","type":"error"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ERC721NonexistentToken","type":"error"},{"inputs":[],"name":"InsufficientPayment","type":"error"},{"inputs":[],"name":"InvalidGuranteedStartTime","type":"error"},{"inputs":[],"name":"InvalidPaymentReceiver","type":"error"},{"inputs":[],"name":"InvalidPhase2StartTime","type":"error"},{"inputs":[],"name":"InvalidPhaseEndTime","type":"error"},{"inputs":[],"name":"InvalidProof","type":"error"},{"inputs":[],"name":"MintingEnded","type":"error"},{"inputs":[],"name":"MintingNotStarted","type":"error"},{"inputs":[],"name":"NotAuthorized","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"PaymentNotRequired","type":"error"},{"inputs":[],"name":"Phase1NotCompleted","type":"error"},{"inputs":[],"name":"Phase1SoldOut","type":"error"},{"inputs":[],"name":"Phase2SoldOut","type":"error"},{"inputs":[],"name":"PhasesNotInitialized","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[],"name":"SoldOut","type":"error"},{"inputs":[],"name":"TokenIdInvalid","type":"error"},{"inputs":[],"name":"TokenIsSoulbound","type":"error"},{"inputs":[],"name":"TokenNotMintedYet","type":"error"},{"inputs":[],"name":"WithdrawalFailed","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"approved","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"isPaused","type":"bool"}],"name":"ContractPausedEvent","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"phase","type":"uint256"}],"name":"Minted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"MAX_SUPPLY","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PAYMENT_RECEIVER","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PHASE1_SUPPLY","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PHASE2_SUPPLY","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PRICE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"approve","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"baseURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getApproved","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"hasMinted","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"enum MegaETH.MintType","name":"mintType","type":"uint8"},{"internalType":"bytes32[]","name":"merkleProof","type":"bytes32[]"}],"name":"mint","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ownerOf","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"phase1End","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"phase1FreeMintRoot","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"phase1GuaranteedRoot","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"phase1GuaranteedStart","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"phase1WhitelistRoot","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"phase1WhitelistStart","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"phase2End","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"phase2FreeMintRoot","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"phase2GuaranteedRoot","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"phase2GuaranteedStart","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"phase2WhitelistRoot","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"phase2WhitelistStart","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"newBaseURI","type":"string"}],"name":"setBaseURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_phase1GuaranteedRoot","type":"bytes32"},{"internalType":"bytes32","name":"_phase1WhitelistRoot","type":"bytes32"},{"internalType":"bytes32","name":"_phase1FreeMintRoot","type":"bytes32"},{"internalType":"bytes32","name":"_phase2GuaranteedRoot","type":"bytes32"},{"internalType":"bytes32","name":"_phase2WhitelistRoot","type":"bytes32"},{"internalType":"bytes32","name":"_phase2FreeMintRoot","type":"bytes32"}],"name":"setMerkleRoots","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"_paused","type":"bool"}],"name":"setPaused","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_guaranteedStart","type":"uint256"},{"internalType":"uint256","name":"_whitelistStart","type":"uint256"},{"internalType":"uint256","name":"_end","type":"uint256"}],"name":"setPhase1Times","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_guaranteedStart","type":"uint256"},{"internalType":"uint256","name":"_whitelistStart","type":"uint256"},{"internalType":"uint256","name":"_end","type":"uint256"}],"name":"setPhase2Times","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"transferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]Contract Creation Code
60a060405234801561000f575f5ffd5b506040516125c33803806125c383398101604081905261002e9161016f565b336040518060400160405280600b81526020016a135959d85155120813919560aa1b815250604051806040016040528060048152602001634d45474160e01b815250815f908161007e9190610234565b50600161008b8282610234565b5050506001600160a01b0381166100bb57604051631e4fbdf760e01b81525f600482015260240160405180910390fd5b6100c481610102565b5060016008556001600160a01b0381166100f1576040516301ed76a760e61b815260040160405180910390fd5b6001600160a01b03166080526102ee565b600780546001600160a01b031916905561011b8161011e565b50565b600680546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b5f6020828403121561017f575f5ffd5b81516001600160a01b0381168114610195575f5ffd5b9392505050565b634e487b7160e01b5f52604160045260245ffd5b600181811c908216806101c457607f821691505b6020821081036101e257634e487b7160e01b5f52602260045260245ffd5b50919050565b601f82111561022f57805f5260205f20601f840160051c8101602085101561020d5750805b601f840160051c820191505b8181101561022c575f8155600101610219565b50505b505050565b81516001600160401b0381111561024d5761024d61019c565b6102618161025b84546101b0565b846101e8565b6020601f821160018114610293575f831561027c5750848201515b5f19600385901b1c1916600184901b17845561022c565b5f84815260208120601f198516915b828110156102c257878501518255602094850194600190920191016102a2565b50848210156102df57868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b6080516122936103305f395f81816103830152818161087f015281816109b601528181610acf01528181610b4801528181610bc7015261117901526122935ff3fe60806040526004361061026a575f3560e01c80636c8702941161014a5780639b9bce2e116100be578063baa9ea8411610078578063baa9ea84146106a4578063c5441008146106b9578063c87b56dd146106ce578063e30c3978146106ed578063e985e9c51461070a578063f2fde38b14610729575f5ffd5b80639b9bce2e14610614578063a22cb46514610629578063aa22688e14610648578063b4f1053a1461065d578063b61c5e6914610672578063b88d4fde14610685575f5ffd5b80638d53486b1161010f5780638d53486b1461059e5780638d859f3e146105b35780638da5cb5b146105ce57806395c43d841461031b57806395d89b41146105eb57806397c29c06146105ff575f5ffd5b80636c8702941461052d57806370a0823114610542578063715018a61461056157806379ba5097146105755780637eff25e414610589575f5ffd5b80632a593a7c116101e157806355f804b3116101a657806355f804b3146104845780635c975abb146104a35780636352211e146104bc578063643841f7146104db5780636457c3e1146104fa5780636c0360eb14610519575f5ffd5b80632a593a7c146103ee57806332cb6b0c1461040357806338e21cce146104185780634223b04e1461044657806342842e0e14610465575f5ffd5b806316c38b3c1161023257806316c38b3c1461033e57806318160ddd1461035d5780631c064d61146103725780631e5fa577146103a557806323b872dd146103ba578063251dd64d146103d9575f5ffd5b806301ffc9a71461026e57806306fdde03146102a2578063081812fc146102c3578063095ea7b3146102fa57806310a03b221461031b575b5f5ffd5b348015610279575f5ffd5b5061028d610288366004611c2e565b610748565b60405190151581526020015b60405180910390f35b3480156102ad575f5ffd5b506102b6610799565b6040516102999190611c77565b3480156102ce575f5ffd5b506102e26102dd366004611c89565b610828565b6040516001600160a01b039091168152602001610299565b348015610305575f5ffd5b50610319610314366004611cbb565b61084f565b005b348015610326575f5ffd5b5061033061138881565b604051908152602001610299565b348015610349575f5ffd5b50610319610358366004611cf2565b61085e565b348015610368575f5ffd5b5061033060095481565b34801561037d575f5ffd5b506102e27f000000000000000000000000000000000000000000000000000000000000000081565b3480156103b0575f5ffd5b5061033060125481565b3480156103c5575f5ffd5b506103196103d4366004611d0b565b610907565b3480156103e4575f5ffd5b50610330600d5481565b3480156103f9575f5ffd5b5061033060175481565b34801561040e575f5ffd5b5061033061271081565b348015610423575f5ffd5b5061028d610432366004611d45565b60186020525f908152604090205460ff1681565b348015610451575f5ffd5b50610319610460366004611d5e565b610995565b348015610470575f5ffd5b5061031961047f366004611d0b565b610a8f565b34801561048f575f5ffd5b5061031961049e366004611d87565b610aae565b3480156104ae575f5ffd5b50600b5461028d9060ff1681565b3480156104c7575f5ffd5b506102e26104d6366004611c89565b610b1d565b3480156104e6575f5ffd5b506103196104f5366004611df5565b610b27565b348015610505575f5ffd5b50610319610514366004611d5e565b610ba6565b348015610524575f5ffd5b506102b6610c7d565b348015610538575f5ffd5b5061033060145481565b34801561054d575f5ffd5b5061033061055c366004611d45565b610d09565b34801561056c575f5ffd5b50610319610d4e565b348015610580575f5ffd5b50610319610d61565b348015610594575f5ffd5b50610330600e5481565b3480156105a9575f5ffd5b5061033060155481565b3480156105be575f5ffd5b50610330670de0b6b3a764000081565b3480156105d9575f5ffd5b506006546001600160a01b03166102e2565b3480156105f6575f5ffd5b506102b6610da5565b34801561060a575f5ffd5b5061033060115481565b34801561061f575f5ffd5b5061033060135481565b348015610634575f5ffd5b50610319610643366004611e34565b610db4565b348015610653575f5ffd5b5061033060165481565b348015610668575f5ffd5b50610330600f5481565b610319610680366004611e65565b610dbf565b348015610690575f5ffd5b5061031961069f366004611eff565b611242565b3480156106af575f5ffd5b50610330600c5481565b3480156106c4575f5ffd5b5061033060105481565b3480156106d9575f5ffd5b506102b66106e8366004611c89565b61125a565b3480156106f8575f5ffd5b506007546001600160a01b03166102e2565b348015610715575f5ffd5b5061028d610724366004611fdc565b61128e565b348015610734575f5ffd5b50610319610743366004611d45565b6112bb565b5f6001600160e01b031982166380ac58cd60e01b148061077857506001600160e01b03198216635b5e139f60e01b145b8061079357506301ffc9a760e01b6001600160e01b03198316145b92915050565b60605f80546107a790612004565b80601f01602080910402602001604051908101604052809291908181526020018280546107d390612004565b801561081e5780601f106107f55761010080835404028352916020019161081e565b820191905f5260205f20905b81548152906001019060200180831161080157829003601f168201915b5050505050905090565b5f6108328261132c565b505f828152600460205260409020546001600160a01b0316610793565b61085a828233611364565b5050565b6006546001600160a01b031633148015906108a25750336001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001614155b156108c05760405163ea8e4eb560e01b815260040160405180910390fd5b600b805460ff19168215159081179091556040519081527f11cec829ff57d278cffee07757e9621bfa0ae0cd17b3d23a7b81cba95174b8a49060200160405180910390a150565b6001600160a01b03821661093557604051633250574960e11b81525f60048201526024015b60405180910390fd5b5f610941838333611371565b9050836001600160a01b0316816001600160a01b03161461098f576040516364283d7b60e01b81526001600160a01b038086166004830152602482018490528216604482015260640161092c565b50505050565b6006546001600160a01b031633148015906109d95750336001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001614155b156109f75760405163ea8e4eb560e01b815260040160405180910390fd5b828282808310610a1a576040516335f3b02f60e11b815260040160405180910390fd5b808210610a3a576040516335f3b02f60e11b815260040160405180910390fd5b81831115610a5b576040516337fc019b60e11b815260040160405180910390fd5b600e54861015610a7e576040516361d1610f60e11b815260040160405180910390fd5b505050600f92909255601055601155565b610aa983838360405180602001604052805f815250611242565b505050565b6006546001600160a01b03163314801590610af25750336001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001614155b15610b105760405163ea8e4eb560e01b815260040160405180910390fd5b600a610aa9828483612080565b5f6107938261132c565b6006546001600160a01b03163314801590610b6b5750336001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001614155b15610b895760405163ea8e4eb560e01b815260040160405180910390fd5b601295909555601393909355601491909155601555601655601755565b6006546001600160a01b03163314801590610bea5750336001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001614155b15610c085760405163ea8e4eb560e01b815260040160405180910390fd5b828282808310610c2b576040516335f3b02f60e11b815260040160405180910390fd5b808210610c4b576040516335f3b02f60e11b815260040160405180910390fd5b81831115610c6c576040516337fc019b60e11b815260040160405180910390fd5b505050600c92909255600d55600e55565b600a8054610c8a90612004565b80601f0160208091040260200160405190810160405280929190818152602001828054610cb690612004565b8015610d015780601f10610cd857610100808354040283529160200191610d01565b820191905f5260205f20905b815481529060010190602001808311610ce457829003601f168201915b505050505081565b5f6001600160a01b038216610d33576040516322718ad960e21b81525f600482015260240161092c565b506001600160a01b03165f9081526003602052604090205490565b610d566113bb565b610d5f5f6113e8565b565b60075433906001600160a01b03168114610d995760405163118cdaa760e01b81526001600160a01b038216600482015260240161092c565b610da2816113e8565b50565b6060600180546107a790612004565b61085a338383611401565b610dc761149f565b600c541580610dd65750600d54155b80610de15750600e54155b80610dec5750600f54155b80610df75750601054155b80610e025750601154155b15610e205760405163cb5b691760e01b815260040160405180910390fd5b600b5460ff1615610e445760405163ab35696f60e01b815260040160405180910390fd5b61271060095410610e68576040516352df9fe560e01b815260040160405180910390fd5b335f9081526018602052604090205460ff1615610e9857604051631bbdf5c560e31b815260040160405180910390fd5b5f80808080876005811115610eaf57610eaf61213a565b03610ef0576012549350600c549250600d5491506001905061138860095410610eeb57604051630c11336d60e01b815260040160405180910390fd5b611078565b6001876005811115610f0457610f0461213a565b03610f40576013549350600d549250600e5491506001905061138860095410610eeb57604051630c11336d60e01b815260040160405180910390fd5b6002876005811115610f5457610f5461213a565b03610f8f576014549350600c549250600d5491505f905061138860095410610eeb57604051630c11336d60e01b815260040160405180910390fd5b6003876005811115610fa357610fa361213a565b03610fdd576015549350600f549250601054915060019050600e544211610eeb576040516318b1a81560e01b815260040160405180910390fd5b6004876005811115610ff157610ff161213a565b0361102b5760165493506010549250601154915060019050600e544211610eeb576040516318b1a81560e01b815260040160405180910390fd5b600587600581111561103f5761103f61213a565b03611078576017549350600f54925060105491505f9050600e544211611078576040516318b1a81560e01b815260040160405180910390fd5b82421015611099576040516369183ba160e11b815260040160405180910390fd5b814211156110ba57604051633d20ce7960e21b815260040160405180910390fd5b61112b8686808060200260200160405190810160405280939291908181526020018383602002808284375f92019190915250506040516bffffffffffffffffffffffff193360601b1660208201528892506034019050604051602081830303815290604052805190602001206114c9565b611148576040516309bde33960e01b815260040160405180910390fd5b801561120c57670de0b6b3a764000034146111765760405163cd1c886760e01b815260040160405180910390fd5b5f7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316346040515f6040518083038185875af1925050503d805f81146111df576040519150601f19603f3d011682016040523d82523d5f602084013e6111e4565b606091505b5050905080611206576040516327fcd9d160e01b815260040160405180910390fd5b5061122b565b341561122b57604051630ad2561560e21b815260040160405180910390fd5b611234336114de565b50505050610aa96001600855565b61124d848484610907565b61098f3385858585611579565b6060600a611267836116a1565b60405160200161127892919061214e565b6040516020818303038152906040529050919050565b6001600160a01b039182165f90815260056020908152604080832093909416825291909152205460ff1690565b6112c36113bb565b600780546001600160a01b0383166001600160a01b031990911681179091556112f46006546001600160a01b031690565b6001600160a01b03167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b5f818152600260205260408120546001600160a01b03168061079357604051637e27328960e01b81526004810184905260240161092c565b610aa98383836001611731565b5f828152600260205260408120546001600160a01b031680156113a7576040516358b2164f60e11b815260040160405180910390fd5b6113b2858585611835565b95945050505050565b6006546001600160a01b03163314610d5f5760405163118cdaa760e01b815233600482015260240161092c565b600780546001600160a01b0319169055610da281611927565b6001600160a01b03821661143357604051630b61174360e31b81526001600160a01b038316600482015260240161092c565b6001600160a01b038381165f81815260056020908152604080832094871680845294825291829020805460ff191686151590811790915591519182527f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31910160405180910390a3505050565b6002600854036114c257604051633ee5aeb560e01b815260040160405180910390fd5b6002600855565b5f826114d58584611978565b14949350505050565b6009546114eb82826119ba565b60098054905f6114fa836121ce565b90915550506001600160a01b0382165f818152601860205260409020805460ff191660011790556009547f25b428dfde728ccfaddad7e29e4ac23c24ed7fd1a6e3e3f91894a9a073f5dfff908390611388101561155857600261155b565b60015b6040805192835260ff90911660208301520160405180910390a25050565b6001600160a01b0383163b1561169a57604051630a85bd0160e11b81526001600160a01b0384169063150b7a02906115bb9088908890879087906004016121f2565b6020604051808303815f875af19250505080156115f5575060408051601f3d908101601f191682019092526115f29181019061222e565b60015b61165c573d808015611622576040519150601f19603f3d011682016040523d82523d5f602084013e611627565b606091505b5080515f0361165457604051633250574960e11b81526001600160a01b038516600482015260240161092c565b805181602001fd5b6001600160e01b03198116630a85bd0160e11b1461169857604051633250574960e11b81526001600160a01b038516600482015260240161092c565b505b5050505050565b60605f6116ad836119d3565b60010190505f8167ffffffffffffffff8111156116cc576116cc611eeb565b6040519080825280601f01601f1916602001820160405280156116f6576020820181803683370190505b5090508181016020015b5f19016f181899199a1a9b1b9c1cb0b131b232b360811b600a86061a8153600a850494508461170057509392505050565b808061174557506001600160a01b03821615155b15611806575f6117548461132c565b90506001600160a01b038316158015906117805750826001600160a01b0316816001600160a01b031614155b80156117935750611791818461128e565b155b156117bc5760405163a9fbf51f60e01b81526001600160a01b038416600482015260240161092c565b81156118045783856001600160a01b0316826001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560405160405180910390a45b505b50505f90815260046020526040902080546001600160a01b0319166001600160a01b0392909216919091179055565b5f828152600260205260408120546001600160a01b039081169083161561186157611861818486611aaa565b6001600160a01b0381161561189b5761187c5f855f5f611731565b6001600160a01b0381165f90815260036020526040902080545f190190555b6001600160a01b038516156118c9576001600160a01b0385165f908152600360205260409020805460010190555b5f8481526002602052604080822080546001600160a01b0319166001600160a01b0389811691821790925591518793918516917fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef91a4949350505050565b600680546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b5f81815b84518110156119b2576119a88286838151811061199b5761199b612249565b6020026020010151611b0e565b915060010161197c565b509392505050565b61085a828260405180602001604052805f815250611b3d565b5f8072184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b8310611a115772184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b830492506040015b6d04ee2d6d415b85acef81000000008310611a3d576d04ee2d6d415b85acef8100000000830492506020015b662386f26fc100008310611a5b57662386f26fc10000830492506010015b6305f5e1008310611a73576305f5e100830492506008015b6127108310611a8757612710830492506004015b60648310611a99576064830492506002015b600a83106107935760010192915050565b611ab5838383611b54565b610aa9576001600160a01b038316611ae357604051637e27328960e01b81526004810182905260240161092c565b60405163177e802f60e01b81526001600160a01b03831660048201526024810182905260440161092c565b5f818310611b28575f828152602084905260409020611b36565b5f8381526020839052604090205b9392505050565b611b478383611bb8565b610aa9335f858585611579565b5f6001600160a01b03831615801590611bb05750826001600160a01b0316846001600160a01b03161480611b8d5750611b8d848461128e565b80611bb057505f828152600460205260409020546001600160a01b038481169116145b949350505050565b6001600160a01b038216611be157604051633250574960e11b81525f600482015260240161092c565b5f611bed83835f611371565b90506001600160a01b03811615610aa9576040516339e3563760e11b81525f600482015260240161092c565b6001600160e01b031981168114610da2575f5ffd5b5f60208284031215611c3e575f5ffd5b8135611b3681611c19565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b602081525f611b366020830184611c49565b5f60208284031215611c99575f5ffd5b5035919050565b80356001600160a01b0381168114611cb6575f5ffd5b919050565b5f5f60408385031215611ccc575f5ffd5b611cd583611ca0565b946020939093013593505050565b80358015158114611cb6575f5ffd5b5f60208284031215611d02575f5ffd5b611b3682611ce3565b5f5f5f60608486031215611d1d575f5ffd5b611d2684611ca0565b9250611d3460208501611ca0565b929592945050506040919091013590565b5f60208284031215611d55575f5ffd5b611b3682611ca0565b5f5f5f60608486031215611d70575f5ffd5b505081359360208301359350604090920135919050565b5f5f60208385031215611d98575f5ffd5b823567ffffffffffffffff811115611dae575f5ffd5b8301601f81018513611dbe575f5ffd5b803567ffffffffffffffff811115611dd4575f5ffd5b856020828401011115611de5575f5ffd5b6020919091019590945092505050565b5f5f5f5f5f5f60c08789031215611e0a575f5ffd5b505084359660208601359650604086013595606081013595506080810135945060a0013592509050565b5f5f60408385031215611e45575f5ffd5b611e4e83611ca0565b9150611e5c60208401611ce3565b90509250929050565b5f5f5f60408486031215611e77575f5ffd5b833560068110611e85575f5ffd5b9250602084013567ffffffffffffffff811115611ea0575f5ffd5b8401601f81018613611eb0575f5ffd5b803567ffffffffffffffff811115611ec6575f5ffd5b8660208260051b8401011115611eda575f5ffd5b939660209190910195509293505050565b634e487b7160e01b5f52604160045260245ffd5b5f5f5f5f60808587031215611f12575f5ffd5b611f1b85611ca0565b9350611f2960208601611ca0565b925060408501359150606085013567ffffffffffffffff811115611f4b575f5ffd5b8501601f81018713611f5b575f5ffd5b803567ffffffffffffffff811115611f7557611f75611eeb565b604051601f8201601f19908116603f0116810167ffffffffffffffff81118282101715611fa457611fa4611eeb565b604052818152828201602001891015611fbb575f5ffd5b816020840160208301375f6020838301015280935050505092959194509250565b5f5f60408385031215611fed575f5ffd5b611ff683611ca0565b9150611e5c60208401611ca0565b600181811c9082168061201857607f821691505b60208210810361203657634e487b7160e01b5f52602260045260245ffd5b50919050565b601f821115610aa957805f5260205f20601f840160051c810160208510156120615750805b601f840160051c820191505b8181101561169a575f815560010161206d565b67ffffffffffffffff83111561209857612098611eeb565b6120ac836120a68354612004565b8361203c565b5f601f8411600181146120dd575f85156120c65750838201355b5f19600387901b1c1916600186901b17835561169a565b5f83815260208120601f198716915b8281101561210c57868501358255602094850194600190920191016120ec565b5086821015612128575f1960f88860031b161c19848701351681555b505060018560011b0183555050505050565b634e487b7160e01b5f52602160045260245ffd5b5f5f845461215b81612004565b6001821680156121725760018114612187576121b4565b60ff19831686528115158202860193506121b4565b875f5260205f205f5b838110156121ac57815488820152600190910190602001612190565b505081860193505b50505083518060208601835e5f9101908152949350505050565b5f600182016121eb57634e487b7160e01b5f52601160045260245ffd5b5060010190565b6001600160a01b03858116825284166020820152604081018390526080606082018190525f9061222490830184611c49565b9695505050505050565b5f6020828403121561223e575f5ffd5b8151611b3681611c19565b634e487b7160e01b5f52603260045260245ffdfea264697066735822122053f7cda580483b9a4018d120b405b0acbcb693f9347d0a298e389a5868b136fd64736f6c634300081c0033000000000000000000000000ce92c82ec42d55b50c839b915652e44c18356050
Deployed Bytecode
0x60806040526004361061026a575f3560e01c80636c8702941161014a5780639b9bce2e116100be578063baa9ea8411610078578063baa9ea84146106a4578063c5441008146106b9578063c87b56dd146106ce578063e30c3978146106ed578063e985e9c51461070a578063f2fde38b14610729575f5ffd5b80639b9bce2e14610614578063a22cb46514610629578063aa22688e14610648578063b4f1053a1461065d578063b61c5e6914610672578063b88d4fde14610685575f5ffd5b80638d53486b1161010f5780638d53486b1461059e5780638d859f3e146105b35780638da5cb5b146105ce57806395c43d841461031b57806395d89b41146105eb57806397c29c06146105ff575f5ffd5b80636c8702941461052d57806370a0823114610542578063715018a61461056157806379ba5097146105755780637eff25e414610589575f5ffd5b80632a593a7c116101e157806355f804b3116101a657806355f804b3146104845780635c975abb146104a35780636352211e146104bc578063643841f7146104db5780636457c3e1146104fa5780636c0360eb14610519575f5ffd5b80632a593a7c146103ee57806332cb6b0c1461040357806338e21cce146104185780634223b04e1461044657806342842e0e14610465575f5ffd5b806316c38b3c1161023257806316c38b3c1461033e57806318160ddd1461035d5780631c064d61146103725780631e5fa577146103a557806323b872dd146103ba578063251dd64d146103d9575f5ffd5b806301ffc9a71461026e57806306fdde03146102a2578063081812fc146102c3578063095ea7b3146102fa57806310a03b221461031b575b5f5ffd5b348015610279575f5ffd5b5061028d610288366004611c2e565b610748565b60405190151581526020015b60405180910390f35b3480156102ad575f5ffd5b506102b6610799565b6040516102999190611c77565b3480156102ce575f5ffd5b506102e26102dd366004611c89565b610828565b6040516001600160a01b039091168152602001610299565b348015610305575f5ffd5b50610319610314366004611cbb565b61084f565b005b348015610326575f5ffd5b5061033061138881565b604051908152602001610299565b348015610349575f5ffd5b50610319610358366004611cf2565b61085e565b348015610368575f5ffd5b5061033060095481565b34801561037d575f5ffd5b506102e27f000000000000000000000000ce92c82ec42d55b50c839b915652e44c1835605081565b3480156103b0575f5ffd5b5061033060125481565b3480156103c5575f5ffd5b506103196103d4366004611d0b565b610907565b3480156103e4575f5ffd5b50610330600d5481565b3480156103f9575f5ffd5b5061033060175481565b34801561040e575f5ffd5b5061033061271081565b348015610423575f5ffd5b5061028d610432366004611d45565b60186020525f908152604090205460ff1681565b348015610451575f5ffd5b50610319610460366004611d5e565b610995565b348015610470575f5ffd5b5061031961047f366004611d0b565b610a8f565b34801561048f575f5ffd5b5061031961049e366004611d87565b610aae565b3480156104ae575f5ffd5b50600b5461028d9060ff1681565b3480156104c7575f5ffd5b506102e26104d6366004611c89565b610b1d565b3480156104e6575f5ffd5b506103196104f5366004611df5565b610b27565b348015610505575f5ffd5b50610319610514366004611d5e565b610ba6565b348015610524575f5ffd5b506102b6610c7d565b348015610538575f5ffd5b5061033060145481565b34801561054d575f5ffd5b5061033061055c366004611d45565b610d09565b34801561056c575f5ffd5b50610319610d4e565b348015610580575f5ffd5b50610319610d61565b348015610594575f5ffd5b50610330600e5481565b3480156105a9575f5ffd5b5061033060155481565b3480156105be575f5ffd5b50610330670de0b6b3a764000081565b3480156105d9575f5ffd5b506006546001600160a01b03166102e2565b3480156105f6575f5ffd5b506102b6610da5565b34801561060a575f5ffd5b5061033060115481565b34801561061f575f5ffd5b5061033060135481565b348015610634575f5ffd5b50610319610643366004611e34565b610db4565b348015610653575f5ffd5b5061033060165481565b348015610668575f5ffd5b50610330600f5481565b610319610680366004611e65565b610dbf565b348015610690575f5ffd5b5061031961069f366004611eff565b611242565b3480156106af575f5ffd5b50610330600c5481565b3480156106c4575f5ffd5b5061033060105481565b3480156106d9575f5ffd5b506102b66106e8366004611c89565b61125a565b3480156106f8575f5ffd5b506007546001600160a01b03166102e2565b348015610715575f5ffd5b5061028d610724366004611fdc565b61128e565b348015610734575f5ffd5b50610319610743366004611d45565b6112bb565b5f6001600160e01b031982166380ac58cd60e01b148061077857506001600160e01b03198216635b5e139f60e01b145b8061079357506301ffc9a760e01b6001600160e01b03198316145b92915050565b60605f80546107a790612004565b80601f01602080910402602001604051908101604052809291908181526020018280546107d390612004565b801561081e5780601f106107f55761010080835404028352916020019161081e565b820191905f5260205f20905b81548152906001019060200180831161080157829003601f168201915b5050505050905090565b5f6108328261132c565b505f828152600460205260409020546001600160a01b0316610793565b61085a828233611364565b5050565b6006546001600160a01b031633148015906108a25750336001600160a01b037f000000000000000000000000ce92c82ec42d55b50c839b915652e44c183560501614155b156108c05760405163ea8e4eb560e01b815260040160405180910390fd5b600b805460ff19168215159081179091556040519081527f11cec829ff57d278cffee07757e9621bfa0ae0cd17b3d23a7b81cba95174b8a49060200160405180910390a150565b6001600160a01b03821661093557604051633250574960e11b81525f60048201526024015b60405180910390fd5b5f610941838333611371565b9050836001600160a01b0316816001600160a01b03161461098f576040516364283d7b60e01b81526001600160a01b038086166004830152602482018490528216604482015260640161092c565b50505050565b6006546001600160a01b031633148015906109d95750336001600160a01b037f000000000000000000000000ce92c82ec42d55b50c839b915652e44c183560501614155b156109f75760405163ea8e4eb560e01b815260040160405180910390fd5b828282808310610a1a576040516335f3b02f60e11b815260040160405180910390fd5b808210610a3a576040516335f3b02f60e11b815260040160405180910390fd5b81831115610a5b576040516337fc019b60e11b815260040160405180910390fd5b600e54861015610a7e576040516361d1610f60e11b815260040160405180910390fd5b505050600f92909255601055601155565b610aa983838360405180602001604052805f815250611242565b505050565b6006546001600160a01b03163314801590610af25750336001600160a01b037f000000000000000000000000ce92c82ec42d55b50c839b915652e44c183560501614155b15610b105760405163ea8e4eb560e01b815260040160405180910390fd5b600a610aa9828483612080565b5f6107938261132c565b6006546001600160a01b03163314801590610b6b5750336001600160a01b037f000000000000000000000000ce92c82ec42d55b50c839b915652e44c183560501614155b15610b895760405163ea8e4eb560e01b815260040160405180910390fd5b601295909555601393909355601491909155601555601655601755565b6006546001600160a01b03163314801590610bea5750336001600160a01b037f000000000000000000000000ce92c82ec42d55b50c839b915652e44c183560501614155b15610c085760405163ea8e4eb560e01b815260040160405180910390fd5b828282808310610c2b576040516335f3b02f60e11b815260040160405180910390fd5b808210610c4b576040516335f3b02f60e11b815260040160405180910390fd5b81831115610c6c576040516337fc019b60e11b815260040160405180910390fd5b505050600c92909255600d55600e55565b600a8054610c8a90612004565b80601f0160208091040260200160405190810160405280929190818152602001828054610cb690612004565b8015610d015780601f10610cd857610100808354040283529160200191610d01565b820191905f5260205f20905b815481529060010190602001808311610ce457829003601f168201915b505050505081565b5f6001600160a01b038216610d33576040516322718ad960e21b81525f600482015260240161092c565b506001600160a01b03165f9081526003602052604090205490565b610d566113bb565b610d5f5f6113e8565b565b60075433906001600160a01b03168114610d995760405163118cdaa760e01b81526001600160a01b038216600482015260240161092c565b610da2816113e8565b50565b6060600180546107a790612004565b61085a338383611401565b610dc761149f565b600c541580610dd65750600d54155b80610de15750600e54155b80610dec5750600f54155b80610df75750601054155b80610e025750601154155b15610e205760405163cb5b691760e01b815260040160405180910390fd5b600b5460ff1615610e445760405163ab35696f60e01b815260040160405180910390fd5b61271060095410610e68576040516352df9fe560e01b815260040160405180910390fd5b335f9081526018602052604090205460ff1615610e9857604051631bbdf5c560e31b815260040160405180910390fd5b5f80808080876005811115610eaf57610eaf61213a565b03610ef0576012549350600c549250600d5491506001905061138860095410610eeb57604051630c11336d60e01b815260040160405180910390fd5b611078565b6001876005811115610f0457610f0461213a565b03610f40576013549350600d549250600e5491506001905061138860095410610eeb57604051630c11336d60e01b815260040160405180910390fd5b6002876005811115610f5457610f5461213a565b03610f8f576014549350600c549250600d5491505f905061138860095410610eeb57604051630c11336d60e01b815260040160405180910390fd5b6003876005811115610fa357610fa361213a565b03610fdd576015549350600f549250601054915060019050600e544211610eeb576040516318b1a81560e01b815260040160405180910390fd5b6004876005811115610ff157610ff161213a565b0361102b5760165493506010549250601154915060019050600e544211610eeb576040516318b1a81560e01b815260040160405180910390fd5b600587600581111561103f5761103f61213a565b03611078576017549350600f54925060105491505f9050600e544211611078576040516318b1a81560e01b815260040160405180910390fd5b82421015611099576040516369183ba160e11b815260040160405180910390fd5b814211156110ba57604051633d20ce7960e21b815260040160405180910390fd5b61112b8686808060200260200160405190810160405280939291908181526020018383602002808284375f92019190915250506040516bffffffffffffffffffffffff193360601b1660208201528892506034019050604051602081830303815290604052805190602001206114c9565b611148576040516309bde33960e01b815260040160405180910390fd5b801561120c57670de0b6b3a764000034146111765760405163cd1c886760e01b815260040160405180910390fd5b5f7f000000000000000000000000ce92c82ec42d55b50c839b915652e44c183560506001600160a01b0316346040515f6040518083038185875af1925050503d805f81146111df576040519150601f19603f3d011682016040523d82523d5f602084013e6111e4565b606091505b5050905080611206576040516327fcd9d160e01b815260040160405180910390fd5b5061122b565b341561122b57604051630ad2561560e21b815260040160405180910390fd5b611234336114de565b50505050610aa96001600855565b61124d848484610907565b61098f3385858585611579565b6060600a611267836116a1565b60405160200161127892919061214e565b6040516020818303038152906040529050919050565b6001600160a01b039182165f90815260056020908152604080832093909416825291909152205460ff1690565b6112c36113bb565b600780546001600160a01b0383166001600160a01b031990911681179091556112f46006546001600160a01b031690565b6001600160a01b03167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b5f818152600260205260408120546001600160a01b03168061079357604051637e27328960e01b81526004810184905260240161092c565b610aa98383836001611731565b5f828152600260205260408120546001600160a01b031680156113a7576040516358b2164f60e11b815260040160405180910390fd5b6113b2858585611835565b95945050505050565b6006546001600160a01b03163314610d5f5760405163118cdaa760e01b815233600482015260240161092c565b600780546001600160a01b0319169055610da281611927565b6001600160a01b03821661143357604051630b61174360e31b81526001600160a01b038316600482015260240161092c565b6001600160a01b038381165f81815260056020908152604080832094871680845294825291829020805460ff191686151590811790915591519182527f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31910160405180910390a3505050565b6002600854036114c257604051633ee5aeb560e01b815260040160405180910390fd5b6002600855565b5f826114d58584611978565b14949350505050565b6009546114eb82826119ba565b60098054905f6114fa836121ce565b90915550506001600160a01b0382165f818152601860205260409020805460ff191660011790556009547f25b428dfde728ccfaddad7e29e4ac23c24ed7fd1a6e3e3f91894a9a073f5dfff908390611388101561155857600261155b565b60015b6040805192835260ff90911660208301520160405180910390a25050565b6001600160a01b0383163b1561169a57604051630a85bd0160e11b81526001600160a01b0384169063150b7a02906115bb9088908890879087906004016121f2565b6020604051808303815f875af19250505080156115f5575060408051601f3d908101601f191682019092526115f29181019061222e565b60015b61165c573d808015611622576040519150601f19603f3d011682016040523d82523d5f602084013e611627565b606091505b5080515f0361165457604051633250574960e11b81526001600160a01b038516600482015260240161092c565b805181602001fd5b6001600160e01b03198116630a85bd0160e11b1461169857604051633250574960e11b81526001600160a01b038516600482015260240161092c565b505b5050505050565b60605f6116ad836119d3565b60010190505f8167ffffffffffffffff8111156116cc576116cc611eeb565b6040519080825280601f01601f1916602001820160405280156116f6576020820181803683370190505b5090508181016020015b5f19016f181899199a1a9b1b9c1cb0b131b232b360811b600a86061a8153600a850494508461170057509392505050565b808061174557506001600160a01b03821615155b15611806575f6117548461132c565b90506001600160a01b038316158015906117805750826001600160a01b0316816001600160a01b031614155b80156117935750611791818461128e565b155b156117bc5760405163a9fbf51f60e01b81526001600160a01b038416600482015260240161092c565b81156118045783856001600160a01b0316826001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560405160405180910390a45b505b50505f90815260046020526040902080546001600160a01b0319166001600160a01b0392909216919091179055565b5f828152600260205260408120546001600160a01b039081169083161561186157611861818486611aaa565b6001600160a01b0381161561189b5761187c5f855f5f611731565b6001600160a01b0381165f90815260036020526040902080545f190190555b6001600160a01b038516156118c9576001600160a01b0385165f908152600360205260409020805460010190555b5f8481526002602052604080822080546001600160a01b0319166001600160a01b0389811691821790925591518793918516917fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef91a4949350505050565b600680546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b5f81815b84518110156119b2576119a88286838151811061199b5761199b612249565b6020026020010151611b0e565b915060010161197c565b509392505050565b61085a828260405180602001604052805f815250611b3d565b5f8072184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b8310611a115772184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b830492506040015b6d04ee2d6d415b85acef81000000008310611a3d576d04ee2d6d415b85acef8100000000830492506020015b662386f26fc100008310611a5b57662386f26fc10000830492506010015b6305f5e1008310611a73576305f5e100830492506008015b6127108310611a8757612710830492506004015b60648310611a99576064830492506002015b600a83106107935760010192915050565b611ab5838383611b54565b610aa9576001600160a01b038316611ae357604051637e27328960e01b81526004810182905260240161092c565b60405163177e802f60e01b81526001600160a01b03831660048201526024810182905260440161092c565b5f818310611b28575f828152602084905260409020611b36565b5f8381526020839052604090205b9392505050565b611b478383611bb8565b610aa9335f858585611579565b5f6001600160a01b03831615801590611bb05750826001600160a01b0316846001600160a01b03161480611b8d5750611b8d848461128e565b80611bb057505f828152600460205260409020546001600160a01b038481169116145b949350505050565b6001600160a01b038216611be157604051633250574960e11b81525f600482015260240161092c565b5f611bed83835f611371565b90506001600160a01b03811615610aa9576040516339e3563760e11b81525f600482015260240161092c565b6001600160e01b031981168114610da2575f5ffd5b5f60208284031215611c3e575f5ffd5b8135611b3681611c19565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b602081525f611b366020830184611c49565b5f60208284031215611c99575f5ffd5b5035919050565b80356001600160a01b0381168114611cb6575f5ffd5b919050565b5f5f60408385031215611ccc575f5ffd5b611cd583611ca0565b946020939093013593505050565b80358015158114611cb6575f5ffd5b5f60208284031215611d02575f5ffd5b611b3682611ce3565b5f5f5f60608486031215611d1d575f5ffd5b611d2684611ca0565b9250611d3460208501611ca0565b929592945050506040919091013590565b5f60208284031215611d55575f5ffd5b611b3682611ca0565b5f5f5f60608486031215611d70575f5ffd5b505081359360208301359350604090920135919050565b5f5f60208385031215611d98575f5ffd5b823567ffffffffffffffff811115611dae575f5ffd5b8301601f81018513611dbe575f5ffd5b803567ffffffffffffffff811115611dd4575f5ffd5b856020828401011115611de5575f5ffd5b6020919091019590945092505050565b5f5f5f5f5f5f60c08789031215611e0a575f5ffd5b505084359660208601359650604086013595606081013595506080810135945060a0013592509050565b5f5f60408385031215611e45575f5ffd5b611e4e83611ca0565b9150611e5c60208401611ce3565b90509250929050565b5f5f5f60408486031215611e77575f5ffd5b833560068110611e85575f5ffd5b9250602084013567ffffffffffffffff811115611ea0575f5ffd5b8401601f81018613611eb0575f5ffd5b803567ffffffffffffffff811115611ec6575f5ffd5b8660208260051b8401011115611eda575f5ffd5b939660209190910195509293505050565b634e487b7160e01b5f52604160045260245ffd5b5f5f5f5f60808587031215611f12575f5ffd5b611f1b85611ca0565b9350611f2960208601611ca0565b925060408501359150606085013567ffffffffffffffff811115611f4b575f5ffd5b8501601f81018713611f5b575f5ffd5b803567ffffffffffffffff811115611f7557611f75611eeb565b604051601f8201601f19908116603f0116810167ffffffffffffffff81118282101715611fa457611fa4611eeb565b604052818152828201602001891015611fbb575f5ffd5b816020840160208301375f6020838301015280935050505092959194509250565b5f5f60408385031215611fed575f5ffd5b611ff683611ca0565b9150611e5c60208401611ca0565b600181811c9082168061201857607f821691505b60208210810361203657634e487b7160e01b5f52602260045260245ffd5b50919050565b601f821115610aa957805f5260205f20601f840160051c810160208510156120615750805b601f840160051c820191505b8181101561169a575f815560010161206d565b67ffffffffffffffff83111561209857612098611eeb565b6120ac836120a68354612004565b8361203c565b5f601f8411600181146120dd575f85156120c65750838201355b5f19600387901b1c1916600186901b17835561169a565b5f83815260208120601f198716915b8281101561210c57868501358255602094850194600190920191016120ec565b5086821015612128575f1960f88860031b161c19848701351681555b505060018560011b0183555050505050565b634e487b7160e01b5f52602160045260245ffd5b5f5f845461215b81612004565b6001821680156121725760018114612187576121b4565b60ff19831686528115158202860193506121b4565b875f5260205f205f5b838110156121ac57815488820152600190910190602001612190565b505081860193505b50505083518060208601835e5f9101908152949350505050565b5f600182016121eb57634e487b7160e01b5f52601160045260245ffd5b5060010190565b6001600160a01b03858116825284166020820152604081018390526080606082018190525f9061222490830184611c49565b9695505050505050565b5f6020828403121561223e575f5ffd5b8151611b3681611c19565b634e487b7160e01b5f52603260045260245ffdfea264697066735822122053f7cda580483b9a4018d120b405b0acbcb693f9347d0a298e389a5868b136fd64736f6c634300081c0033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000ce92c82ec42d55b50c839b915652e44c18356050
-----Decoded View---------------
Arg [0] : _paymentReceiver (address): 0xcE92C82eC42d55b50c839b915652E44c18356050
-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 000000000000000000000000ce92c82ec42d55b50c839b915652e44c18356050
Loading...
Loading
Loading...
Loading
OVERVIEW
10,000 NFTs, soulbound, representing meaningful ownership in the MegaETH network.Net Worth in USD
$7,889.10
Net Worth in ETH
3.999908
Token Allocations
ETH
99.99%
BERA
0.01%
POL
0.00%
Multichain Portfolio | 34 Chains
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.